
Software Engineering & Systems Development

This updated and reorganized fourth edition of Software Testing: A Craftsman’s
Approach applies the strong mathematics content of previous editions to a coherent treat-
ment of Model-Based Testing for both code-based (structural) and specification-based
(functional) testing. These techniques are extended from the usual unit testing discussions
to full coverage of less understood levels integration and system testing.

The Fourth Edition:

•	Emphasizes technical inspections and is supplemented by an appendix
with a full package of documents required for a sample Use Case
technical inspection

•	 Introduces an innovative approach that merges the Event-Driven Petri Nets
from the earlier editions with the “Swim Lane” concept from the Unified
Modeling Language (UML) that permits model-based testing for four
levels of interaction among constituents in a System of Systems

•	 Introduces model-based development and provides an explanation of
how to conduct testing within model-based development environments

•	Presents a new section on methods for testing software in an Agile
programming environment

•	Explores test-driven development, reexamines all-pairs testing, and
explains the four contexts of software testing

Thoroughly revised and updated, Software Testing: A Craftsman’s Approach, Fourth
Edition is sure to become a standard reference for those who need to stay up to date
with evolving technologies in software testing. Carrying on the tradition of previous
editions, it will continue to serve as a valuable reference for software testers, developers,
and engineers.

ISBN: 978-1-4665-6068-0

9 781466 560680

90000
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

K15906

Software
Testing

Fourth Edition

S
oftw

are Testin
g

A Craftsman’s Approach

F
ourth

E
d
ition

Jorgensen

Paul C. Jorgensen

www.auerbach-publications.com

K15906 cvr mech.indd 1 9/19/13 10:04 AM

Software
Testing
 A Craftsman’s Approach

Fourth Edition

Software
Testing
 A Craftsman’s Approach

Fourth Edition

Paul C. Jorgensen

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130815

International Standard Book Number-13: 978-1-4665-6069-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To Carol, Kirsten, and Katia

vii

Contents

Preface to the Fourth Edition...xix
Preface to the Third Edition ...xxi
Preface to the Second Edition ... xxiii
Preface to the First Edition ... xxv
Author ...xxvii
Abstract ..xxix

part I a MatHEMatICaL CONtEXt

 1 A Perspective on Testing ...3
1.1 Basic Definitions ... 3
1.2 Test Cases .. 4
1.3 Insights from a Venn Diagram .. 5
1.4 Identifying Test Cases ... 6

1.4.1 Specification-Based Testing .. 7
1.4.2 Code-Based Testing .. 8
1.4.3 Specification-Based versus Code-Based Debate .. 8

1.5 Fault Taxonomies .. 9
1.6 Levels of Testing .. 12
References ...13

 2 Examples ..15
2.1 Generalized Pseudocode ...15
2.2 The Triangle Problem ...17

2.2.1 Problem Statement...17
2.2.2 Discussion ...18
2.2.3 Traditional Implementation ...18
2.2.4 Structured Implementations ..21

2.3 The NextDate Function ... 23
2.3.1 Problem Statement.. 23
2.3.2 Discussion .. 23
2.3.3 Implementations ... 24

viii  ◾  Contents

2.4 The Commission Problem ... 26
2.4.1 Problem Statement.. 26
2.4.2 Discussion .. 27
2.4.3 Implementation .. 27

2.5 The SATM System ... 28
2.5.1 Problem Statement.. 29
2.5.2 Discussion .. 30

2.6 The Currency Converter .. 30
2.7 Saturn Windshield Wiper Controller ..31
2.8 Garage Door Opener ..31
References ...33

 3 Discrete Math for Testers ...35
3.1 Set Theory ..35

3.1.1 Set Membership .. 36
3.1.2 Set Definition ... 36
3.1.3 The Empty Set .. 37
3.1.4 Venn Diagrams ... 37
3.1.5 Set Operations .. 38
3.1.6 Set Relations ... 40
3.1.7 Set Partitions .. 40
3.1.8 Set Identities ..41

3.2 Functions ... 42
3.2.1 Domain and Range .. 42
3.2.2 Function Types ... 43
3.2.3 Function Composition.. 44

3.3 Relations ...45
3.3.1 Relations among Sets ...45
3.3.2 Relations on a Single Set ... 46

3.4 Propositional Logic ...47
3.4.1 Logical Operators ... 48
3.4.2 Logical Expressions... 49
3.4.3 Logical Equivalence .. 49

3.5 Probability Theory ... 50
Reference ..52

 4 Graph Theory for Testers ..53
4.1 Graphs ..53

4.1.1 Degree of a Node .. 54
4.1.2 Incidence Matrices ...55
4.1.3 Adjacency Matrices ... 56
4.1.4 Paths ... 56
4.1.5 Connectedness ...57
4.1.6 Condensation Graphs ... 58
4.1.7 Cyclomatic Number ... 58

4.2 Directed Graphs ...59

Contents  ◾  ix

4.2.1 Indegrees and Outdegrees ... 60
4.2.2 Types of Nodes ... 60
4.2.3 Adjacency Matrix of a Directed Graph ..61
4.2.4 Paths and Semipaths ... 62
4.2.5 Reachability Matrix .. 62
4.2.6 n-Connectedness .. 63
4.2.7 Strong Components .. 64

4.3 Graphs for Testing ..65
4.3.1 Program Graphs ..65
4.3.2 Finite State Machines ... 66
4.3.3 Petri Nets ... 68
4.3.4 Event-Driven Petri Nets .. 70
4.3.5 StateCharts ... 73

References .. 75

part II UNIt tEStING

 5 Boundary Value Testing ...79
5.1 Normal Boundary Value Testing ... 80

5.1.1 Generalizing Boundary Value Analysis ..81
5.1.2 Limitations of Boundary Value Analysis ... 82

5.2 Robust Boundary Value Testing .. 82
5.3 Worst-Case Boundary Value Testing ... 83
5.4 Special Value Testing ... 84
5.5 Examples ..85

5.5.1 Test Cases for the Triangle Problem ..85
5.5.2 Test Cases for the NextDate Function .. 86
5.5.3 Test Cases for the Commission Problem ..91

5.6 Random Testing .. 93
5.7 Guidelines for Boundary Value Testing ... 94

 6 Equivalence Class Testing ..99
6.1 Equivalence Classes ... 99
6.2 Traditional Equivalence Class Testing ... 100
6.3 Improved Equivalence Class Testing ..101

6.3.1 Weak Normal Equivalence Class Testing ..102
6.3.2 Strong Normal Equivalence Class Testing ...102
6.3.3 Weak Robust Equivalence Class Testing..103
6.3.4 Strong Robust Equivalence Class Testing ..104

6.4 Equivalence Class Test Cases for the Triangle Problem ..105
6.5 Equivalence Class Test Cases for the NextDate Function107

6.5.1 Equivalence Class Test Cases ...109
6.6 Equivalence Class Test Cases for the Commission Problem..................................111
6.7 Edge Testing ...113
6.8 Guidelines and Observations ..113
References ... 115

x  ◾  Contents

 7 Decision Table–Based Testing ..117
7.1 Decision Tables ...117
7.2 Decision Table Techniques ...118
7.3 Test Cases for the Triangle Problem .. 122
7.4 Test Cases for the NextDate Function ... 123

7.4.1 First Try ... 123
7.4.2 Second Try ... 124
7.4.3 Third Try .. 126

7.5 Test Cases for the Commission Problem .. 127
7.6 Cause-and-Effect Graphing ... 128
7.7 Guidelines and Observations ... 130
References ...131

 8 Path Testing ..133
8.1 Program Graphs ...133

8.1.1 Style Choices for Program Graphs ...133
8.2 DD-Paths .. 136
8.3 Test Coverage Metrics ..138

8.3.1 Program Graph–Based Coverage Metrics ..138
8.3.2 E.F. Miller’s Coverage Metrics ...139

8.3.2.1 Statement Testing ..139
8.3.2.2 DD-Path Testing ...140
8.3.2.3 Simple Loop Coverage ...140
8.3.2.4 Predicate Outcome Testing ..140
8.3.2.5 Dependent Pairs of DD-Paths ...141
8.3.2.6 Complex Loop Coverage ...141
8.3.2.7 Multiple Condition Coverage ..142
8.3.2.8 “Statistically Significant” Coverage ..142
8.3.2.9 All Possible Paths Coverage ...142

8.3.3 A Closer Look at Compound Conditions ..142
8.3.3.1 Boolean Expression (per Chilenski) ...142
8.3.3.2 Condition (per Chilenski) ...143
8.3.3.3 Coupled Conditions (per Chilenski) ..143
8.3.3.4 Masking Conditions (per Chilenski)144
8.3.3.5 Modified Condition Decision Coverage144

8.3.4 Examples ...145
8.3.4.1 Condition with Two Simple Conditions145
8.3.4.2 Compound Condition from NextDate146
8.3.4.3 Compound Condition from the Triangle Program147

8.3.5 Test Coverage Analyzers ..149
8.4 Basis Path Testing ...149

8.4.1 McCabe’s Basis Path Method ..150
8.4.2 Observations on McCabe’s Basis Path Method ..152
8.4.3 Essential Complexity ...154

8.5 Guidelines and Observations ..156
References ...158

Contents  ◾  xi

 9 Data Flow Testing ..159
9.1 Define/Use Testing ...160

9.1.1 Example ...161
9.1.2 Du-paths for Stocks ...164
9.1.3 Du-paths for Locks ..164
9.1.4 Du-paths for totalLocks ..168
9.1.5 Du-paths for Sales ...169
9.1.6 Du-paths for Commission ...170
9.1.7 Define/Use Test Coverage Metrics ..170
9.1.8 Define/Use Testing for Object-Oriented Code ..172

9.2 Slice-Based Testing ...172
9.2.1 Example ...175
9.2.2 Style and Technique ..179
9.2.3 Slice Splicing ...181

9.3 Program Slicing Tools ...182
References ...183

10 Retrospective on Unit Testing ..185
10.1 The Test Method Pendulum ...186
10.2 Traversing the Pendulum ..188
10.3 Evaluating Test Methods ..193
10.4 Insurance Premium Case Study ..195

10.4.1 Specification-Based Testing ...195
10.4.2 Code-Based Testing ...199

10.4.2.1 Path-Based Testing ..199
10.4.2.2 Data Flow Testing .. 200
10.4.2.3 Slice Testing ..201

10.5 Guidelines ... 202
References .. 203

part III BEYOND UNIt tEStING

11 Life Cycle–Based Testing ...207
11.1 Traditional Waterfall Testing ... 207

11.1.1 Waterfall Testing .. 209
11.1.2 Pros and Cons of the Waterfall Model .. 209

11.2 Testing in Iterative Life Cycles ..210
11.2.1 Waterfall Spin-Offs ...210
11.2.2 Specification-Based Life Cycle Models ...212

11.3 Agile Testing ..214
11.3.1 Extreme Programming ..215
11.3.2 Test-Driven Development ..215
11.3.3 Scrum ..216

11.4 Agile Model–Driven Development ...218
11.4.1 Agile Model–Driven Development ..218
11.4.2 Model–Driven Agile Development ..218

References ...219

xii  ◾  Contents

12 Model-Based Testing ..221
12.1 Testing Based on Models ..221
12.2 Appropriate Models ... 222

12.2.1 Peterson’s Lattice .. 222
12.2.2 Expressive Capabilities of Mainline Models .. 224
12.2.3 Modeling Issues .. 224
12.2.4 Making Appropriate Choices .. 225

12.3 Commercial Tool Support for Model-Based Testing .. 226
References .. 227

13 Integration Testing ...229
13.1 Decomposition-Based Integration ... 229

13.1.1 Top–Down Integration .. 232
13.1.2 Bottom–Up Integration .. 234
13.1.3 Sandwich Integration ...235
13.1.4 Pros and Cons ...235

13.2 Call Graph–Based Integration ... 236
13.2.1 Pairwise Integration .. 237
13.2.2 Neighborhood Integration .. 237
13.2.3 Pros and Cons .. 240

13.3 Path-Based Integration ...241
13.3.1 New and Extended Concepts...241
13.3.2 MM-Path Complexity .. 243
13.3.3 Pros and Cons .. 244

13.4 Example: integrationNextDate .. 244
13.4.1 Decomposition-Based Integration ...245
13.4.2 Call Graph–Based Integration ...245
13.4.3 MM-Path-Based Integration ..250

13.5 Conclusions and Recommendations ...250
References ...251

14 System Testing ..253
14.1 Threads ...253

14.1.1 Thread Possibilities ... 254
14.1.2 Thread Definitions...255

14.2 Basis Concepts for Requirements Specification ...256
14.2.1 Data...256
14.2.2 Actions ..257
14.2.3 Devices ..257
14.2.4 Events ..258
14.2.5 Threads ..259
14.2.6 Relationships among Basis Concepts ...259

14.3 Model-Based Threads ...259
14.4 Use Case–Based Threads ... 264

14.4.1 Levels of Use Cases ... 264
14.4.2 An Industrial Test Execution System ...265
14.4.3 System-Level Test Cases ... 268

Contents  ◾  xiii

14.4.4 Converting Use Cases to Event-Driven Petri Nets 269
14.4.5 Converting Finite State Machines to Event-Driven Petri Nets270
14.4.6 Which View Best Serves System Testing? ..271

14.5 Long versus Short Use Cases ..271
14.6 How Many Use Cases? ...274

14.6.1 Incidence with Input Events ..274
14.6.2 Incidence with Output Events ...275
14.6.3 Incidence with All Port Events .. 277
14.6.4 Incidence with Classes .. 277

14.7 Coverage Metrics for System Testing ... 277
14.7.1 Model-Based System Test Coverage .. 277
14.7.2 Specification-Based System Test Coverage .. 278

14.7.2.1 Event-Based Thread Testing .. 278
14.7.2.2 Port-Based Thread Testing .. 279

14.8 Supplemental Approaches to System Testing ... 279
14.8.1 Operational Profiles .. 279
14.8.2 Risk-Based Testing ... 282

14.9 Nonfunctional System Testing .. 284
14.9.1 Stress Testing Strategies .. 284

14.9.1.1 Compression ... 284
14.9.1.2 Replication ... 285

14.9.2 Mathematical Approaches .. 286
14.9.2.1 Queuing Theory ... 286
14.9.2.2 Reliability Models .. 286
14.9.2.3 Monte Carlo Testing... 286

14.10 Atomic System Function Testing Example .. 287
14.10.1 Identifying Input and Output Events ... 289
14.10.2 Identifying Atomic System Functions ... 290
14.10.3 Revised Atomic System Functions ...291

References .. 292

15 Object-Oriented Testing ...295
15.1 Issues in Testing Object-Oriented Software ... 295

15.1.1 Units for Object-Oriented Testing .. 295
15.1.2 Implications of Composition and Encapsulation 296
15.1.3 Implications of Inheritance ... 297
15.1.4 Implications of Polymorphism .. 299
15.1.5 Levels of Object-Oriented Testing .. 299
15.1.6 Data Flow Testing for Object-Oriented Software 299

15.2 Example: ooNextDate ... 300
15.2.1 Class: CalendarUnit ..301
15.2.2 Class: testIt ... 302
15.2.3 Class: Date ... 302
15.2.4 Class: Day... 303
15.2.5 Class: Month .. 303
15.2.6 Class: Year .. 304

15.3 Object-Oriented Unit Testing.. 304

xiv  ◾  Contents

15.3.1 Methods as Units .. 305
15.3.2 Classes as Units .. 305

15.3.2.1 Pseudocode for Windshield Wiper Class 306
15.3.2.2 Unit Testing for Windshield Wiper Class 306

15.4 Object-Oriented Integration Testing ..311
15.4.1 UML Support for Integration Testing ...311
15.4.2 MM-Paths for Object-Oriented Software ..313
15.4.3 A Framework for Object-Oriented Data Flow Testing318

15.4.3.1 Event-/Message-Driven Petri Nets ...318
15.4.3.2 Inheritance-Induced Data Flow .. 320
15.4.3.3 Message-Induced Data Flow ... 320
15.4.3.4 Slices? ..321

15.5 Object-Oriented System Testing ...321
15.5.1 Currency Converter UML Description ...321

15.5.1.1 Problem Statement...321
15.5.1.2 System Functions ...321
15.5.1.3 Presentation Layer .. 322
15.5.1.4 High-Level Use Cases ... 322
15.5.1.5 Essential Use Cases ... 323
15.5.1.6 Detailed GUI Definition ...325
15.5.1.7 Expanded Essential Use Cases .. 326
15.5.1.8 Real Use Cases ... 328

15.5.2 UML-Based System Testing ... 328
15.5.3 StateChart-Based System Testing ..329

References .. 330

16 Software Complexity ..331
16.1 Unit-Level Complexity ...331

16.1.1 Cyclomatic Complexity ...332
16.1.1.1 “Cattle Pens” and Cyclomatic Complexity332
16.1.1.2 Node Outdegrees and Cyclomatic Complexity332
16.1.1.3 Decisional Complexity ... 334

16.1.2 Computational Complexity ...335
16.1.2.1 Halstead’s Metrics ...335
16.1.2.2 Example: Day of Week with Zeller’s Congruence 336

16.2 Integration-Level Complexity ...338
16.2.1 Integration-Level Cyclomatic Complexity ...339
16.2.2 Message Traffic Complexity .. 340

16.3 Software Complexity Example .. 341
16.3.1 Unit-Level Cyclomatic Complexity ... 344
16.3.2 Message Integration-Level Cyclomatic Complexity 344

16.4 Object-Oriented Complexity ... 344
16.4.1 WMC—Weighted Methods per Class .. 344
16.4.2 DIT—Depth of Inheritance Tree ..345
16.4.3 NOC—Number of Child Classes ...345
16.4.4 CBO—Coupling between Classes ..345
16.4.5 RFC—Response for Class ...345

Contents  ◾  xv

16.4.6 LCOM—Lack of Cohesion on Methods ...345
16.5 System-Level Complexity ...345
Reference ... 348

17 Model-Based Testing for Systems of Systems ...349
17.1 Characteristics of Systems of Systems ...350
17.2 Sample Systems of Systems ...351

17.2.1 The Garage Door Controller (Directed) ..351
17.2.2 Air Traffic Management System (Acknowledged)352
17.2.3 The GVSU Snow Emergency System (Collaborative)...............................353
17.2.4 The Rock Solid Federal Credit Union (Virtual)354

17.3 Software Engineering for Systems of Systems ...354
17.3.1 Requirements Elicitation ...355
17.3.2 Specification with a Dialect of UML: SysML ..355

17.3.2.1 Air Traffic Management System Classes355
17.3.2.2 Air Traffic Management System Use Cases and Sequence

Diagrams ...356
17.3.3 Testing ...359

17.4 Communication Primitives for Systems of Systems ..359
17.4.1 ESML Prompts as Petri Nets ...359

17.4.1.1 Petri Net Conflict ... 360
17.4.1.2 Petri Net Interlock .. 360
17.4.1.3 Enable, Disable, and Activate ..361
17.4.1.4 Trigger ...361
17.4.1.5 Suspend and Resume ...361

17.4.2 New Prompts as Swim Lane Petri Nets... 363
17.4.2.1 Request ... 363
17.4.2.2 Accept .. 363
17.4.2.3 Reject ... 364
17.4.2.4 Postpone ... 364
17.4.2.5 Swim Lane Description of the November 1993 Incident 364

17.5 Effect of Systems of Systems Levels on Prompts ..365
17.5.1 Directed and Acknowledged Systems of Systems 366
17.5.2 Collaborative and Virtual Systems of Systems ...367

References ...367

18 Exploratory Testing ..369
18.1 Exploratory Testing Explored .. 369
18.2 Exploring a Familiar Example ..371
18.3 Observations and Conclusions ..373
References ...374

19 Test-Driven Development ...375
19.1 Test-Then-Code Cycles ...375
19.2 Automated Test Execution (Testing Frameworks) ... 384
19.3 Java and JUnit Example ..385

19.3.1 Java Source Code ...385
19.3.2 JUnit Test Code .. 387

xvi  ◾  Contents

19.4 Remaining Questions .. 388
19.4.1 Specification or Code Based? .. 388
19.4.2 Configuration Management? .. 388
19.4.3 Granularity? ... 388

19.5 Pros, Cons, and Open Questions of TDD ... 390
19.6 Retrospective on MDD versus TDD ... 390

20 A Closer Look at All Pairs Testing ...395
20.1 The All Pairs Technique ..395

20.1.1 Program Inputs ... 396
20.1.2 Independent Variables .. 398
20.1.3 Input Order .. 399
20.1.4 Failures Due Only to Pairs of Inputs .. 403

20.2 A Closer Look at the NIST Study.. 404
20.3 Appropriate Applications for All Pairs Testing ... 404
20.4 Recommendations for All Pairs Testing ... 405
References .. 406

21 Evaluating Test Cases .. 407
21.1 Mutation Testing ... 407

21.1.1 Formalizing Program Mutation .. 408
21.1.2 Mutation Operators .. 409

21.1.2.1 isLeap Mutation Testing ..410
21.1.2.2 isTriangle Mutation Testing ...411
21.1.2.3 Commission Mutation Testing ..412

21.2 Fuzzing ...414
21.3 Fishing Creel Counts and Fault Insertion ...414
References ...415

22 Software Technical Reviews ...417
22.1 Economics of Software Reviews ...417
22.2 Roles in a Review..419

22.2.1 Producer ..419
22.2.2 Review Leader ...419
22.2.3 Recorder ... 420
22.2.4 Reviewer ... 420
22.2.5 Role Duplication .. 420

22.3 Types of Reviews ... 420
22.3.1 Walkthroughs ..421
22.3.2 Technical Inspections ..421
22.3.3 Audits ..421
22.3.4 Comparison of Review Types ... 422

22.4 Contents of an Inspection Packet .. 422
22.4.1 Work Product Requirements .. 422
22.4.2 Frozen Work Product ... 422
22.4.3 Standards and Checklists .. 423
22.4.4 Review Issues Spreadsheet .. 423
22.4.5 Review Reporting Forms .. 424

Contents  ◾  xvii

22.4.6 Fault Severity Levels ... 425
22.4.7 Review Report Outline ... 425

22.5 An Industrial-Strength Inspection Process .. 426
22.5.1 Commitment Planning ... 426
22.5.2 Reviewer Introduction .. 427
22.5.3 Preparation ... 427
22.5.4 Review Meeting .. 428
22.5.5 Report Preparation ... 428
22.5.6 Disposition ... 428

22.6 Effective Review Culture ... 429
22.6.1 Etiquette ... 429
22.6.2 Management Participation in Review Meetings 429
22.6.3 A Tale of Two Reviews ... 430

22.6.3.1 A Pointy-Haired Supervisor Review 430
22.6.3.2 An Ideal Review ... 430

22.7 Inspection Case Study ..431
Reference ... 432

23 Epilogue: Software Testing Excellence ...433
23.1 Craftsmanship ... 433
23.2 Best Practices of Software Testing ... 434
23.3 My Top 10 Best Practices for Software Testing Excellence435

23.3.1 Model-Driven Agile Development ...435
23.3.2 Careful Definition and Identification of Levels of Testing435
23.3.3 System-Level Model-Based Testing ... 436
23.3.4 System Testing Extensions .. 436
23.3.5 Incidence Matrices to Guide Regression Testing 436
23.3.6 Use of MM-Paths for Integration Testing ... 436
23.3.7 Intelligent Combination of Specification-Based and Code-Based

Unit-Level Testing .. 436
23.3.8 Code Coverage Metrics Based on the Nature of Individual Units 437
23.3.9 Exploratory Testing during Maintenance ... 437
23.3.10 Test-Driven Development ... 437

23.4 Mapping Best Practices to Diverse Projects ... 437
23.4.1 A Mission-Critical Project .. 438
23.4.2 A Time-Critical Project .. 438
23.4.3 Corrective Maintenance of Legacy Code .. 438

References .. 438

Appendix: Complete Technical Inspection Packet ..439

xix

preface to the Fourth Edition

Software Testing: A Craftsman’s Approach, Fourth Edition
Software Testing: A Craftsman’s Approach extends an 18-year emphasis on model-based testing with
deeper coverage of path testing and four new chapters. The book has evolved over three editions
and 18 years of classroom and industrial use. It presents a strong combination of theory and prac-
tice, with well chosen, but easily understood, examples. In addition, much of the material from
the Third Edition has been merged, reorganized, and made more concise. Much of the material on
object-oriented software testing has been unified with procedural software testing into a coherent
whole. In addition, the chapter on path testing contains new material on complex condition test-
ing and Modified Condition Decision Coverage as mandated by Federal Aviation Authority and
US Department of Defense standards.

Here is a brief summary of the new chapters:

 ◾ Software reviews, especially technical inspections (Chapter 22). This is really recognized
as “static testing,” whereas the first three editions focused on “dynamic testing,” in which
program code executes carefully selected test cases. The material in this chapter is derived
from 20 years of industrial/practical experience in a development organization that had an
extremely mature review process.

 ◾ An Appendix that contains a full set of documents that are appropriate for an industrial-
strength technical inspection of a set of Use Cases (from UML) that respond to a typical
customer specification. The Appendix includes a Use Case Standard, a definition of Use
Case Fault severities, a technical inspection checklist of potential problems, and typical
reviewer and final report forms.

 ◾ Testing Systems of Systems (Chapter 17). Systems of systems is a relatively new (since 1999)
topic. The practitioner community is just now following the lead of a few university research-
ers, mostly in the area of how to specify a system of systems. This chapter introduces “Swim
Lane Event-Driven Petri Nets,” which have an expressive power very similar to the world-
famous Statecharts. This makes model-based testing possible for systems of systems.

 ◾ Software complexity (Chapter 16). Most texts only consider cyclomatic (aka McCabe) com-
plexity at the unit level. This chapter extends unit level complexity in two ways and then adds
two views of integration level complexity. There is a short treatment of the complexities due
to object-oriented programming and also to system level testing. At all levels, complexity is

xx  ◾  Preface to the Fourth Edition

an important way to improve designs, coding, testing, and maintenance. Having a coherent
presentation of software complexity enhances each of these activities.

 ◾ Evaluating test cases (Chapter 21). This new chapter considers a difficult question: how can
a set of test cases be evaluated? Test coverage metrics are a long-accepted answer, but there
will always be a level of uncertainty. The old Roman question of who guards the guards/cus-
todians is extended to who tests the tests. Mutation testing has been an answer for decades,
and its contribution is covered in this chapter. Two other approaches are offered: fuzzing
and fault insertion.

After 47 years as a software developer and university professor, I have knowledge of software
testing that is both deep and extensive. My university education was in mathematics and computer
science, and that, together with 20 years of industrial software development and management
experience, puts me in a strong position to codify and improve the teaching and understanding of
software testing. I keep gaining new insights, often when I teach out of the book. I see this book
as my contribution to the field of software engineering. Finally, I thank three of my colleagues—
Dr. Roger Ferguson, Dr. Jagadeesh Nandigam, and Dr. Christian Trefftz—for their help in the
chapters on object-oriented testing. Wopila tanka!

Paul C. Jorgensen
Rockford, Michigan

xxi

preface to the third Edition

Software Testing: A Craftsman’s Approach, Third Edition
Five years have passed since the Second Edition appeared, and software testing has seen a renais-
sance of renewed interest and technology. The biggest change is the growing prominence and
acceptance of agile programming. The various flavors of agile programming have interesting, and
serious, implications for software testing. Almost as a reaction to agile programming, the model-
based approaches to both development and testing have also gained adherents. Part VI of the
Third Edition analyzes the testing methods that are gaining acceptance in the new millennium.
Except for correction of errors, the first five parts are generally unchanged.

Over the years, several readers have been enormously helpful in pointing out defects—both
typos and more serious faults. Particular thanks go to Neil Bitzenhofer (St. Paul, Minnesota), Han
Ke (Beijing), Jacob Minidor (Illinois), and Jim Davenport (Ohio). In addition, many of my gradu-
ate students have made helpful suggestions in the past fifteen years. Special mention goes to two
valued colleagues, Dr. Roger Ferguson and Dr. Christian Trefftz, for their help.

This book is now used as a text for formal courses in software testing in dozens of countries.
To support both instructors and students, I have added more exercises, and faculty adopters can
get a package of support materials from CRC Press.

I, too, have changed in the past five years. I now count several Lakota people among my friends.
There is an interesting bit of their influence in Chapter 23, and just one word here—Hecatuyelo!

Paul C. Jorgensen
Rockford, Michigan

xxiii

preface to the Second Edition

Software Testing: A Craftsman’s Approach, Second Edition
Seven years have passed since I wrote the preface to the First Edition. Much has happened in that
time, hence this new edition. The most significant change is the dominance of the unified model-
ing language (UML) as a standard for the specification and design of object-oriented software.
This is reflected in the five chapters in Part V that deal with testing object-oriented software.
Nearly all of the material in Part V is UML-based.

The second major change is that the Pascal examples of the First Edition are replaced by a lan-
guage neutral pseudo-code. The examples have been elaborated; Visual Basic executable modules
available on the CRC Press website support them. Several new examples illustrate some of the
issues of testing object-oriented software. There are dozens of other changes: an improved descrip-
tion of equivalence class testing, a continuing case study, and more details about integration test-
ing are the most important additions.

I am flattered that the First Edition is one of the primary references on software testing in the
trial-use standard “Software Engineering Body of Knowledge” jointly produced by the ACM and
IEEE Computer Society (www.swebok.org). This recognition makes the problem of uncorrected
mistakes more of a burden. Prof. Gi H. Kwon of Kyonggi University in South Korea sent me a
list of 38 errors in the First Edition, and students in my graduate class on software testing have
gleefully contributed others. There is a nice analogy with testing here: I have fixed all the known
errors, and my editor tells me it is time to stop looking for others. If you find any, please let me
know—they are my responsibility. My email address is jorgensp@gvsu.edu.

I need to thank Jerry Papule and Helena Redcap at CRC Press for their patience. I also want to
thank my friend and colleague, Prof. Roger Ferguson, for his continued help with the new mate-
rial in Part V, especially the continuing object-oriented calendar example. In a sense, Roger has
been a tester of numerous drafts of chapters sixteen through twenty.

Paul C. Jorgensen
Rockford, Michigan

xxv

preface to the First Edition

Software Testing: A Craftsman’s Approach
We huddled around the door to the conference room, each taking a turn looking through the
small window. Inside, a recently hired software designer had spread out source listings on the
conference table, and carefully passed a crystal hanging from a long chain over the source code.
Every so often, the designer marked a circle in red on the listing. Later, one of my colleagues asked
the designer what he had been doing in the conference room. The nonchalant reply: “Finding the
bugs in my program.” This is a true story, it happened in the mid-1980s when people had high
hopes for hidden powers in crystals.

In a sense, the goal of this book is to provide you with a better set of crystals. As the title sug-
gests, I believe that software (and system) testing is a craft, and I think I have some mastery of that
craft. Out of a score of years developing telephone switching systems, I spent about a third of that
time on testing: defining testing methodologies and standards, coordinating system testing for a
major international telephone toll switch, specifying and helping build two test execution tools
(now we would call them CASE tools), and a fair amount of plain, hands-on testing. For the past
seven years, I have been teaching software engineering at the university graduate level. My aca-
demic research centers on specification and testing. Adherents to the Oxford Method claim that
you never really learn something until you have to teach it—I think they’re right. The students in
my graduate course on testing are all full-time employees in local industries. Believe me, they keep
you honest. This book is an outgrowth of my lectures and projects in that class.

I think of myself as a software engineer, but when I compare the level of precision and depth of
knowledge prevalent in my field to those of more traditional engineering disciplines, I am uncom-
fortable with the term. A colleague and I were returning to our project in Italy when Myers’ book,
The Art of Software Testing, first came out. On the way to the airport, we stopped by the MIT
bookstore and bought one of the early copies. In the intervening 15 years, I believe we have moved
from an art to a craft. I had originally planned to title this book The Craft of Software Testing, but
as I neared the final chapters, another book with that title appeared. Maybe that’s confirmation
that software testing is becoming a craft. There’s still a way to go before it is a science.

Part of any craft is knowing the capabilities and limitations of both the tools and the medium.
A good woodworker has a variety of tools and, depending on the item being made and the wood
being used, knows which tool is the most appropriate. Of all the phases of the traditional Waterfall
Model of the software development life cycle, testing is the most amenable to precise analysis.

xxvi  ◾  Preface to the First Edition

Elevating software testing to a craft requires that the testing craftsperson know the basic tools. To
this end, Chapters 3 and 4 provide mathematical background that is used freely in the remainder
of the text.

Mathematics is a descriptive device that helps us better understand software to be tested.
Precise notation, by itself, is not enough. We must also have good technique and judgment to
identify appropriate testing methods and to apply them well. These are the goals of Parts II and
III, which deal with fundamental functional and structural testing techniques. These techniques
are applied to the continuing examples, which are described in Chapter 2. In Part IV, we apply
these techniques to the integration and system levels of testing, and to object-oriented testing. At
these levels, we are more concerned with what to test than how to test it, so the discussion moves
toward requirements specification. Part IV concludes with an examination of testing interactions
in a software controlled system, with a short discussion of client–server systems.

It is ironic that a book on testing contains faults. Despite the conscientious efforts of reviewers
and editors, I am confident that faults persist in the text. Those that remain are my responsibility.

In 1977, I attended a testing seminar given by Edward Miller, who has since become one of
the luminaries in software testing circles. In that seminar, Miller went to great lengths to convince
us that testing need not be bothersome drudgery, but can be a very creative, interesting part of
software development. My goal for you, the reader of this book, is that you will become a testing
craftsperson, and that you will be able to derive the sense of pride and pleasure that a true crafts-
person realizes from a job well done.

Paul C. Jorgensen
Rockford, Michigan

xxvii

author

Paul Jorgensen, PhD, spent 20 years of his first career in all phases of software development for
telephone switching systems. He began his university career in 1986 teaching graduate courses in
software engineering at Arizona State University and since 1988 at Grand Valley State University
where he is a full professor. His consulting business, Software Paradigms, hibernates during the
academic year and emerges for a short time in the warmer months. He has served on major
CODASYL, ACM, and IEEE standards committees, and in 2012, his university recognized his
lifetime accomplishments with its “Distinguished Contribution to a Discipline Award.”

In addition to the fourth edition of his software testing book, he is also the author of Modeling
Software Behavior: A Craftsman’s Approach. He is a coauthor of Mathematics for Data Processing
(McGraw-Hill, 1970) and Structured Methods—Merging Models, Techniques, and CASE
(McGraw-Hill, 1993). More recently, Dr. Jorgensen has been involved with the International
Software Testing Certification Board (ISTQB) where he is a coauthor of the Advanced Level
Syllabi and served as the vice-chair of the ISTQB Glossary Working Group.

Living and working in Italy for three years made him a confirmed “Italophile.” He, his wife
Carol, and daughters Kirsten and Katia have visited friends there several times. In the Michigan
summer, he sails his Rebel when he can. Paul and Carol have volunteered at the Porcupine School
on the Pine Ridge Reservation in South Dakota every summer since 2000. His email address is
jorgensp@gvsu.edu.

xxix

abstract

Since the last publication of this international bestseller, there has been a renewed interest in
model-based testing. This Fourth Edition of Software Testing: A Craftsman’s Approach continues
and solidifies this emphasis with its careful blend of theory and well-chosen examples. The book
has evolved over three editions and 18 years of classroom and industrial use. Much of the mate-
rial from the Third Edition has been reorganized and consolidated, making room for important
emerging topics. The chapter on path testing contains new material on complex condition testing
and modified condition decision coverage as mandated by Federal Aviation Authority and US
Department of Defense standards.

There are four chapters of new material in the Fourth Edition. The chapter on software reviews
emphasizes technical inspections and is supplemented by an appendix with a full package of docu-
ments required for a sample use case technical inspection. It contains lessons learned from 15 years
of industrial practice. The treatment of systems of systems introduces an innovative approach that
merges the event-driven Petri nets from the earlier editions with the “swim lane” concept from the
unified modeling language (UML) that permits model-based testing for four levels of interaction
among constituents in a system of systems. Swim lane Petri nets exactly represent the issues of
concurrency that previously needed the orthogonal regions of StateCharts for correct description.
The chapter on software complexity presents a coherent, graph theory–based view of complexity
across the traditional three levels of testing, unit, integration, and system. Finally, the last new
chapter considers how a set of test cases might be evaluated and presents mutation testing and two
alternatives.

Thoroughly revised, updated, and extended, Software Testing: A Craftsman’s Approach, Fourth
Edition is sure to become a standard reference for those who need to stay up-to-date with the most
recent ideas in software testing. It also serves as a strong textbook for university courses in soft-
ware testing. It continues to be a valuable reference for software testers, developers, engineers, and
researchers. A full set of support materials is available to faculty who adopt the Fourth Edition as
a textbook.

Ia MatHEMatICaL
CONtEXt

3
© 2010 Taylor & Francis Group, LLC

Chapter 1

a perspective on testing

Why do we test? The two main reasons are to make a judgment about quality or acceptability and
to discover problems. We test because we know that we are fallible—this is especially true in the
domain of software and software-controlled systems. The goal of this chapter is to create a frame-
work within which we can examine software testing.

1.1 Basic Definitions
Much of testing literature is mired in confusing (and sometimes inconsistent) terminology, proba-
bly because testing technology has evolved over decades and via scores of writers. The International
Software Testing Qualification Board (ISTQB) has an extensive glossary of testing terms (see the
website http://www.istqb.org/downloads/glossary.html). The terminology here (and throughout
this book) is compatible with the ISTQB definitions, and they, in turn, are compatible with the
standards developed by the Institute of Electronics and Electrical Engineers (IEEE) Computer
Society (IEEE, 1983). To get started, here is a useful progression of terms.

Error—People make errors. A good synonym is mistake. When people make mistakes while
coding, we call these mistakes bugs. Errors tend to propagate; a requirements error may be magni-
fied during design and amplified still more during coding.

Fault—A fault is the result of an error. It is more precise to say that a fault is the representa-
tion of an error, where representation is the mode of expression, such as narrative text, Unified
Modeling Language diagrams, hierarchy charts, and source code. Defect (see the ISTQB Glossary)
is a good synonym for fault, as is bug. Faults can be elusive. An error of omission results in a fault
in which something is missing that should be present in the representation. This suggests a useful
refinement; we might speak of faults of commission and faults of omission. A fault of commission
occurs when we enter something into a representation that is incorrect. Faults of omission occur
when we fail to enter correct information. Of these two types, faults of omission are more difficult
to detect and resolve.

Failure—A failure occurs when the code corresponding to a fault executes. Two subtleties
arise here: one is that failures only occur in an executable representation, which is usually taken
to be source code, or more precisely, loaded object code; the second subtlety is that this definition

4  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

relates failures only to faults of commission. How can we deal with failures that correspond to
faults of omission? We can push this still further: what about faults that never happen to execute,
or perhaps do not execute for a long time? Reviews (see Chapter 22) prevent many failures by find-
ing faults; in fact, well-done reviews can find faults of omission.

Incident—When a failure occurs, it may or may not be readily apparent to the user (or cus-
tomer or tester). An incident is the symptom associated with a failure that alerts the user to the
occurrence of a failure.

Test—Testing is obviously concerned with errors, faults, failures, and incidents. A test is the
act of exercising software with test cases. A test has two distinct goals: to find failures or to dem-
onstrate correct execution.

Test case—A test case has an identity and is associated with a program behavior. It also has a
set of inputs and expected outputs.

Figure 1.1 portrays a life cycle model for testing. Notice that, in the development phases,
three opportunities arise for errors to be made, resulting in faults that may propagate through the
remainder of the development process. The fault resolution step is another opportunity for errors
(and new faults). When a fix causes formerly correct software to misbehave, the fix is deficient. We
will revisit this when we discuss regression testing.

From this sequence of terms, we see that test cases occupy a central position in testing. The
process of testing can be subdivided into separate steps: test planning, test case development, run-
ning test cases, and evaluating test results. The focus of this book is how to identify useful sets of
test cases.

1.2 test Cases
The essence of software testing is to determine a set of test cases for the item to be tested. A test
case is (or should be) a recognized work product. A complete test case will contain a test case iden-
tifier, a brief statement of purpose (e.g., a business rule), a description of preconditions, the actual
test case inputs, the expected outputs, a description of expected postconditions, and an execution
history. The execution history is primarily for test management use—it may contain the date when
the test was run, the person who ran it, the version on which it was run, and the pass/fail result.

Spec

Fault

Fault

Fault Incident

Design

Coding Classify
fault

Isolate
fault

Fault
resolution

Testing

Figure 1.1 a testing life cycle.

A Perspective on Testing  ◾  5

© 2010 Taylor & Francis Group, LLC

The output portion of a test case is frequently overlooked, which is unfortunate because this is
often the hard part. Suppose, for example, you were testing software that determines an optimal
route for an aircraft, given certain Federal Aviation Administration air corridor constraints and
the weather data for a flight day. How would you know what the optimal route really is? Various
responses can address this problem. The academic response is to postulate the existence of an
oracle who “knows all the answers.” One industrial response to this problem is known as reference
testing, where the system is tested in the presence of expert users. These experts make judgments
as to whether outputs of an executed set of test case inputs are acceptable.

Test case execution entails establishing the necessary preconditions, providing the test case
inputs, observing the outputs, comparing these with the expected outputs, and then ensuring
that the expected postconditions exist to determine whether the test passed. From all of this, it
becomes clear that test cases are valuable—at least as valuable as source code. Test cases need to
be developed, reviewed, used, managed, and saved.

1.3 Insights from a Venn Diagram
Testing is fundamentally concerned with behavior, and behavior is orthogonal to the code-based
view common to software (and system) developers. A quick distinction is that the code-based
view focuses on what it is and the behavioral view considers what it does. One of the continuing
sources of difficulty for testers is that the base documents are usually written by and for developers;
the emphasis is therefore on code-based, instead of behavioral, information. In this section, we
develop a simple Venn diagram that clarifies several nagging questions about testing.

Consider a universe of program behaviors. (Notice that we are forcing attention on the essence
of testing.) Given a program and its specification, consider the set S of specified behaviors and
the set P of programmed behaviors. Figure 1.2 shows the relationship between the specified and
programmed behaviors. Of all the possible program behaviors, the specified ones are in the circle
labeled S and all those behaviors actually programmed are in P. With this diagram, we can see
more clearly the problems that confront a tester. What if certain specified behaviors have not been
programmed? In our earlier terminology, these are faults of omission. Similarly, what if certain
programmed (implemented) behaviors have not been specified? These correspond to faults of com-
mission and to errors that occurred after the specification was complete. The intersection of S and
P (the football-shaped region) is the “correct” portion, that is, behaviors that are both specified
and implemented. A very good view of testing is that it is the determination of the extent of pro-
gram behavior that is both specified and implemented. (As an aside, note that “correctness” only
has meaning with respect to a specification and an implementation. It is a relative term, not an
absolute.)

The new circle in Figure 1.3 is for test cases. Notice the slight discrepancy with our universe
of discourse and the set of program behaviors. Because a test case causes a program behavior, the
mathematicians might forgive us. Now, consider the relationships among sets S, P, and T. There
may be specified behaviors that are not tested (regions 2 and 5), specified behaviors that are tested
(regions 1 and 4), and test cases that correspond to unspecified behaviors (regions 3 and 7).

Similarly, there may be programmed behaviors that are not tested (regions 2 and 6), pro-
grammed behaviors that are tested (regions 1 and 3), and test cases that correspond to behaviors
that were not implemented (regions 4 and 7).

Each of these regions is important. If specified behaviors exist for which no test cases are avail-
able, the testing is necessarily incomplete. If certain test cases correspond to unspecified behaviors,

6  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

some possibilities arise: either such a test case is unwarranted, the specification is deficient, or the
tester wishes to determine that specified non-behavior does not occur. (In my experience, good
testers often postulate test cases of this latter type. This is a fine reason to have good testers partici-
pate in specification and design reviews.)

We are already at a point where we can see some possibilities for testing as a craft: what can a
tester do to make the region where these sets all intersect (region 1) as large as possible? Another
approach is to ask how the test cases in set T are identified. The short answer is that test cases
are identified by a testing method. This framework gives us a way to compare the effectiveness of
diverse testing methods, as we shall see in Chapter 10.

1.4 Identifying test Cases
Two fundamental approaches are used to identify test cases; traditionally, these have been called
functional and structural testing. Specification-based and code-based are more descriptive names,
and they will be used here. Both approaches have several distinct test case identification methods;
they are generally just called testing methods. They are methodical in the sense that two testers
following the same “method” will devise very similar (equivalent?) test cases.

Program behaviors

S P

Specification
(expected)

Program
(implemented)

Figure 1.2 Specified and implemented program behaviors.

Program behaviors

Specification
(expected)

Program
(implemented)

Test cases
(verified)

S P

T

5

4 3

7 8

2 6
1

Figure 1.3 Specified, implemented, and tested behaviors.

A Perspective on Testing  ◾  7

© 2010 Taylor & Francis Group, LLC

1.4.1 Specification-Based Testing
The reason that specification-based testing was originally called “functional testing” is that any
program can be considered to be a function that maps values from its input domain to values in
its output range. (Function, domain, and range are defined in Chapter 3.) This notion is com-
monly used in engineering, when systems are considered to be black boxes. This led to another
synonymous term—black box testing, in which the content (implementation) of the black box is
not known, and the function of the black box is understood completely in terms of its inputs and
outputs (see Figure 1.4). In Zen and the Art of Motorcycle Maintenance, Robert Pirsig refers to this
as “romantic” comprehension (Pirsig, 1973). Many times, we operate very effectively with black
box knowledge; in fact, this is central to object orientation. As an example, most people success-
fully operate automobiles with only black box knowledge.

With the specification-based approach to test case identification, the only information used is
the specification of the software. Therefore, the test cases have two distinct advantages: (1) they
are independent of how the software is implemented, so if the implementation changes, the test
cases are still useful; and (2) test case development can occur in parallel with the implementation,
thereby reducing the overall project development interval. On the negative side, specification-
based test cases frequently suffer from two problems: significant redundancies may exist among
test cases, compounded by the possibility of gaps of untested software.

Figure 1.5 shows the results of test cases identified by two specification-based methods. Method
A identifies a larger set of test cases than does method B. Notice that, for both methods, the set
of test cases is completely contained within the set of specified behavior. Because specification-
based methods are based on the specified behavior, it is hard to imagine these methods identifying
behaviors that are not specified. In Chapter 8, we will see direct comparisons of test cases gener-
ated by various specification-based methods for the examples defined in Chapter 2.

In Chapters 5 through 7, we will examine the mainline approaches to specification-based
testing, including boundary value analysis, robustness testing, worst-case analysis, special value
testing, input (domain) equivalence classes, output (range) equivalence classes, and decision table-
based testing. The common thread running through these techniques is that all are based on

Inputs Outputs

Figure 1.4 Engineer’s black box.

Specification Program

Test
method

A

Specification Program

Test
method

B

Figure 1.5 Comparing specification-based test case identification methods.

8  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

definitional information of the item tested. Some of the mathematical background presented in
Chapter 3 applies primarily to specification-based approaches.

1.4.2 Code-Based Testing
Code-based testing is the other fundamental approach to test case identification. To contrast
it with black box testing, it is sometimes called white box (or even clear box) testing. The clear
box metaphor is probably more appropriate because the essential difference is that the imple-
mentation (of the black box) is known and used to identify test cases. The ability to “see inside”
the black box allows the tester to identify test cases on the basis of how the function is actually
implemented.

Code-based testing has been the subject of some fairly strong theories. To really understand
code-based testing, familiarity with the concepts of linear graph theory (Chapter 4) is essential.
With these concepts, the tester can rigorously describe exactly what is tested. Because of its strong
theoretical basis, code-based testing lends itself to the definition and use of test coverage metrics.
Test coverage metrics provide a way to explicitly state the extent to which a software item has been
tested, and this in turn makes testing management more meaningful.

Figure 1.6 shows the results of test cases identified by two code-based methods. As before,
method A identifies a larger set of test cases than does method B. Is a larger set of test cases nec-
essarily better? This is an excellent question, and code-based testing provides important ways to
develop an answer. Notice that, for both methods, the set of test cases is completely contained
within the set of programmed behavior. Because code-based methods are based on the program,
it is hard to imagine these methods identifying behaviors that are not programmed. It is easy to
imagine, however, that a set of code-based test cases is relatively small with respect to the full set
of programmed behaviors. In Chapter 10, we will see direct comparisons of test cases generated by
various code-based methods.

1.4.3 Specification-Based versus Code-Based Debate
Given the two fundamentally different approaches to test case identification, it is natural to ques-
tion which is better. If you read much of the literature, you will find strong adherents to either
choice.

The Venn diagrams presented earlier yield a strong resolution to this debate. Recall that the
goal of both approaches is to identify test cases (Figure 1.7). Specification-based testing uses
only the specification to identify test cases, while code-based testing uses the program source
code (implementation) as the basis of test case identification. Later chapters will establish that

Specification Program

Test
method

A

Specification Program

Test
method

B

Figure 1.6 Comparing code-based test case identification methods.

A Perspective on Testing  ◾  9

© 2010 Taylor & Francis Group, LLC

neither approach by itself is sufficient. Consider program behaviors: if all specified behaviors have
not been implemented, code-based test cases will never be able to recognize this. Conversely, if
the program implements behaviors that have not been specified, this will never be revealed by
specification-based test cases. (A Trojan horse is a good example of such unspecified behavior.)
The quick answer is that both approaches are needed; the testing craftsperson’s answer is that a
judicious combination will provide the confidence of specification-based testing and the mea-
surement of code-based testing. Earlier, we asserted that specification-based testing often suffers
from twin problems of redundancies and gaps. When specification-based test cases are executed
in combination with code-based test coverage metrics, both of these problems can be recognized
and resolved.

The Venn diagram view of testing provides one final insight. What is the relationship between
set T of test cases and sets S and P of specified and implemented behaviors? Clearly, the test cases
in set T are determined by the test case identification method used. A very good question to ask is
how appropriate (or effective) is this method? To close a loop from an earlier discussion, recall the
causal trail from error to fault, failure, and incident. If we know what kind of errors we are prone
to make, and if we know what kinds of faults are likely to reside in the software to be tested, we
can use this to employ more appropriate test case identification methods. This is the point at which
testing really becomes a craft.

1.5 Fault taxonomies
Our definitions of error and fault hinge on the distinction between process and product: process
refers to how we do something, and product is the end result of a process. The point at which
testing and Software Quality Assurance (SQA) meet is that SQA typically tries to improve the
product by improving the process. In that sense, testing is clearly more product oriented. SQA is
more concerned with reducing errors endemic in the development process, whereas testing is more
concerned with discovering faults in a product. Both disciplines benefit from a clearer definition
of types of faults. Faults can be classified in several ways: the development phase in which the cor-
responding error occurred, the consequences of corresponding failures, difficulty to resolve, risk
of no resolution, and so on. My favorite is based on anomaly (fault) occurrence: one time only,
intermittent, recurring, or repeatable.

Program behaviors

S P

Spec-based
functional
black box

(establishes confidence)

Code-based
structural

white/clear box
(seeks faults)

Figure 1.7 Sources of test cases.

10  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

For a comprehensive treatment of types of faults, see the IEEE Standard Classification
for Software Anomalies (IEEE, 1993). (A software anomaly is defined in that document as
“a departure from the expected,” which is pretty close to our definition.) The IEEE standard
defines a detailed anomaly resolution process built around four phases (another life cycle): rec-
ognition, investigation, action, and disposition. Some of the more useful anomalies are given
in Tables 1.1 through 1.5; most of these are from the IEEE standard but I have added some of
my favorites.

Since the primary purpose of a software review is to find faults, review checklists (see Chapter
22) are another good source of fault classifications. Karl Wiegers has an excellent set of checklists
on his website: http://www.processimpact.com/pr_goodies.shtml.

table 1.1 Input/Output Faults

Type Instances

Input Correct input not accepted

Incorrect input accepted

Description wrong or missing

Parameters wrong or missing

Output Wrong format

Wrong result

Correct result at wrong time (too early, too late)

Incomplete or missing result

Spurious result

Spelling/grammar

Cosmetic

table 1.2 Logic Faults

Missing case(s)

Duplicate case(s)

Extreme condition neglected

Misinterpretation

Missing condition

Extraneous condition(s)

Test of wrong variable

Incorrect loop iteration

Wrong operator (e.g., < instead of ≤)

A Perspective on Testing  ◾  11

© 2010 Taylor & Francis Group, LLC

table 1.3 Computation Faults

Incorrect algorithm

Missing computation

Incorrect operand

Incorrect operation

Parenthesis error

Insufficient precision (round-off, truncation)

Wrong built-in function

table 1.4 Interface Faults

Incorrect interrupt handling

I/O timing

Call to wrong procedure

Call to nonexistent procedure

Parameter mismatch (type, number)

Incompatible types

Superfluous inclusion

table 1.5 Data Faults

Incorrect initialization

Incorrect storage/access

Wrong flag/index value

Incorrect packing/unpacking

Wrong variable used

Wrong data reference

Scaling or units error

Incorrect data dimension

Incorrect subscript

Incorrect type

Incorrect data scope

Sensor data out of limits

Off by one

Inconsistent data

12  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

1.6 Levels of testing
Thus far, we have said nothing about one of the key concepts of testing—levels of abstraction.
Levels of testing echo the levels of abstraction found in the waterfall model of the software devel-
opment life cycle. Although this model has its drawbacks, it is useful for testing as a means of
identifying distinct levels of testing and for clarifying the objectives that pertain to each level.
A diagrammatic variation of the waterfall model, known as the V-Model in ISTQB parlance,
is given in Figure 1.8; this variation emphasizes the correspondence between testing and design
levels. Notice that, especially in terms of specification-based testing, the three levels of definition
(specification, preliminary design, and detailed design) correspond directly to three levels of test-
ing—system, integration, and unit testing.

A practical relationship exists between levels of testing versus specification-based and code-
based testing. Most practitioners agree that code-based testing is most appropriate at the unit
level, whereas specification-based testing is most appropriate at the system level. This is generally
true; however, it is also a likely consequence of the base information produced during the require-
ments specification, preliminary design, and detailed design phases. The constructs defined for
code-based testing make the most sense at the unit level, and similar constructs are only now
becoming available for the integration and system levels of testing. We develop such structures in
Chapters 11 through 17 to support code-based testing at the integration and system levels for both
traditional and object-oriented software.

Requirements
specification

Preliminary
design

Detailed
design

Unit
testing

Integration
testing

System
testing

Coding

Figure 1.8 Levels of abstraction and testing in waterfall model.

A Perspective on Testing  ◾  13

© 2010 Taylor & Francis Group, LLC

EXERCISES
 1. Make a Venn diagram that reflects a part of the following statement: “… we have left undone

that which we ought to have done, and we have done that which we ought not to have
done …”

 2. Make a Venn diagram that reflects the essence of Reinhold Niebuhr’s “Serenity Prayer”:
 God, grant me the serenity to accept the things I cannot change,
 Courage to change the things I can,
 And wisdom to know the difference.

 3. Describe each of the eight regions in Figure 1.3. Can you recall examples of these in software
you have written?

 4. One of the tales of software lore describes a disgruntled employee who writes a payroll pro-
gram that contains logic that checks for the employee’s identification number before produc-
ing paychecks. If the employee is ever terminated, the program creates havoc. Discuss this
situation in terms of the error, fault, and failure pattern, and decide which form of testing
would be appropriate.

references
IEEE Computer Society, IEEE Standard Glossary of Software Engineering Terminology, 1983, ANSI/IEEE Std

729-1983.
IEEE Computer Society, IEEE Standard Classification for Software Anomalies, 1993, IEEE Std 1044-1993.
Pirsig, R. M., Zen and the Art of Motorcycle Maintenance, Bantam Books, New York, 1973.

15
© 2010 Taylor & Francis Group, LLC

Chapter 2

Examples

Three examples will be used throughout in Chapters 5 through 9 to illustrate the various unit
testing methods: the triangle problem (a venerable example in testing circles); a logically complex
function, NextDate; and an example that typifies MIS applications, known here as the commis-
sion problem. Taken together, these examples raise most of the issues that testing craftspersons
will encounter at the unit level. The discussion of higher levels of testing in Chapters 11 through
17 uses four other examples: a simplified version of an automated teller machine (ATM), known
here as the simple ATM system (SATM); the currency converter, an event-driven application typi-
cal of graphical user interface (GUI) applications; and the windshield wiper control device from
the Saturn™ automobile. The last example, a garage door controller, illustrates some of the issues
of “systems of systems.”

For the purposes of code-based testing, pseudocode implementations of the three unit-level
examples are given in this chapter. System-level descriptions of the SATM system, the currency
converter, the Saturn windshield wiper system, and the garage door controller are given in
Chapters 11 through 17. These applications are modeled with finite-state machines, variations
of event-driven petri nets, selected StateCharts, and with the Universal Modeling Language
(UML).

2.1 Generalized pseudocode
Pseudocode provides a language-neutral way to express program source code. This version
is loosely based on Visual Basic and has constructs at two levels: unit and program compo-
nents. Units can be interpreted either as traditional components (procedures and functions)
or as object-oriented components (classes and objects). This definition is somewhat informal;
terms such as expression, variable list, and field description are used with no formal defini-
tion. Items in angle brackets indicate language elements that can be used at the identified
positions. Part of the value of any pseudocode is the suppression of unwanted detail; here, we
illustrate this by allowing natural language phrases in place of more formal, complex condi-
tions (see Table 2.1).

16  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

table 2.1 Generalized pseudocode

Language Element Generalized Pseudocode Construct

Comment ‘ <text>

Data structure declaration Type <type name>

<list of field descriptions>

End <type name>

Data declaration Dim <variable> As <type>

Assignment statement <variable> = <expression>

Input Input (<variable list>)

Output Output (<variable list>)

Condition <expression> <relational operator> <expression>

Compound condition <Condition> <logical connective>

<Condition>

Sequence statements in sequential order

Simple selection If <condition> Then

 <then clause>

EndIf

Selection If <condition>

 Then <then clause>

 Else <else clause>

EndIf

Multiple selection Case <variable> Of

Case 1: <predicate>

 <Case clause>

…

Case n: <predicate>

 <Case clause>

EndCase

Counter-controlled repetition For <counter> = <start> To <end>

 <loop body>

EndFor

Pretest repetition While <condition>

 <loop body>

EndWhile

(continued)

Examples  ◾  17

© 2010 Taylor & Francis Group, LLC

2.2 the triangle problem
The triangle problem is the most widely used example in software testing literature. Some of the
more notable entries in three decades of testing literature are Gruenberger (1973), Brown and
Lipov (1975), Myers (1979), Pressman (1982) and subsequent editions, Clarke and Richardson
(1983, 1984), Chellappa (1987), and Hetzel (1988). There are others, but this list makes the
point.

2.2.1 Problem Statement
Simple version: The triangle program accepts three integers, a, b, and c, as input. These are
taken to be sides of a triangle. The output of the program is the type of triangle determined
by the three sides: Equilateral, Isosceles, Scalene, or NotATriangle. Sometimes, this problem
is extended to include right triangles as a fifth type; we will use this extension in some of the
exercises.

Improved version: The triangle program accepts three integers, a, b, and c, as input. These
are taken to be sides of a triangle. The integers a, b, and c must satisfy the following conditions:

table 2.1 Generalized pseudocode (Continued)

Language Element Generalized Pseudocode Construct

Posttest repetition Do

 <loop body>

Until <condition>

Procedure definition (similarly
for functions and o–o methods)

<procedure name> (Input: <list of variables>;

 Output: <list of variables>)

 <body>

End <procedure name>

Interunit communication Call <procedure name> (<list of variables>;

<list of variables>)

Class/Object definition <name> (<attribute list>; <method list>, <body>)

End <name>

Interunit communication msg <destination object name>.<method name>

(<list of variables>)

Object creation Instantiate <class name>.<object name> (list of attribute
values)

Object destruction Delete <class name>.<object name>

Program Program <program name>

 <unit list>

End<program name>

18  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

 c1. 1 ≤ a ≤ 200 c4. a < b + c
 c2. 1 ≤ b ≤ 200 c5. b < a + c
 c3. 1 ≤ c ≤ 200 c6. c < a + b

The output of the program is the type of triangle determined by the three sides: Equilateral,
Isosceles, Scalene, or NotATriangle. If an input value fails any of conditions c1, c2, or c3, the pro-
gram notes this with an output message, for example, “Value of b is not in the range of permitted
values.” If values of a, b, and c satisfy conditions c4, c5, and c6, one of four mutually exclusive
outputs is given:

 1. If all three sides are equal, the program output is Equilateral.
 2. If exactly one pair of sides is equal, the program output is Isosceles.
 3. If no pair of sides is equal, the program output is Scalene.
 4. If any of conditions c4, c5, and c6 is not met, the program output is NotATriangle.

2.2.2 Discussion
Perhaps one of the reasons for the longevity of this example is that it contains clear but complex
logic. It also typifies some of the incomplete definitions that impair communication among cus-
tomers, developers, and testers. The first specification presumes the developers know some details
about triangles, particularly the triangle inequality: the sum of any pair of sides must be strictly
greater than the third side. The upper limit of 200 is both arbitrary and convenient; it will be used
when we develop boundary value test cases in Chapter 5.

2.2.3 Traditional Implementation
The traditional implementation of this grandfather of all examples has a rather FORTRAN-like
style. The flowchart for this implementation appears in Figure 2.1. Figure 2.2 is a flowchart for the
improved version. The flowchart box numbers correspond to comment numbers in the (FORTRAN-
like) pseudocode program given next. (These numbers correspond exactly to those in Pressman
[1982].) This implementation shows its age; a better implementation is given in Section 2.2.4.

The variable “match” is used to record equality among pairs of the sides. A classic intricacy
of the FORTRAN style is connected with the variable “match”: notice that all three tests for the
triangle inequality do not occur. If two sides are equal, say a and c, it is only necessary to compare
a + c with b. (Because b must be greater than zero, a + b must be greater than c because c equals
a.) This observation clearly reduces the number of comparisons that must be made. The efficiency
of this version is obtained at the expense of clarity (and ease of testing). We will find this version
useful later when we discuss infeasible program execution paths. That is the best reason for per-
petuating this version. Notice that six ways are used to reach the NotATriangle box (12.1–12.6),
and three ways are used to reach the Isosceles box (15.1–15.3).

Examples  ◾  19

© 2010 Taylor & Francis Group, LLC

Input a, b, c

Match = 0

7. Match = 0?

2. Match = Match + 1

4. Match = Match + 2

6. Match = Match + 3

13. Match = 1?

16. Match = 2?

18. Match = 3?

20. Equilateral 15. Isosceles 11. Scalene12. Not a triangle

17. a + c ≤ b? 14. a + b ≤ c?

8. a + b ≤ c?

9. a + c ≤ b?

10. b + c ≤ a?19. b + c ≤ a?

1. a = b?

3. a = c?

5. b = c?

N

N

N

N

N

N

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

Y

Y

Y
Y

Y

Y

Y

Figure 2.1 Flowchart for traditional triangle program implementation.

20  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

The pseudocode for this is given next.

Program triangle1 ‘Fortran-like version
‘
Dim a, b, c, match As INTEGER
‘
Output(“Enter 3 integers which are sides of a triangle”)
Input(a, b, c)

Input a, b, c

Output a, b, c

c1 = 1≤ a ≤ 200

c2 = 1≤ b ≤ 200

c3 = 1≤ c ≤ 200

c1 AND c2 AND c3?

Start

c1?

c2?

c3?

a invalid

b invalid

c invalid

F
F

F

F

T

T

T

T

Triangle
inequalities

all OK?

a = b AND b = c?

a ≠ b AND a ≠ c AND
b ≠ c?

Isosceles End

Scalene

Equilateral

Not a triangle

Y

N

N

Y

Y

N

Figure 2.2 Flowchart for improved triangle program implementation.

Examples  ◾  21

© 2010 Taylor & Francis Group, LLC

Output(“Side A is”,a)
Output(“Side B is”,b)
Output(“Side C is”,c)
match = 0
If a = b ‘(1)
 Then match = match + 1 ‘(2)
EndIf
If a = c ‘(3)
 Then match = match + 2 ‘(4)
EndIf
If b = c ‘(5)
 Then match = match + 3 ‘(6)
EndIf
If match = 0 ‘(7)
 Then If (a + b)≤ c ‘(8)
 Then Output(“NotATriangle”) ‘(12.1)
 Else If (b + c) ≤ a ‘(9)
 Then Output(“NotATriangle”) ‘(12.2)
 Else If (a + c) ≤ b ‘(10)
 Then Output(“NotATriangle”) ‘(12.3)
 Else Output (“Scalene”) ‘(11)
 EndIf
 EndIf
 EndIf
 Else If match = 1 ‘(13)
 Then If (a + c) ≤ b ‘(14)
 Then Output(“NotATriangle”) ‘(12.4)
 Else Output (“Isosceles”) ‘(15.1)
 EndIf
 Else If match=2 ‘(16)
 Then If (a + c) ≤ b
 Then Output(“NotATriangle”) (12.5)
 Else Output (“Isosceles”) ‘(15.2)
 EndIf
 Else If match = 3 ‘(18)
 Then If (b + c) ≤ a ‘(19)
 Then Output(“NotATriangle”) ‘(12.6)
 Else Output (“Isosceles”) ‘(15.3)
 EndIf
 Else Output (“Equilateral”) ‘(20)
 EndIf
 EndIf
 EndIf
EndIf
‘
End Triangle1

2.2.4 Structured Implementations
Program triangle2 ‘Structured programming version of simpler specification

Dim a,b,c As Integer
Dim IsATriangle As Boolean

22  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

‘Step 1: Get Input
Output(“Enter 3 integers which are sides of a triangle”)
Input(a,b,c)
Output(“Side A is”,a)
Output(“Side B is”,b)
Output(“Side C is”,c)
‘Step 2: Is A Triangle?’
If (a < b + c) AND (b < a + c) AND (c < a + b)
 Then IsATriangle = True
 Else IsATriangle = False
EndIf
‘
‘Step 3: Determine Triangle Type
If IsATriangle
 Then If (a = b) AND (b = c)
 Then Output (“Equilateral”)
 Else If (a ≠ b) AND (a ≠ c) AND (b ≠ c)
 Then Output (“Scalene”)
 Else Output (“Isosceles”)
 EndIf
 EndIf
 Else Output(“Not a Triangle”)
EndIf
End triangle2

Third version
Program triangle3’
Dim a, b, c As Integer
Dim c1, c2, c3, IsATriangle As Boolean
‘Step 1: Get Input
Do
 Output(“Enter 3 integers which are sides of a triangle”)
 Input(a, b, c)
 c1 = (1 ≤ a) AND (a ≤ 300)
 c2 = (1 ≤ b) AND (b ≤ 300)
 c3 = (1 ≤ c) AND (c ≤ 300)
 If NOT(c1)
 Then Output(“Value of a is not in the range of permitted values”)
 EndIf

If NOT(c2)
 Then Output(“Value of b is not in the range of permitted values”)

EndIf
 If NOT(c3)
 ThenOutput(“Value of c is not in the range of permitted values”)
 EndIf
Until c1 AND c2 AND c3
Output(“Side A is”,a)
Output(“Side B is”,b)
Output(“Side C is”,c)
‘Step 2: Is A Triangle?
If (a < b + c) AND (b < a + c) AND (c < a + b)
 Then IsATriangle = True
 Else IsATriangle = False

Examples  ◾  23

© 2010 Taylor & Francis Group, LLC

EndIf
‘Step 3: Determine Triangle Type
If IsATriangle
 Then If (a = b) AND (b = c)
 Then Output (“Equilateral”)
 Else If (a ≠ b) AND (a ≠ c) AND (b ≠ c)
 Then Output (“Scalene”)
 Else Output (“Isosceles”)
 EndIf
 EndIf
 Else Output(“Not a Triangle”)
EndIf
End triangle3

2.3 the NextDate Function
The complexity in the triangle program is due to the relationships between inputs and correct
outputs. We will use the NextDate function to illustrate a different kind of complexity—logical
relationships among the input variables.

2.3.1 Problem Statement
NextDate is a function of three variables: month, date, and year. It returns the date of the day after
the input date. The month, date, and year variables have integer values subject to these conditions
(the year range ending in 2012 is arbitrary, and is from the first edition):

 c1. 1 ≤ month ≤ 12
 c2. 1 ≤ day ≤ 31
 c3. 1812 ≤ year ≤ 2012

As we did with the triangle program, we can make our problem statement more specific. This
entails defining responses for invalid values of the input values for the day, month, and year. We
can also define responses for invalid combinations of inputs, such as June 31 of any year. If any
of conditions c1, c2, or c3 fails, NextDate produces an output indicating the corresponding vari-
able has an out-of-range value—for example, “Value of month not in the range 1...12.” Because
numerous invalid day–month–year combinations exist, NextDate collapses these into one mes-
sage: “Invalid Input Date.”

2.3.2 Discussion
Two sources of complexity exist in the NextDate function: the complexity of the input domain
discussed previously, and the rule that determines when a year is a leap year. A year is 365.2422
days long; therefore, leap years are used for the “extra day” problem. If we declared a leap year
every fourth year, a slight error would occur. The Gregorian calendar (after Pope Gregory) resolves
this by adjusting leap years on century years. Thus, a year is a leap year if it is divisible by 4, unless
it is a century year. Century years are leap years only if they are multiples of 400 (Inglis, 1961);
thus, 1992, 1996, and 2000 are leap years, while the year 1900 is not a leap year. The NextDate

24  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

function also illustrates a sidelight of software testing. Many times, we find examples of Zipf ’s law,
which states that 80% of the activity occurs in 20% of the space. Notice how much of the source
code is devoted to leap year considerations. In the second implementation, notice how much code
is devoted to input value validation.

2.3.3 Implementations

Program NextDate1 ‘Simple version
Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer
Output (“Enter today’s date in the form MM DD YYYY”)
Input (month, day, year)
Case month Of
Case 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.)
 If day < 31
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = month + 1
 EndIf
Case 2: month Is 4,6,9, Or 11 ‘30 day months
 If day < 30
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = month + 1
 EndIf
Case 3: month Is 12: ‘December
 If day < 31
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = 1
 If year = 2012
 Then Output (“2012 is over”)
 Else tomorrow.year = year + 1
 EndIf
Case 4: month is 2: ‘February
 If day < 28
 Then tomorrowDay = day + 1
 Else
 If day = 28
 Then If ((year is a leap year)
 Then tomorrowDay = 29 ‘leap year
 Else ‘not a leap year
 tomorrowDay = 1
 tomorrowMonth = 3
 EndIf
 Else If day = 29
 Then If ((year is a leap year)
 Then tomorrowDay = 1

Examples  ◾  25

© 2010 Taylor & Francis Group, LLC

 tomorrowMonth = 3
 Else ‘not a leap year
 Output(“Cannot have Feb.”, day)
 EndIf
 EndIf
 EndIf
 EndIf
EndCase
Output (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear)
End NextDate

Program NextDate2 Improved version
‘
Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer
Dim c1, c2, c3 As Boolean
‘
Do
 Output (“Enter today’s date in the form MM DD YYYY”)
 Input (month, day, year)
 c1 = (1 ≤ day) AND (day ≤ 31)
 c2 = (1 ≤ month) AND (month ≤ 12)
 c3 = (1812 ≤ year) AND (year ≤ 2012)
 If NOT(c1)
 Then Output(“Value of day not in the range 1..31”)
 EndIf
 If NOT(c2)
 Then Output(“Value of month not in the range 1..12”)
 EndIf
 If NOT(c3)
 Then Output(“Value of year not in the range 1812..2012”)
 EndIf
Until c1 AND c2 AND c2

Case month Of
Case 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.)
 If day < 31
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = month + 1
 EndIf
Case 2: month Is 4,6,9, Or 11 ‘30 day months
 If day < 30
 Then tomorrowDay = day + 1
 Else
 If day = 30
 Then tomorrowDay = 1
 tomorrowMonth = month + 1
 Else Output(“Invalid Input Date”)
 EndIf
 EndIf
Case 3: month Is 12: ‘December

26  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

 If day < 31
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = 1
 If year = 2012
 Then Output (“Invalid Input Date”)
 Else tomorrow.year = year + 1
 EndIf
 EndIf
Case 4: month is 2: ‘February
 If day < 28
 Then tomorrowDay = day + 1
 Else
 If day = 28
 Then
 If (year is a leap year)
 Then tomorrowDay = 29 ‘leap day
 Else ‘not a leap year
 tomorrowDay = 1
 tomorrowMonth = 3
 EndIf
 Else
 If day = 29
 Then
 If (year is a leap year)
 Then tomorrowDay = 1
 tomorrowMonth = 3
 Else
 If day > 29
 Then Output(“Invalid Input Date”)
 EndIf
 EndIf
 EndIf
 EndIf
 EndIf
EndCase
Output (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear)
‘
End NextDate2

2.4 the Commission problem
Our third example is more typical of commercial computing. It contains a mix of computation
and decision making, so it leads to interesting testing questions. Our main use of this example will
be in our discussion of data flow and slice-based testing.

2.4.1 Problem Statement
A rifle salesperson in the former Arizona Territory sold rifle locks, stocks, and barrels made by a
gunsmith in Missouri. Locks cost $45, stocks cost $30, and barrels cost $25. The salesperson had to

Examples  ◾  27

© 2010 Taylor & Francis Group, LLC

sell at least one lock, one stock, and one barrel (but not necessarily one complete rifle) per month,
and production limits were such that the most the salesperson could sell in a month was 70 locks,
80 stocks, and 90 barrels. After each town visit, the salesperson sent a telegram to the Missouri
gunsmith with the number of locks, stocks, and barrels sold in that town. At the end of a month,
the salesperson sent a very short telegram showing –1 lock sold. The gunsmith then knew the sales
for the month were complete and computed the salesperson’s commission as follows: 10% on sales
up to (and including) $1000, 15% on the next $800, and 20% on any sales in excess of $1800.

2.4.2 Discussion
This example is somewhat contrived to make the arithmetic quickly visible to the reader. It might be
more realistic to consider some other additive function of several variables, such as various calculations
found in filling out a US 1040 income tax form. (We will stay with rifles.) This problem separates into
three distinct pieces: the input data portion, in which we could deal with input data validation (as we
did for the triangle and NextDate programs), the sales calculation, and the commission calculation
portion. This time, we will omit the input data validation portion. We will replicate the telegram
convention with a sentinel-controlled while loop that is typical of MIS data gathering applications.

2.4.3 Implementation

Program Commission (INPUT,OUTPUT)
‘
Dim locks, stocks, barrels As Integer
Dim lockPrice, stockPrice, barrelPrice As Real
Dim totalLocks,totalStocks,totalBarrels As Integer
Dim lockSales, stockSales, barrelSales As Real
Dim sales,commission : REAL
‘
lockPrice = 45.0
stockPrice = 30.0
barrelPrice = 25.0
totalLocks = 0
totalStocks = 0
totalBarrels = 0
‘
Input(locks)
While NOT(locks = -1) ‘Input device uses -1 to indicate end of data
 Input(stocks, barrels)
 totalLocks = totalLocks + locks
 totalStocks = totalStocks + stocks
 totalBarrels = totalBarrels + barrels
 Input(locks)
EndWhile
‘
Output(“Locks sold:”, totalLocks)
Output(“Stocks sold:”, totalStocks)
Output(“Barrels sold:”, totalBarrels)
‘
lockSales = lockPrice * totalLocks
stockSales = stockPrice * totalStocks

28  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

barrelSales = barrelPrice * totalBarrels
sales = lockSales + stockSales + barrelSales
Output(“Total sales:”, sales)
‘
If (sales > 1800.0)
 Then
 commission = 0.10 * 1000.0
 commission = commission + 0.15 * 800.0
 commission = commission + 0.20 * (sales–1800.0)
 Else If (sales > 1000.0)
 Then
 commission = 0.10 * 1000.0
 commission = commission + 0.15*(sales–1000.0)
 Else commission = 0.10 * sales
 EndIf
EndIf
Output(“Commission is $”,commission)
End Commission

2.5 the SatM System
To better discuss the issues of integration and system testing, we need an example with larger
scope (Figure 2.3).

The ATM described here is minimal, yet it contains an interesting variety of functionality and
interactions that typify the client side of client–server systems.

Cash dispenser

Printed receipt 1 2 3

4 5 6

7 8 9

0

Deposit slot

Card slot

Enter

Clear

Cancel

Welcome to

Rock Solid Federal Credit Union

Please insert your ATM card

Figure 2.3 SatM terminal.

Examples  ◾  29

© 2010 Taylor & Francis Group, LLC

2.5.1 Problem Statement
The SATM system communicates with bank customers via the 15 screens shown in Figure 2.4.
Using a terminal with features as shown in Figure 2.3, SATM customers can select any of three
transaction types: deposits, withdrawals, and balance inquiries. For simplicity, these transactions
can only be done on a checking account.

When a bank customer arrives at an SATM station, screen 1 is displayed. The bank customer
accesses the SATM system with a plastic card encoded with a personal account number (PAN),
which is a key to an internal customer account file, containing, among other things, the customer’s
name and account information. If the customer’s PAN matches the information in the customer
account file, the system presents screen 2 to the customer. If the customer’s PAN is not found,
screen 4 is displayed, and the card is kept.

At screen 2, the customer is prompted to enter his or her personal identification number (PIN).
If the PIN is correct (i.e., matches the information in the customer account file), the system dis-
plays screen 5; otherwise, screen 3 is displayed. The customer has three chances to get the PIN
correct; after three failures, screen 4 is displayed, and the card is kept.

On entry to screen 5, the customer selects the desired transaction from the options shown on screen.
If balance is requested, screen 14 is then displayed. If a deposit is requested, the status of the deposit
envelope slot is determined from a field in the terminal control file. If no problem is known, the system
displays screen 7 to get the transaction amount. If a problem occurs with the deposit envelope slot, the

Screen 6

Balance is
$dddd.dd

Screen 1

Welcome
please insert your

ATM card

Screen 2

Please enter your PIN

Screen 3

Your PIN is incorrect.
Please try again.

Screen 4

Invalid ATM card. It will
be retained.

Screen 5
Select transaction:

balance >
deposit >

withdrawal >

Screen 7

Enter amount.
Withdrawals must
be multiples of $10

Screen 8

Insufficient Funds!
Please enter a new

amount

Screen 9

Machine can only
dispense $10 notes

Screen 10

Temporarily unable to
process withdrawals.
Another transaction?

Screen 11

Your balance is being
updated. Please take
cash from dispenser.

Screen 12

Temporarily unable to
process deposits.

Another transaction?

Screen 13

Please insert deposit
into deposit slot.

Screen 14

Your new balance is
being printed. Another

transaction?

Screen 15

Please take your
receipt and ATM card.

�ank you.

Figure 2.4 SatM screens.

30  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

system displays screen 12. Once the deposit amount has been entered, the system displays screen 13,
accepts the deposit envelope, and processes the deposit. The system then displays screen 14.

If a withdrawal is requested, the system checks the status (jammed or free) of the withdrawal
chute in the terminal control file. If jammed, screen 10 is displayed; otherwise, screen 7 is dis-
played so the customer can enter the withdrawal amount. Once the withdrawal amount is entered,
the system checks the terminal status file to see if it has enough currency to dispense. If it does not,
screen 9 is displayed; otherwise, the withdrawal is processed. The system checks the customer bal-
ance (as described in the balance request transaction); if the funds in the account are insufficient,
screen 8 is displayed. If the account balance is sufficient, screen 11 is displayed and the money is
dispensed. The balance is printed on the transaction receipt as it is for a balance request transac-
tion. After the cash has been removed, the system displays screen 14.

When the “No” button is pressed in screens 10, 12, or 14, the system presents screen 15 and
returns the customer’s ATM card. Once the card is removed from the card slot, screen 1 is dis-
played. When the “Yes” button is pressed in screens 10, 12, or 14, the system presents screen 5 so
the customer can select additional transactions.

2.5.2 Discussion
A surprising amount of information is “buried” in the system description just given. For instance,
if you read it closely, you can infer that the terminal only contains $10 bills (see screen 7). This tex-
tual definition is probably more precise than what is usually encountered in practice. The example
is deliberately simple (hence the name).

A plethora of questions could be resolved by a list of assumptions. For example, is there a bor-
rowing limit? What keeps customers from taking out more than their actual balance if they go
to several ATM terminals? A lot of start-up questions are used: how much cash is initially in the
machine? How are new customers added to the system? These and other real-world refinements
are eliminated to maintain simplicity.

2.6 the Currency Converter
The currency conversion program is another event-driven program that emphasizes code associ-
ated with a GUI. A sample GUI is shown in Figure 2.5.

Currency converter
US dollar amount

Equivalent in ...

Brazil

Canada

Japan

European community

Compute

Clear

Quit

Figure 2.5 Currency converter graphical user interface.

Examples  ◾  31

© 2010 Taylor & Francis Group, LLC

The application converts US dollars to any of four currencies: Brazilian reals, Canadian dol-
lars, European Union euros, and Japanese yen. Currency selection is governed by the radio buttons
(option buttons), which are mutually exclusive. When a country is selected, the system responds
by completing the label; for example, “Equivalent in …” becomes “Equivalent in Canadian dol-
lars” if the Canada button is clicked. Also, a small Canadian flag appears next to the output posi-
tion for the equivalent currency amount. Either before or after currency selection, the user inputs
an amount in US dollars. Once both tasks are accomplished, the user can click on the Compute
button, the Clear button, or the Quit button. Clicking on the Compute button results in the con-
version of the US dollar amount to the equivalent amount in the selected currency. Clicking on
the Clear button resets the currency selection, the US dollar amount, and the equivalent currency
amount and the associated label. Clicking on the Quit button ends the application. This example
nicely illustrates a description with UML and an object-oriented implementation, which we will
use in Chapter 15.

2.7 Saturn Windshield Wiper Controller
The windshield wiper on some Saturn automobiles is controlled by a lever with a dial. The lever has
four positions: OFF, INT (for intermittent), LOW, and HIGH; and the dial has three positions,
numbered simply 1, 2, and 3. The dial positions indicate three intermittent speeds, and the dial
position is relevant only when the lever is at the INT position. The decision table below shows the
windshield wiper speeds (in wipes per minute) for the lever and dial positions.

c1. Lever OFF INT INT INT LOW HIGH

c2. Dial n/a 1 2 3 n/a n/a

a1. Wiper 0 4 6 12 30 60

2.8 Garage Door Opener
A system to open a garage door is composed of several components: a drive motor, a drive chain,
the garage door wheel tracks, a lamp, and an electronic controller. This much of the system is
powered by commercial 110 V electricity. Several devices communicate with the garage door
controller—a wireless keypad (usually in an automobile), a digit keypad on the outside of the
garage door, and a wall-mounted button. In addition, there are two safety features, a laser beam
near the floor and an obstacle sensor. These latter two devices operate only when the garage door
is closing. If the light beam is interrupted (possibly by a pet), the door immediately stops, and then
reverses direction until the door is fully open. If the door encounters an obstacle while it is closing
(say a child’s tricycle left in the path of the door), the door stops and reverses direction until it is
fully open. There is a third way to stop a door in motion, either when it is closing or opening. A
signal from any of the three devices (wireless keypad, digit keypad, or wall-mounted control but-
ton). The response to any of these signals is different—the door stops in place. A subsequent signal
from any of the devices starts the door in the same direction as when it was stopped. Finally, there
are sensors that detect when the door has moved to one of the extreme positions, either fully open

32  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

or fully closed. When the door is in motion, the lamp is lit, and remains lit for approximately
30 seconds after the door reaches one of the extreme positions.

The three signaling devices and the safety features are optional additions to the basic garage
door opener. This example will be used in Chapter 17 in the discussion of systems of systems. For
now, a SysML context diagram of the garage door opener is given in Figure 2.6.

EXERCISES
 1. Revisit the traditional triangle program flowchart in Figure 2.1. Can the variable match ever

have the value of 4? Of 5? Is it ever possible to “execute” the following sequence of numbered
boxes: 1, 2, 5, 6?

 2. Recall the discussion from Chapter 1 about the relationship between the specification and
the implementation of a program. If you study the implementation of NextDate carefully,
you will see a problem. Look at the CASE clause for 30-day months (4, 6, 9, 11). There is
no special action for day = 31. Discuss whether this implementation is correct. Repeat this
discussion for the treatment of values of day 29 in the CASE clause for February.

 3. In Chapter 1, we mentioned that part of a test case is the expected output. What would you
use as the expected output for a NextDate test case of June 31, 1812? Why?

 4. One common addition to the triangle problem is to check for right triangles. Three sides
constitute a right triangle if the Pythagorean relationship is satisfied: c2 = a2 + b2. This
change makes it convenient to require that the sides be presented in increasing order, that
is, a ≤ b ≤ c. Extend the Triangle3 program to include the right triangle feature. We will use
this extension in later exercises.

 5. What will the Triangle2 program do for the sides –3, –3, 5? Discuss this in terms of the
considerations we made in Chapter 1.

 6. The function YesterDate is the inverse of NextDate. Given a month, day, year, YesterDate
returns the date of the day before. Develop a program in your favorite language (or our gen-
eralized pseudocode) for YesterDate. We will also use this as a continuing exercise.

48-V DC
power

Digit
keypad

Portable
opener

Wall-mount
button

Light
beam

Wireless
receiver

Garage
door

controller

Extreme
limit

sensor

Drive
motor

Lamp

Obstacle
(resistance)

sensor

110V-AC
power

Figure 2.6 SysML diagram of garage door controller.

Examples  ◾  33

© 2010 Taylor & Francis Group, LLC

 7. Part of the art of GUI design is to prevent user input errors. Event-driven applications are
particularly vulnerable to input errors because events can occur in any order. As the given
definition stands, a user could enter a US dollar amount and then click on the compute
button without selecting a country. Similarly, a user could select a country and then click
on the compute button without inputting a dollar amount. GUI designers use the concept
of “forced navigation” to avoid such situations. In Visual Basic, this can be done using the
visibility properties of various controls. Discuss how you could do this.

 8. The CRC Press website (http://www.crcpress.com/product/isbn/9781466560680) contains
some software supplements for this book. There is a series of exercises that I use in my
graduate class in software testing; the first part of a continuing exercise is to use the naive.xls
(runs in most versions of Microsoft Excel) program to test the triangle, NextDate, and com-
mission problems. The spreadsheet lets you postulate test cases and then run them simply
by clicking on the “Run Test Cases” button. As a start to becoming a testing craftsperson,
use naive.xls to test our three examples in an intuitive (hence “naive”) way. There are faults
inserted into each program. If (when) you find failures, try to hypothesize the underlying
fault. Keep your results for comparison to ideas in Chapters 5, 6, and 9.

references
Brown, J.R. and Lipov, M., Testing for software reliability, Proceedings of the International Symposium on

Reliable Software, Los Angeles, April 1975, pp. 518–527.
Chellappa, M., Nontraversible paths in a program, IEEE Transactions on Software Engineering, Vol. SE-13,

No. 6, June 1987, pp. 751–756.
Clarke, L.A. and Richardson, D.J., The application of error sensitive strategies to debugging, ACM SIGSOFT

Software Engineering Notes, Vol. 8, No. 4, August 1983.
Clarke, L.A. and Richardson, D.J., A reply to Foster’s comment on “The Application of Error Sensitive

Strategies to Debugging,” ACM SIGSOFT Software Engineering Notes, Vol. 9, No. 1, January 1984.
Gruenberger, F., Program testing, the historical perspective, in Program Test Methods, William C. Hetzel, Ed.,

Prentice-Hall, New York, 1973, pp. 11–14.
Hetzel, Bill, The Complete Guide to Software Testing, 2nd ed., QED Information Sciences, Inc., Wellesley,

MA, 1988.
Inglis, Stuart J., Planets, Stars, and Galaxies, 4th Ed., John Wiley & Sons, New York, 1961.
Myers, G.J., The Art of Software Testing, Wiley Interscience, New York, 1979.
Pressman, R.S., Software Engineering: A Practitioner’s Approach, McGraw-Hill, New York, 1982.

35

Chapter 3

Discrete Math for testers

More than any other life cycle activity, testing lends itself to mathematical description and analy-
sis. In this chapter and in the next, testers will find the mathematics they need. Following the
craftsperson metaphor, the mathematical topics presented here are tools; a testing craftsperson
should know how to use them well. With these tools, a tester gains rigor, precision, and effi-
ciency—all of which improve testing. The “for testers” part of the chapter title is important: this
chapter is written for testers who either have a sketchy math background or who have forgotten
some of the basics. Serious mathematicians (or maybe just those who take themselves seriously)
will likely be annoyed by the informal discussion here. Readers who are already comfortable with
the topics in this chapter should skip to the next chapter and start right in on graph theory.

In general, discrete mathematics is more applicable to functional testing, while graph theory
pertains more to structural testing. “Discrete” raises a question: What might be indiscrete about
mathematics? The mathematical antonym is continuous, as in calculus, which software develop-
ers (and testers) seldom use. Discrete math includes set theory, functions, relations, propositional
logic, and probability theory, each of which is discussed here.

3.1 Set theory
How embarrassing to admit, after all the lofty expiation of rigor and precision, that no explicit
definition of a set exists. This is really a nuisance because set theory is central to these two
chapters on math. At this point, mathematicians make an important distinction: naive versus
axiomatic set theory. In naive set theory, a set is recognized as a primitive term, much like point
and line are primitive concepts in geometry. Here are some synonyms for “set”: collection, group,
and bunch—you get the idea. The important thing about a set is that it lets us refer to several
things as a group, or a whole. For example, we might wish to refer to the set of months that have
exactly 30 days (we need this set when we test the NextDate function from Chapter 2). In set
theory notation, we write

 M1 = {April, June, September, November}

36  ◾  Software Testing

and we read this notation as “M1 is the set whose elements are the months April, June, September,
November.”

3.1.1 Set Membership
The items in a set are called elements or members of the set, and this relationship is denoted by the
symbol ∈. Thus, we could write April ∈ M1. When something is not a member of a set, we use the
symbol ∉, so we might write December ∉ M1.

3.1.2 Set Definition
A set is defined in three ways: by simply listing its elements, by giving a decision rule, or by con-
structing a set from other sets. The listing option works well for sets with only a few elements as
well as for sets in which the elements obey an obvious pattern. We used this method in defining
M1 above. We might define the set of allowable years in the NextDate program as follows:

 Y = {1812, 1813, 1814, …, 2011, 2012}

When we define a set by listing its elements, the order of the elements is irrelevant. We will
see why when we discuss set equality. The decision rule approach is more complicated, and this
complexity carries both advantages and penalties. We could define the years for NextDate as

 Y = {year: 1812 ≤ year ≤ 2012}

which reads “Y is the set of all years such that (the colon is ‘such that’) the years are between 1812
and 2012 inclusive.” When a decision rule is used to define a set, the rule must be unambiguous.
Given any possible value of year, we can therefore determine whether or not that year is in our
set Y.

The advantage of defining sets with decision rules is that the unambiguity requirement forces
clarity. Experienced testers have encountered “untestable requirements.” Many times, the reason
that such requirements cannot be tested boils down to an ambiguous decision rule. In our triangle
program, for example, suppose we defined a set

 N = {t: t is a nearly equilateral triangle}

We might say that the triangle with sides (500, 500, 501) is an element of N, but how would
we treat the triangles with sides (50, 50, 51) or (5, 5, 6)?

A second advantage of defining sets with decision rules is that we might be interested in sets
where the elements are difficult to list. In the commission problem, for example, we might be
interested in the set

 S = {sales: the 15% commission rate applies to the total sale}

We cannot easily write down the elements of this set; however, given a particular value for sale,
we can easily apply the decision rule.

The main disadvantage of decision rules is that they can become logically complex, particu-
larly when they are expressed with the predicate calculus quantifiers ∃ (“there exists”) and ∀ (“for

Discrete Math for Testers  ◾  37

all”). If everyone understands this notation, the precision is helpful. Too often customers are
overwhelmed by statements with these quantifiers. A second problem with decision rules has to
do with self-reference. This is interesting, but it really has very little application for testers. The
problem arises when a decision rule refers to itself, which is a circularity. As an example, the Barber
of Seville “is the man who shaves everyone who does not shave himself.”

3.1.3 The Empty Set
The empty set, denoted by the symbol ∅, occupies a special place in set theory. The empty set
contains no elements. At this point, mathematicians will digress to prove a lot of facts about empty
sets:

 1. The empty set is unique; that is, there cannot be two empty sets (we will take their word for it).
 2. ∅, {∅}, and {{∅}} are all different sets (we will not need this).

It is useful to note that, when a set is defined by a decision rule that is always false, the set is
empty. For instance, ∅ = {year: 2012 ≤ year ≤ 1812}.

3.1.4 Venn Diagrams
There are two traditional techniques to diagram relationships among sets: Venn diagrams and
Euler diagrams. Both help visualize concepts that have already been expressed textually. The chair
of my college mathematics department maintained that, in her words, “Mathematics is not a func-
tion of its diagrams.” Maybe not, but diagrams are certainly expressive, and they promote easy
communication and understanding. Today, sets are commonly pictured by Venn diagrams—as in
Chapter 1, when we discussed sets of specified and programmed behaviors. In a Venn diagram, a
set is depicted as a circle; points in the interior of the circle correspond to elements of the set. Then,
we might draw our set M1 of 30-day months as in Figure 3.1.

Venn diagrams were originally devised by John Venn, a British logician, in 1881. Most Venn
diagrams show two or three overlapping circles. (It is impossible to show a Venn diagram of five
sets showing all the possible intersections.) Shading is used in two opposite ways—most often,
shaded regions are subsets of interest, but occasionally, shading is used to indicate an empty region.
It is therefore important to include a legend explicitly stating the meaning of shading. Also, Venn
diagrams should be placed within a rectangle that represents the universe of discourse. Figures
1.3 and 1.4 in Chapter 1 show examples of two- and three-set Venn diagrams. When the circles

April

November

September

June

Figure 3.1 Venn diagram of set of 30-day months.

38  ◾  Software Testing

overlap, there is no presumption of relationships among the sets; at the same time, the overlapping
describes all the potential intersections. Finally, there is no way to diagram the empty set.

Venn diagrams communicate various set relationships in an intuitive way, but some picky
questions arise. What about finite versus infinite sets? Both can be drawn as Venn diagrams; in
the case of finite sets, we cannot assume that every interior point corresponds to a set element. We
do not need to worry about this, but it is helpful to know the limitations. Sometimes, we will find
it helpful to label specific elements.

Another sticking point has to do with the empty set. How do we show that a set, or maybe a
portion of a set, is empty? The common answer is to shade empty regions; however, this is often
contradicted by other uses in which shading is used to highlight regions of interest. The best prac-
tice is to provide a legend that clarifies the intended meaning of shaded areas.

It is often helpful to think of all the sets in a discussion as being subsets of some larger set,
known as the universe of discourse. We did this in Chapter 1 when we chose the set of all pro-
gram behaviors as our universe of discourse. The universe of discourse can usually be guessed
from given sets. In Figure 3.1, most people would take the universe of discourse to be the set of all
months in a year. Testers should be aware that assumed universes of discourse are often sources
of confusion. As such, they constitute a subtle point of miscommunication between customers
and developers.

3.1.5 Set Operations
Much of the expressive power of set theory comes from basic operations on sets: union, intersec-
tion, and complement. Other handy operations are used: relative complement, symmetric differ-
ence, and Cartesian product. Each of these is defined next. In each of these definitions, we begin
with two sets, A and B, contained in some universe of discourse U. The definitions use logical
connectives from the propositional calculus: and (∧), or (∨), exclusive–or (⊕), and not (∼).

Definition

Given sets A and B

Their union is the set A ∪ B = {x: x ∈ A ∨ x ∈ B}.
Their intersection is the set A ∩ B = {x: x ∈ A ∧ x ∈ B}.
The complement of A is the set A′ = {x: x ∉ A}.
The relative complement of B with respect to A is the set A – B = {x: x ∈ A ∧ x ∉ B}.
The symmetric difference of A and B is the set A ⊕ B = {x: x ∈ A ⊕ x ∈ B}.

Venn diagrams for these sets are shown in Figure 3.2.
The intuitive expressive power of Venn diagrams is very useful for describing relationships

among test cases and among items to be tested. Looking at the Venn diagrams in Figure 3.2, we
might guess that

 A ⊕ B = (A ∪ B) – (A ∩ B)

This is the case, and we could prove it with propositional logic.

Discrete Math for Testers  ◾  39

Venn diagrams are used elsewhere in software development: together with directed graphs,
they are the basis of the StateCharts notations, which are among the most rigorous specification
techniques supported by computer-aided software engineering (CASE) technology. StateCharts
are also the control notation chosen for the UML, the Unified Modeling Language from the IBM
Corp. and the Object Management Group.

The Cartesian product (also known as the cross product) of two sets is more complex; it depends
on the notion of ordered pairs, which are two element sets in which the order of the elements is
important. The usual notation for unordered and ordered pairs is

Unordered pair: (a, b)
Ordered pair: <a, b>

The difference is that, for a ≠ b, (a, b) = (b, a), but <a, b> ≠ <b, a>. This distinction is important
to the material in Chapter 4; as we shall see, the fundamental difference between ordinary and
directed graphs is exactly the difference between unordered and ordered pairs.

Definition

The Cartesian product of two sets A and B is the set

 A × B = {<x, y>: x ∈ A ∧ y ∈ B}

Venn diagrams do not show Cartesian products, so we will look at a short example. The
Cartesian product of the sets A = {1, 2, 3} and B = {w, x, y, z} is the set

 A × B = {<1, w>, <1, x>, <1, y>, <1, z>, <2, w>, <2, x>,
 <2, y>, <2, z>, <3, w>, <3, x>, <3, y>, <3, z>}

The Cartesian product has an intuitive connection with arithmetic. The cardinality of a set A is
the number of elements in A and is denoted by |A|. (Some authors prefer Card(A).) For sets A and

A B A B A B

A
A

B

A B

A – B A´

A BA E R B

Figure 3.2 Venn diagrams of basic sets.

40  ◾  Software Testing

B, |A × B| = |A| × |B|. When we study functional testing in Chapter 5, we will use the Cartesian
product to describe test cases for programs with several input variables. The multiplicative prop-
erty of the Cartesian product means that this form of testing generates a large number of test cases.

3.1.6 Set Relations
We use set operations to construct interesting new sets from existing sets. When we do, we often
would like to know something about the way the new and the old sets are related. Given two sets,
A and B, we define three fundamental set relationships:

Definition

A is a subset of B, written A ⊆ B, if and only if (iff) a ∈ A ⇒ a ∈ B.
A is a proper subset of B, written A ⊂ B, iff A ⊆ B ∧ B – A ≠ ∅.
A and B are equal sets, written A = B, iff A ⊆ B ∧ B ⊆ A.

In plain English, set A is a subset of set B if every element of A is also an element of B. To be
a proper subset of B, A must be a subset of B and there must be some element in B that is not an
element of A. Finally, the sets A and B are equal if each is a subset of the other.

3.1.7 Set Partitions
A partition of a set is a very special situation that is extremely important for testers. Partitions
have several analogs in everyday life: we might put up partitions to separate an office area into
individual offices; we also encounter political partitions when a state is divided up into legislative
districts. In both of these, notice that the sense of “partition” is to divide up a whole into pieces
such that everything is in some piece and nothing is left out. More formally:

Definition

Given a set A, and a set of subsets A1, A2, …, An of A, the subsets are a partition of A iff

 A1 ∪ A2 ∪ … ∪ An = A, and i ≠ j ⇒ Ai ∩ Aj = ∅.

Because a partition is a set of subsets, we frequently refer to individual subsets as elements of
the partition.

The two parts of this definition are important for testers. The first part guarantees that every
element of A is in some subset, while the second part guarantees that no element of A is in two of
the subsets.

This corresponds well with the legislative district example: everyone is represented by some
legislator, and nobody is represented by two legislators. A jigsaw puzzle is another good example
of a partition; in fact, Venn diagrams of partitions are often drawn like puzzles, as in Figure 3.3.

Partitions are helpful to testers because the two definitional properties yield important assur-
ances: completeness (everything is somewhere) and nonredundancy. When we study functional

Discrete Math for Testers  ◾  41

testing, we shall see that its inherent weakness is the vulnerability to both gaps and redundancies:
some things may remain untested, while others are tested repeatedly. One of the difficulties of
functional testing centers is finding an appropriate partition. In the triangle program, for example,
the universe of discourse is the set of all triplets of positive integers. (Note that this is actually a
Cartesian product of the set of positive integers with itself three times.) We might partition this
universe three ways:

 1. Into triangles and nontriangles
 2. Into equilateral, isosceles, scalene, and nontriangles
 3. Into equilateral, isosceles, scalene, right, and nontriangles

At first these partitions seem okay, but there is a problem with the last partition. The sets of
scalene and right triangles are not disjoint (the triangle with sides 3, 4, 5 is a right triangle that is
scalene).

3.1.8 Set Identities
Set operations and relations, when taken together, yield an important class of set identities that
can be used to algebraically simplify complex set expressions. Math students usually have to derive
all these; we will just list them and (occasionally) use them.

Name Expression

Identity laws A ∪ ∅ = A

A ∩ U = A

Domination laws A ∪ U = U

A ∩ ∅ = ∅

Idempotent laws A ∪ A = A

A ∩ A = A

Complementation laws (A′)′ = A

Commutative laws A ∪ B = B ∪ A

A ∩ B = B ∩ A

A1

A2

A3A4

A5

A6

A7

Figure 3.3 Venn diagram of a partition.

42  ◾  Software Testing

Associative laws A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C

Distributive laws A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

DeMorgan’s laws (A ∪ B)′ = A′ ∩ B′

(A ∩ B)′ = A′ ∪ B′

3.2 Functions
Functions are a central notion to software development and testing. The whole functional decom-
position paradigm, for example, implicitly uses the mathematical notion of a function. Informally,
a function associates elements of sets. In the NextDate program, for example, the function of a
given date is the date of the following day, and in the triangle problem, the function of three input
integers is the kind of triangle formed by sides with those lengths. In the commission problem, the
salesperson’s commission is a function of sales, which in turn is a function of the number of locks,
stocks, and barrels sold. Functions in the SATM system are much more complex; not surprisingly,
this will add complexity to the testing.

Any program can be thought of as a function that associates its outputs with its inputs. In the
mathematical formulation of a function, the inputs are the domain and the outputs are the range
of the function.

Definition

Given sets A and B, a function f is a subset of A × B such that for ai, aj ∈ A, bi, bj ∈ B, and f(ai) =
bi, f(aj) = bj, bi ≠ bj ⇒ ai ≠ aj.

Formal definitions like this one are notoriously terse, so let us take a closer look. The inputs to
the function f are elements of the set A, and the outputs of f are elements of B. What the definition
says is that the function f is “well behaved” in the sense that an element in A is never associated
with more than one element of B. (If this could happen, how would we ever test such a function?
This would be an example of nondeterminism.)

3.2.1 Domain and Range
In the definition just given, the set A is the domain of the function f and the set B is the range.
Because input and output have a “natural” order, it is an easy step to say that a function f is really
a set of ordered pairs in which the first element is from the domain and the second element is from
the range. Here are two common notations for function:

 f : A → B

 f ⊆ A × B

Discrete Math for Testers  ◾  43

We have not put any restrictions on the sets A and B in this definition. We could have A = B,
and either A or B could be a Cartesian product of other sets.

3.2.2 Function Types
Functions are further described by particulars of the mapping. In the definition below, we start
with a function f: A → B, and we define the set

 f(A) = {bi ∈ B: bi = f(ai) for some ai ∈ A}

This set is sometimes called the image of A under f.

Definition

f is a function from A onto B iff f(A) = B
f is a function from A into B iff f(A) ⊂ B (note the proper subset here!)
f is a one-to-one function from A to B iff, for all ai, aj ∈ A, ai ≠ aj ⇒ f(ai) ≠ f(aj)
f is a many-to-one function from A to B iff, there exists ai, aj ∈ A, ai ≠ aj such that f(ai) = f(aj).

Back to plain English, if f is a function from A onto B, we know that every element of B is asso-
ciated with some element of A. If f is a function from A into B, we know that there is at least one
element of B that is not associated with an element of A. One-to-one functions guarantee a form
of uniqueness: distinct domain elements are never mapped to the same range element. (Notice this
is the inverse of the “well-behaved” attribute described earlier.) If a function is not one-to-one, it is
many-to-one; that is, more than one domain element can be mapped to the same range element.
In these terms, the well-behaved requirement prohibits functions from being one-to-many. Testers
familiar with relational databases will recognize that all these possibilities (one-to-one, one-to-
many, many-to-one, and many-to-many) are allowed for relations.

Referring again to our testing examples, suppose we take A, B, and C to be sets of dates for the
NextDate program, where

 A = {date: 1 January 1812 ≤ date ≤ 31 December 2012}

 B = {date: 2 January 1812 ≤ date ≤ 1 January 2013}

 C = A ∪ B

Now, NextDate: A → B is a one-to-one, onto function, and NextDate: A → C is a one-to-one,
into function.

It makes no sense for NextDate to be many-to-one, but it is easy to see how the triangle prob-
lem can be many-to-one. When a function is one-to-one and onto, such as NextDate: A → B pre-
viously, each element of the domain corresponds to exactly one element of the range; conversely,
each element of the range corresponds to exactly one element of the domain. When this happens,
it is always possible to find an inverse function (see the YesterDate exercise in Chapter 2) that is
one-to-one from the range back to the domain.

44  ◾  Software Testing

All this is important for testing. The into versus onto distinction has implications for domain-
and range-based functional testing, and one-to-one functions may require much more testing
than many-to-one functions.

3.2.3 Function Composition
Suppose we have sets and functions such that the range of one is the domain of the next:

 f: A → B

 g: B → C

 h: C → D

When this occurs, we can compose the functions. To do this, let us refer to specific elements
of the domain and range sets a ∈ A, b ∈ B, c ∈ C, d ∈ D, and suppose that f(a) = b, g(b) = c, and
h(c) = d. Now the composition of functions h, g, and f is

h g f a h g f a
h g b
h c
d

� � () ((()))
(())
()

=
=
=
=

Function composition is a very common practice in software development; it is inherent in
the process of defining procedures and subroutines. We have an example of it in the commission
program, in which

 f1 (locks, stocks, barrels) = sales

 f2 (sales) = commission

 So f2 (f1(locks, stocks, barrels) = commission

Composed chains of functions can be problematic for testers, particularly when the range of
one function is a proper subset of the domain of the “next” function in the chain. A special case of
composition can be used, which helps testers in a curious way. Recall we discussed how one-to-one
onto functions always have an inverse function. It turns out that this inverse function is unique
and is guaranteed to exist (again, the math folks would prove this). If f is a one-to-one function
from A onto B, we denote its unique inverse by f –1. It turns out that for a ∈ A and b ∈ B, f –1 ⋅ f (a) =
a and f ⋅ f –1(b) = b. The NextDate and YesterDate programs are such inverses. The way this helps
testers is that, for a given function, its inverse acts as a “cross-check,” and this can often expedite
the identification of functional test cases.

Discrete Math for Testers  ◾  45

3.3 relations
Functions are a special case of a relation: both are subsets of some Cartesian product; however,
in the case of functions, we have the well-behaved requirement that says that a domain element
cannot be associated with more than one range element. This is borne out in everyday usage:
when we say something “is a function” of something else, our intent is that there is a deterministic
relationship present. Not all relationships are strictly functional. Consider the mapping between
a set of patients and a set of physicians. One patient may be treated by several physicians, and one
physician may treat several patients—a many-to-many mapping.

3.3.1 Relations among Sets
Definition

Given two sets A and B, a relation R is a subset of the Cartesian product A × B.
Two notations are popular; when we wish to speak about the entire relation, we usually just write R ⊆

A × B; for specific elements ai ∈ A, bi ∈ B, we write ai R bi. Most math texts omit treatment of relations;
we are interested in them because they are essential to both data modeling and object-oriented analysis.

Next, we have to explain an overloaded term—cardinality. Recall that, as it applies to sets,
cardinality refers to the number of elements in a set. Because a relation is also a set, we might
expect that the cardinality of a relation refers to how many ordered pairs are in the set R ⊆ A × B.
Unfortunately, this is not the case.

Definition

Given two sets A and B, a relation R ⊆ A × B, the cardinality of relation R is

One-to-one iff R is a one-to-one function from A to B
Many-to-one iff R is a many-to-one function from A to B
One-to-many iff at least one element a ∈ A is in two ordered pairs in R, that is <a, bi> ∈ R and

<a, bj> ∈ R
Many-to-many iff at least one element a ∈ A is in two ordered pairs in R, that is <a, bi> ∈ R and

<a, bj> ∈ R and at least one element b ∈ B is in two ordered pairs in R, that is <ai, b> ∈ R
and <aj, b> ∈ R

The distinction between functions into and onto their range has an analog in relations—the
notion of participation.

Definition

Given two sets A and B, a relation R ⊆ A × B, the participation of relation R is

Total iff every element of A is in some ordered pair in R
Partial iff some element of A is not in some ordered pair in R
Onto iff every element of B is in some ordered pair in R
Into iff some element of B is not in some ordered pair in R

46  ◾  Software Testing

In plain English, a relation is total if it applies to every element of A and partial if it does not
apply to every element. Another term for this distinction is mandatory versus optional participa-
tion. Similarly, a relation is onto if it applies to every element of B and into if it does not. The
parallelism between total/partial and onto/into is curious and deserves special mention here. From
the standpoint of relational database theory, no reason exists for this; in fact, a compelling reason
exists to avoid this distinction. Data modeling is essentially declarative, while process modeling is
essentially imperative. The parallel sets of terms force a direction on relations, when in fact no need
exists for the directionality. Part of this is a likely holdover from the fact that Cartesian products
consist of ordered pairs, which clearly have a first and second element.

Thus far, we have only considered relations between two sets. Extending relations to three or
more sets is more complicated than simply the Cartesian product. Suppose, for example, we had
three sets, A, B, and C, and a relation R ⊆ A × B × C. Do we intend the relation to be strictly
among three elements, or is it between one element and an ordered pair (there would be three
possibilities here)? This line of thinking also needs to be applied to the definitions of cardinality
and participation. It is straightforward for participation, but cardinality is essentially a binary
property. (Suppose, for example, the relation is one-to-one from A to B and is many-to-one from A
to C.) We discussed a three-way relation in Chapter 1, when we examined the relationships among
specified, implemented, and tested program behaviors. We would like to have some form of total-
ity between test cases and specification–implementation pairs; we will revisit this when we study
functional and structural testing.

Testers need to be concerned with the definitions of relations because they bear directly on
software properties to be tested. The onto/into distinction, for example, bears directly on what we
will call output-based functional testing. The mandatory–optional distinction is the essence of
exception handling, which also has implications for testers.

3.3.2 Relations on a Single Set
Two important mathematical relations are used, both of which are defined on a single set: ordering
relations and equivalence relations. Both are defined with respect to specific properties of relations.

Let A be a set, and let R ⊆ A × A be a relation defined on A, with <a, a>, <a, b>, <b, a>, <b, c>,
<a, c> ∈ R. Relations have four special attributes:

Definition

A relation R ⊆ A × A is

Reflexive iff for all a ∈ A, <a, a> ∈ R
Symmetric iff <a, b> ∈ R ⇒ <b, a> ∈ R
Antisymmetric <a, b>, <b, a> ∈ R ⇒ a = b
Transitive iff <a, b>, <b, c> ∈ R ⇒ <a, c> ∈ R

Family relationships are nice examples of these properties. You might want to think about the
following relationships and decide for yourself which attributes apply: brother of, sibling of, and
ancestor of. Now we can define the two important relations.

Discrete Math for Testers  ◾  47

Definition

A relation R ⊆ A × A is an ordering relation if R is reflexive, antisymmetric, and transitive.
Ordering relations have a sense of direction; some common ordering relations are older than,

≥, ⇒, and ancestor of. (The reflexive part usually requires some fudging—we really should say not
younger than and not a descendant of.) Ordering relations are a common occurrence in software:
data access techniques, hashing codes, tree structures, and arrays are all situations in which order-
ing relations are used.

The power set of a given set is the set of all subsets of the given set. The power set of the set A is
denoted P(A). The subset relation ⊆ is an ordering relation on P(A) because it is reflexive (any set
is trivially a subset of itself), it is antisymmetric (the definition of set equality), and it is transitive.

Definition

A relation R ⊆ A × A is an equivalence relation if R is reflexive, symmetric, and transitive.
Mathematics is full of equivalence relations: equality and congruence are two quick examples.

A very important connection exists between equivalence relations and partitions of a set. Suppose
we have some partition A1, A2, …, An of a set B, and we say that two elements, b1 and b2 of B, are
related (i.e., b1 R b2) if b1 and b2 are in the same partition element. This relation is reflexive (any
element is in its own partition), it is symmetric (if b1 and b2 are in a partition element, then b2
and b1 are), and it is transitive (if b1 and b2 are in the same set, and if b2 and b3 are in the same set,
then b1 and b3 are in the same set). The relation defined from the partition is called the equiva-
lence relation induced by the partition. The converse process works in the same way. If we start
with an equivalence relation defined on a set, we can define subsets according to elements that are
related to each other. This turns out to be a partition, and is called the partition induced by the
equivalence relation. The sets in this partition are known as equivalence classes. The end result is
that partitions and equivalence relations are interchangeable, and this becomes a powerful concept
for testers. Recall that the two properties of a partition are notions of completeness and nonre-
dundancy. When translated into testing situations, these notions allow testers to make powerful,
absolute statements about the extent to which a software item has been tested. In addition, great
efficiency follows from testing just one element of an equivalence class and assuming that the
remaining elements will behave similarly.

3.4 propositional Logic
We have already been using propositional logic notation; if you were perplexed by this usage defini-
tion before, you are not alone. Set theory and propositional logic have a chicken-and-egg relation-
ship—it is hard to decide which should be discussed first. Just as sets are taken as primitive terms
and are therefore not defined, we take propositions to be primitive terms. A proposition is a sen-
tence that is either true or false, and we call these the truth values of the proposition. Furthermore,
propositions are unambiguous: given a proposition, it is always possible to tell whether it is true
or false. The sentence “Mathematics is difficult” would not qualify as a proposition because of the
ambiguity. There are also temporal and spatial aspects of propositions. For example, “It is raining”

48  ◾  Software Testing

may be true at some times at false at others. In addition, it may be true for one person and false for
another at the same time but different locations.

We usually denote propositions with lower-case letters, p, q, and r. Propositional logic has
operations, expressions, and identities that are very similar (in fact, they are isomorphic) to set
theory.

3.4.1 Logical Operators
Logical operators (also known as logical connectives or operations) are defined in terms of their
effect on the truth values of the propositions to which they are applied. This is easy; only two
values are used: T (for true) and F (for false). Arithmetic operators could also be defined this way
(in fact, that is how they are taught to children), but the tables become too large. The three basic
logical operators are and (∧), or (∨), and not (∼); these are sometimes called conjunction, disjunc-
tion, and negation. Negation is the only unary (one operand) logical operator; the others are all
binary. These, and other logical operators, are defined by “truth tables.”

p q p ∧ q p ∨ q ∼ p

T T T T F

T F F T F

F T F T T

F F F F T

Conjunction and disjunction are familiar in everyday life: a conjunction is true only when all
components are true, and a disjunction is true if at least one component is true. Negations also
behave as we expect. Two other common connectives are used: exclusive–or (⊕) and IF–THEN
(→). They are defined as follows:

p q p ⊕ q p → q

T T F T

T F T F

F T T T

F F F T

An exclusive–or is true only when exactly one of the propositions is true, while a disjunction
(or inclusive–or) is true also when both propositions are true. The IF–THEN connective usually
causes the most difficulty. The easy view is that this is just a definition; however, because the other
connectives all transfer nicely to natural language, we have similar expectations for IF–THEN.
The quick answer is that the IF–THEN connective is closely related to the process of deduction:
in a valid deductive syllogism, we can say “if premises, then conclusion” and the IF–THEN state-
ment will be a tautology.

Discrete Math for Testers  ◾  49

3.4.2 Logical Expressions
We use logical operators to build logical expressions in exactly the same way that we use arithmetic
operators to build algebraic expressions. We can specify the order in which operators are applied
with the usual conventions on parentheses, or we can employ a precedence order (negation first,
then conjunction followed by disjunction). Given a logical expression, we can always find its truth
table by “building up” to it following the order determined by the parentheses. For example, the
expression ∼((p → q) ∧ (q → p)) has the following truth table:

p q p → q q → p (p → q) ∧ (q → p) ∼((p → q) ∧ (q → p))

T T T T T F

T F F T F T

F T T F F T

F F T T T F

3.4.3 Logical Equivalence
The notions of arithmetic equality and identical sets have analogs in propositional logic. Notice
that the expressions ∼((p → q) ∧ (q → p)) and p ⊕ q have identical truth tables. This means that,
no matter what truth values are given to the base propositions p and q, these expressions will
always have the same truth value. This property can be defined in several ways; we use the simplest.

Definition

Two propositions p and q are logically equivalent (denoted p ⇔ q) iff their truth tables are identical.
By the way, the curious “iff” abbreviation we have been using for “if and only if” is sometimes

called the bi-conditional, so the proposition p iff q is really (p → q) ∧ (q → p), which is denoted p ⇔ q.

Definition

A proposition that is always true is a tautology; a proposition that is always false is a contradiction.
To be a tautology or a contradiction, a proposition must contain at least one connective and

two or more primitive propositions. We sometimes denote a tautology as a proposition T, and a
contradiction as a proposition F. We can now state several laws that are direct analogs of the ones
we had for sets.

Law Expression

Identity p ∧ T ⇔ p

p ∨ F ⇔ p

Domination p ∨ T ⇔ T

p ∧ F ⇔ F

50  ◾  Software Testing

Law Expression

Idempotent p ∧ p ⇔ p

p ∨ p ⇔ p

Complementation ∼(∼p) ⇔ p

Commutative p ∧ q ⇔ q ∧ p

p ∨ q ⇔ q ∨ p

Associative p ∧ (q ∧ r) ⇔ (p ∧ q) ∧ r

p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r

Distributive p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

DeMorgan’s laws ∼(p ∧ q) ⇔ ∼p ∨ ∼q

∼(p ∨ q) ⇔ ∼p ∧ ∼q

3.5 probability theory
We will have two occasions to use the probability theory in our study of software testing: one deals
with the probability that a particular path of statements executes, and the other generalizes this to
a popular industrial concept called an operational profile (see Chapter 14). Because of this limited
use, we will only cover the rudiments here.

As with both set theory and propositional logic, we start out with a primitive concept—the
probability of an event. Here is the definition provided by a classic textbook (Rosen, 1991):

The probability of an event E, which is a subset of a finite sample space S of equally likely
outcomes, is p(E) = |E|/|S|.

This definition hinges on the idea of an experiment that results in an outcome, the sample
space is the set of all possible outcomes, and an event is a subset of outcomes. This definition is
circular: What are “equally likely” outcomes? We assume these have equal probabilities, but then
probability is defined in terms of itself.

The French mathematician Laplace had a reasonable working definition of probability two
centuries ago. To paraphrase it, the probability that something occurs is the number of favorable
ways it can occur divided by the total number of ways (favorable and unfavorable). Laplace’s defi-
nition works well when we are concerned with drawing colored marbles out of a bag (probability
folks are unusually concerned with their marbles; maybe there is a lesson here), but it does not
extend well to situations in which it is hard to enumerate the various possibilities.

We will use our (refurbished) capabilities in set theory and propositional logic to arrive at a
more cohesive formulation. As testers, we will be concerned with things that happen; we will call
these events and say that the set of all events is our universe of discourse. Next, we will devise
propositions about events, such that the propositions refer to elements in the universe of discourse.
Now, for some universe U and some proposition p about elements of U, we make a definition:

Discrete Math for Testers  ◾  51

Definition

The truth set T of a proposition p, written T(p), is the set of all elements in the universe U for
which p is true.

Propositions are either true or false; therefore, a proposition p divides the universe of discourse
into two sets, T(p) and (T(p))′, where T(p) ∪ (T(p))′ = U. Notice that (T(p))′ is the same as T(∼p).
Truth sets facilitate a clear mapping among set theory, propositional logic, and probability theory.

Definition

The probability that a proposition p is true, denoted Pr(p), is |T(p)|/|U|.
With this definition, Laplace’s “number of favorable ways” becomes the cardinality of the truth

set T(p), and the total number of ways becomes the cardinality of the universe of discourse. This
forces one more connection: because the truth set of a tautology is the universe of discourse,
and the truth set of a contradiction is the empty set, the probabilities of ∅ and U are 0 and 1,
respectively.

The NextDate problem is a good source of examples. Consider the month variable and the
proposition

 p(m): m is a 30-day month

The universe of discourse is the set U = {Jan., Feb., …, Dec.}, and the truth set of p(m) is the set

 T(p(m)) = {Apr., June, Sept., Nov.}

Now, the probability that a given month is a 30-day month is

 Pr(p(m)) = |T(p(m))|/|U| = 4/12

A subtlety exists in the role of the universe of discourse; this is part of the craft of using prob-
ability theory in testing—choosing the right universe. Suppose we want to know the probability
that a month is February. The quick answer: 1/12. Now, suppose we want the probability of a
month with exactly 29 days. Less easy—we need a universe that includes both leap years and com-
mon years. We could use congruence arithmetic and choose a universe that consists of months in
a period of four consecutive years—say 1991, 1992, 1993, and 1994. This universe would contain
48 “months,” and in this universe the probability of a 29-day month is 1/48. Another possibility
would be to use the 200-year range of the NextDate program, in which the year 1900 is not a
leap year. This would slightly reduce the probability of a 29-day month. One conclusion: getting
the right universe is important. A bigger conclusion: it is even more important to avoid “shifting
universes.”

Here are some facts about probabilities that we will use without proof. They refer to a given
universe, propositions p and q, with truth sets T(p) and T(q):

 Pr(∼p) = 1 – Pr(p)

52  ◾  Software Testing

 Pr(p ∧ q) = Pr(p) × Pr(q)

 Pr(p ∨ q) = Pr(p) + Pr(q) – Pr(p ∧ q)

These facts, together with the tables of set theory and propositional identities, provide a strong
algebraic capability to manipulate probability expressions.

EXERCISES
 1. A very deep connection (an isomorphism) exists between set operations and the logical con-

nectives in the propositional logic.

Operation Propositional Logic Set Theory

Disjunction Or Union

Conjunction And Intersection

Negation Not Complement

Implication If, Then Subset

Exclusive or Symmetric difference

 a. Express A ⊕ B in words.
 b. Express (A ≈ B) – (A ∩ B) in words.
 c. Convince yourself that A ⊕ B and (A ≈ B) – (A ∩ B) are the same set.
 d. Is it true that A ⊕ B = (A – B) ≈ (B – A)?
 e. What name would you give to the blank entry in the previous table?
 2. In many parts of the United States, real estate taxes are levied by different taxing bodies, for

example, a school district, a fire protection district, a township, and so on. Discuss whether
these taxing bodies form a partition of a state. Do the 50 states form a partition of the
United States of America? (What about the District of Columbia?)

 3. Is brotherOf an equivalence relation on the set of all people? How about siblingOf?

reference
Rosen, K.H., Discrete Mathematics and Its Applications, McGraw-Hill, New York, 1991.

53
© 2010 Taylor & Francis Group, LLC

Chapter 4

Graph theory for testers

Graph theory is a branch of topology that is sometimes referred to as “rubber sheet geometry.”
Curious, because the rubber sheet parts of topology have little to do with graph theory; further-
more, the graphs in graph theory do not involve axes, scales, points, and curves as you might
expect. Whatever the origin of the term, graph theory is probably the most useful part of math-
ematics for computer science—far more useful than calculus—yet it is not commonly taught. Our
excursion into graph theory will follow a “pure math” spirit in which definitions are as devoid of
specific interpretations as possible. Postponing interpretations results in maximum latitude in
interpretations later, much like well-defined abstract data types promote reuse.

Two basic kinds of graphs are used: undirected and directed. Because the latter are a special
case of the former, we begin with undirected graphs. This will allow us to inherit many concepts
when we get to directed graphs.

4.1 Graphs
A graph (also known as a linear graph) is an abstract mathematical structure defined from two
sets—a set of nodes and a set of edges that form connections between nodes. A computer network
is a fine example of a graph. More formally:

Definition

A graph G = (V, E) is composed of a finite (and nonempty) set V of nodes and a set E of unordered
pairs of nodes.

 V = {n1, n2, …, nm}

and

 E = {e1, e2, …, ep}

54  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

where each edge ek = {ni, nj} for some nodes ni, nj ∈ V. Recall from Chapter 3 that the set {ni, nj} is
an unordered pair, which we sometimes write as (ni, nj).

Nodes are sometimes called vertices; edges are sometimes called arcs; and we sometimes call
nodes the endpoints of an arc. The common visual form of a graph shows nodes as circles and
edges as lines connecting pairs of nodes, as in Figure 4.1. We will use this figure as a continuing
example, so take a minute to become familiar with it.

In the graph in Figure 4.1, the node and edge sets are

 V = {n1, n2, n3, n4, n5, n6, n7}

 E = {e1, e2, e3, e4, e5}

 = {(n1, n2), (n1, n4), (n3, n4),(n2, n5), (n4, n6)}

To define a particular graph, we must first define a set of nodes and then define a set of edges
between pairs of nodes. We usually think of nodes as program statements, and we have various
kinds of edges, representing, for instance, flow of control or define/use relationships.

4.1.1 Degree of a Node

Definition

The degree of a node in a graph is the number of edges that have that node as an endpoint. We write
deg(n) for the degree of node n.

We might say that the degree of a node indicates its “popularity” in a graph. In fact, social
scientists use graphs to describe social interactions, in which nodes are people, edges often refer
to things like “friendship,” “communicates with,” and so on. If we make a graph in which objects
are nodes and edges are messages, the degree of a node (object) indicates the extent of integration
testing that is appropriate for the object.

n1

n3 n4

n6

n7

n2 n5e1

e2

e3

e5

e4

Figure 4.1 Graph with seven nodes and five edges.

Graph Theory for Testers  ◾  55

© 2010 Taylor & Francis Group, LLC

The degrees of the nodes in Figure 4.1 are

 deg(n1) = 2

 deg(n2) = 2

 deg(n3) = 1

 deg(n4) = 3

 deg(n5) = 1

 deg(n6) = 1

 deg(n7) = 0

4.1.2 Incidence Matrices
Graphs need not be represented pictorially—they can be fully represented in an incidence matrix.
This concept becomes very useful for testers, so we will formalize it here. When graphs are given
a specific interpretation, the incidence matrix always provides useful information for the new
interpretation.

Definition

The incidence matrix of a graph G = (V, E) with m nodes and n edges is an m × n matrix, where
the element in row i, column j is a 1 if and only if node i is an endpoint of edge j; otherwise, the
element is 0.

The incidence matrix of the graph in Figure 4.1 is as follows:

e1 e2 e3 e4 e5

n1 1 1 0 0 0

n2 1 0 0 1 0

n3 0 0 1 0 0

n4 0 1 1 0 1

n5 0 0 0 1 0

n6 0 0 0 0 1

n7 0 0 0 0 0

We can make some observations about a graph by examining its incidence matrix. First, notice
that the sum of the entries in any column is 2. That is because every edge has exactly two end-
points. If a column sum in an incidence matrix is ever something other than 2, there is a mistake
somewhere. Thus, forming column sums is a form of integrity checking similar in spirit to that of

56  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

parity checks. Next, we see that the row sum is the degree of the node. When the degree of a node
is zero, as it is for node n7, we say the node is isolated. (This might correspond to unreachable code
or to objects that are included but never used.)

4.1.3 Adjacency Matrices
The adjacency matrix of a graph is a useful supplement to the incidence matrix. Because adjacency
matrices deal with connections, they are the basis of many later graph theory concepts.

Definition

The adjacency matrix of a graph G = (V, E) with m nodes is an m × m matrix, where the element
in row i, column j is a 1 if and only if an edge exists between node i and node j; otherwise, the
element is 0.

The adjacency matrix is symmetric (element i,j always equals element j,i), and a row sum is the
degree of the node (as it was in the incidence matrix).

The adjacency matrix of the graph in Figure 4.1 is as follows:

n1 n2 n3 n4 n5 n6 n7

n1 0 1 0 1 0 0 0

n2 1 0 0 0 1 0 0

n3 0 0 0 1 0 0 0

n4 1 0 1 0 0 1 0

n5 0 1 0 0 0 0 0

n6 0 0 0 1 0 0 0

n7 0 0 0 0 0 0 0

4.1.4 Paths
As a preview of how we will use graph theory, the code-based approaches to testing (see Chapters
8 and 9) all center on types of paths in a program. Here, we define (interpretation-free) paths in
a graph.

Definition

A path is a sequence of edges such that for any adjacent pair of edges ei, ej in the sequence, the edges
share a common (node) endpoint.

Paths can be described either as sequences of edges or as sequences of nodes; the node sequence
choice is more common.

Graph Theory for Testers  ◾  57

© 2010 Taylor & Francis Group, LLC

Some paths in the graph in Figure 4.1:

Path Node Sequence Edge Sequence

Between n1 and n5 n1, n2, n5 e1, e4

Between n6 and n5 n6, n4, n1, n2, n5 e5, e2, e1, e4

Between n3 and n2 n3, n4, n1, n2 e3, e2, e1

Paths can be generated directly from the adjacency matrix of a graph using a binary form of
matrix multiplication and addition. In our continuing example, edge e1 is between nodes n1 and
n2, and edge e4 is between nodes n2 and n5. In the product of the adjacency matrix with itself, the
element in position (1,2) forms a product with the element in position (2,5), yielding an element
in position (1,5), which corresponds to the two-edge path between n1 and n5. If we multiplied the
product matrix by the original adjacency matrix again, we would get all three edge paths, and so
on. At this point, the pure math folks go into a long digression to determine the length of the
longest path in a graph; we will not bother. Instead, we focus our interest on the fact that paths
connect “distant” nodes in a graph.

The graph in Figure 4.1 predisposes a problem. It is not completely general because it does not
show all the situations that might occur in a graph. In particular, no paths exist in which a node
occurs twice in the path. If it did, the path would be a loop (or circuit). We could create a circuit
by adding an edge between nodes n3 and n6.

4.1.5 Connectedness
Paths let us speak about nodes that are connected; this leads to a powerful simplification device
that is very important for testers.

Definition

Two nodes are connected if and only if they are in the same path.
“Connectedness” is an equivalence relation (see Chapter 3) on the node set of a graph. To see

this, we can check the three defining properties of equivalence relations:

 1. Connectedness is reflexive because every node is, by default, in a path of length 0 with itself.
(Sometimes, for emphasis, an edge is shown that begins and ends on the same node.)

 2. Connectedness is symmetric because if nodes ni and nj are in a path, then nodes nj and ni are
in the same path.

 3. Connectedness is transitive (see the discussion of adjacency matrix multiplication for paths
of length 2).

Equivalence relations induce a partition (see Chapter 3 if you need a reminder); therefore, we
are guaranteed that connectedness defines a partition on the node set of a graph. This permits the
definition of components of a graph.

58  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Definition

A component of a graph is a maximal set of connected nodes.
Nodes in the equivalence classes are components of the graph. The classes are maximal due

to the transitivity part of the equivalence relation. The graph in Figure 4.1 has two components:
{n1, n2, n3, n4, n5, n6} and {n7}.

4.1.6 Condensation Graphs
We are finally in a position to formalize an important simplification mechanism for testers.

Definition

Given a graph G = (V, E), its condensation graph is formed by replacing each component by a con-
densing node.

Developing the condensation graph of a given graph is an unambiguous (i.e., algorithmic)
process. We use the adjacency matrix to identify path connectivity, and then use the equivalence
relation to identify components. The absolute nature of this process is important: the condensa-
tion graph of a given graph is unique. This implies that the resulting simplification represents an
important aspect of the original graph.

The components in our continuing example are S1 = {n1, n2, n3, n4, n5, n6} and S2 = {n7}.
No edges can be present in a condensation graph of an ordinary (undirected) graph. Two rea-

sons are

 1. Edges have individual nodes as endpoints, not sets of nodes. (Here, we can finally use the
distinction between n7 and {n7}.)

 2. Even if we fudge the definition of edge to ignore this distinction, a possible edge would mean
that nodes from two different components were connected, thus in a path, thus in the same
(maximal!) component.

The implication for testing is that components are independent in an important way; thus, they
can be tested separately.

4.1.7 Cyclomatic Number
The cyclomatic complexity property of graphs has deep implications for testing.

Definition

The cyclomatic number of a graph G is given by V(G) = e – n + p, where

e is the number of edges in G.
n is the number of nodes in G.
p is the number of components in G.

Graph Theory for Testers  ◾  59

© 2010 Taylor & Francis Group, LLC

V(G) is the number of distinct regions in a strongly connected directed graph. In Chapter 8,
we will examine a formulation of code-based testing that considers all the paths in a program
graph to be a vector space. There are V(G) elements in the set of basis vectors for this space. The
cyclomatic number of our example graph is V(G) = 5 – 7 + 2 = 0. This is not a very good example
for cyclomatic complexity. When we use cyclomatic complexity in Chapter 8, and expand on it in
Chapter 16, we will (usually) have strongly connected graphs, which will have a larger cyclomatic
complexity than this small example.

4.2 Directed Graphs
Directed graphs are a slight refinement to ordinary graphs: edges acquire a sense of direction.
Symbolically, the unordered pairs (ni, nj) become ordered pairs <ni, nj>, and we speak of a directed
edge going from node ni to nj, instead of being between the nodes.

Definition

A directed graph (or digraph) D = (V, E) consists of a finite set V = {n1, n2, …, nm} of nodes,
and a set E = {e1, e2, …, ep} of edges, where each edge ek = <ni, nj> is an ordered pair of nodes
ni, nj ∈ V.

In the directed edge ek = <ni, nj>, ni is the initial (or start) node and nj is the terminal (or fin-
ish) node. Edges in directed graphs fit naturally with many software concepts: sequential behav-
ior, imperative programming languages, time-ordered events, define/reference pairings, messages,
function and procedure calls, and so on. Given this, you might ask why we spent (wasted?) so
much time on ordinary graphs. The difference between ordinary and directed graphs is very analo-
gous to the difference between declarative and imperative programming languages. In impera-
tive languages (e.g., COBOL, FORTRAN, Pascal, C, Java, Ada®), the sequential order of source
language statements determines the execution time order of compiled code. This is not true for
declarative languages (such as Prolog). The most common declarative situation for most software
developers is entity/relationship (E/R) modeling. In an E/R model, we choose entities as nodes and
identify relationships as edges. (If a relationship involves three or more entities, we need the notion
of a “hyper-edge” that has three or more endpoints.) The resulting graph of an E/R model is more
properly interpreted as an ordinary graph. Good E/R modeling practice suppresses the sequential
thinking that directed graphs promote.

When testing a program written in a declarative language, the only concepts available to
the tester are those that follow from ordinary graphs. Fortunately, most software is developed
in imperative languages; so testers usually have the full power of directed graphs at their
disposal.

The next series of definitions roughly parallels the ones for ordinary graphs. We modify our
now familiar continuing example to the one shown in Figure 4.2.

We have the same node set V = {n1, n2, n3, n4, n5, n6, n7}, and the edge set appears to be the same:
E = {e1, e2, e3, e4, e5}. The difference is that the edges are now ordered pairs of nodes in V:

 E = {<n1, n2>, <n1, n4>, <n3, n4>, <n2, n5>, <n4, n6>}

60  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

4.2.1 Indegrees and Outdegrees
The degree of a node in an ordinary graph is refined to reflect direction, as follows:

Definition

The indegree of a node in a directed graph is the number of distinct edges that have the node as a
terminal node. We write indeg(n) for the indegree of node n.

The outdegree of a node in a directed graph is the number of distinct edges that have the node as
a start point. We write outdeg(n) for the outdegree of node n.

The nodes in the digraph in Figure 4.2 have the following indegrees and outdegrees:

 indeg(n1) = 0 outdeg(n1) = 2

 indeg(n2) = 1 outdeg(n2) = 1

 indeg(n3) = 0 outdeg(n3) = 1

 indeg(n4) = 2 outdeg(n4) = 1

 indeg(n5) = 1 outdeg(n5) = 0

 indeg(n6) = 1 outdeg(n6) = 0

 indeg(n7) = 0 outdeg(n7) = 0

Ordinary and directed graphs meet through definitions that relate obvious correspondences,
such as deg(n) = indeg(n) + outdeg(n).

4.2.2 Types of Nodes
The added descriptive power of directed graphs lets us define different kinds of nodes:

n1

n3 n4

n6

n7

n2 n5e1

e2

e3

e5

e4

Figure 4.2 Directed graph.

Graph Theory for Testers  ◾  61

© 2010 Taylor & Francis Group, LLC

Definition

A node with indegree = 0 is a source node.
A node with outdegree = 0 is a sink node.
A node with indegree ≠ 0 and outdegree ≠ 0 is a transfer node.

Source and sink nodes constitute the external boundary of a graph. If we made a directed graph
of a context diagram (from a set of data flow diagrams produced by structured analysis), the exter-
nal entities would be source and sink nodes.

In our continuing example, n1, n3, and n7 are source nodes; n5, n6, and n7 are sink nodes; and
n2 and n4 are transfer (also known as interior) nodes. A node that is both a source and a sink node
is an isolated node.

4.2.3 Adjacency Matrix of a Directed Graph
As we might expect, the addition of direction to edges changes the definition of the adjacency
matrix of a directed graph. (It also changes the incidence matrix, but this matrix is seldom used
in conjunction with digraphs.)

Definition

The adjacency matrix of a directed graph D = (V, E) with m nodes is an m × m matrix: A = (a(i, j))
where a(i, j) is a 1 if and only if there is an edge from node i to node j; otherwise, the element
is 0.

The adjacency matrix of a directed graph is not necessarily symmetric. A row sum is the outde-
gree of the node; a column sum is the indegree of a node. The adjacency matrix of our continuing
example is as follows:

n1 n2 n3 n4 n5 n6 n7

n1 0 1 0 1 0 0 0

n2 0 0 0 0 1 0 0

n3 0 0 0 1 0 0 0

n4 0 0 0 0 0 1 0

n5 0 0 0 0 0 0 0

n6 0 0 0 0 0 0 0

n7 0 0 0 0 0 0 0

One common use of directed graphs is to record family relationships, in which siblings, cous-
ins, and so on are connected by an ancestor; and parents, grandparents, and so on are connected
by a descendant. Entries in powers of the adjacency matrix now show existence of directed paths.

62  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

4.2.4 Paths and Semipaths
Direction permits a more precise meaning to paths that connect nodes in a directed graph. As a
handy analogy, you may think in terms of one-way and two-way streets.

Definition

A (directed) path is a sequence of edges such that, for any adjacent pair of edges ei, ej in the
sequence, the terminal node of the first edge is the initial node of the second edge.

A cycle is a directed path that begins and ends at the same node.
A chain is a sequence of nodes such that each interior node has indegree = 1 and outdegree = 1.

The initial node may have indegree = 0 or indegree > 1. The terminal node may have outde-
gree = 0 or outdegree > 1 (we will use this concept in Chapter 8).

A (directed) semipath is a sequence of edges such that for at least one adjacent pair of edges ei, ej
in the sequence, the initial node of the first edge is the initial node of the second edge or the
terminal node of the first edge is the terminal node of the second edge.

Our continuing example contains the following paths and semipaths (not all are listed):

A path from n1 to n6
A semipath between n1 and n3
A semipath between n2 and n4
A semipath between n5 and n6

4.2.5 Reachability Matrix
When we model an application with a digraph, we often ask questions that deal with paths that
let us reach (or “get to”) certain nodes. This is an extremely useful capability and is made possible
by the reachability matrix of a digraph.

Definition

The reachability matrix of a directed graph D = (V, E) with m nodes is an m × m matrix R = (r(i, j)),
where r(i, j) is a 1 if and only if there is a path from node i to node j; otherwise, the element is 0.

The reachability matrix of a directed graph D can be calculated from the adjacency matrix A as

 R = I + A + A2 + A3 + … + Ak

where k is the length of the longest path in D, and I is the identity matrix. The reachability matrix
for our continuing example is as follows:

Graph Theory for Testers  ◾  63

© 2010 Taylor & Francis Group, LLC

n1 n2 n3 n4 n5 n6 n7

n1 1 1 0 1 1 1 0

n2 0 1 0 0 1 0 0

n3 0 0 1 1 0 1 0

n4 0 0 0 1 0 1 0

n5 0 0 0 0 1 0 0

n6 0 0 0 0 0 1 0

n7 0 0 0 0 0 0 1

The reachability matrix tells us that nodes n2, n4, n5, and n6 can be reached from n1; node n5
can be reached from n2; and so on.

4.2.6 n-Connectedness
Connectedness of ordinary graphs extends to a rich, highly explanatory concept for digraphs.

Definition

Two nodes ni and nj in a directed graph are

0-connected iff no path exists between ni and nj
1-connected iff a semipath but no path exists between ni and nj
2-connected iff a path exists between ni and nj
3-connected iff a path goes from ni to nj and a path goes from nj to ni

No other degrees of connectedness exist.
We need to modify our continuing example to show 3-connectedness. The change is the addi-

tion of a new edge e6 from n6 to n3, so the graph contains a cycle.
With this change, we have the following instances of n-connectivity in Figure 4.3 (not all are

listed):

n1 and n7 are 0-connected
n2 and n6 are 1-connected
n1 and n6 are 2-connected
n3 and n6 are 3-connected

In terms of one-way streets, you cannot get from n2 to n6.

64  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

4.2.7 Strong Components
The analogy continues. We get two equivalence relations from n-connectedness: 1-connected-
ness yields what we might call “weak connection,” and this in turn yields weak components.
(These turn out to be the same as we had for ordinary graphs, which is what should happen,
because 1-connectedness effectively ignores direction.) The second equivalence relation, based on
3-connectedness, is more interesting. As before, the equivalence relation induces a partition on the
node set of a digraph; however, the condensation graph is quite different. Nodes that previously
were 0-, 1-, or 2-connected remain so. The 3-connected nodes become the strong components.

Definition

A strong component of a directed graph is a maximal set of 3-connected nodes.
In our amended example, the strong components are the sets {n3, n4, n6} and {n7}. The conden-

sation graph for our amended example is shown in Figure 4.4.
Strong components let us simplify by removing loops and isolated nodes. Although this is not

as dramatic as the simplification we had in ordinary graphs, it does solve a major testing problem.
Notice that the condensation graph of a digraph will never contain a loop. (If it did, the loop
would have been condensed by the maximal aspect of the partition.) These graphs have a special
name: directed acyclic graphs, sometimes written as DAG.

n1

n3 n4

n6

n7

n2 n5e1

e2

e3

e5

e4

e6

Figure 4.3 Directed graph with a cycle.

n1

S1 S2

n2 n5e1

e2

e4

Figure 4.4 Condensation graph of digraph in Figure 4.3.

Graph Theory for Testers  ◾  65

© 2010 Taylor & Francis Group, LLC

Many papers on structured testing make quite a point of showing how relatively simple pro-
grams can have millions of distinct execution paths. The intent of these discussions is to convince
us that exhaustive testing is exactly that—exhaustive. The large number of execution paths comes
from nested loops. Condensation graphs eliminate loops (or at least condense them down to a
single node); therefore, we can use this as a strategy to simplify situations that otherwise are com-
putationally untenable.

4.3 Graphs for testing
We conclude this chapter with four special graphs that are widely used for testing. The first of
these, the program graph, is used primarily at the unit testing level. The other three, finite state
machines, state charts, and Petri nets, are best used to describe system-level behavior, although
they can be used at lower levels of testing.

4.3.1 Program Graphs
At the beginning of this chapter, we made a point of avoiding interpretations on the graph theory
definitions to preserve latitude in later applications. Here, we give the most common use of graph
theory in software testing—the program graph. To better connect with existing testing literature,
the traditional definition is given, followed by an improved definition.

Definition

Given a program written in an imperative programming language, its program graph is a directed
graph in which

 1. (Traditional definition)
 Nodes are program statements, and edges represent flow of control (there is an edge from

node i to node j iff the statement corresponding to node j can be executed immediately after
the statement corresponding to node i).

 2. (Improved definition)
 Nodes are either entire statements or fragments of a statement, and edges represent flow

of control (there is an edge from node i to node j iff the statement or statement fragment cor-
responding to node j can be executed immediately after the statement or statement fragment
corresponding to node i).

It is cumbersome to always say “statement or statement fragment,” so we adopt the convention
that a statement fragment can be an entire statement. The directed graph formulation of a program
enables a very precise description of testing aspects of the program. For one thing, a very satisfy-
ing connection exists between this formulation and the precepts of structured programming.
The basic structured programming constructs (sequence, selection, and repetition) all have the
directed graphs as shown in Figure 4.5.

When these constructs are used in a structured program, the corresponding graphs are either
nested or concatenated. The single entrance and single exit criteria result in unique source and
sink nodes in the program graph. In fact, the old (nonstructured) “spaghetti code” resulted in very

66  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

complex program graphs. GOTO statements, for example, introduce edges; and when these are
used to branch into or out of loops, the resulting program graphs become even more complex. One
of the pioneering analysts of this is Thomas McCabe, who popularized the cyclomatic number
of a graph as an indicator of program complexity (McCabe, 1976). When a program executes,
the statements that execute comprise a path in the program graph. Loops and decisions greatly
increase the number of possible paths and therefore similarly increase the need for testing.

One of the problems with program graphs is how to treat nonexecutable statements such as
comments and data declaration statements. The simplest answer is to ignore them. A second prob-
lem has to do with the difference between topologically possible and semantically feasible paths.
We will discuss this in more detail in Chapter 8.

4.3.2 Finite State Machines
Finite state machines have become a fairly standard notation for requirements specification. All
the real-time extensions of structured analysis use some form of finite state machine, and nearly all
forms of object-oriented analyses require them. A finite state machine is a directed graph in which
states are nodes and transitions are edges. Source and sink states become initial and terminal
nodes, sequences of transitions are modeled as paths, and so on. Most finite state machine nota-
tions add information to the edges (transitions) to indicate the cause of the transition and actions
that occur as a result of the transition.

Figure 4.6 is a finite state machine for the garage door controller described in Chapter 2.
(We will revisit this finite state machine in Chapters 14 and 17.) The labels on the transitions

Sequence Pre-test loop Post-test loop

If–then If–then–else Case/switch

Figure 4.5 Digraphs of structured programming constructs.

Graph Theory for Testers  ◾  67

© 2010 Taylor & Francis Group, LLC

follow a convention that the “numerator” is the event that causes the transition, and the
“denominator” is the action that is associated with the transition. The events are mandatory—
transitions do not just happen, but the actions are optional. Finite state machines are simple
ways to represent situations in which a variety of events may occur, and their occurrences have
different consequences.

Finite state machines can be executed; however, a few conventions are needed first. One is the
notion of the active state. We speak of a system being “in” a certain state; when the system is mod-
eled as a finite state machine, the active state refers to the state “we are in.” Another convention is
that finite state machines may have an initial state, which is the state that is active when a finite
state machine is first entered. (Initial and final states are recognized by the absence of incoming
and outgoing transitions, respectively.) Exactly one state can be active at any time. We also think
of transitions as instantaneous occurrences, and the events that cause transitions also occur one
at a time. To execute a finite state machine, we start with an initial state and provide a sequence
of events that causes state transitions. As each event occurs, the transition changes the active state
and a new event occurs. In this way, a sequence of events selects a path of states (or equivalently,
of a sequence of transitions) through the machine.

Input events
e1: depress controller button
e2: end of down track hit
e3: end of up track hit
e4: obstacle hit
e5: laser beam crossed

Output events (actions)
a1: start drive motor down
a2: start drive motor up
a3: stop drive motor
a4: door stops part way
a5: door continues opening
a6: door continues closing

s1:
Door up

s2:
Door down

s5:
Door

closing

s3:
Door stopped
going down

s4:
Door stopped

going up

s6:
Door

opening

e1/a1

e1/a3 e1/a1 e1/a2 e1/a3

e2/a3 e1/a2

e5/a3, a2

e4/a3, a2

e3/a3

Figure 4.6 Finite state machine for garage door controller.

68  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

4.3.3 Petri Nets
Petri nets were the topic of Carl Adam Petri’s PhD dissertation in 1963; today, they are the accepted
model for protocols and other applications involving concurrency and distributed processing. Petri
nets are a special form of directed graph: a bipartite directed graph. (A bipartite graph has two sets
of nodes, V1 and V2, and a set of edges E, with the restriction that every edge has its initial node
in one of the sets V1, V2, and its terminal node in the other set.) In a Petri net, one of the sets is
referred to as “places,” and the other is referred to as “transitions.” These sets are usually denoted
as P and T, respectively. Places are inputs to and outputs of transitions; the input and output rela-
tionships are functions, and they are usually denoted as In and Out, as in the following definition.

Definition

A Petri net is a bipartite directed graph (P, T, In, Out), in which P and T are disjoint sets of nodes,
and In and Out are sets of edges, where In ⊆ P × T, and Out ⊆ T × P.

For the sample Petri net in Figure 4.7, the sets P, T, In, and Out are

 P = {p1, p2, p3, p4, p5}

 T = {t1, t2, t3}

 In = {<p1, t1>, <p5, t1>, <p5, t3>, <p2, t3>, <p3, t2>}

 Out = {<t1, p3>, <t2, p4>, <t3, p4>}

Petri nets are executable in more interesting ways than finite state machines. The next few defi-
nitions lead us to Petri net execution.

Definition

A marked Petri net is a 5-tuple (P, T, In, Out, M) in which (P, T, In, Out) is a Petri net and M is
a set of mappings of places to positive integers.

p1 p2p5

p3 p4

t1 t2

t3

Figure 4.7 petri net.

Graph Theory for Testers  ◾  69

© 2010 Taylor & Francis Group, LLC

The set M is called the marking set of the Petri net. Elements of M are n-tuples, where n is the
number of places in the set P. For the Petri net in Figure 4.7, the set M contains elements of the form
<n1, n2, n3, n4, n5>, where the n’s are the integers associated with the respective places. The number
associated with a place refers to the number of tokens that are said to be “in” the place. Tokens are
abstractions that can be interpreted in modeling situations. For example, tokens might refer to the
number of times a place has been used, or the number of things in a place, or whether the place is
true. Figure 4.8 shows a marked Petri net.

Definition

A transition in a Petri net is enabled if at least one token is in each of its input places.
The marking tuple for the marked Petri net in Figure 4.8 is <1, 1, 0, 2, 0>. We need the concept

of tokens to make two essential definitions. No enabled transitions are in the marked Petri net in
Figure 4.8. If we put a token in place p3, then transition t2 would be enabled.

Definition

When an enabled Petri net transition fires, one token is removed from each of its input places and
one token is added to each of its output places.

In Figure 4.9, transition t2 is enabled in the left net and has been fired in the right net. The
marking sequence for the net in Figure 4.9 contains two tuples—the first shows the net when t2 is
enabled, and the second shows the net after t2 has fired:

 M = {<1, 1, 0, 2, 1>, <1, 0, 0, 3, 0>}

Tokens may be created or destroyed by transition firings. Under special conditions, the total
number of tokens in a net never changes; such nets are called conservative. We usually do not
worry about token conservation. Markings let us execute Petri nets in much the same way that we
execute finite state machines. (It turns out that finite state machines are a special case of Petri nets.)

p1 p2p5

p3 p4

t1 t2

t3

Figure 4.8 Marked petri net.

70  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Look again at the net in Figure 4.9; in the left net (before firing any transition), places p1, p2,
and p5 are all marked. With such a marking, transitions t1 and t2 are both enabled. We chose to
fire transition t2, the token in place p5 is removed and t1 is no longer enabled. Similarly, if we
choose to fire t1, we disable t2. This pattern is known as Petri net conflict. More specifically, we
say that transitions t1 and t2 are in conflict with respect to place p5. Petri net conflict exhibits an
interesting form of interaction between two transitions; we will revisit this (and other interactions)
in Chapter 17.

4.3.4 Event-Driven Petri Nets
Basic Petri nets need two slight enhancements to become Event-Driven Petri Nets (EDPNs). The
first enables them to express more closely event-driven systems, and the second deals with Petri
net markings that express event quiescence, an important notion in object-oriented applications.
Taken together, these extensions result in an effective, operational view of software requirements.

Definition

An Event-Driven Petri Net is a tripartite-directed graph (P, D, S, In, Out) composed of three sets
of nodes, P, D, and S, and two mappings, In and Out, where

P is a set of port events
D is a set of data places
S is a set of transitions

In is a set of ordered pairs from (P ∪ D) × S
Out is a set of ordered pairs from S × (P ∪ D)

EDPNs express four of the five basic system constructs defined in Chapter 14; only devices are
missing. The set S of transitions corresponds to ordinary Petri net transitions, which are inter-
preted as actions.

Two kinds of places, port events and data places, are inputs to or outputs of transitions in S as
defined by the input and output functions In and Out. A thread is a sequence of transitions in S,

p1

p3 p4 p3
p4

p5 p2 p1 p5 p2

t1

t3

t2 t1

t3

t2

Figure 4.9 Before and after firing t2.

Graph Theory for Testers  ◾  71

© 2010 Taylor & Francis Group, LLC

so we can always construct the inputs and outputs of a thread from the inputs and outputs of the
transitions in the thread. EDPNs are graphically represented in much the same way as ordinary
Petri nets; the only difference is the use of triangles for port event places. The EDPN in Figure
4.10 has four transitions, s7, s8, s9, and s10; two port input events, p3 and p4; and three data places,
d5, d6, and d7. It does not have port output events.

This is the EDPN that corresponds to the finite state machine developed for the dial portion of
the Saturn windshield wiper system in Chapter 15 (see Figure 15.1). The components of this net
are described in Table 4.1.

Markings for an EDPN are more complicated because we want to be able to deal with event
quiescence.

p3
p3: dialUp
p4: dialDown

p4

p3 p4

d5

d5: dial at 1
d6: dial at 2
d7: dial at 3

d6

d7

s7

s7: dial from 1 to 2
s8: dial from 2 to 3
s9: dial from 3 to 2
s10: dial from 2 to 1

s10

s8 s9

Port input events

Data places

Transitions

Figure 4.10 Event-driven petri net.

table 4.1 EDpN Elements in Figure 4.10

Element Type Description

p3 Port input event Rotate dial clockwise

p4 Port input event Rotate dial counterclockwise

d5 Data place Dial at position 1

d6 Data place Dial at position 2

d7 Data place Dial at position 3

s7 Transition State transition: d5 to d6

s8 Transition State transition: d6 to d7

s9 Transition State transition: d7 to d6

s10 Transition State transition: d6 to d5

72  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Definition

A marking M of an EDPN (P, D, S, In, Out) is a sequence M = <m1, m2, …> of p-tuples, where
p = k + n, and k and n are the number of elements in the sets P and D, and individual entries in a
p-tuple indicate the number of tokens in the event or data place.

By convention, we will put the data places first, followed by the input event places, and then the
output event places. An EDPN may have any number of markings; each corresponds to an execu-
tion of the net. Table 4.2 shows a sample marking of the EDPN in Figure 4.10.

The rules for transition enabling and firing in an EDPN are exact analogs of those for tradi-
tional Petri nets; a transition is enabled if there is at least one token in each input place; and when
an enabled transition fires, one token is removed from each of its input places, and one token is
placed in each of its output places. Table 4.3 follows the marking sequence given in Table 4.2,
showing which transitions are enabled and fired.

The important difference between EDPNs and traditional Petri nets is that event quiescence
can be broken by creating a token in a port input event place. In traditional Petri nets, when no
transition is enabled, we say that the net is deadlocked. In EDPNs, when no transition is enabled,
the net is at a point of event quiescence. (Of course, if no event occurs, this is the same as dead-
lock.) Event quiescence occurs four times in the thread in Table 4.3: at m1, m3, m5, and m7.

table 4.2 Marking of EDpN in Figure 4.10

Tuple (p3, p4, d5, d6, d7) Description

m1 (0, 0, 1, 0, 0) Initial condition, in state d5

m2 (1, 0, 1, 0, 0) p3 occurs

m3 (0, 0, 0, 1, 0) In state d6

m4 (1, 0, 0, 1, 0) p3 occurs

m5 (0, 0, 0, 0, 1) In state d7

m6 (0, 1, 0, 0, 1) p4 occurs

m7 (0, 0, 0, 1, 0) In state d6

table 4.3 Enabled and Fired transitions in table 4.2

Tuple (p3, p4, d5, d6, d7) Description

m1 (0, 0, 1, 0, 0) Nothing enabled

m2 (1, 0, 1, 0, 0) s7 enabled; s7 fired

m3 (0, 0, 0, 1, 0) Nothing enabled

m4 (1, 0, 0, 1, 0) s8 enabled; s8 fired

m5 (0, 0, 0, 0, 1) Nothing enabled

m6 (0, 1, 0, 0, 1) s9 enabled; s9 fired

m7 (0, 0, 0, 1, 0) Nothing enabled

Graph Theory for Testers  ◾  73

© 2010 Taylor & Francis Group, LLC

The individual members in a marking can be thought of as snapshots of the executing EDPN at
discrete points in time; these members are alternatively referred to as time steps, p-tuples, or mark-
ing vectors. This lets us think of time as an ordering that allows us to recognize “before” and “after.”
If we attach instantaneous time as an attribute of port events, data places, and transitions, we obtain
a much clearer picture of thread behavior. One awkward part to this is how to treat tokens in a
port output event place. Port output places always have outdegree = 0; in an ordinary Petri net,
tokens cannot be removed from a place with a zero outdegree. If the tokens in a port output event
place persist, this suggests that the event occurs indefinitely. Here again, the time attributes resolve
the confusion; this time we need a duration of the marked output event. (Another possibility is to
remove tokens from a marked output event place after one time step; this works reasonably well.)

4.3.5 StateCharts
David Harel had two goals when he developed the StateChart notation: he wanted to devise a
visual notation that combined the ability of Venn diagrams to express hierarchy and the abil-
ity of directed graphs to express connectedness (Harel, 1988). Taken together, these capabilities
provide an elegant answer to the “state explosion” problem of ordinary finite state machines. The
result is a highly sophisticated and very precise notation that is supported by commercially avail-
able CASE tools, notably the StateMate system. StateCharts are now the control model of choice
for the Unified Modeling Language (UML) from IBM. (See http://www-306.ibm.com/software/
rational/uml/ for more details.)

Harel uses the methodology neutral term “blob” to describe the basic building block of a
StateChart. Blobs can contain other blobs in the same way that Venn diagrams show set contain-
ment. Blobs can also be connected to other blobs with edges in the same way that nodes in a
directed graph are connected. In Figure 4.11, blob A contains two blobs (B and C), and they are
connected by edges. Blob A is also connected to blob D by an edge.

As Harel intends, we can interpret blobs as states and edges as transitions. The full StateChart
system supports an elaborate language that defines how and when transitions occur (their training
course runs for a full week, so this section is a highly simplified introduction). StateCharts are exe-
cutable in a much more elaborate way than ordinary finite state machines. Executing a StateChart
requires a notion similar to that of Petri net markings. The “initial state” of a StateChart is indi-
cated by an edge that has no source state.

When states are nested within other states, the same indication is used to show the lower-level
initial state. In Figure 4.12, state A is the initial state; and when it is entered, state B is also entered
at the lower level. When a state is entered, we can think of it as active in a way analogous to a
marked place in a Petri net. (The StateChart tool uses colors to show which states are active, and
this is equivalent to marking places in a Petri net.) A subtlety exists in Figure 4.12, the transition

A
B

C

D

Figure 4.11 Blobs in a StateChart.

74  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

from state A to state D seems ambiguous at first because it has no apparent recognition of states
B and C. The convention is that edges must start and end on the outline (Harel uses the term
“contour”) of a state. If a state contains substates, as state A does, the edge “refers” to all substates.
Thus, the edge from A to D means that the transition can occur either from state B or from state
C. If we had an edge from state D to state A, as in Figure 4.13, the fact that state B is indicated as
the initial state means that the transition is really from state D to state B. This convention greatly
reduces the tendency of finite state machines to look like “spaghetti code.”

The last aspect of StateCharts we will discuss is the notion of concurrent StateCharts. The
dotted line in state D (see Figure 4.14) is used to show that state D really refers to two concur-
rent states, E and F. (Harel’s convention is to move the state label of D to a rectangular tag on the
perimeter of the state.) Although not shown here, we can think of E and F as separate devices that
execute concurrently. Because the edge from state A terminates on the perimeter of state D, when
that transition occurs, both devices E and F are active (or marked, in the Petri net sense).

A

B C D

Figure 4.12 Initial states in a StateChart.

A

B

C

D

Figure 4.13 Default entry into substates.

A E

F

B

C

D

Figure 4.14 Concurrent states.

Graph Theory for Testers  ◾  75

© 2010 Taylor & Francis Group, LLC

EXERCISES
 1. Propose a definition for the length of a path in a graph.
 2. What loop(s) is/are created if an edge is added between nodes n5 and n6 in the graph in

Figure 4.1?
 3. Convince yourself that 3-connectedness is an equivalence relation on the nodes of a digraph.
 4. Compute the cyclomatic complexity for each of the structured programming constructs in

Figure 4.5.
 5. The digraphs in Figure 4.15 were obtained by adding nodes and edges to the digraph in

Figure 4.3. Compute the cyclomatic complexity of each new digraph, and explain how the
changes affected the complexity.

 6. Suppose we make a graph in which nodes are people and edges correspond to some form of
social interaction, such as “talks to” or “socializes with.” Find graph theory concepts that
correspond to social concepts such as popularity, cliques, and hermits.

references
Harel, D., On visual formalisms, Communications of the ACM, Vol. 31, No. 5, May 1988, pp. 514–530.
McCabe, T. J., A complexity measure, IEEE Transactions on Software Engineering, Vol. 2, No. 4, December

1976, pp. 308–320.

n1 n2

n3 n4

n7 n6

n5 n1

n3 n4

n6 n7

n2 n5

n8

n9

e1 e4 e1 e4

e7

e7

e8

e8
e2 e2

e3 e3

e5 e5

e9

e6 e6

Figure 4.15 Directed graphs for exercise 5.

IIUNIt tEStING

The term “unit” needs explanation. There are several interpretations about exactly what constitutes
a unit. In a procedural programming language, a unit can be

 ◾ A single procedure
 ◾ A function
 ◾ A body of code that implements a single function
 ◾ Source code that fits on one page
 ◾ A body of code that represents work done in 4 to 40 hours (as in a work breakdown structure)
 ◾ The smallest body of code that can be compiled and executed by itself

In an object-oriented programming language, there is general agreement that a class is a unit.
However, methods of a class might be limited by any of the “definitions” of a unit for procedural
code.

The bottom line is that “unit” is probably best defined by organizations implementing code. In
my telephony career, the “standard unit” for planning purposes was 300 lines of source code. The
main reason for this was that telephone switching system software is very large, so bigger units
were appropriate. My personal definition of a unit is a body of software that is designed, coded,
and tested by either one person or possibly a programmer pair. Chapters 5 through 10 cover unit-
level testing, and since methods in object-oriented programming are so similar to procedural
units, the material applies to both forms of programming language.

79
© 2010 Taylor & Francis Group, LLC

Chapter 5

Boundary Value testing

In Chapter 3, we saw that a function maps values from one set (its domain) to values in another set
(its range) and that the domain and range can be cross products of other sets. Any program can be
considered to be a function in the sense that program inputs form its domain and program outputs
form its range. In this and the next two chapters, we examine how to use knowledge of the func-
tional nature of a program to identify test cases for the program. Input domain testing (also called
“boundary value testing”) is the best-known specification-based testing technique. Historically,
this form of testing has focused on the input domain; however, it is often a good supplement to
apply many of these techniques to develop range-based test cases.

There are two independent considerations that apply to input domain testing. The first asks
whether or not we are concerned with invalid values of variables. Normal boundary value testing
is concerned only with valid values of the input variables. Robust boundary value testing consid-
ers invalid and valid variable values. The second consideration is whether we make the “single
fault” assumption common to reliability theory. This assumes that faults are due to incorrect val-
ues of a single variable. If this is not warranted, meaning that we are concerned with interaction
among two or more variables, we need to take the cross product of the individual variables. Taken
together, the two considerations yield four variations of boundary value testing:

 ◾ Normal boundary value testing
 ◾ Robust boundary value testing
 ◾ Worst-case boundary value testing
 ◾ Robust worst-case boundary value testing

For the sake of comprehensible drawings, the discussion in this chapter refers to a function, F,
of two variables x1 and x2. When the function F is implemented as a program, the input variables
x1 and x2 will have some (possibly unstated) boundaries:

 a ≤ x1 ≤ b

 c ≤ x2 ≤ d

80  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Unfortunately, the intervals [a, b] and [c, d] are referred to as the ranges of x1 and x2, so right
away we have an overloaded term. The intended meaning will always be clear from its context.
Strongly typed languages (such as Ada® and Pascal) permit explicit definition of such variable
ranges. In fact, part of the historical reason for strong typing was to prevent programmers from
making the kinds of errors that result in faults that are easily revealed by boundary value testing.
Other languages (such as COBOL, FORTRAN, and C) are not strongly typed, so boundary value
testing is more appropriate for programs coded in these languages. The input space (domain) of
our function F is shown in Figure 5.1. Any point within the shaded rectangle and including the
boundaries is a legitimate input to the function F.

5.1 Normal Boundary Value testing
All four forms of boundary value testing focus on the boundary of the input space to identify
test cases. The rationale behind boundary value testing is that errors tend to occur near the
extreme values of an input variable. Loop conditions, for example, may test for < when they
should test for ≤, and counters often are “off by one.” (Does counting begin at zero or at one?)
The basic idea of boundary value analysis is to use input variable values at their minimum, just
above the minimum, a nominal value, just below their maximum, and at their maximum. A
commercially available testing tool (originally named T) generates such test cases for a prop-
erly specified program. This tool has been successfully integrated with two popular front-end
CASE tools (Teamwork from Cadre Systems, and Software through Pictures from Aonix [part
of Atego]; for more information, see http://www.aonix.com/pdf/2140-AON.pdf). The T tool
refers to these values as min, min+, nom, max–, and max. The robust forms add two values,
min– and max+.

The next part of boundary value analysis is based on a critical assumption; it is known as the
“single fault” assumption in reliability theory. This says that failures are only rarely the result of
the simultaneous occurrence of two (or more) faults. The All Pairs testing approach (described in
Chapter 20) contradicts this, with the observation that, in software-controlled medical systems,
almost all faults are the result of interaction between a pair of variables. Thus, the normal and
robust variations cases are obtained by holding the values of all but one variable at their nominal

x2

x1

d

c

a b

Figure 5.1 Input domain of a function of two variables.

Boundary Value Testing  ◾  81

© 2010 Taylor & Francis Group, LLC

values, and letting that variable assume its full set of test values. The normal boundary value analy-
sis test cases for our function F of two variables (illustrated in Figure 5.2) are

 {<x1nom, x2min>, <x1nom, x2min+>, <x1nom, x2nom>, <x1nom, x2max–>, <x1nom, x2max>, <x1min, x2nom>, <x1min+,
x2nom>, <x1max–, x2nom>, <x1max, x2nom>}

5.1.1 Generalizing Boundary Value Analysis
The basic boundary value analysis technique can be generalized in two ways: by the number of
variables and by the kinds of ranges. Generalizing the number of variables is easy: if we have a
function of n variables, we hold all but one at the nominal values and let the remaining variable
assume the min, min+, nom, max–, and max values, repeating this for each variable. Thus, for a
function of n variables, boundary value analysis yields 4n + 1 unique test cases.

Generalizing ranges depends on the nature (or more precisely, the type) of the variables them-
selves. In the NextDate function, for example, we have variables for the month, the day, and the
year. In a FORTRAN-like language, we would most likely encode these, so that January would
correspond to 1, February to 2, and so on. In a language that supports user-defined types (like
Pascal or Ada), we could define the variable month as an enumerated type {Jan., Feb., …, Dec.}.
Either way, the values for min, min+, nom, max–, and max are clear from the context. When a
variable has discrete, bounded values, as the variables in the commission problem have, the min,
min+, nom, max–, and max are also easily determined. When no explicit bounds are present, as
in the triangle problem, we usually have to create “artificial” bounds. The lower bound of side
lengths is clearly 1 (a negative side length is silly); but what might we do for an upper bound? By
default, the largest representable integer (called MAXINT in some languages) is one possibility;
or we might impose an arbitrary upper limit such as 200 or 2000. For other data types, as long as
a variable supports an ordering relation (see Chapter 3 for a definition), we can usually infer the
min, min+, nominal, max–, and max values. Test values for alphabet characters, for example,
would be {a, b, m, y, and z}.

Boundary value analysis does not make much sense for Boolean variables; the extreme values
are TRUE and FALSE, but no clear choice is available for the remaining three. We will see in

x2

x1

d

c

a b

Figure 5.2 Boundary value analysis test cases for a function of two variables.

82  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Chapter 7 that Boolean variables lend themselves to decision table-based testing. Logical variables
also present a problem for boundary value analysis. In the ATM example, a customer’s PIN is a
logical variable, as is the transaction type (deposit, withdrawal, or inquiry). We could go through
the motions of boundary value analysis testing for such variables, but the exercise is not very sat-
isfying to the tester’s intuition.

5.1.2 Limitations of Boundary Value Analysis
Boundary value analysis works well when the program to be tested is a function of several
independent variables that represent bounded physical quantities. Mathematically, the vari-
ables need to be described by a true ordering relation, in which, for every pair <a, b> of values
of a variable, it is possible to say that a ≤ b or b ≤ a. (See Chapter 3 for a detailed definition of
ordering relations.) Sets of car colors, for example, or football teams, do not support an order-
ing relation; thus, no form of boundary value testing is appropriate for such variables. The key
words here are independent and physical quantities. A quick look at the boundary value analysis
test cases for NextDate (in Section 5.5) shows them to be inadequate. Very little stress occurs on
February and on leap years. The real problem here is that interesting dependencies exist among
the month, day, and year variables. Boundary value analysis presumes the variables to be truly
independent. Even so, boundary value analysis happens to catch end-of-month and end-of-year
faults. Boundary value analysis test cases are derived from the extrema of bounded, independent
variables that refer to physical quantities, with no consideration of the nature of the function,
nor of the semantic meaning of the variables. We see boundary value analysis test cases to be
rudimentary because they are obtained with very little insight and imagination. As with so
many things, you get what you pay for.

The physical quantity criterion is equally important. When a variable refers to a physical quan-
tity, such as temperature, pressure, air speed, angle of attack, load, and so forth, physical bound-
aries can be extremely important. (In an interesting example of this, Sky Harbor International
Airport in Phoenix had to close on June 26, 1992, because the air temperature was 122°F. Aircraft
pilots were unable to make certain instrument settings before takeoff: the instruments could only
accept a maximum air temperature of 120°F.) In another case, a medical analysis system uses
stepper motors to position a carousel of samples to be analyzed. It turns out that the mechanics
of moving the carousel back to the starting cell often causes the robot arm to miss the first cell.

As an example of logical (vs. physical) variables, we might look at PINs or telephone numbers.
It is hard to imagine what faults might be revealed by testing PIN values of 0000, 0001, 5000,
9998, and 9999.

5.2 robust Boundary Value testing
Robust boundary value testing is a simple extension of normal boundary value testing: in addition
to the five boundary value analysis values of a variable, we see what happens when the extrema
are exceeded with a value slightly greater than the maximum (max+) and a value slightly less than
the minimum (min–). Robust boundary value test cases for our continuing example are shown in
Figure 5.3.

Most of the discussion of boundary value analysis applies directly to robustness testing, espe-
cially the generalizations and limitations. The most interesting part of robustness testing is not
with the inputs but with the expected outputs. What happens when a physical quantity exceeds its

Boundary Value Testing  ◾  83

© 2010 Taylor & Francis Group, LLC

maximum? If it is the angle of attack of an airplane wing, the aircraft might stall. If it is the load
capacity of a public elevator, we hope nothing special would happen. If it is a date, like May 32, we
would expect an error message. The main value of robustness testing is that it forces attention on
exception handling. With strongly typed languages, robustness testing may be very awkward. In
Pascal, for example, if a variable is defined to be within a certain range, values outside that range
result in run-time errors that abort normal execution. This raises an interesting question of imple-
mentation philosophy: is it better to perform explicit range checking and use exception handling
to deal with “robust values,” or is it better to stay with strong typing? The exception handling
choice mandates robustness testing.

5.3 Worst-Case Boundary Value testing
Both forms of boundary value testing, as we said earlier, make the single fault assumption of reli-
ability theory. Owing to their similarity, we treat both normal worst-case boundary testing and
robust worst-case boundary testing in this subsection. Rejecting single-fault assumption means
that we are interested in what happens when more than one variable has an extreme value. In elec-
tronic circuit analysis, this is called “worst-case analysis”; we use that idea here to generate worst-
case test cases. For each variable, we start with the five-element set that contains the min, min+,
nom, max–, and max values. We then take the Cartesian product (see Chapter 3) of these sets to
generate test cases. The result of the two-variable version of this is shown in Figure 5.4.

Worst-case boundary value testing is clearly more thorough in the sense that boundary value
analysis test cases are a proper subset of worst-case test cases. It also represents much more effort:
worst-case testing for a function of n variables generates 5n test cases, as opposed to 4n + 1 test
cases for boundary value analysis.

Worst-case testing follows the generalization pattern we saw for boundary value analysis. It also
has the same limitations, particularly those related to independence. Probably the best application
for worst-case testing is where physical variables have numerous interactions, and where failure of
the function is extremely costly. For really paranoid testing, we could go to robust worst-case testing.
This involves the Cartesian product of the seven-element sets we used in robustness testing resulting
in 7n test cases. Figure 5.5 shows the robust worst-case test cases for our two-variable function.

x2

x1

d

c

a b

Figure 5.3 robustness test cases for a function of two variables.

84  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

5.4 Special Value testing
Special value testing is probably the most widely practiced form of functional testing. It also is
the most intuitive and the least uniform. Special value testing occurs when a tester uses domain
knowledge, experience with similar programs, and information about “soft spots” to devise test
cases. We might also call this ad hoc testing. No guidelines are used other than “best engineering
judgment.” As a result, special value testing is very dependent on the abilities of the tester.

Despite all the apparent negatives, special value testing can be very useful. In the next section,
you will find test cases generated by the methods we just discussed for three of our examples. If
you look carefully at these, especially for the NextDate function, you find that none is very satis-
factory. Special value test cases for NextDate will include several test cases involving February 28,
February 29, and leap years. Even though special value testing is highly subjective, it often results
in a set of test cases that is more effective in revealing faults than the test sets generated by bound-
ary value methods—testimony to the craft of software testing.

x2

x1

d

c

a b

Figure 5.4 Worst-case test cases for a function of two variables.

x2

x1

d

c

a b

Figure 5.5 robust worst-case test cases for a function of two variables.

Boundary Value Testing  ◾  85

© 2010 Taylor & Francis Group, LLC

5.5 Examples
Each of the three continuing examples is a function of three variables. Printing all the test cases
from all the methods for each problem is very space consuming, so we just have selected examples
for worst-case boundary value and robust worst-case boundary value testing.

5.5.1 Test Cases for the Triangle Problem
In the problem statement, no conditions are specified on the triangle sides, other than being
integers. Obviously, the lower bounds of the ranges are all 1. We arbitrarily take 200 as an upper
bound. For each side, the test values are {1, 2, 100, 199, 200}. Robust boundary value test cases
will add {0, 201}. Table 5.1 contains boundary value test cases using these ranges. Notice that test
cases 3, 8, and 13 are identical; two should be deleted. Further, there is no test case for scalene
triangles.

The cross-product of test values will have 125 test cases (some of which will be repeated)—too
many to list here. The full set is available as a spreadsheet in the set of student exercises. Table 5.2
only lists the first 25 worst-case boundary value test cases for the triangle problem. You can picture
them as a plane slice through the cube (actually it is a rectangular parallelepiped) in which a = 1
and the other two variables take on their full set of cross-product values.

table 5.1 Normal Boundary Value test Cases

Case a b c Expected Output

1 100 100 1 Isosceles

2 100 100 2 Isosceles

3 100 100 100 Equilateral

4 100 100 199 Isosceles

5 100 100 200 Not a triangle

6 100 1 100 Isosceles

7 100 2 100 Isosceles

8 100 100 100 Equilateral

9 100 199 100 Isosceles

10 100 200 100 Not a triangle

11 1 100 100 Isosceles

12 2 100 100 Isosceles

13 100 100 100 Equilateral

14 199 100 100 Isosceles

15 200 100 100 Not a triangle

86  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

5.5.2 Test Cases for the NextDate Function
All 125 worst-case test cases for NextDate are listed in Table 5.3. Take some time to examine it
for gaps of untested functionality and for redundant testing. For example, would anyone actually
want to test January 1 in five different years? Is the end of February tested sufficiently?

table 5.2 (Selected) Worst-Case Boundary Value test Cases

Case a b c Expected Output

1 1 1 1 Equilateral

2 1 1 2 Not a triangle

3 1 1 100 Not a triangle

4 1 1 199 Not a triangle

5 1 1 200 Not a triangle

6 1 2 1 Not a triangle

7 1 2 2 Isosceles

8 1 2 100 Not a triangle

9 1 2 199 Not a triangle

10 1 2 200 Not a triangle

11 1 100 1 Not a triangle

12 1 100 2 Not a triangle

13 1 100 100 Isosceles

14 1 100 199 Not a triangle

15 1 100 200 Not a triangle

16 1 199 1 Not a triangle

17 1 199 2 Not a triangle

18 1 199 100 Not a triangle

19 1 199 199 Isosceles

20 1 199 200 Not a triangle

21 1 200 1 Not a triangle

22 1 200 2 Not a triangle

23 1 200 100 Not a triangle

24 1 200 199 Not a triangle

25 1 200 200 Isosceles

Boundary Value Testing  ◾  87

© 2010 Taylor & Francis Group, LLC

table 5.3 Worst-Case test Cases

Case Month Day Year Expected Output

1 1 1 1812 1, 2, 1812

2 1 1 1813 1, 2, 1813

3 1 1 1912 1, 2, 1912

4 1 1 2011 1, 2, 2011

5 1 1 2012 1, 2, 2012

6 1 2 1812 1, 3, 1812

7 1 2 1813 1, 3, 1813

8 1 2 1912 1, 3, 1912

9 1 2 2011 1, 3, 2011

10 1 2 2012 1, 3, 2012

11 1 15 1812 1, 16, 1812

12 1 15 1813 1, 16, 1813

13 1 15 1912 1, 16, 1912

14 1 15 2011 1, 16, 2011

15 1 15 2012 1, 16, 2012

16 1 30 1812 1, 31, 1812

17 1 30 1813 1, 31, 1813

18 1 30 1912 1, 31, 1912

19 1 30 2011 1, 31, 2011

20 1 30 2012 1, 31, 2012

21 1 31 1812 2, 1, 1812

22 1 31 1813 2, 1, 1813

23 1 31 1912 2, 1, 1912

24 1 31 2011 2, 1, 2011

25 1 31 2012 2, 1, 2012

26 2 1 1812 2, 2, 1812

27 2 1 1813 2, 2, 1813

28 2 1 1912 2, 2, 1912

(continued)

88  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

table 5.3 Worst-Case test Cases (Continued)

Case Month Day Year Expected Output

29 2 1 2011 2, 2, 2011

30 2 1 2012 2, 2, 2012

31 2 2 1812 2, 3, 1812

32 2 2 1813 2, 3, 1813

33 2 2 1912 2, 3, 1912

34 2 2 2011 2, 3, 2011

35 2 2 2012 2, 3, 2012

36 2 15 1812 2, 16, 1812

37 2 15 1813 2, 16, 1813

38 2 15 1912 2, 16, 1912

39 2 15 2011 2, 16, 2011

40 2 15 2012 2, 16, 2012

41 2 30 1812 Invalid date

42 2 30 1813 Invalid date

43 2 30 1912 Invalid date

44 2 30 2011 Invalid date

45 2 30 2012 Invalid date

46 2 31 1812 Invalid date

47 2 31 1813 Invalid date

48 2 31 1912 Invalid date

49 2 31 2011 Invalid date

50 2 31 2012 Invalid date

51 6 1 1812 6, 2, 1812

52 6 1 1813 6, 2, 1813

53 6 1 1912 6, 2, 1912

54 6 1 2011 6, 2, 2011

55 6 1 2012 6, 2, 2012

56 6 2 1812 6, 3, 1812

57 6 2 1813 6, 3, 1813

(continued)

Boundary Value Testing  ◾  89

© 2010 Taylor & Francis Group, LLC

table 5.3 Worst-Case test Cases (Continued)

Case Month Day Year Expected Output

58 6 2 1912 6, 3, 1912

59 6 2 2011 6, 3, 2011

60 6 2 2012 6, 3, 2012

61 6 15 1812 6, 16, 1812

62 6 15 1813 6, 16, 1813

63 6 15 1912 6, 16, 1912

64 6 15 2011 6, 16, 2011

65 6 15 2012 6, 16, 2012

66 6 30 1812 7, 1, 1812

67 6 30 1813 7, 1, 1813

68 6 30 1912 7, 1, 1912

69 6 30 2011 7, 1, 2011

70 6 30 2012 7, 1, 2012

71 6 31 1812 Invalid date

72 6 31 1813 Invalid date

73 6 31 1912 Invalid date

74 6 31 2011 Invalid date

75 6 31 2012 Invalid date

76 11 1 1812 11, 2, 1812

77 11 1 1813 11, 2, 1813

78 11 1 1912 11, 2, 1912

79 11 1 2011 11, 2, 2011

80 11 1 2012 11, 2, 2012

81 11 2 1812 11, 3, 1812

82 11 2 1813 11, 3, 1813

83 11 2 1912 11, 3, 1912

84 11 2 2011 11, 3, 2011

85 11 2 2012 11, 3, 2012

86 11 15 1812 11, 16, 1812

(continued)

90  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

table 5.3 Worst-Case test Cases (Continued)

Case Month Day Year Expected Output

87 11 15 1813 11, 16, 1813

88 11 15 1912 11, 16, 1912

89 11 15 2011 11, 16, 2011

90 11 15 2012 11, 16, 2012

91 11 30 1812 12, 1, 1812

92 11 30 1813 12, 1, 1813

93 11 30 1912 12, 1, 1912

94 11 30 2011 12, 1, 2011

95 11 30 2012 12, 1, 2012

96 11 31 1812 Invalid date

97 11 31 1813 Invalid date

98 11 31 1912 Invalid date

99 11 31 2011 Invalid date

100 11 31 2012 Invalid date

101 12 1 1812 12, 2, 1812

102 12 1 1813 12, 2, 1813

103 12 1 1912 12, 2, 1912

104 12 1 2011 12, 2, 2011

105 12 1 2012 12, 2, 2012

106 12 2 1812 12, 3, 1812

107 12 2 1813 12, 3, 1813

108 12 2 1912 12, 3, 1912

109 12 2 2011 12, 3, 2011

110 12 2 2012 12, 3, 2012

111 12 15 1812 12, 16, 1812

112 12 15 1813 12, 16, 1813

113 12 15 1912 12, 16, 1912

114 12 15 2011 12, 16, 2011

115 12 15 2012 12, 16, 2012

(continued)

Boundary Value Testing  ◾  91

© 2010 Taylor & Francis Group, LLC

5.5.3 Test Cases for the Commission Problem
Instead of going through 125 boring test cases again, we will look at some more interesting test
cases for the commission problem. This time, we will look at boundary values derived from the
output range, especially near the threshold points of $1000 and $1800 where the commission
percentage changes. The output space of the commission is shown in Figure 5.6. The intercepts of
these threshold planes with the axes are shown.

table 5.3 Worst-Case test Cases (Continued)

Case Month Day Year Expected Output

116 12 30 1812 12, 31, 1812

117 12 30 1813 12, 31, 1813

118 12 30 1912 12, 31, 1912

119 12 30 2011 12, 31, 2011

120 12 30 2012 12, 31, 2012

121 12 31 1812 1, 1, 1813

122 12 31 1813 1, 1, 1814

123 12 31 1912 1, 1, 1913

124 12 31 2011 1, 1, 2012

125 12 31 2012 1, 1, 2013

Barrels

90

72

40

33.3

60

80

Stocks

22.2 40 70
Locks

Figure 5.6 Input space of the commission problem.

92  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

The volume between the origin and the lower plane corresponds to sales below the $1000
threshold. The volume between the two planes is the 15% commission range. Part of the reason
for using the output range to determine test cases is that cases from the input range are almost all
in the 20% zone. We want to find input variable combinations that stress the sales/commission
boundary values: $100, $1000, $1800, and $7800. The minimum and maximum were easy, and

table 5.4 Output Boundary Value analysis test Cases

Case Locks Stocks Barrels Sales Comm Comment

1 1 1 1 100 10 Output minimum

2 1 1 2 125 12.5 Output minimum +

3 1 2 1 130 13 Output minimum +

4 2 1 1 145 14.5 Output minimum +

5 5 5 5 500 50 Midpoint

6 10 10 9 975 97.5 Border point –

7 10 9 10 970 97 Border point –

8 9 10 10 955 95.5 Border point –

9 10 10 10 1000 100 Border point

10 10 10 11 1025 103.75 Border point +

11 10 11 10 1030 104.5 Border point +

12 11 10 10 1045 106.75 Border point +

13 14 14 14 1400 160 Midpoint

14 18 18 17 1775 216.25 Border point –

15 18 17 18 1770 215.5 Border point –

16 17 18 18 1755 213.25 Border point –

17 18 18 18 1800 220 Border point

18 18 18 19 1825 225 Border point +

19 18 19 18 1830 226 Border point +

20 19 18 18 1845 229 Border point +

21 48 48 48 4800 820 Midpoint

22 70 80 89 7775 1415 Output maximum –

23 70 79 90 7770 1414 Output maximum –

24 69 80 90 7755 1411 Output maximum –

25 70 80 90 7800 1420 Output maximum

Boundary Value Testing  ◾  93

© 2010 Taylor & Francis Group, LLC

the numbers happen to work out so that the border points are easy to generate. Here is where it
gets interesting: test case 9 is the $1000 border point. If we tweak the input variables, we get values
just below and just above the border (cases 6–8 and 10–12). If we wanted to, we could pick values
near the borders such as (22, 1, 1). As we continue in this way, we have a sense that we are “exercis-
ing” interesting parts of the code. We might claim that this is really a form of special value testing
because we used our mathematical insight to generate test cases.

Table 5.4 contains test cases derived from boundary values on the output side of the commis-
sion function. Table 5.5 contains special value test cases.

5.6 random testing
At least two decades of discussion of random testing are included in the literature. Most of this
interest is among academics, and in a statistical sense, it is interesting. Our three sample problems
lend themselves nicely to random testing. The basic idea is that, rather than always choose the min,
min+, nom, max–, and max values of a bounded variable, use a random number generator to pick
test case values. This avoids any form of bias in testing. It also raises a serious question: how many
random test cases are sufficient? Later, when we discuss structural test coverage metrics, we will
have an elegant answer. For now, Tables 5.6 through 5.8 show the results of randomly generated
test cases. They are derived from a Visual Basic application that picks values for a bounded variable
a ≤ x ≤ b as follows:

table 5.5 Output Special Value test Cases

Case Locks Stocks Barrels Sales Comm Comment

1 10 11 9 1005 100.75 Border point +

2 18 17 19 1795 219.25 Border point –

3 18 19 17 1805 221 Border point +

table 5.6 random test Cases for triangle program

Test Cases Nontriangles Scalene Isosceles Equilateral

1289 663 593 32 1

15,436 7696 7372 367 1

17,091 8556 8164 367 1

2603 1284 1252 66 1

6475 3197 3122 155 1

5978 2998 2850 129 1

9008 4447 4353 207 1

Percentage 49.83% 47.87% 2.29% 0.01%

94  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

 x = Int((b – a + 1) * Rnd + a)

where the function Int returns the integer part of a floating point number, and the function Rnd
generates random numbers in the interval [0, 1]. The program keeps generating random test cases
until at least one of each output occurs. In each table, the program went through seven “cycles”
that ended with the “hard-to-generate” test case. In Tables 5.6 and 5.7, the last line shows what
percentage of the random test cases was generated for each column. In the table for NextDate, the
percentages are very close to the computed probability given in the last line of Table 5.8.

5.7 Guidelines for Boundary Value testing
With the exception of special value testing, the test methods based on the input domain of a function
(program) are the most rudimentary of all specification-based testing methods. They share the com-
mon assumption that the input variables are truly independent; and when this assumption is not war-
ranted, the methods generate unsatisfactory test cases (such as June 31, 1912, for NextDate). Each of
these methods can be applied to the output range of a program, as we did for the commission problem.

Another useful form of output-based test cases is for systems that generate error messages. The
tester should devise test cases to check that error messages are generated when they are appropriate,
and are not falsely generated. Boundary value analysis can also be used for internal variables, such
as loop control variables, indices, and pointers. Strictly speaking, these are not input variables;
however, errors in the use of these variables are quite common. Robustness testing is a good choice
for testing internal variables.

There is a discussion in Chapter 10 about “the testing pendulum”—it refers to the problem of
syntactic versus semantic approaches to developing test cases. Here is a short example given both
ways. Consider a function F of three variables, a, b, and c. The boundaries are 0 ≤ a < 10,000, 0 ≤
b < 10,000, and 0 ≤ c < 18.8. The function F is F = (a – b)/c; Table 5.9 shows the normal boundary
value test cases. Absent semantic knowledge, the first four test cases in Table 5.9 are what a boundary
value testing tool would generate (a tool would not generate the expected output values). Even just
the syntactic version is problematic—it does not avoid the division by zero possibility in test case 11.

table 5.7 random test Cases for Commission
program

Test Cases 10% 15% 20%

91 1 6 84

27 1 1 25

72 1 1 70

176 1 6 169

48 1 1 46

152 1 6 145

125 1 4 120

Percentage 1.01% 3.62% 95.37%

Boundary Value Testing  ◾  95

© 2010 Taylor & Francis Group, LLC

When we add the semantic information that F calculates the miles per gallon of an automo-
bile, where a and b are end and start trip odometer values, and c is the gas tank capacity, we see
more severe problems:

 1. We must always have a ≥ b. This will avoid the negative values of F (test cases 1, 2, 9, and 10).
 2. Test cases 3, 8, and 12–15 all refer to trips of length 0, so they could be collapsed into one

test case, probably test case 8.
 3. Division by zero is an obvious problem, thereby eliminating test case 11. Applying the

semantic knowledge will result in the better set of case cases in Table 5.10.
 4. Table 5.10 is still problematic—we never see the effect of boundary values on the tank capacity.

table 5.8 random test Cases for NextDate program

Test Cases

Days 1–30 of
31-Day
Months

Day 31 of
31-Day
Months

Days 1–29 of
30-Day
Months

Day 30 of
30-Day
Months

913 542 17 274 10

1101 621 9 358 8

4201 2448 64 1242 46

1097 600 21 350 9

5853 3342 100 1804 82

3959 2195 73 1252 42

1436 786 22 456 13

Percentage 56.76% 1.65% 30.91% 1.13%

Probability 56.45% 1.88% 31.18% 1.88%

Days 1–27
of Feb.

Feb. 28 of a
Leap Year

Feb. 28 of a
Non-Leap

Year
Feb. 29 of a
Leap Year

Impossible
Days

45 1 1 1 22

83 1 1 1 19

312 1 8 3 77

92 1 4 1 19

417 1 11 2 94

310 1 6 5 75

126 1 5 1 26

7.46% 0.04% 0.19% 0.08% 1.79%

7.26% 0.07% 0.20% 0.07% 1.01%

96  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

EXERCISES
 1. Develop a formula for the number of robustness test cases for a function of n variables.
 2. Develop a formula for the number of robust worst-case test cases for a function of n variables.
 3. Make a Venn diagram showing the relationships among test cases from boundary value

analysis, robustness testing, worst-case testing, and robust worst-case testing.
 4. What happens if we try to do output range robustness testing? Use the commission problem

as an example.

table 5.9 Normal Boundary Value test Cases for F = (a – b)/c

Test Case a b c F

1 0 5000 9.4 –531.9

2 1 5000 9.4 –531.8

3 5000 5000 9.4 0.0

4 9998 5000 9.4 531.7

5 9999 5000 9.4 531.8

6 5000 0 9.4 531.9

7 5000 1 9.4 531.8

8 5000 5000 9.4 0.0

9 5000 9998 9.4 –531.7

10 5000 9999 9.4 –531.8

11 5000 5000 0 Undefined

12 5000 5000 1 0.0

13 5000 5000 9.4 0.0

14 5000 5000 18.7 0.0

15 5000 5000 18.8 0.0

table 5.10 Semantic Boundary Value test Cases for F = (a – b)/c

Test Case End Odometer Start Odometer Tank Capacity Miles per Gallon

4 9998 5000 9.4 531.7

5 9999 5000 9.4 531.8

6 5000 0 9.4 531.9

7 5000 1 9.4 531.8

8 5000 5000 9.4 0.0

Boundary Value Testing  ◾  97

© 2010 Taylor & Francis Group, LLC

 5. If you did exercise 8 in Chapter 2, you are already familiar with the CRC Press website for
downloads (http://www.crcpress.com/product/isbn/9781466560680). There you will find
an Excel spreadsheet named specBasedTesting.xls. (It is an extended version of Naive.xls,
and it contains the same inserted faults.) Different sheets contain worst-case boundary value
test cases for the triangle, NextDate, and commission problems, respectively. Run these sets
of test cases and compare the results with your naive testing from Chapter 2.

 6. Apply special value testing to the miles per gallon example in Tables 5.9 and 5.10. Provide
reasons for your chosen test cases.

99
© 2010 Taylor & Francis Group, LLC

Chapter 6

Equivalence Class testing

The use of equivalence classes as the basis for functional testing has two motivations: we would
like to have a sense of complete testing, and, at the same time, we would hope to avoid redun-
dancy. Neither of these hopes is realized by boundary value testing—looking at the tables of
test cases, it is easy to see massive redundancy, and looking more closely, serious gaps exist.
Equivalence class testing echoes the two deciding factors of boundary value testing, robust-
ness and the single/multiple fault assumption. This chapter presents the traditional view of
equivalence class testing, followed by a coherent treatment of four distinct forms based on the
two assumptions. The single versus multiple fault assumption yields the weak/strong distinc-
tion and the focus on invalid data yields a second distinction: normal versus robust. Taken
together, these two assumptions result in Weak Normal, Strong Normal, Weak Robust, and
Strong Robust Equivalence Class testing.

Two problems occur with robust forms. The first is that, very often, the specification does not
define what the expected output for an invalid input should be. (We could argue that this is a
deficiency of the specification, but that does not get us anywhere.) Thus, testers spend a lot of time
defining expected outputs for these cases. The second problem is that strongly typed languages
eliminate the need for the consideration of invalid inputs. Traditional equivalence testing is a
product of the time when languages such as FORTRAN and COBOL were dominant; thus, this
type of error was common. In fact, it was the high incidence of such errors that led to the imple-
mentation of strongly typed languages.

6.1 Equivalence Classes
In Chapter 3, we noted that the important aspect of equivalence classes is that they form a parti-
tion of a set, where partition refers to a collection of mutually disjoint subsets, the union of which
is the entire set. This has two important implications for testing—the fact that the entire set is
represented provides a form of completeness, and the disjointedness ensures a form of nonredun-
dancy. Because the subsets are determined by an equivalence relation, the elements of a subset
have something in common. The idea of equivalence class testing is to identify test cases by using
one element from each equivalence class. If the equivalence classes are chosen wisely, this greatly

100  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

reduces the potential redundancy among test cases. In the triangle problem, for example, we
would certainly have a test case for an equilateral triangle, and we might pick the triple (5, 5, 5)
as inputs for a test case. If we did this, we would not expect to learn much from test cases such as
(6, 6, 6) and (100, 100, 100). Our intuition tells us that these would be “treated the same” as the
first test case; thus, they would be redundant. When we consider code-based testing in Chapters
8 and 9, we shall see that “treated the same” maps onto “traversing the same execution path.”
The four forms of equivalence class testing all address the problems of gaps and redundancies
that are common to the four forms of boundary value testing. Since the assumptions align, the
four forms of boundary value testing also align with the four forms of equivalence class testing.
There will be one point of overlap—this occurs when equivalence classes are defined by bounded
variables. In such cases, a hybrid of boundary value and equivalence class testing is appropriate.
The International Software Testing Qualifications Board (ISTQB) syllabi refer to this as “edge
testing.” We will see this in the discussion in Section 6.3.

6.2 traditional Equivalence Class testing
Most of the standard testing texts (e.g., Myers, 1979; Mosley, 1993) discuss equivalence classes
based on valid and invalid variable values. Traditional equivalence class testing is nearly identi-
cal to weak robust equivalence class testing (see Section 6.3.3). This traditional form focuses on
invalid data values, and it is/was a consequence of the dominant style of programming in the 1960s
and 1970s. Input data validation was an important issue at the time, and “Garbage In, Garbage
Out” was the programmer’s watchword. In the early years, it was the program user’s responsibility
to provide valid data. There was no guarantee about results based on invalid data. The term soon
became known as GIGO. The usual response to GIGO was extensive input validation sections of
a program. Authors and seminar leaders frequently commented that, in the classic afferent/central/
efferent architecture of structured programming, the afferent portion often represented 80% of
the total source code. In this context, it is natural to emphasize input data validation. Clearly,
the defense against GIGO was to have extensive testing to assure data validity. The gradual shift
to modern programming languages, especially those that feature strong data typing, and then to
graphical user interfaces (GUIs) obviated much of the need for input data validation. Indeed, good
use of user interface devices such as drop-down lists and slider bars reduces the likelihood of bad
input data.

Traditional equivalence class testing echoes the process of boundary value testing. Figure 6.1
shows test cases for a function F of two variables x1 and x2, as we had in Chapter 5. The extension
to more realistic cases of n variables proceeds as follows:

 1. Test F for valid values of all variables.
 2. If step 1 is successful, then test F for invalid values of x1 with valid values of the remaining

variables. Any failure will be due to a problem with an invalid value of x1.
 3. Repeat step 2 for the remaining variables.

One clear advantage of this process is that it focuses on finding faults due to invalid data. Since the
GIGO concern was on invalid data, the kinds of combinations that we saw in the worst-case varia-
tions of boundary value testing were ignored. Figure 6.1 shows the five test cases for this process
for our continuing function F of two variables.

Equivalence Class Testing  ◾  101

© 2010 Taylor & Francis Group, LLC

6.3 Improved Equivalence Class testing
The key (and the craft!) of equivalence class testing is the choice of the equivalence relation that
determines the classes. Very often, we make this choice by second-guessing the likely implemen-
tation and thinking about the functional manipulations that must somehow be present in the
implementation. We will illustrate this with our continuing examples. We need to enrich the
function we used in boundary value testing. Again, for the sake of comprehensible drawings,
the discussion relates to a function, F, of two variables x1 and x2. When F is implemented as a
program, the input variables x1 and x2 will have the following boundaries, and intervals within
the boundaries:

 a ≤ x1 ≤ d, with intervals [a, b), [b, c), [c, d]
 e ≤ x2 ≤ g, with intervals [e, f), [f, g]

where square brackets and parentheses denote, respectively, closed and open interval endpoints.
The intervals presumably correspond to some distinction in the program being tested, for example,
the commission ranges in the commission problem. These ranges are equivalence classes. Invalid
values of x1 and x2 are x1 <a, x1> d, and x2 <e, x2> g. The equivalence classes of valid values are

 V1 = {x1: a ≤ x1 < b}, V2 = {x1: b ≤ x1 < c}, V3 = {x1: c ≤ x1 ≤ d}, V4 = {x2: e ≤ x2 < f }, V5 = {x2: f ≤ x2 ≤ g}

The equivalence classes of invalid values are

 NV1 = {x1: x1 < a}, NV2 = {x1: d < x1}, NV3 = {x2: x2 < e}, NV4 = {x2: g < x2}

The equivalence classes V1, V2, V3, V4, V5, NV1, NV2, NV3, and NV4 are disjoint, and their
union is the entire plane. In the succeeding discussions, we will just use the interval notation
rather than the full formal set definition.

d

c

a b

x2

x1

Invalid values of x2

Invalid values of x2

Invalid values of x1 Invalid values of x1Valid values of x1

Valid values of x2

Figure 6.1 traditional equivalence class test cases.

102  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

6.3.1 Weak Normal Equivalence Class Testing
With the notation as given previously, weak normal equivalence class testing is accomplished by
using one variable from each equivalence class (interval) in a test case. (Note the effect of the single
fault assumption.) For the running example, we would end up with the three weak equivalence class
test cases shown in Figure 6.2. This figure will be repeated for the remaining forms of equivalence
class testing, but, for clarity, without the indication of valid and invalid ranges. These three test
cases use one value from each equivalence class. The test case in the lower left rectangle corresponds
to a value of x1 in the class [a, b), and to a value of x2 in the class [e, f). The test case in the upper
center rectangle corresponds to a value of x1 in the class [b, c) and to a value of x2 in the class [f, g].
The third test case could be in either rectangle on the right side of the valid values. We identified
these in a systematic way, thus the apparent pattern. In fact, we will always have the same number
of weak equivalence class test cases as classes in the partition with the largest number of subsets.

What can we learn from a weak normal equivalence class test case that fails, that is, one for which
the expected and actual outputs are inconsistent? There could be a problem with x1, or a problem
with x2, or maybe an interaction between the two. This ambiguity is the reason for the “weak” des-
ignation. If the expectation of failure is low, as it is for regression testing, this can be an acceptable
choice. When more fault isolation is required, the stronger forms, discussed next, are indicated.

6.3.2 Strong Normal Equivalence Class Testing
Strong equivalence class testing is based on the multiple fault assumption, so we need test cases
from each element of the Cartesian product of the equivalence classes, as shown in Figure 6.3.
Notice the similarity between the pattern of these test cases and the construction of a truth table
in propositional logic. The Cartesian product guarantees that we have a notion of “completeness”
in two senses: we cover all the equivalence classes, and we have one of each possible combination of
inputs. As we shall see from our continuing examples, the key to “good” equivalence class testing
is the selection of the equivalence relation. Watch for the notion of inputs being “treated the same.”
Most of the time, equivalence class testing defines classes of the input domain. There is no reason
why we could not define equivalence relations on the output range of the program function being
tested; in fact, this is the simplest approach for the triangle problem.

x2

x1

g

f

e

a b c d

Figure 6.2 Weak normal equivalence class test cases.

Equivalence Class Testing  ◾  103

© 2010 Taylor & Francis Group, LLC

6.3.3 Weak Robust Equivalence Class Testing
The name for this form is admittedly counterintuitive and oxymoronic. How can something be
both weak and robust? The robust part comes from consideration of invalid values, and the weak
part refers to the single fault assumption. The process of weak robust equivalence class testing is a
simple extension of that for weak normal equivalence class testing—pick test cases such that each
equivalence class is represented. In Figure 6.4, the test cases for valid classes are as those in Figure
6.2. The two additional test cases cover all four classes of invalid values. The process is similar to
that for boundary value testing:

 1. For valid inputs, use one value from each valid class (as in what we have called weak normal
equivalence class testing). (Note that each input in these test cases will be valid.)

 2. For invalid inputs, a test case will have one invalid value and the remaining values will all be
valid. (Thus, a “single failure” should cause the test case to fail.)

x2

x1

g

f

e

a b c d

Figure 6.3 Strong normal equivalence class test cases.

x2

x1

g

f

e

a b c d

Figure 6.4 Weak robust equivalence class test cases.

104  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

The test cases resulting from this strategy are shown in Figure 6.4. There is a potential problem
with these test cases. Consider the test cases in the upper left and lower right corners. Each of the
test cases represents values from two invalid equivalence classes. Failure of either of these could
be due to the interaction of two variables. Figure 6.5 presents a compromise between “pure” weak
normal equivalence class testing and its robust extension.

6.3.4 Strong Robust Equivalence Class Testing
At least the name for this form is neither counterintuitive nor oxymoronic, just redundant. As
before, the robust part comes from consideration of invalid values, and the strong part refers to
the multiple fault assumption. We obtain test cases from each element of the Cartesian product of
all the equivalence classes, both valid and invalid, as shown in Figure 6.6.

x2

x1

g

f

e

a b c d

Figure 6.5 revised weak robust equivalence class test cases.

x2

x1

g

f

e

a b c d

Figure 6.6 Strong robust equivalence class test cases.

Equivalence Class Testing  ◾  105

© 2010 Taylor & Francis Group, LLC

6.4 Equivalence Class test Cases for the triangle problem
In the problem statement, we note that four possible outputs can occur: NotATriangle, Scalene,
Isosceles, and Equilateral. We can use these to identify output (range) equivalence classes as
follows.

R1 = {<a, b, c>: the triangle with sides a, b, and c is equilateral}
R2 = {<a, b, c>: the triangle with sides a, b, and c is isosceles}
R3 = {<a, b, c>: the triangle with sides a, b, and c is scalene}
R4 = {<a, b, c>: sides a, b, and c do not form a triangle}

Four weak normal equivalence class test cases, chosen arbitrarily from each class are as follows:

Test Case a b c Expected Output

WN1 5 5 5 Equilateral

WN2 2 2 3 Isosceles

WN3 3 4 5 Scalene

WN4 4 1 2 Not a triangle

Because no valid subintervals of variables a, b, and c exist, the strong normal equivalence class
test cases are identical to the weak normal equivalence class test cases.

Considering the invalid values for a, b, and c yields the following additional weak robust
equivalence class test cases. (The invalid values could be zero, any negative number, or any number
greater than 200.)

Test Case a b c Expected Output

WR1 –1 5 5 Value of a is not in the range of permitted values

WR2 5 –1 5 Value of b is not in the range of permitted values

WR3 5 5 –1 Value of c is not in the range of permitted values

WR4 201 5 5 Value of a is not in the range of permitted values

WR5 5 201 5 Value of b is not in the range of permitted values

WR6 5 5 201 Value of c is not in the range of permitted values

106  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Here is one “corner” of the cube in three-space of the additional strong robust equivalence
class test cases:

Test Case a b c Expected Output

SR1 –1 5 5 Value of a is not in the range of permitted values

SR2 5 –1 5 Value of b is not in the range of permitted values

SR3 5 5 –1 Value of c is not in the range of permitted values

SR4 –1 –1 5 Values of a, b are not in the range of permitted values

SR5 5 –1 –1 Values of b, c are not in the range of permitted values

SR6 –1 5 –1 Values of a, c are not in the range of permitted values

SR7 –1 –1 –1 Values of a, b, c are not in the range of permitted
values

Notice how thoroughly the expected outputs describe the invalid input values.
Equivalence class testing is clearly sensitive to the equivalence relation used to define classes.

Here is another instance of craftsmanship. If we base equivalence classes on the output domain,
we obtain a richer set of test cases. What are some of the possibilities for the three integers, a, b,
and c? They can all be equal, exactly one pair can be equal (this can happen in three ways), or none
can be equal.

D1 = {<a, b, c>: a = b = c}
D2 = {<a, b, c>: a = b, a ≠ c}
D3 = {<a, b, c>: a = c, a ≠ b}
D4 = {<a, b, c>: b = c, a ≠ b}
D5 = {<a, b, c>: a ≠ b, a ≠ c, b ≠ c}

As a separate question, we can apply the triangle property to see if they even constitute a tri-
angle. (For example, the triplet <1, 4, 1> has exactly one pair of equal sides, but these sides do not
form a triangle.)

D6 = {<a, b, c>: a ≥ b + c}
D7 = {<a, b, c>: b ≥ a + c}
D8 = {<a, b, c>: c ≥ a + b}

If we wanted to be still more thorough, we could separate the “greater than or equal to” into
the two distinct cases; thus, the set D6 would become

D6′ = {<a, b, c>: a = b + c}
D6″ = {<a, b, c>: a > b + c}

and similarly for D7 and D8.

Equivalence Class Testing  ◾  107

© 2010 Taylor & Francis Group, LLC

6.5 Equivalence Class test Cases for the NextDate Function
The NextDate function illustrates very well the craft of choosing the underlying equivalence rela-
tion. Recall that NextDate is a function of three variables: month, day, and year, and these have
intervals of valid values defined as follows:

M1 = {month: 1 ≤ month ≤ 12}
D1 = {day: 1 ≤ day ≤ 31}
Y1 = {year: 1812 ≤ year ≤ 2012}

The invalid equivalence classes are

M2 = {month: month < 1}
M3 = {month: month > 12}
D2 = {day: day < 1}
D3 = {day: day > 31}
Y2 = {year: year < 1812}
Y3 = {year: year > 2012}

Because the number of valid classes equals the number of independent variables, only one
weak normal equivalence class test case occurs, and it is identical to the strong normal equivalence
class test case:

Case ID Month Day Year Expected Output

WN1, SN1 6 15 1912 6/16/1912

Here is the full set of weak robust test cases:

Case ID Month Day Year Expected Output

WR1 6 15 1912 6/16/1912

WR2 –1 15 1912 Value of month not in the range 1 ... 12

WR3 13 15 1912 Value of month not in the range 1 ... 12

WR4 6 –1 1912 Value of day not in the range 1 ... 31

WR5 6 32 1912 Value of day not in the range 1 ... 31

WR6 6 15 1811 Value of year not in the range 1812 ... 2012

WR7 6 15 2013 Value of year not in the range 1812 ... 2012

108  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

As with the triangle problem, here is one “corner” of the cube in three-space of the additional
strong robust equivalence class test cases:

Case ID Month Day Year Expected Output

SR1 –1 15 1912 Value of month not in the range 1 ... 12

SR2 6 –1 1912 Value of day not in the range 1 ... 31

SR3 6 15 1811 Value of year not in the range 1812 ... 2012

SR4 –1 –1 1912 Value of month not in the range 1 ... 12

Value of day not in the range 1 ... 31

SR5 6 –1 1811 Value of day not in the range 1 ... 31

Value of year not in the range 1812 ... 2012

SR6 –1 15 1811 Value of month not in the range 1 ... 12

Value of year not in the range 1812 ... 2012

SR7 –1 –1 1811 Value of month not in the range 1 ... 12

Value of day not in the range 1 ... 31

Value of year not in the range 1812 ... 2012

If we more carefully choose the equivalence relation, the resulting equivalence classes will be
more useful. Recall that earlier we said that the gist of the equivalence relation is that elements in
a class are “treated the same way.” One way to see the deficiency of the traditional approach is that
the “treatment” is at the valid/invalid level. We next reduce the granularity by focusing on more
specific treatment.

What must be done to an input date? If it is not the last day of a month, the NextDate func-
tion will simply increment the day value. At the end of a month, the next day is 1 and the month
is incremented. At the end of a year, both the day and the month are reset to 1, and the year is
incremented. Finally, the problem of leap year makes determining the last day of a month interest-
ing. With all this in mind, we might postulate the following equivalence classes:

M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}
D1 = {day: 1 ≤ day ≤ 28}
D2 = {day: day = 29}
D3 = {day: day = 30}
D4 = {day: day = 31}
Y1 = {year: year = 2000}
Y2 = {year: year is a non-century leap year}
Y3 = {year: year is a common year}

By choosing separate classes for 30- and 31-day months, we simplify the question of the last
day of the month. By taking February as a separate class, we can give more attention to leap year

Equivalence Class Testing  ◾  109

© 2010 Taylor & Francis Group, LLC

questions. We also give special attention to day values: days in D1 are (nearly) always incremented,
while days in D4 only have meaning for months in M2. Finally, we have three classes of years, the
special case of the year 2000, leap years, and non-leap years. This is not a perfect set of equivalence
classes, but its use will reveal many potential errors.

6.5.1 Equivalence Class Test Cases
These classes yield the following weak normal equivalence class test cases. As before, the inputs are
mechanically selected from the approximate middle of the corresponding class:

Case ID Month Day Year Expected Output

WN1 6 14 2000 6/15/2000

WN2 7 29 1996 7/30/1996

WN3 2 30 2002 Invalid input date

WN4 6 31 2000 Invalid input date

Mechanical selection of input values makes no consideration of our domain knowledge, thus
the two impossible dates. This will always be a problem with “automatic” test case generation,
because all of our domain knowledge is not captured in the choice of equivalence classes. The
strong normal equivalence class test cases for the revised classes are as follows:

Case ID Month Day Year Expected Output

SN1 6 14 2000 6/15/2000

SN2 6 14 1996 6/15/1996

SN3 6 14 2002 6/15/2002

SN4 6 29 2000 6/30/2000

SN5 6 29 1996 6/30/1996

SN6 6 29 2002 6/30/2002

SN7 6 30 2000 Invalid input date

SN8 6 30 1996 Invalid input date

SN9 6 30 2002 Invalid input date

SN10 6 31 2000 Invalid input date

SN11 6 31 1996 Invalid input date

SN12 6 31 2002 Invalid input date

SN13 7 14 2000 7/15/2000

SN14 7 14 1996 7/15/1996

110  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Case ID Month Day Year Expected Output

SN15 7 14 2002 7/15/2002

SN16 7 29 2000 7/30/2000

SN17 7 29 1996 7/30/1996

SN18 7 29 2002 7/30/2002

SN19 7 30 2000 7/31/2000

SN20 7 30 1996 7/31/1996

SN21 7 30 2002 7/31/2002

SN22 7 31 2000 8/1/2000

SN23 7 31 1996 8/1/1996

SN24 7 31 2002 8/1/2002

SN25 2 14 2000 2/15/2000

SN26 2 14 1996 2/15/1996

SN27 2 14 2002 2/15/2002

SN28 2 29 2000 3/1/2000

SN29 2 29 1996 3/1/1996

SN30 2 29 2002 Invalid input date

SN31 2 30 2000 Invalid input date

SN32 2 30 1996 Invalid input date

SN33 2 30 2002 Invalid input date

SN34 2 31 2000 Invalid input date

SN35 2 31 1996 Invalid input date

SN36 2 31 2002 Invalid input date

Moving from weak to strong normal testing raises some of the issues of redundancy that we
saw with boundary value testing. The move from weak to strong, whether with normal or robust
classes, always makes the presumption of independence, and this is reflected in the cross product
of the equivalence classes. Three month classes times four day classes times three year classes
results in 36 strong normal equivalence class test cases. Adding two invalid classes for each vari-
able will result in 150 strong robust equivalence class test cases (too many to show here!).

We could also streamline our set of test cases by taking a closer look at the year classes. If we
merge Y1 and Y2, and call the result the set of leap years, our 36 test cases would drop down to 24.
This change suppresses special attention to considerations in the year 2000, and it also adds some
complexity to the determination of which years are leap years. Balance this against how much
might be learned from the present test cases.

Equivalence Class Testing  ◾  111

© 2010 Taylor & Francis Group, LLC

6.6 Equivalence Class test Cases for the Commission problem
The input domain of the commission problem is “naturally” partitioned by the limits on
locks, stocks, and barrels. These equivalence classes are exactly those that would also be
identified by traditional equivalence class testing. The first class is the valid input; the other
two are invalid. The input domain equivalence classes lead to very unsatisfactory sets of test
cases. Equivalence classes defined on the output range of the commission function will be an
improvement.

The valid classes of the input variables are

L1 = {locks: 1 ≤ locks ≤ 70}
L2 = {locks = –1} (occurs if locks = –1 is used to control input iteration)
S1 = {stocks: 1 ≤ stocks ≤ 80}
B1 = {barrels: 1 ≤ barrels ≤ 90}

The corresponding invalid classes of the input variables are

L3 = {locks: locks = 0 OR locks < –1}
L4 = {locks: locks > 70}
S2 = {stocks: stocks < 1}
S3 = {stocks: stocks > 80}
B2 = {barrels: barrels < 1}
B3 = {barrels: barrels > 90}

One problem occurs, however. The variable “locks” is also used as a sentinel to indicate no
more telegrams. When a value of –1 is given for locks, the while loop terminates, and the values of
totalLocks, totalStocks, and totalBarrels are used to compute sales, and then commission.

Except for the names of the variables and the interval endpoint values, this is identical to our
first version of the NextDate function. Therefore, we will have exactly one weak normal equivalence
class test case—and again, it is identical to the strong normal equivalence class test case. Note that
the case for locks = –1 just terminates the iteration. We will have eight weak robust test cases.

Case ID Locks Stocks Barrels Expected Output

WR1 10 10 10 $100

WR2 –1 40 45 Program terminates

WR3 –2 40 45 Value of locks not in the range 1 ... 70

WR4 71 40 45 Value of locks not in the range 1 ... 70

WR5 35 –1 45 Value of stocks not in the range 1 ... 80

WR6 35 81 45 Value of stocks not in the range 1 ... 80

WR7 35 40 –1 Value of barrels not in the range 1 ... 90

WR8 35 40 91 Value of barrels not in the range 1 ... 90

112  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Here is one “corner” of the cube in 3-space of the additional strong robust equivalence class
test cases:

Case ID Locks Stocks Barrels Expected Output

SR1 –2 40 45 Value of locks not in the range 1 ... 70

SR2 35 –1 45 Value of stocks not in the range 1 ... 80

SR3 35 40 –2 Value of barrels not in the range 1 ... 90

SR4 –2 –1 45 Value of locks not in the range 1 ... 70

Value of stocks not in the range 1 ... 80

SR5 –2 40 –1 Value of locks not in the range 1 ... 70

Value of barrels not in the range 1 ... 90

SR6 35 –1 –1 Value of stocks not in the range 1 ... 80

Value of barrels not in the range 1 ... 90

SR7 –2 –1 –1 Value of locks not in the range 1 ... 70

Value of stocks not in the range 1 ... 80

Value of barrels not in the range 1 ... 90

Notice that, of strong test cases—whether normal or robust—only one is a legitimate input. If we
were really worried about error cases, this might be a good set of test cases. It can hardly give us a
sense of confidence about the calculation portion of the problem, however. We can get some help
by considering equivalence classes defined on the output range. Recall that sales is a function of
the number of locks, stocks, and barrels sold:

 Sales = 45 <mathMultiply> locks + 30 <mathMultiply> stocks + 25 <mathMultiply> barrels

We could define equivalence classes of three variables by commission ranges:

S1 = {<locks, stocks, barrels>: sales ≤ 1000}
S2 = {<locks, stocks, barrels>: 1000 < sales ≤ 1800}
S3 = {<locks, stocks, barrels>: sales > 1800}

Figure 5.6 helps us get a better feel for the input space. Elements of S1 are points with integer
coordinates in the pyramid near the origin. Elements of S2 are points in the “triangular slice”
between the pyramid and the rest of the input space. Finally, elements of S3 are all those points in
the rectangular volume that are not in S1 or in S2. All the error cases found by the strong equiva-
lence classes of the input domain are outside of the rectangular space shown in Figure 5.6.

Equivalence Class Testing  ◾  113

© 2010 Taylor & Francis Group, LLC

As was the case with the triangle problem, the fact that our input is a triplet means that we no
longer take test cases from a Cartesian product.

Test Case Locks Stocks Barrels Sales Commission

OR1 5 5 5 500 50

OR2 15 15 15 1500 175

OR3 25 25 25 2500 360

These test cases give us some sense that we are exercising important parts of the problem. Together
with the weak robust test cases, we would have a pretty good test of the commission problem. We
might want to add some boundary checking, just to make sure the transitions at sales of $1000 and
$1800 are correct. This is not particularly easy because we can only choose values of locks, stocks, and
barrels. It happens that the constants in this example are contrived so that there are “nice” triplets.

6.7 Edge testing
The ISTQB Advanced Level Syllabus (ISTQB, 2012) describes a hybrid of boundary value analysis
and equivalence class testing and gives it the name “edge testing.” The need for this occurs when
contiguous ranges of a particular variable constitute equivalence classes. Figure 6.2 shows three
equivalence classes of valid values for x1 and two classes for x2. Presumably, these classes refer to
variables that are “treated the same” in some application. This suggests that there may be faults
near the boundaries of the classes, and edge testing will exercise these potential faults. For the
example in Figure 6.2, a full set of edge testing test values are as follows:

Normal test values for x1: {a, a+, b–, b, b+, c–, c, c+, d–, d}
Robust test values for x1: {a–, a, a+, b–, b, b+, c–, c, c+, d–, d, d+}
Normal test values for x2: {e, e+, f–, f, f+, g–, g}
Robust test values for x2: {e–, e, e+, f–, f, f+, g–, g, g+}

One subtle difference is that edge test values do not include the nominal values that we had with
boundary value testing. Once the sets of edge values are determined, edge testing can follow any
of the four forms of equivalence class testing. The numbers of test cases obviously increase as with
the variations of boundary value and equivalence class testing.

6.8 Guidelines and Observations
Now that we have gone through three examples, we conclude with some observations about, and
guidelines for, equivalence class testing.

 1. Obviously, the weak forms of equivalence class testing (normal or robust) are not as compre-
hensive as the corresponding strong forms.

 2. If the implementation language is strongly typed (and invalid values cause run-time errors),
it makes no sense to use the robust forms.

114  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

 3. If error conditions are a high priority, the robust forms are appropriate.
 4. Equivalence class testing is appropriate when input data is defined in terms of intervals and

sets of discrete values. This is certainly the case when system malfunctions can occur for
out-of-limit variable values.

 5. Equivalence class testing is strengthened by a hybrid approach with boundary value testing.
(We can “reuse” the effort made in defining the equivalence classes.)

 6. Equivalence class testing is indicated when the program function is complex. In such
cases, the complexity of the function can help identify useful equivalence classes, as in the
NextDate function.

 7. Strong equivalence class testing makes a presumption that the variables are independent,
and the corresponding multiplication of test cases raises issues of redundancy. If any depen-
dencies occur, they will often generate “error” test cases, as they did in the NextDate func-
tion. (The decision table technique in Chapter 7 resolves this problem.)

 8. Several tries may be needed before the “right” equivalence relation is discovered, as we saw in
the NextDate example. In other cases, there is an “obvious” or “natural” equivalence relation.
When in doubt, the best bet is to try to second-guess aspects of any reasonable implementation.
This is sometimes known as the “competent programmer hypothesis.”

 9. The difference between the strong and weak forms of equivalence class testing is helpful in
the distinction between progression and regression testing.

EXERCISES
 1. Starting with the 36 strong normal equivalence class test cases for the NextDate function,

revise the day classes as discussed, and then find the other nine test cases.
 2. If you use a compiler for a strongly typed language, discuss how it would react to robust

equivalence class test cases.
 3. Revise the set of weak normal equivalence classes for the extended triangle problem that

considers right triangles.
 4. Compare and contrast the single/multiple fault assumption with boundary value and equiv-

alence class testing.
 5. The spring and fall changes between standard and daylight savings time create an interesting

problem for telephone bills. In the spring, this switch occurs at 2:00 a.m. on a Sunday morning
(late March, early April) when clocks are reset to 3:00 a.m. The symmetric change takes place
usually on the last Sunday in October, when the clock changes from 2:59:59 back to 2:00:00.

 Develop equivalence classes for a long-distance telephone service function that bills calls
using the following rate structure:
 Call duration ≤20 minutes charged at $0.05 per minute or fraction of a minute
 Call duration >20 minutes charged at $1.00 plus $0.10 per minute or fraction of a

 minute in excess of 20 minutes.
 Make these assumptions:

 − Chargeable time of a call begins when the called party answers, and ends when the
 calling party disconnects.

 − Call durations of seconds are rounded up to the next larger minute.
 − No call lasts more than 30 hours.

 6. If you did exercise 8 in Chapter 2, and exercise 5 in Chapter 5, you are already famil-
iar with the CRC Press website for downloads (http://www.crcpress.com/product/isbn/
97818466560680). There you will find an Excel spreadsheet named specBasedTesting.xls.

Equivalence Class Testing  ◾  115

© 2010 Taylor & Francis Group, LLC

(It is an extended version of Naive.xls, and it contains the same inserted faults.) Different
sheets contain strong, normal equivalence class test cases for the triangle, NextDate, and
commission problems, respectively. Run these sets of test cases and compare the results with
your naive testing from Chapter 2 and your boundary value testing from Chapter 5.

references
ISTQB Advanced Level Working Party, ISTQB Advanced Level Syllabus, 2012.
Mosley, D.J., The Handbook of MIS Application Software Testing, Yourdon Press, Prentice Hall, Englewood

Cliffs, NJ, 1993.
Myers, G.J., The Art of Software Testing, Wiley Interscience, New York, 1979.

117
© 2010 Taylor & Francis Group, LLC

Chapter 7

Decision table–Based testing

Of all the functional testing methods, those based on decision tables are the most rigorous because
of their strong logical basis. Two closely related methods are used: cause-and-effect graphing
(Elmendorf, 1973; Myers, 1979) and the decision tableau method (Mosley, 1993). These are more
cumbersome to use and are fully redundant with decision tables; both are covered in Mosley
(1993). For the curious, or for the sake of completeness, Section 7.5 offers a short discussion of
cause-and-effect graphing.

7.1 Decision tables
Decision tables have been used to represent and analyze complex logical relationships since the
early 1960s. They are ideal for describing situations in which a number of combinations of actions
are taken under varying sets of conditions. Some of the basic decision table terms are illustrated
in Table 7.1.

A decision table has four portions: the part to the left of the bold vertical line is the stub por-
tion; to the right is the entry portion. The part above the bold horizontal line is the condition
portion, and below is the action portion. Thus, we can refer to the condition stub, the condition
entries, the action stub, and the action entries. A column in the entry portion is a rule. Rules
indicate which actions, if any, are taken for the circumstances indicated in the condition portion
of the rule. In the decision table in Table 7.1, when conditions c1, c2, and c3 are all true, actions
a1 and a2 occur. When c1 and c2 are both true and c3 is false, then actions a1 and a3 occur. The
entry for c3 in the rule where c1 is true and c2 is false is called a “don’t care” entry. The don’t care
entry has two major interpretations: the condition is irrelevant, or the condition does not apply.
Sometimes people will enter the “n/a” symbol for this latter interpretation.

When we have binary conditions (true/false, yes/no, 0/1), the condition portion of a decision
table is a truth table (from propositional logic) that has been rotated 90°. This structure guarantees
that we consider every possible combination of condition values. When we use decision tables
for test case identification, this completeness property of a decision table guarantees a form of
complete testing. Decision tables in which all the conditions are binary are called Limited Entry
Decision Tables (LETDs). If conditions are allowed to have several values, the resulting tables

118  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

are called Extended Entry Decision Tables (EEDTs). We will see examples of both types for the
NextDate problem. Decision tables are deliberately declarative (as opposed to imperative); no
particular order is implied by the conditions, and selected actions do not occur in any particular
order.

7.2 Decision table techniques
To identify test cases with decision tables, we interpret conditions as inputs and actions as outputs.
Sometimes conditions end up referring to equivalence classes of inputs, and actions refer to major
functional processing portions of the item tested. The rules are then interpreted as test cases.
Because the decision table can mechanically be forced to be complete, we have some assurance that
we will have a comprehensive set of test cases. Several techniques that produce decision tables are
more useful to testers. One helpful style is to add an action to show when a rule is logically impos-
sible. In the decision table in Table 7.2, we see examples of don’t care entries and impossible rule
usage. If the integers a, b, and c do not constitute a triangle, we do not even care about possible

table 7.1 portions of a Decision table

Stub Rule 1 Rule 2 Rules 3, 4 Rule 5 Rule 6 Rules 7, 8

c1 T T T F F F

c2 T T F T T F

c3 T F — T F —

a1 X X X

a2 X X

a3 X X

a4 X X

table 7.2 Decision table for triangle problem

c1: a, b, c form a triangle? F T T T T T T T T

c2: a = b? — T T T T F F F F

c3: a = c? — T T F F T T F F

c4: b = c? — T F T F T F T F

a1: Not a triangle X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

Decision Table–Based Testing  ◾  119

© 2010 Taylor & Francis Group, LLC

equalities, as indicated in the first rule. In rules 3, 4, and 6, if two pairs of integers are equal, by
transitivity, the third pair must be equal; thus, the negative entry makes these rules impossible.

The decision table in Table 7.3 illustrates another consideration: the choice of conditions can
greatly expand the size of a decision table. Here, we have expanded the old condition (c1: a, b, c
form a triangle?) to a more detailed view of the three inequalities of the triangle property. If any
one of these fails, the three integers do not constitute sides of a triangle.

We could expand this still further because there are two ways an inequality could fail: one side
could equal the sum of the other two, or it could be strictly greater.

When conditions refer to equivalence classes, decision tables have a characteristic appearance.
Conditions in the decision table in Table 7.4 are from the NextDate problem; they refer to the
mutually exclusive possibilities for the month variable. Because a month is in exactly one equiva-
lence class, we cannot ever have a rule in which two entries are true. The don’t care entries (—)
really mean “must be false.” Some decision table aficionados use the notation F ! to make this point.

Use of don’t care entries has a subtle effect on the way in which complete decision tables are
recognized. For a limited entry decision table with n conditions, there must be 2n independent

table 7.3 refined Decision table for triangle problem

c1: a < b + c? F T T T T T T T T T T

c2: b < a + c? — F T T T T T T T T T

c3: c < a + b? — — F T T T T T T T T

c4: a = b? — — — T T T T F F F F

c5: a = c? — — — T T F F T T F F

c6: b = c? — — — T F T F T F T F

a1: Not a triangle X X X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

table 7.4 Decision table with Mutually Exclusive Conditions

Conditions R1 R2 R3

c1: Month in M1? T — —

c2: Month in M2? — T —

c3: Month in M3? — — T

a1

a2

a3

120  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

rules. When don’t care entries really indicate that the condition is irrelevant, we can develop a rule
count as follows: rules in which no don’t care entries occur count as one rule, and each don’t care
entry in a rule doubles the count of that rule. The rule counts for the decision table in Table 7.3 are
shown in Table 7.5. Notice that the sum of the rule counts is 64 (as it should be).

If we applied this simplistic algorithm to the decision table in Table 7.4, we get the rule counts
shown in Table 7.6. We should only have eight rules, so we clearly have a problem. To see where
the problem lies, we expand each of the three rules, replacing the “—” entries with the T and F
possibilities, as shown in Table 7.7.

Notice that we have three rules in which all entries are T: rules 1.1, 2.1, and 3.1. We also have
two rules with T, T, F entries: rules 1.2 and 2.2. Similarly, rules 1.3 and 3.2 are identical; so are
rules 2.3 and 3.3. If we delete the repetitions, we end up with seven rules; the missing rule is the
one in which all conditions are false. The result of this process is shown in Table 7.8. The impos-
sible rules are also shown.

table 7.5 Decision table for table 7.3 with rule Counts

c1: a < b + c? F T T T T T T T T T T

c2: b < a + c? — F T T T T T T T T T

c3: c < a + b? — — F T T T T T T T T

c4: a = b? — — — T T T T F F F F

c5: a = c? — — — T T F F T T F F

c6: b = c? — — — T F T F T F T F

Rule count 32 16 8 1 1 1 1 1 1 1 1

a1: Not a triangle X X X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

table 7.6 rule Counts for a Decision table with
Mutually Exclusive Conditions

Conditions R1 R2 R3

c1: Month in M1 T — —

c2: Month in M2 — T —

c3: Month in M3 — — T

Rule count 4 4 4

a1

Decision Table–Based Testing  ◾  121

© 2010 Taylor & Francis Group, LLC

The ability to recognize (and develop) complete decision tables puts us in a powerful position
with respect to redundancy and inconsistency. The decision table in Table 7.9 is redundant—three
conditions and nine rules exist. (Rule 9 is identical to rule 4.) Notice that the action entries in rule
9 are identical to those in rules 1–4. As long as the actions in a redundant rule are identical to the
corresponding part of the decision table, we do not have much of a problem. If the action entries
are different, as in Table 7.10, we have a bigger problem.

If the decision table in Table 7.10 were to process a transaction in which c1 is true and both c2
and c3 are false, both rules 4 and 9 apply. We can make two observations:

 1. Rules 4 and 9 are inconsistent.
 2. The decision table is nondeterministic.

table 7.7 Impossible rules in table 7.7

Conditions 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4

c1: Month in M1 T T T T T T F F T T F F

c2: Month in M2 T T F F T T T T T F T F

c3: Month in M3 T F T F T F T F T T T T

Rule count 1 1 1 1 1 1 1 1 1 1 1 1

a1: Impossible X X X — X X X — X X —

table 7.8 Mutually Exclusive Conditions with Impossible rules

1.1 1.2 1.3 1.4 2.3 2.4 3.4

c1: Month in M1 T T T T F F F F

c2: Month in M2 T T F F T T F F

c3: Month in M3 T F T F T F T F

Rule count 1 1 1 1 1 1 1 1

a1: Impossible X X X X X

table 7.9 a redundant Decision table

Conditions 1–4 5 6 7 8 9

c1 T F F F F T

c2 — T T F F F

c3 — T F T F F

a1 X X X — — X

a2 — X X X — —

a3 X — X X X X

122  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Rules 4 and 9 are inconsistent because the action sets are different. The whole table is nonde-
terministic because there is no way to decide whether to apply rule 4 or rule 9. The bottom line for
testers is that care should be taken when don’t care entries are used in a decision table.

7.3 test Cases for the triangle problem
Using the decision table in Table 7.3, we obtain 11 functional test cases: three impossible cases,
three ways to fail the triangle property, one way to get an equilateral triangle, one way to get a
scalene triangle, and three ways to get an isosceles triangle (see Table 7.11). We still need to provide

table 7.10 an Inconsistent Decision table

Conditions 1–4 5 6 7 8 9

c1 T F F F F T

c2 — T T F F F

c3 — T F T F F

a1 X X X — — —

a2 — X X X — X

a3 X — X X X —

table 7.11 test Cases from table 7.3

Case ID a b c Expected Output

DT1 4 1 2 Not a triangle

DT2 1 4 2 Not a triangle

DT3 1 2 4 Not a triangle

DT4 5 5 5 Equilateral

DT5 ? ? ? Impossible

DT6 ? ? ? Impossible

DT7 2 2 3 Isosceles

DT8 ? ? ? Impossible

DT9 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene

Decision Table–Based Testing  ◾  123

© 2010 Taylor & Francis Group, LLC

actual values for the variables in the conditions, but we cannot do this for the impossible rules.
If we extended the decision table to show both ways to fail an inequality, we would pick up three
more test cases (where one side is exactly the sum of the other two). Some judgment is required in
this because of the exponential growth of rules. In this case, we would end up with many more
don’t care entries and more impossible rules.

7.4 test Cases for the NextDate Function
The NextDate function was chosen because it illustrates the problem of dependencies in the input
domain. This makes it a perfect example for decision table–based testing, because decision tables
can highlight such dependencies. Recall that, in Chapter 6, we identified equivalence classes in
the input domain of the NextDate function. One of the limitations we found in Chapter 6 was
that indiscriminate selection of input values from the equivalence classes resulted in “strange” test
cases, such as finding the next date to June 31, 1812. The problem stems from the presumption
that the variables are independent. If they are, a Cartesian product of the classes makes sense.
When logical dependencies exist among variables in the input domain, these dependencies are
lost (suppressed is better) in a Cartesian product. The decision table format lets us emphasize such
dependencies using the notion of the “impossible” action to denote impossible combinations of
conditions (which are actually impossible rules). In this section, we will make three tries at a deci-
sion table formulation of the NextDate function.

7.4.1 First Try
Identifying appropriate conditions and actions presents an opportunity for craftsmanship. Suppose
we start with a set of equivalence classes close to the one we used in Chapter 6.

M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}
D1 = {day: 1 ≤ day ≤ 28}
D2 = {day: day = 29}
D3 = {day: day = 30}
D4 = {day: day = 31}
Y1 = {year: year is a leap year}
Y2 = {year: year is not a leap year}

If we wish to highlight impossible combinations, we could make a limited entry decision table
with the following conditions and actions. (Note that the equivalence classes for the year variable
collapse into one condition in Table 7.12.)

This decision table will have 256 rules, many of which will be impossible. If we wanted to show
why these rules were impossible, we might revise our actions to the following:

a1: Day invalid for this month
a2: Cannot happen in a non-leap year
a3: Compute the next date

124  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

7.4.2 Second Try
If we focus on the leap year aspect of the NextDate function, we could use the set of equivalence
classes as they were in Chapter 6. These classes have a Cartesian product that contains 36 triples,
with several that are impossible.

To illustrate another decision table technique, this time we will develop an extended entry
decision table, and we will take a closer look at the action stub. In making an extended entry deci-
sion table, we must ensure that the equivalence classes form a true partition of the input domain.
(Recall from Chapter 3 that a partition is a set of disjoint subsets where the union is the entire
set.) If there were any “overlaps” among the rule entries, we would have a redundant case in which
more than one rule could be satisfied. Here, Y2 is the set of years between 1812 and 2012, evenly
divisible by four excluding the year 2000.

M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}
D1 = {day: 1 ≤ day ≤ 28}
D2 = {day: day = 29}
D3 = {day: day = 30}
D4 = {day: day = 31}
Y1 = {year: year = 2000}
Y2 = {year: year is a non-century leap year}
Y3 = {year: year is a common year}

In a sense, we could argue that we have a “gray box” technique, because we take a closer look
at the NextDate problem statement. To produce the next date of a given date, only five possible
actions are needed: incrementing and resetting the day and month, and incrementing the year.

table 7.12 First try Decision table with 256 rules

Conditions

c1: Month in M1? T

c2: Month in M2? T

c3: Month in M3? T

c4: Day in D1?

c5: Day in D2?

c6: Day in D3?

c7: Day in D4?

c8: Year in Y1?

a1: Impossible

a2: Next date

Decision Table–Based Testing  ◾  125

© 2010 Taylor & Francis Group, LLC

(We will not let time go backward by resetting the year.) To follow the metaphor, we still cannot
see inside the implementation box—the implementation could be a table look-up.

These conditions would result in a decision table with 36 rules that correspond to the Cartesian
product of the equivalence classes. Combining rules with don’t care entries yields the decision
table in Table 7.13, which has 16 rules. We still have the problem with logically impossible rules,
but this formulation helps us identify the expected outputs of a test case. If you complete the
action entries in this table, you will find some cumbersome problems with December (in rule 8)
and other problems with Feb. 28 in rules 9, 11, and 12. We fix these next.

table 7.13 Second try Decision table with 36 rules

1 2 3 4 5 6 7 8

c1: Month in M1 M1 M1 M1 M2 M2 M2 M2

c2: Day in D1 D2 D3 D4 D1 D2 D3 D4

c3: Year in — — — — — — — —

Rule count 3 3 3 3 3 3 3 3

actions

a1: Impossible X

a2: Increment day X X X X X

a3: Reset day X X

a4: Increment month X ?

a5: Reset month ?

a6: Increment year ?

9 10 11 12 13 14 15 16

c1: Month in M3 M3 M3 M3 M3 M3 M3 M3

c2: Day in D1 D1 D1 D2 D2 D2 D3 D4

c3: Year in Y1 Y2 Y3 Y1 Y2 Y3 — —

Rule count 1 1 1 1 1 1 3 3

actions

a1: Impossible X X X

a2: Increment day X X ?

a3: Reset day ? X X

a4: Increment month X X X X

a5: Reset month

a6: Increment year

126  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

7.4.3 Third Try
We can clear up the end-of-year considerations with a third set of equivalence classes. This
time, we are very specific about days and months, and we revert to the simpler leap year or
non-leap year condition of the first try—so the year 2000 gets no special attention. (We could
do a fourth try, showing year equivalence classes as in the second try, but by now you get the
point.)

M1 = {month: month has 30 days}
M2 = {month: month has 31 days except December}
M3 = {month: month is December}
M4 = {month: month is February}
D1 = {day: 1 ≤ day ≤ 27}
D2 = {day: day = 28}
D3 = {day: day = 29}
D4 = {day: day = 30}
D5 = {day: day = 31}
Y1 = {year: year is a leap year}
Y2 = {year: year is a common year}

The Cartesian product of these contains 40 elements. The result of combining rules with don’t
care entries is given in Table 7.14; it has 22 rules, compared with the 36 of the second try. Recall
from Chapter 1 the question of whether a large set of test cases is necessarily better than a smaller
set. Here, we have a 22-rule decision table that gives a clearer picture of the NextDate function
than does the 36-rule decision table. The first five rules deal with 30-day months; notice that the
leap year considerations are irrelevant. The next two sets of rules (6–15) deal with 31-day months,
where rules 6–10 deal with months other than December and rules 11–15 deal with December.
No impossible rules are listed in this portion of the decision table, although there is some redun-
dancy that an efficient tester might question. Eight of the 10 rules simply increment the day.
Would we really require eight separate test cases for this subfunction? Probably not; but note the
insights we can get from the decision table. Finally, the last seven rules focus on February in com-
mon and leap years.

The decision table in Table 7.14 is the basis for the source code for the NextDate function
in Chapter 2. As an aside, this example shows how good testing can improve programming. All
the decision table analysis could have been done during the detailed design of the NextDate
function.

We can use the algebra of decision tables to further simplify these 22 test cases. If the
action sets of two rules in a limited entry decision table are identical, there must be at least
one condition that allows two rules to be combined with a don’t care entry. This is the deci-
sion table equivalent of the “treated the same” guideline that we used to identify equivalence
classes. In a sense, we are identifying equivalence classes of rules. For example, rules 1, 2, and
3 involve day classes D1, D2, and D3 for 30-day months. These can be combined similarly
for day classes D1, D2, D3, and D4 in the 31-day month rules, and D4 and D5 for February.
The result is in Table 7.15.

The corresponding test cases are shown in Table 7.16.

Decision Table–Based Testing  ◾  127

© 2010 Taylor & Francis Group, LLC

7.5 test Cases for the Commission problem
The commission problem is not well served by a decision table analysis. This is not surprising
because very little decisional logic is used in the problem. Because the variables in the equivalence
classes are truly independent, no impossible rules will occur in a decision table in which condi-
tions correspond to the equivalence classes. Thus, we will have the same test cases as we did for
equivalence class testing.

table 7.14 Decision table for NextDate Function

1 2 3 4 5 6 7 8 9 10

c1: Month in M1 M1 M1 M1 M1 M2 M2 M2 M2 M2

c2: Day in D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

c3: Year in — — — — — — — — — —

actions

a1: Impossible X

a2: Increment day X X X X X X X

a3: Reset day X X

a4: Increment month X X

a5: Reset month

a6: Increment year

11 12 13 14 15 16 17 18 19 20 21 22

c1: Month in M3 M3 M3 M3 M3 M4 M4 M4 M4 M4 M4 M4

c2: Day in D1 D2 D3 D4 D5 D1 D2 D2 D3 D3 D4 D5

c3: Year in — — — — — — Y1 Y2 Y1 Y2 — —

actions

a1: Impossible X X X

a2: Increment day X X X X X X

a3: Reset day X X X

a4: Increment month X X

a5: Reset month X

a6: Increment year X

128  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

7.6 Cause-and-Effect Graphing
In the early years of computing, the software community borrowed many ideas from the hardware
community. In some cases this worked well, but in others, the problems of software just did not fit
well with established hardware techniques. Cause-and-effect graphing is a good example of this.
The base hardware concept was the practice of describing circuits composed of discrete compo-
nents with AND, OR, and NOT gates. There was usually an input side of a circuit diagram, and

table 7.15 reduced Decision table for NextDate Function

1–3 4 5 6–9 10

c1: Month in M1 M1 M1 M2 M2

c2: Day in D1, D2,
D3

D4 D5 D1, D2,
D3, D4

D5

c3: Year in — — — — —

actions

a1: Impossible X

a2: Increment day X X

a3: Reset day X X

a4: Increment
month

X X

a5: Reset month

a6: Increment year

11–14 15 16 17 18 19 20 21, 22

c1: Month in M3 M3 M4 M4 M4 M4 M4 M4

c2: Day in D1, D2,
D3, D4

D5 D1 D2 D2 D3 D3 D4,
D5

c3: Year in — — — Y1 Y2 Y1 Y2 —

actions

a1: Impossible X X

a2: Increment day X X X

a3: Reset day X X X

a4: Increment
month

X X

a5: Reset month X

a6: Increment year X

Decision Table–Based Testing  ◾  129

© 2010 Taylor & Francis Group, LLC

the flow of inputs through the various components could be generally traced from left to right.
With this, the effects of hardware faults such as stuck-at-one/zero could be traced to the output
side. This greatly facilitated circuit testing.

Cause-and-effect graphs attempt to follow this pattern, by showing unit inputs on the left side
of a drawing, and using AND, OR, and NOT “gates” to express the flow of data across stages of
a unit. Figure 7.1 shows the basic cause-and-effect graph structures. The basic structures can be
augmented by less used operations: Identity, Masks, Requires, and Only One.

The most that can be learned from a cause-and-effect graph is that, if there is a problem at
an output, the path(s) back to the inputs that affected the output can be retraced. There is little
support for actually identifying test cases. Figure 7.2 shows a cause-and-effect graph for the com-
mission problem.

table 7.16 Decision table test Cases for NextDate

Case ID Month Day Year Expected Output

1–3 4 15 2001 4/16/2001

4 4 30 2001 5/1/2001

5 4 31 2001 Invalid input date

6–9 1 15 2001 1/16/2001

10 1 31 2001 2/1/2001

11–14 12 15 2001 12/16/2001

15 12 31 2001 1/1/2002

16 2 15 2001 2/16/2001

17 2 28 2004 2/29/2004

18 2 28 2001 3/1/2001

19 2 29 2004 3/1/2004

20 2 29 2001 Invalid input date

21, 22 2 30 2001 Invalid input date

Input 1

Input 2 Input 2

Input 3

Input 1

Input 2

Input 3

Input 1

Input 2

Input 3

AND NOT
Stage

Stage

Stage

Stage

Inclusive OR Exclusive OR

~

EOR

Figure 7.1 Cause-and-effect graphing operations.

130  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

7.7 Guidelines and Observations
As with the other testing techniques, decision table–based testing works well for some applications
(such as NextDate) and is not worth the trouble for others (such as the commission problem).
Not surprisingly, the situations in which it works well are those in which a lot of decision making
takes place (such as the triangle problem), and those in which important logical relationships exist
among input variables (the NextDate function).

 1. The decision table technique is indicated for applications characterized by any of the following:
 a. Prominent if–then–else logic
 b. Logical relationships among input variables
 c. Calculations involving subsets of the input variables
 d. Cause-and-effect relationships between inputs and outputs
 e. High cyclomatic complexity (see Chapter 9)
 2. Decision tables do not scale up very well (a limited entry table with n conditions has 2n

rules). There are several ways to deal with this—use extended entry decision tables, algebra-
ically simplify tables, “factor” large tables into smaller ones, and look for repeating patterns
of condition entries. Try factoring the extended entry table for NextDate (Table 7.14).

 3. As with other techniques, iteration helps. The first set of conditions and actions you identify
may be unsatisfactory. Use it as a stepping stone and gradually improve on it until you are
satisfied with a decision table.

EXERCISES
 1. Develop a decision table and additional test cases for the right triangle addition to the tri-

angle problem (see Chapter 2 exercises). Note that there can be isosceles right triangles, but
not with integer sides.

 2. Develop a decision table for the “second try” at the NextDate function. At the end of a
31-day month, the day is always reset to 1. For all non-December months, the month is
incremented; and for December, the month is reset to January, and the year is incremented.

 3. Develop a decision table for the YesterDate function (see Chapter 2 exercises).
 4. Expand the commission problem to consider “violations” of the sales limits. Develop the

corresponding decision tables and test cases for a “company friendly” version and a “sales-
person friendly” version.

Sales

Locks

Stocks

Barrels

Lockprice

Stockprice

Barrelprice 15% threshold

20% threshold

Commission

Figure 7.2 Cause-and-effect graph for commission problem.

Decision Table–Based Testing  ◾  131

© 2010 Taylor & Francis Group, LLC

 5. Discuss how well decision table testing deals with the multiple fault assumption.
 6. Develop decision table test cases for the time change problem (Chapter 6, problem 5).
 7. If you did exercise 8 in Chapter 2, exercise 5 in Chapter 5, and exercise 6 in Chapter 6, you are

already familiar with the CRC Press website for downloads (http://www.crcpress.com/prod uct/
isbn/9781466560680). There you will find an Excel spreadsheet named specBasedTesting.xls.
(It is an extended version of Naive.xls, and it contains the same inserted faults.) Different sheets
contain decision table–based test cases for the triangle, NextDate, and commission problems,
respectively. Run these sets of test cases and compare the results with your naive testing from
Chapter 2, your boundary value testing from Chapter 5, and your equivalence class testing
from Chapter 6.

 8. The retirement pension salary of a Michigan public school teacher is a percentage of the aver-
age of their last 3 years of teaching. Normally, the number of years of teaching service is the
percentage multiplier. To encourage senior teachers to retire early, the Michigan legislature
enacted the following incentive in May of 2010:

 Teachers must apply for the incentive before June 11, 2010. Teachers who are currently
eligible to retire (age ≥ 63 years) shall have a multiplier of 1.6% on their salary up to, and
including, $90,000, and 1.5% on compensation in excess of $90,000. Teachers who meet
the 80 total years of age plus years of teaching shall have a multiplier of 1.55% on their salary
up to, and including, $90,000 and 1.5% on compensation in excess of $90,000.

 Make a decision table to describe the retirement pension policy; be sure to consider the
retirement eligibility criteria carefully. What are the compensation multipliers for a person
who is currently 64 with 20 years of teaching whose salary is $95,000?

references
Elmendorf, W.R., Cause–Effect Graphs in Functional Testing, IBM System Development Division,

Poughkeepsie, NY, TR-00.2487, 1973.
Mosley, D.J., The Handbook of MIS Application Software Testing, Yourdon Press, Prentice Hall, Englewood

Cliffs, NJ, 1993.
Myers, G.J., The Art of Software Testing, Wiley Interscience, New York, 1979.

133

Chapter 8

path testing

The distinguishing characteristic of code-based testing methods is that, as the name implies, they
are all based on the source code of the program tested, and not on the specification. Because of this
absolute basis, code-based testing methods are very amenable to rigorous definitions, mathemati-
cal analysis, and useful measurement. In this chapter, we examine the two most common forms of
path testing. The technology behind these has been available since the mid-1970s, and the origina-
tors of these methods now have companies that market very successful tools that implement the
techniques. Both techniques start with the program graph; we repeat the improved definition from
Chapter 4 here.

8.1 program Graphs

Definition

Given a program written in an imperative programming language, its program graph is a directed
graph in which nodes are statement fragments, and edges represent flow of control. (A complete
statement is a “default” statement fragment.)

If i and j are nodes in the program graph, an edge exists from node i to node j if and only if
the statement fragment corresponding to node j can be executed immediately after the statement
fragment corresponding to node i.

8.1.1 Style Choices for Program Graphs
Deriving a program graph from a given program is an easy process. It is illustrated here with
four of the basic structured programming constructs (Figure 8.1), and also with our pseudocode
implementation of the triangle program from Chapter 2. Line numbers refer to statements and
statement fragments. An element of judgment can be used here: sometimes it is convenient to keep

134  ◾  Software Testing

a fragment as a separate node; other times it seems better to include this with another portion of a
statement. For example, in Figure 8.2, line 14 could be split into two lines:

14 Then If (a = b) AND (b = c)
14a Then
14b If (a = b) AND (b = c)

This latitude collapses onto a unique DD-path graph, so the differences introduced by differing
judgments are moot. (A mathematician would make the point that, for a given program, several
distinct program graphs might be used, all of which reduce to a unique DD-path graph.) We also
need to decide whether to associate nodes with nonexecutable statements such as variable and type
declarations; here we do not. A program graph of the second version of the triangle problem (see
Chapter 2) is given in Figure 8.2.

Nodes 4 through 8 are a sequence, nodes 9 through 12 are an if–then–else construct, and
nodes 13 through 22 are nested if–then–else constructs. Nodes 4 and 23 are the program source
and sink nodes, corresponding to the single entry, single-exit criteria. No loops exist, so this is
a directed acyclic graph. The importance of the program graph is that program executions cor-
respond to paths from the source to the sink nodes. Because test cases force the execution of some
such program path, we now have a very explicit description of the relationship between a test case
and the part of the program it exercises. We also have an elegant, theoretically respectable way to
deal with the potentially large number of execution paths in a program.

There are detractors of path-based testing. Figure 8.3 is a graph of a simple (but unstructured!)
program; it is typical of the kind of example detractors use to show the (practical) impossibility
of completely testing even simple programs. (This example first appeared in Schach [1993].) In
this program, five paths lead from node B to node F in the interior of the loop. If the loop may
have up to 18 repetitions, some 4.77 trillion distinct program execution paths exist. (Actually, it

1 1

2

3

4

1

2

3

4

1

2 4 6

3 5

8

7

6

7

2

3

4

5

If–�en–Else Pretest loop

Case/Switch Posttest loop

1 If <condition>
2 �en
3 <then statements>
4 Else
5 <else statements>
6 End If
7 <next statement>

1 Case n of 3
2 n=1:
3 <case 1 statements>
4 n=2:
5 <case 2 statements>
6 n=3:
7 <case 3 statements>
8 End Case

1 While <condition>
2 <repeated body>
3 End While
4 <next statement>

1 Do
2 <repeated body>
3 Until <condition>
4 <next statement>

Figure 8.1 program graphs of four structured programming constructs.

Path Testing  ◾  135

is 4,768,371,582,030 paths.) The detractor’s argument is a good example of the logical fallacy of
extension—take a situation, extend it to an extreme, show that the extreme supports your point,
and then apply it back to the original question. The detractors miss the point of code-based test-
ing—later in this chapter, we will see how this enormous number can be reduced, with good
reasons, to a more manageable size.

4 5 6 7

9

12

13

14

21

20

22

23

15 17 18

19

16

10 11

8
1 Program triangle2
2 Dim a,b,c As Integer
3 Dim IsATrinagle As Boolean
4 Output(“Enter 3 integers which are sides of a triangle”)
5 Input(a,b,c)
6 Output(“Side A is”, a)
7 Output(“Side B is”, b)
8 Output(“Side C is”, c)
9 If (a < b + c) AND (b < a + c) AND (c < a + b)
10 �en IsATriangle = True
11 Else IsATriangle = False
12 EndIf
13 If IsATriangle
14 �en If (a = b) AND (b = c)
15 �en Output (“Equilateral”)
16 Else If (a≠b) AND (a≠c) AND (b≠c)
17 �en Output (“Scalene”)
18 Else Output (“Isosceles”)
19 EndIf
20 EndIf
21 Else Output(“Nota a Triangle”)
22 EndIf
23 End triangle2

Figure 8.2 program graph of triangle program.

A

B

DC E

F

G

First

Last

Figure 8.3 trillions of paths.

136  ◾  Software Testing

8.2 DD-paths
The best-known form of code-based testing is based on a construct known as a decision-to-
decision path (DD-path) (Miller, 1977). The name refers to a sequence of statements that, in
Miller’s words, begins with the “outway” of a decision statement and ends with the “inway” of
the next decision statement. No internal branches occur in such a sequence, so the corresponding
code is like a row of dominoes lined up so that when the first falls, all the rest in the sequence
fall. Miller’s original definition works well for second-generation languages like FORTRAN II,
because decision-making statements (such as arithmetic IFs and DO loops) use statement labels
to refer to target statements. With modern languages (e.g., Pascal, Ada®, C, Visual Basic, Java),
the notion of statement fragments resolves the difficulty of applying Miller’s original definition.
Otherwise, we end up with program graphs in which some statements are members of more than
one DD-path. In the ISTQB literature, and also in Great Britain, the DD-path concept is known
as a “linear code sequence and jump” and is abbreviated by the acronym LCSAJ. Same idea, longer
name.

We will define DD-paths in terms of paths of nodes in a program graph. In graph theory,
these paths are called chains, where a chain is a path in which the initial and terminal nodes are
distinct, and every interior node has indegree = 1 and outdegree = 1. (See Chapter 4 for a formal
definition.) Notice that the initial node is 2-connected to every other node in the chain, and no
instances of 1- or 3-connected nodes occur, as shown in Figure 8.4. The length (number of edges)
of the chain in Figure 8.4 is 6.

Definition

A DD-path is a sequence of nodes in a program graph such that

Case 1: It consists of a single node with indeg = 0.
Case 2: It consists of a single node with outdeg = 0.
Case 3: It consists of a single node with indeg ≥ 2 or outdeg ≥ 2.
Case 4: It consists of a single node with indeg = 1 and outdeg = 1.
Case 5: It is a maximal chain of length ≥ 1.

Cases 1 and 2 establish the unique source and sink nodes of the program graph of a structured
program as initial and final DD-paths. Case 3 deals with complex nodes; it assures that no node is
contained in more than one DD-path. Case 4 is needed for “short branches”; it also preserves the
one-fragment, one DD-path principle. Case 5 is the “normal case,” in which a DD-path is a single
entry, single-exit sequence of nodes (a chain). The “maximal” part of the case 5 definition is used
to determine the final node of a normal (nontrivial) chain.

Initial
node

Final
node

Interior
nodes

Figure 8.4 Chain of nodes in a directed graph.

Path Testing  ◾  137

Definition

Given a program written in an imperative language, its DD-path graph is the directed graph in
which nodes are DD-paths of its program graph, and edges represent control flow between suc-
cessor DD-paths.

This is a complex definition, so we will apply it to the program graph in Figure 8.2. Node 4 is
a case 1 DD-path; we will call it “first.” Similarly, node 23 is a case 2 DD-path, and we will call
it “last.” Nodes 5 through 8 are case 5 DD-paths. We know that node 8 is the last node in this
DD-path because it is the last node that preserves the 2-connectedness property of the chain. If we
go beyond node 8 to include node 9, we violate the indegree = outdegree = 1 criterion of a chain.
If we stop at node 7, we violate the “maximal” criterion. Nodes 10, 11, 15, 17, 18, and 21 are case
4 DD-paths. Nodes 9, 12, 13, 14, 16, 19, 20, and 22 are case 3 DD-paths. Finally, node 23 is a
case 2 DD-path. All this is summarized in Figure 8.5.

In effect, the DD-path graph is a form of condensation graph (see Chapter 4); in this con-
densation, 2-connected components are collapsed into individual nodes that correspond to case
5 DD-paths. The single-node DD-paths (corresponding to cases 1–4) are required to preserve
the convention that a statement (or statement fragment) is in exactly one DD-path. Without this
convention, we end up with rather clumsy DD-path graphs, in which some statement fragments
are in several DD-paths.

This process should not intimidate testers—high-quality commercial tools are available, which
generate the DD-path graph of a given program. The vendors make sure that their products work
for a wide variety of programming languages. In practice, it is reasonable to manually create

Figure 8.2
Nodes

Case of
definition

DD-Path

4
5-8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

1
5
3
4
4
3
3
3
4
3
4
4
3
3
4
3
2

First
A
B
C
D
E
F
H
I
J
K
L
M
N
G
O
Last

First

Last

A

B

E

F

G H

I J

K L

M

N

O

C D

Figure 8.5 DD-path graph for triangle program.

138  ◾  Software Testing

DD-path graphs for programs up to about 100 source lines. Beyond that, most testers look for a
tool.

Part of the confusion with this example is that the triangle problem is logic intensive and
computationally sparse. This combination yields many short DD-paths. If the THEN and ELSE
clauses contained blocks of computational statements, we would have longer chains, as we will see
in the commission problem.

8.3 test Coverage Metrics
The raison d’ être of DD-paths is that they enable very precise descriptions of test coverage. Recall
(from Chapters 5 through 7) that one of the fundamental limitations of specification-based test-
ing is that it is impossible to know either the extent of redundancy or the possibility of gaps cor-
responding to the way a set of functional test cases exercises a program. Back in Chapter 1, we had
a Venn diagram showing relationships among specified, programmed, and tested behaviors. Test
coverage metrics are a device to measure the extent to which a set of test cases covers (or exercises)
a program.

8.3.1 Program Graph–Based Coverage Metrics
Given a program graph, we can define the following set of test coverage metrics. We will use them
to relate to other published sets of coverage metrics.

Definition

Given a set of test cases for a program, they constitute node coverage if, when executed on the pro-
gram, every node in the program graph is traversed. Denote this level of coverage as Gnode, where
the G stands for program graph.

Since nodes correspond to statement fragments, this guarantees that every statement fragment
is executed by some test case. If we are careful about defining statement fragment nodes, this
also guarantees that statement fragments that are outcomes of a decision-making statement are
executed.

Definition

Given a set of test cases for a program, they constitute edge coverage if, when executed on the pro-
gram, every edge in the program graph is traversed. Denote this level of coverage as Gedge.

The difference between Gnode and Gedge is that, in the latter, we are assured that all outcomes
of a decision-making statement are executed. In our triangle problem (see Figure 8.2), nodes 9,
10, 11, and 12 are a complete if–then–else statement. If we required nodes to correspond to full
statements, we could execute just one of the decision alternatives and satisfy the statement cover-
age criterion. Because we allow statement fragments, it is natural to divide such a statement into
separate nodes (the condition test, the true outcome, and the false outcome). Doing so results in
predicate outcome coverage. Whether or not our convention is followed, these coverage metrics

Path Testing  ◾  139

require that we find a set of test cases such that, when executed, every node of the program graph
is traversed at least once.

Definition

Given a set of test cases for a program, they constitute chain coverage if, when executed on the pro-
gram, every chain of length greater than or equal to 2 in the program graph is traversed. Denote
this level of coverage as Gchain.

The Gchain coverage is the same as node coverage in the DD-path graph that corresponds to the
given program graph. Since DD-paths are important in E.F. Miller’s original formulation of test
covers (defined in Section 8.3.2), we now have a clear connection between purely program graph
constructs and Miller’s test covers.

Definition

Given a set of test cases for a program, they constitute path coverage if, when executed on the pro-
gram, every path from the source node to the sink node in the program graph is traversed. Denote
this level of coverage as Gpath.

This coverage is open to severe limitations when there are loops in a program (as in Figure 8.3).
E.F. Miller partially anticipated this when he postulated the C2 metric for loop coverage. Referring
back to Chapter 4, observe that every loop in a program graph represents a set of strongly (3-con-
nected) nodes. To deal with the size implications of loops, we simply exercise every loop, and then
form the condensation graph of the original program graph, which must be a directed acyclic graph.

8.3.2 E.F. Miller’s Coverage Metrics
Several widely accepted test coverage metrics are used; most of those in Table 8.1 are due to the
early work of Miller (1977). Having an organized view of the extent to which a program is tested
makes it possible to sensibly manage the testing process. Most quality organizations now expect
the C1 metric (DD-path coverage) as the minimum acceptable level of test coverage.

These coverage metrics form a lattice (see Chapter 9 for a lattice of data flow coverage metrics)
in which some are equivalent and some are implied by others. The importance of the lattice is that
there are always fault types that can be revealed at one level and can escape detection by inferior
levels of testing. Miller (1991) observes that when DD-path coverage is attained by a set of test
cases, roughly 85% of all faults are revealed. The test coverage metrics in Table 8.1 tell us what to
test but not how to test it. In this section, we take a closer look at techniques that exercise source
code. We must keep an important distinction in mind: Miller’s test coverage metrics are based
on program graphs in which nodes are full statements, whereas our formulation allows statement
fragments (which can be entire statements) to be nodes.

8.3.2.1 Statement Testing

Because our formulation of program graphs allows statement fragments to be individual nodes,
Miller’s C0 metric is subsumed by our Gnode metric.

140  ◾  Software Testing

Statement coverage is generally viewed as the bare minimum. If some statements have not been
executed by the set of test cases, there is clearly a severe gap in the test coverage. Although less
adequate than DD-path coverage, the statement coverage metric (C0) is still widely accepted: it is
mandated by ANSI (American National Standards Institute) Standard 187B and has been used
successfully throughout IBM since the mid-1970s.

8.3.2.2 DD-Path Testing

When every DD-path is traversed (the C1 metric), we know that each predicate outcome has
been executed; this amounts to traversing every edge in the DD-path graph (or program graph).
Therefore, the C1 metric is exactly our Gchain metric.

For if–then and if–then–else statements, this means that both the true and the false branches
are covered (C1p coverage). For CASE statements, each clause is covered. Beyond this, it is useful to
ask how we might test a DD-path. Longer DD-paths generally represent complex computations,
which we can rightly consider as individual functions. For such DD-paths, it may be appropriate
to apply a number of functional tests, especially those for boundary and special values.

8.3.2.3 Simple Loop Coverage

The C2 metric requires DD-path coverage (the C1 metric) plus loop testing.
The simple view of loop testing is that every loop involves a decision, and we need to test both

outcomes of the decision: one is to traverse the loop, and the other is to exit (or not enter) the loop.
This is carefully proved in Huang (1979). Notice that this is equivalent to the Gedge test coverage.

8.3.2.4 Predicate Outcome Testing

This level of testing requires that every outcome of a decision (predicate) must be exercised.
Because our formulation of program graphs allows statement fragments to be individual nodes,

table 8.1 Miller’s test Coverage Metrics

Metric Description of Coverage

C0 Every statement

C1 Every DD-path

C1p Every predicate to each outcome

C2 C1 coverage + loop coverage

Cd C1 coverage + every dependent pair of DD-paths

CMCC Multiple condition coverage

Cik Every program path that contains up to k
repetitions of a loop (usually k = 2)

Cstat “Statistically significant” fraction of paths

C∞ All possible execution paths

Path Testing  ◾  141

Miller’s C1p metric is subsumed by our Gedge metric. Neither E.F. Miller’s test covers nor the graph-
based covers deal with decisions that are made on compound conditions. They are the subjects of
Section 8.3.3.

8.3.2.5 Dependent Pairs of DD-Paths

Identification of dependencies must be made at the code level. This cannot be done just by consid-
ering program graphs. The Cd metric foreshadows the topic of Chapter 9—data flow testing. The
most common dependency among pairs of DD-paths is the define/reference relationship, in which
a variable is defined (receives a value) in one DD-path and is referenced in another DD-path. The
importance of these dependencies is that they are closely related to the problem of infeasible paths.
We have good examples of dependent pairs of DD-paths: in Figure 8.5, C and H are such a pair,
as are DD-paths D and H. The variable IsATriangle is set to TRUE at node C, and FALSE at
node D. Node H is the branch taken when IsATriangle is TRUE win the condition at node F. Any
path containing nodes D and H is infeasible. Simple DD-path coverage might not exercise these
dependencies; thus, a deeper class of faults would not be revealed.

8.3.2.6 Complex Loop Coverage

Miller’s Cik metric extends the loop coverage metric to include full paths from source to sink nodes
that contain loops.

The condensation graphs we studied in Chapter 4 provide us with an elegant resolution to the
problems of testing loops. Loop testing has been studied extensively, and with good reason—loops
are a highly fault-prone portion of source code. To start, an amusing taxonomy of loops occurs
(Beizer, 1984): concatenated, nested, and horrible, shown in Figure 8.6.

Concatenated loops are simply a sequence of disjoint loops, while nested loops are such that
one is contained inside another. Knotted (Beizer calls them “horrible”) loops cannot occur when
the structured programming precepts are followed, but they can occur in languages like Java with
try/catch. When it is possible to branch into (or out from) the middle of a loop, and these branches

A

B

C

D

First

Last

A

B

C

D

First

Last

A

B

C

D

First

Last

Figure 8.6 Concatenated, nested, and knotted loops.

142  ◾  Software Testing

are internal to other loops, the result is Beizer’s knotted loop. We can also take a modified bound-
ary value approach, where the loop index is given its minimum, nominal, and maximum values
(see Chapter 5). We can push this further to full boundary value testing and even robustness test-
ing. If the body of a simple loop is a DD-path that performs a complex calculation, this should also
be tested, as discussed previously. Once a loop has been tested, the tester condenses it into a single
node. If loops are nested, this process is repeated starting with the innermost loop and working
outward. This results in the same multiplicity of test cases we found with boundary value analysis,
which makes sense, because each loop index variable acts like an input variable. If loops are knot-
ted, it will be necessary to carefully analyze them in terms of the data flow methods discussed in
Chapter 9. As a preview, consider the infinite loop that could occur if one loop tampers with the
value of the other loop’s index.

8.3.2.7 Multiple Condition Coverage

Miller’s CMCC metric addresses the question of testing decisions made by compound conditions.
Look closely at the compound conditions in DD-paths B and H. Instead of simply traversing such
predicates to their true and false outcomes, we should investigate the different ways that each out-
come can occur. One possibility is to make a decision table; a compound condition of three simple
conditions will have eight rules (see Table 8.2), yielding eight test cases. Another possibility is to
reprogram compound predicates into nested simple if–then–else logic, which will result in more
DD-paths to cover. We see an interesting tradeoff: statement complexity versus path complexity.
Multiple condition coverage assures that this complexity is not swept under the DD-path coverage
rug. This metric has been refined to Modified Condition Decision Coverage (MCDC), defined
in Section 8.3.3.

8.3.2.8 “Statistically Significant” Coverage

The Cstat metric is awkward—what constitutes a statistically significant set of full program paths?
Maybe this refers to a comfort level on the part of the customer/user.

8.3.2.9 All Possible Paths Coverage

The subscript in Miller’s C∞ metric says it all—this can be enormous for programs with loops, a la
Figure 8.3. This can make sense for programs without loops, and also for programs for which loop
testing reduces the program graph to its condensation graph.

8.3.3 A Closer Look at Compound Conditions
There is an excellent reference (Chilenski, 2001) that is 214 pages long and is available on the Web.
The definitions in this subsection are derived from this reference. They will be related to the defini-
tions in Sections 8.3.1 and 8.3.2.

8.3.3.1 Boolean Expression (per Chilenski)

“A Boolean expression evaluates to one of two possible (Boolean) outcomes traditionally known as
False and True.”

Path Testing  ◾  143

A Boolean expression may be a simple Boolean variable, or a compound expression containing
one or more Boolean operators. Chilenski clarifies Boolean operators into four categories:

Operator Type Boolean Operators

Unary (single operand) NOT(~),

Binary (two operands) AND(∧), OR(∨), XOR(⊕)

Short circuit operators AND (AND–THEN), OR (OR–ELSE)

Relational operators =, ≠, <, ≤, >, ≥

In mathematical logic, Boolean expressions are known as logical expressions, where a logical expres-
sion can be

 1. A simple proposition that contains no logical connective
 2. A compound proposition that contains at least one logical connective

Synonyms: predicate, proposition, condition.
In programming languages, Chilenski’s Boolean expressions appear as conditions in decision

making statements: If–Then, If–Then–Else, If–ElseIf, Case/Switch, For, While, and Until loops. This
subsection is concerned with the testing needed for compound conditions. Compound conditions
are shown as single nodes in a program graph; hence, the complexity they introduce is obscured.

8.3.3.2 Condition (per Chilenski)

“A condition is an operand of a Boolean operator (Boolean functions, objects and operators).
Generally this refers to the lowest level conditions (i.e., those operands that are not Boolean

operators themselves), which are normally the leaves of an expression tree. Note that a condition
is a Boolean (sub)expression.”

In mathematical logic, Chilenski’s conditions are known as simple, or atomic, propositions.
Propositions can be simple or compound, where a compound proposition contains at least one
logical connective. Propositions are also called predicates, the term that E.F. Miller uses.

8.3.3.3 Coupled Conditions (per Chilenski)

Two (or more) conditions are coupled if changing one also changes the other(s).
When conditions are coupled, it may not be possible to vary individual conditions, because

the coupled condition(s) might also change. Chelinski notes that conditions can be strongly or
weakly coupled. In a strongly coupled pair, changing one condition always changes the other. In a
weakly coupled triplet, changing one condition may change one other coupled condition, but not
the third one. Chelinski offers these examples:

In (((x = 0) AND A) OR ((x ≠ 0) AND B)), the conditions (x = 0) and (x ≠ 0) are strongly
coupled.

In ((x = 1) OR (x = 2) OR (x = 3)), the three conditions are weakly coupled.

144  ◾  Software Testing

8.3.3.4 Masking Conditions (per Chilenski)

“The process masking conditions involves of setting the one operand of an operator to a value such
that changing the other operand of that operator does not change the value of the operator.

Referring to Chapter 3.4.3, masking uses the Domination Laws. For an AND operator, mask-
ing of one operand can be achieved by holding the other operand False.

 (X AND False = False AND X = False no matter what the value of X is.)

For an OR operator, masking of one operand can be achieved by holding the other operand
True.

 (X OR True = True OR X = True no matter what the value of X is.).”

8.3.3.5 Modified Condition Decision Coverage

MCDC is required for “Level A” software by testing standard DO-178B. MCDC has three varia-
tions: Masking MCDC, Unique-Cause MCDC, and Unique-Cause + Masking MCDC. These are
explained in exhaustive detail in Chilenski (2001), which concludes that Masking MCDC, while
demonstrably the weakest form of the three, is recommended for compliance with DO-178B. The
definitions below are quoted from Chilenski.

Definition

MCDC requires

 1. Every statement must be executed at least once.
 2. Every program entry point and exit point must be invoked at least once.
 3. All possible outcomes of every control statement are taken at least once.
 4. Every nonconstant Boolean expression has been evaluated to both true and false outcomes.
 5. Every nonconstant condition in a Boolean expression has been evaluated to both true and

false outcomes.
 6. Every nonconstant condition in a Boolean expression has been shown to independently

affect the outcomes (of the expression).

The basic definition of MCDC needs some explanation. Control statements are those that
make decisions, such as If statements, Case/Switch statements, and looping statements. In a pro-
gram graph, control statements have an outdegree greater than 1. Constant Boolean expressions
are those that always evaluate to the same end value. For example, the Boolean expression (p ∨ ∼p)
always evaluates to True, as does the condition (a = a). Similarly, (p ∧ ∼p) and (a ≠ a) are constant
expressions (that evaluate to False). In terms of program graphs, MCDC requirements 1 and 2
translate to node coverage, and MCDC requirements 3 and 4 translate to edge coverage. MCDC
requirements 5 and 6 get to the complex part of MCDC testing. In the following, the three varia-
tions discussed by Chilenski are intended to clarify the meaning of point 6 of the general defini-
tion, namely, the exact meaning of “independence.”

Path Testing  ◾  145

Definition (per Chilenski)

“Unique-Cause MCDC [requires] a unique cause (toggle a single condition and change the expres-
sion result) for all possible (uncoupled) conditions.”

Definition (per Chilenski)

“Unique-Cause + Masking MCDC [requires] a unique cause (toggle a single condition and change the
expression result) for all possible (uncoupled) conditions. In the case of strongly coupled conditions,
masking [is allowed] for that condition only, i.e., all other (uncoupled) conditions will remain fixed.”

Definition (per Chilenski)

“Masking MCDC allows masking for all conditions, coupled and uncoupled (toggle a single con-
dition and change the expression result) for all possible (uncoupled) conditions. In the case of
strongly coupled conditions, masking [is allowed] for that condition only (i.e., all other (uncou-
pled) conditions will remain fixed).”

Chilenski comments: “In the case of strongly coupled conditions, no coverage set is possible as
DO-178B provides no guidance on how such conditions should be covered.”

8.3.4 Examples
The examples in this section are directed at the variations of testing code with compound conditions.

8.3.4.1 Condition with Two Simple Conditions

Consider the program fragment in Figure 8.7. It is deceptively simple, with a cyclomatic complex-
ity of 2.

The decision table (see Chapter 7) for the condition (a AND (b OR c)) is in Table 8.2.
Decision coverage is attained by exercising any pair of rules such that each action is executed at
least once. Test cases corresponding to rules 3 and 4 provide decision coverage, as do rules 1 and
8. Condition coverage is attained by exercising a set of rules such that each condition is evaluated
to both true and false. Test cases corresponding to rules 1 and 8 provide decision coverage, as do
rules 4 and 5.

1

4

2 3

1. If (a AND (b OR c))
2. en y = 1
3. Else y = 2
4. EndIf

Figure 8.7 Compound condition and its program graph.

146  ◾  Software Testing

To attain MCDC, each condition must be evaluated to both true and false while holding the
other conditions constant, and the change must be visible at the outcome. Rules 1 and 5 toggle
condition a; rules 2 and 4 toggle condition b; and rules 3 and 4 toggle condition c.

In the Chelinski (2001) paper (p. 9), it happens that the Boolean expression used is

 (a AND (b OR c))

In its expanded form, (a AND b) OR (a AND c), the Boolean variable a cannot be subjected to
unique cause MCDC testing because it appears in both AND expressions.

Given all the complexities here (see Chelinski [2001] for much, much more) the best practi-
cal solution is to just make a decision table of the actual code, and look for impossible rules. Any
dependencies will typically generate an impossible rule.

8.3.4.2 Compound Condition from NextDate

In our continuing NextDate problem, suppose we have some code checking for valid inputs of the
day, month, and year variables. A code fragment for this and its program graph are in Figure 8.8.
Table 8.3 is a decision table for the NextDate code fragment. Since the day, month, and year
variables are all independent, each can be either true or false. The cyclomatic complexity of the
program graph in Figure 8.8 is 5.

Decision coverage is attained by exercising any pair of rules such that each action is executed
at least once. Test cases corresponding to rule 1 and any one of rules 2–8 provide decision
coverage.

Multiple condition coverage requires exercising a set of rules such that each condition is evalu-
ated to both True and False. The eight test cases corresponding to all eight rules are necessary to
provide decision coverage.

To attain MCDC, each condition must be evaluated to both true and false while holding the
other conditions constant, and the change must be visible at the outcome. Rules 1 and 2 toggle
condition yearOK; rules 1 and 3 toggle condition monthOK, and rules 1 and 5 toggle condition
dayOK.

Since the three variables are truly independent, multiple condition coverage will be needed.

table 8.2 Decision table for Example program Fragment

Conditions Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

a T T T T F F F F

b T T F F T T F F

c T F T F T F T F

a AND (b OR c) True True True False False False False False

actions

y = 1 x x x — — — — —

y = 2 — — — x x x x x

Path Testing  ◾  147

8.3.4.3 Compound Condition from the Triangle Program

This example is included to show important differences between it and the first two examples. The
code fragment in Figure 8.9 is the part of the triangle program that checks to see if the values of
sides a, b, and c constitute a triangle. The test incorporates the definition that each side must be
strictly less than the sum of the other two sides. Notice that the program graphs in Figures 8.7 and
8.9 are identical. The NextDate fragment and the triangle program fragment are both functions
of three variables. The second difference is that a, b, and c in the triangle program are depen-
dent, whereas dayOK, monthOK, and yearOK in the NextDate fragment are truly independent
variables.

5

6

9

10

13

14

17

1819

11 12

15 16

7 8

41 NextDate Fragment
2 Dim day, month, year As Integer
3 Dim dayOK, monthOK, yearOK As Boolean
4 Do
5 Input(day, month, year)
6 If 0 < day < 32
7 �en dayOK = True
8 Else dayOK = False
9 EndIf
10 If 0 < month < 13
11 �en monthOK = True
12 Else monthOK = False
13 EndIf
14 If 1811 < year < 2013
15 �en yearOK = True
16 Else yearOK = False
17 EndIf
18 Until (dayOK AND monthOK AND yearOK)
19 End Fragment

Figure 8.8 NextDate fragment and its program graph.

table 8.3 Decision table for NextDate Fragment

Conditions Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

dayOK T T T T F F F F

monthOK T T F F T T F F

YearOK T F T F T F T F

The Until condition True False False False False False False False

actions

Leave the loop x — — — — — — —

Repeat the loop — x x x x x x x

148  ◾  Software Testing

The dependence among a, b, and c is the cause of the four impossible rules in the decision table
for the fragment in Table 8.4; this is proved next.

Fact: It is numerically impossible to have two of the conditions false.
Proof (by contradiction): Assume any pair of conditions can both be true. Arbitrarily choosing

the first two conditions that could both be true, we can write the two inequalities

 a >= (b + c)

 b >= (a + c)

Adding them together, we have

 (a + b) >= (b + c) + (a + c)

and rearranging the right side, we have

 (a + b) >= (a + b) + 2c

But a, b, and c are all > 0, so we have a contradiction. QED.
Decision coverage is attained by exercising any pair of rules such that each action is executed at

least once. Test cases corresponding to rules 1 and 2 provide decision coverage, as do rules 1 and
3, and rules 1 and 5. Rules, 4, 6, 7, and 8 cannot be used owing to their numerical impossibility.

Condition coverage is attained by exercising a set of rules such that each condition is evaluated
to both true and false. Test cases corresponding to rules 1 and 2 toggle the (c < a + b) condition,
rules 1 and 3 toggle the (b < a + c) condition, and 1 and 5 toggle the (a < b + c) condition.

MCDC is complicated by the numerical (and hence logical) impossibilities among the three
conditions. The three pairs (rules 1 and 2, rules 1 and 3, and rules 1 and 5) constitute MCDC.

1

4

2 3
1. If (a < b + c) AND (a < b + c) AND (a < b + c)
2. en IsA Triangle = True
3. Else IsA Triangle = False
4. EndIf

Figure 8.9 triangle program fragment and its program graph.

table 8.4 Decision table for triangle program Fragment

Conditions Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

(a < b + c) T T T T F F F F

(b < a + c) T T F F T T F F

(c < a + b) T F T F T F T F

IsATriangle = True x — — — — — — —

IsATriangle = False — x x — x — — —

Impossible — — — x x x x

Path Testing  ◾  149

In complex situations such as these examples, falling back on decision tables is an answer that
will always work. Rewriting the compound condition with nested If logic, we will have (preserving
the original statement numbers)

1.1 If (a < b + c)
1.2 Then If (b < a + c)
1.3 Then If (c < a + b)
2 Then IsATriangle = True
3.1 Else IsATriangle = False
3.2 End If
3.3 Else IsATriangle = False
3.4 End If
3.5 Else IsATriangle = False
4 EndIf

This code fragment avoids the numerically impossible combinations of a, b, and c. There are
four distinct paths through its program graph, and these correspond to rules 1, 2, 3, and 5 in the
decision table.

8.3.5 Test Coverage Analyzers
Coverage analyzers are a class of test tools that offer automated support for this approach to testing
management. With a coverage analyzer, the tester runs a set of test cases on a program that has been
“instrumented” by the coverage analyzer. The analyzer then uses information produced by the instru-
mentation code to generate a coverage report. In the common case of DD-path coverage, for example,
the instrumentation identifies and labels all DD-paths in an original program. When the instrumented
program is executed with test cases, the analyzer tabulates the DD-paths traversed by each test case.
In this way, the tester can experiment with different sets of test cases to determine the coverage of each
set. Mr. Tilo Linz maintains a website with excellent test tool information at www.testtoolreview.com.

8.4 Basis path testing
The mathematical notion of a “basis” has attractive possibilities for structural testing. Certain sets
can have a basis; and when they do, the basis has very important properties with respect to the
entire set. Mathematicians usually define a basis in terms of a structure called a “vector space,”
which is a set of elements (called vectors) as well as operations that correspond to multiplication
and addition defined for the vectors. If a half dozen other criteria apply, the structure is said to be
a vector space, and all vector spaces have a basis (in fact they may have several bases). The basis of a
vector space is a set of vectors that are independent of each other and “span” the entire vector space
in the sense that any other vector in the space can be expressed in terms of the basis vectors. Thus,
a set of basis vectors somehow represents “the essence” of the full vector space: everything else in
the space can be expressed in terms of the basis, and if one basis element is deleted, this spanning
property is lost. The potential application of this theory for testing is that, if we can view a pro-
gram as a vector space, then the basis for such a space would be a very interesting set of elements to
test. If the basis is okay, we could hope that everything that can be expressed in terms of the basis
is also okay. In this section, we examine the early work of Thomas McCabe, who recognized this
possibility in the mid-1970s.

150  ◾  Software Testing

8.4.1 McCabe’s Basis Path Method
Figure 8.10 is taken from McCabe (1982). It is a directed graph that we might take to be the pro-
gram graph (or the DD-path graph) of some program. For the convenience of readers who have
encountered this example elsewhere (McCabe, 1987; Perry, 1987), the original notation for nodes
and edges is repeated here. (Notice that this is not a graph derived from a structured program:
nodes B and C are a loop with two exits, and the edge from B to E is a branch into the if–then
statement in nodes D, E, and F.) The program does have a single entry (A) and a single exit (G).
McCabe based his view of testing on a major result from graph theory, which states that the cyclo-
matic number (see Chapter 4) of a strongly connected graph is the number of linearly independent
circuits in the graph. (A circuit is similar to a chain: no internal loops or decisions occur, but the
initial node is the terminal node. A circuit is a set of 3-connected nodes.)

We can always create a strongly connected graph by adding an edge from the (every) sink
node to the (every) source node. (Notice that, if the single-entry, single-exit precept is violated,
we greatly increase the cyclomatic number because we need to add edges from each sink node to
each source node.) The right side of Figure 8.10 shows the result of doing this; it also contains edge
labels that are used in the discussion that follows.

Some confusion exists in the literature about the correct formula for cyclomatic complexity.
Some sources give the formula as V(G) = e – n + p, while others use the formula V(G) = e – n +
2p; everyone agrees that e is the number of edges, n is the number of nodes, and p is the number
of connected regions. The confusion apparently comes from the transformation of an arbitrary
directed graph (such as the one in Figure 8.10, left side) to a strongly connected, directed graph
obtained by adding one edge from the sink to the source node (as in Figure 8.10, right side).
Adding an edge clearly affects value computed by the formula, but it should not affect the num-
ber of circuits. Counting or not counting the added edge accounts for the change to the coef-
ficient of p, the number of connected regions. Since p is usually 1, adding the extra edge means
we move from 2p to p. Here is a way to resolve the apparent inconsistency. The number of linearly
independent paths from the source node to the sink node of the graph on the left side of Figure
8.10 is

V G e n p()

()
= − +
= − + =

2
10 7 2 1 5

A

B

C

E

F

G

D

3

A

B

C

E

F

G

1

5

D
2

8

6

4

9 10

7

Figure 8.10 McCabe’s control graph and derived strongly connected graph.

Path Testing  ◾  151

The number of linearly independent circuits of the graph on the right side of the graph in Figure
8.10 is

V G e n p() = − +

= − + =11 7 1 5

The cyclomatic complexity of the strongly connected graph in Figure 8.10 is 5; thus, there are
five linearly independent circuits. If we now delete the added edge from node G to node A, these
five circuits become five linearly independent paths from node A to node G. In small graphs, we
can visually identify independent paths. Here, we identify paths as sequences of nodes:

p1: A, B, C, G
p2: A, B, C, B, C, G
p3: A, B, E, F, G
p4: A, D, E, F, G
p5: A, D, F, G

Table 8.5 shows the edges traversed by each path, and also the number of times an edge is tra-
versed. We can force this to begin to look like a vector space by defining notions of addition and
scalar multiplication: path addition is simply one path followed by another path, and multiplica-
tion corresponds to repetitions of a path. With this formulation, McCabe arrives at a vector space
of program paths. His illustration of the basis part of this framework is that the path A, B, C, B, E,
F, G is the basis sum p2 + p3 – p1, and the path A, B, C, B, C, B, C, G is the linear combination
2p2 – p1. It is easier to see this addition with an incidence matrix (see Chapter 4) in which rows
correspond to paths, and columns correspond to edges, as in Table 8.5. The entries in this table are
obtained by following a path and noting which edges are traversed. Path p1, for example, traverses
edges 1, 4, and 9, while path p2 traverses the following edge sequence: 1, 4, 3, 4, 9. Because edge
4 is traversed twice by path p2, that is the entry for the edge 4 column.

We can check the independence of paths p1 – p5 by examining the first five rows of this inci-
dence matrix. The bold entries show edges that appear in exactly one path, so paths p2 – p5 must

table 8.5 path/Edge traversal

Path/Edges Traversed 1 2 3 4 5 6 7 8 9 10

p1: A, B, C, G 1 0 0 1 0 0 0 0 1 0

p2: A, B, C, B, C, G 1 0 1 2 0 0 0 0 1 0

p3: A, B, E, F, G 1 0 0 0 1 0 0 1 0 1

p4: A, D, E, F, G 0 1 0 0 0 1 0 1 0 1

p5: A, D, F, G 0 1 0 0 0 0 1 0 0 1

ex1: A, B, C, B, E, F, G 1 0 1 1 1 0 0 1 0 1

ex2: A, B, C, B, C, B, C, G 1 0 2 3 0 0 0 0 1 0

152  ◾  Software Testing

be independent. Path p1 is independent of all of these, because any attempt to express p1 in
terms of the others introduces unwanted edges. None can be deleted, and these five paths span
the set of all paths from node A to node G. At this point, you might check the linear combina-
tions of the two example paths. (The addition and multiplication are performed on the column
entries.)

McCabe next develops an algorithmic procedure (called the baseline method) to determine a
set of basis paths. The method begins with the selection of a baseline path, which should corre-
spond to some “normal case” program execution. This can be somewhat arbitrary; McCabe advises
choosing a path with as many decision nodes as possible. Next, the baseline path is retraced, and
in turn each decision is “flipped”; that is, when a node of outdegree ≥ 2 is reached, a different edge
must be taken. Here we follow McCabe’s example, in which he first postulates the path through
nodes A, B, C, B, E, F, G as the baseline. (This was expressed in terms of paths p1 – p5 earlier.)
The first decision node (outdegree ≥ 2) in this path is node A; thus, for the next basis path, we
traverse edge 2 instead of edge 1. We get the path A, D, E, F, G, where we retrace nodes E, F, G in
path 1 to be as minimally different as possible. For the next path, we can follow the second path,
and take the other decision outcome of node D, which gives us the path A, D, F, G. Now, only
decision nodes B and C have not been flipped; doing so yields the last two basis paths, A, B, E, F,
G and A, B, C, G. Notice that this set of basis paths is distinct from the one in Table 8.6: this is
not problematic because a unique basis is not required.

8.4.2 Observations on McCabe’s Basis Path Method
If you had trouble following some of the discussion on basis paths and sums and products of
these, you may have felt a haunting skepticism—something along the lines of, “Here’s another
academic oversimplification of a real-world problem.” Rightly so, because two major soft spots
occur in the McCabe view: one is that testing the set of basis paths is sufficient (it is not), and
the other has to do with the yoga-like contortions we went through to make program paths
look like a vector space. McCabe’s example that the path A, B, C, B, C, B, C, G is the linear
combination 2p2 – p1 is very unsatisfactory. What does the 2p2 part mean? Execute path p2
twice? (Yes, according to the math.) Even worse, what does the –p1 part mean? Execute path
p1 backward? Undo the most recent execution of p1? Do not do p1 next time? Mathematical
sophistries like this are a real turnoff to practitioners looking for solutions to their very real
problems. To get a better understanding of these problems, we will go back to the triangle
program example.

Start with the DD-path graph of the triangle program in Figure 8.5. We begin with a base-
line path that corresponds to a scalene triangle, for example, with sides 3, 4, 5. This test case

table 8.6 Basis paths in Figure 8.5

Original p1: A–B–C–E–F–H–J–K–M–N–O–Last Scalene

Flip p1 at B p2: A–B–D–E–F–H–J–K–M–N–O–Last Infeasible

Flip p1 at F p3: A–B–C–E–F–G–O–Last Infeasible

Flip p1 at H p4: A–B–C–E–F–H–I–N–O–Last Equilateral

Flip p1 at J p5: A–B–C–E–F–H–J–L–M–N–O–Last Isosceles

Path Testing  ◾  153

will traverse the path p1 (see Table 8.5). Now, if we flip the decision at node B, we get path p2.
Continuing the procedure, we flip the decision at node F, which yields the path p3. Now, we con-
tinue to flip decision nodes in the baseline path p1; the next node with outdegree = 2 is node H.
When we flip node H, we get the path p4. Next, we flip node J to get p5. We know we are done
because there are only five basis paths; they are shown in Table 8.5.

Time for a reality check: if you follow paths p2 and p3, you find that they are both infeasible.
Path p2 is infeasible because passing through node D means the sides are not a triangle; so the out-
come of the decision at node F must be node G. Similarly, in p3, passing through node C means
the sides do form a triangle; so node G cannot be traversed. Paths p4 and p5 are both feasible and
correspond to equilateral and isosceles triangles, respectively. Notice that we do not have a basis
path for the NotATriangle case.

Recall that dependencies in the input data domain caused difficulties for boundary value
testing and that we resolved these by going to decision table-based specification-based testing,
where we addressed data dependencies in the decision table. Here, we are dealing with code-level
dependencies, which are absolutely incompatible with the latent assumption that basis paths are
independent. McCabe’s procedure successfully identifies basis paths that are topologically inde-
pendent; however, when these contradict semantic dependencies, topologically possible paths are
seen to be logically infeasible. One solution to this problem is to always require that flipping a
decision results in a semantically feasible path. Another is to reason about logical dependencies. If
we think about this problem, we can identify two rules:

If node C is traversed, then we must traverse node H.
If node D is traversed, then we must traverse node G.

Taken together, these rules, in conjunction with McCabe’s baseline method, will yield the fol-
lowing feasible basis path set. Notice that logical dependencies reduce the size of a basis set when
basis paths must be feasible.

p1: A–B–C–E–F–H–J–K–M–N–O–Last Scalene

p6: A–B–D–E–F–G–O–Last Not a triangle

p4: A–B–C–E–F–H–I–N–O–Last Equilateral

p5: A–B–C–E–F–H–J–L–M–N–O–Last Isosceles

The triangle problem is atypical in that no loops occur. The program has only eight topologi-
cally possible paths; and of these, only the four basis paths listed above are feasible. Thus, for this
special case, we arrive at the same test cases as we did with special value testing and output range
testing.

For a more positive observation, basis path coverage guarantees DD-path coverage: the process
of flipping decisions guarantees that every decision outcome is traversed, which is the same as
DD-path coverage. We see this by example from the incidence matrix description of basis paths
and in our triangle program feasible basis paths. We could push this a step further and observe
that the set of DD-paths acts like a basis because any program path can be expressed as a linear
combination of DD-paths.

154  ◾  Software Testing

8.4.3 Essential Complexity
Part of McCabe’s work on cyclomatic complexity does more to improve programming than test-
ing. In this section, we take a quick look at this elegant blend of graph theory, structured pro-
gramming, and the implications these have for testing. This whole package centers on the notion
of essential complexity (McCabe, 1982), which is only the cyclomatic complexity of yet another
form of condensation graph. Recall that condensation graphs are a way of simplifying an exist-
ing graph; thus far, our simplifications have been based on removing either strong components or
DD-paths. Here, we condense around the structured programming constructs, which are repeated
as Figure 8.11.

The basic idea is to look for the graph of one of the structured programming constructs,
collapse it into a single node, and repeat until no more structured programming constructs can
be found. This process is followed in Figure 8.12, which starts with the DD-path graph of the
pseudocode triangle program. The if–then–else construct involving nodes B, C, D, and E is con-
densed into node a, and then the three if–then constructs are condensed onto nodes b, c, and d.
The remaining if–then–else (which corresponds to the IF IsATriangle statement) is condensed into
node e, resulting in a condensed graph with cyclomatic complexity V(G) = 1. In general, when a
program is well structured (i.e., is composed solely of the structured programming constructs), it
can always be reduced to a graph with one path.

The graph in Figure 8.10 cannot be reduced in this way (try it!). The loop with nodes B
and C cannot be condensed because of the edge from B to E. Similarly, nodes D, E, and F
look like an if–then construct, but the edge from B to E violates the structure. McCabe (1976)
went on to find elemental “unstructures” that violate the precepts of structured programming.
These are shown in Figure 8.13. Each of these violations contains three distinct paths, as
opposed to the two paths present in the corresponding structured programming constructs;

Sequence Pretest loop Posttest loop

If−�en If−�en−Else Cases/switch

Figure 8.11 Structured programming constructs.

Path Testing  ◾  155

so one conclusion is that such violations increase cyclomatic complexity. The pièce de resistance
of McCabe’s analysis is that these violations cannot occur by themselves: if one occurs in a
program, there must be at least one more, so a program cannot be only slightly unstructured.
Because these increase cyclomatic complexity, the minimum number of test cases is thereby
increased. In the next chapter, we will see that the violations have interesting implications for
data flow testing.

The bottom line for testers is this: programs with high cyclomatic complexity require more
testing. Of the organizations that use the cyclomatic complexity metric, most set some guide-
line for maximum acceptable complexity; V(G) = 10 is a common choice. What happens if
a unit has a higher complexity? Two possibilities: either simplify the unit or plan to do more
testing. If the unit is well structured, its essential complexity is 1; so it can be simplified easily.
If the unit has an essential complexity greater than 1, often the best choice is to eliminate the
violations.

First First First

First

First

First

Last

Last

Last

Last

Last

A A

a

F

A

a

F

G H G H

I

N

bI

N

O

O

J

M

K L

B

E

C D

F

G H

I

N

O

J

M

K L

(a)

(b)

(c)

e

(e)

(d)

A

a

d

A

a

F

O

G c

Figure 8.12 Condensing with respect to structured programming constructs.

156  ◾  Software Testing

8.5 Guidelines and Observations
In our study of specification-based testing, we observed that gaps and redundancies can both exist
and, at the same time, cannot be recognized. The problem was that specification-based testing
removes us too far from the code. The path testing approaches to code-based testing represent the
case where the pendulum has swung too far the other way: moving from code to directed graph
representations and program path formulations obscures important information that is present
in the code, in particular the distinction between feasible and infeasible paths. Also, no form of
code-based testing can reveal missing functionality that is specified in the requirements. In the
next chapter, we look at data flow-based testing. These techniques move closer to the code, so the
pendulum will swing back from the path analysis extreme.

McCabe (1982) was partly right when he observed, “It is important to understand that these
are purely criteria that measure the quality of testing, and not a procedure to identify test cases.”
He was referring to the DD-path coverage metric and his basis path heuristic based on cyclomatic
complexity metric. Basis path testing therefore gives us a lower boundary on how much testing is
necessary.

Path-based testing also provides us with a set of metrics that act as crosschecks on
specification-based testing. We can use these metrics to resolve the gaps and redundancies ques-
tion. When we find that the same program path is traversed by several functional test cases, we
suspect that this redundancy is not revealing new faults. When we fail to attain DD-path cover-
age, we know that there are gaps in the functional test cases. As an example, suppose we have a
program that contains extensive error handling, and we test it with boundary value test cases (min,
min+, nom, max–, and max). Because these are all permissible values, DD-paths corresponding to
the error-handling code will not be traversed. If we add test cases derived from robustness testing

Branching into a decision

Branching into a loop Branching out of a loop

Branching out of a decision

1

6

7

2 4

3 5

8

1

6

7

2 4

3 5 8

1

2

3

4

5 1

2

3

4

5

Figure 8.13 Violations of structured programming constructs.

Path Testing  ◾  157

or traditional equivalence class testing, the DD-path coverage will improve. Beyond this rather
obvious use of coverage metrics, an opportunity exists for real testing craftsmanship. Any of the
coverage metrics in Section 8.3 can operate in two ways: either as a blanket-mandated standard
(e.g., all units shall be tested to attain full DD-path coverage) or as a mechanism to selectively test
portions of code more rigorously than others. We might choose multiple-condition coverage for
modules with complex logic, while those with extensive iteration might be tested in terms of the
loop coverage techniques. This is probably the best view of structural testing: use the properties
of the source code to identify appropriate coverage metrics, and then use these as a crosscheck on
functional test cases. When the desired coverage is not attained, follow interesting paths to iden-
tify additional (special value) test cases.

EXERCISES
 1. Find the cyclomatic complexity of the graph in Figure 8.3.
 2. Identify a set of basis paths for the graph in Figure 8.3.
 3. Discuss McCabe’s concept of “flipping” for nodes with outdegree ≥ 3.
 4. Suppose we take Figure 8.3 as the DD-path graph of some program. Develop sets of paths

(which would be test cases) for the C0, C1, and C2 metrics.
 5. Develop multiple-condition coverage test cases for the pseudocode triangle program. (Pay

attention to the dependency between statement fragments 14 and 16 with the expression
(a = b) AND (b = c).)

 6. Rewrite the program segment 14–20 such that the compound conditions are replaced by
nested if–then–else statements. Compare the cyclomatic complexity of your program with
that of the existing version.

 14. If (a = b) AND (b = c)
 15. Then Output (“Equilateral”)
 16. Else If (a ≠ b) AND (a ≠ c) AND (b ≠ c)
 17. Then Output (“Scalene”)
 18. Else Output (“Isosceles”)
 19. EndIf
 20. EndIf

 7. Look carefully at the original statement fragments 14–20. What happens with a test case
(e.g., a = 3, b = 4, c = 3) in which a = c? The condition in line 14 uses the transitivity of equal-
ity to eliminate the a = c condition. Is this a problem?

 8. The codeBasedTesting.xls Excel spreadsheet at the CRC website (www.crcpress.com/
product/isbn/9781466560680) contains instrumented VBA implementations of the trian-
gle, NextDate, and commission problems that you may have analyzed with the specBased-
Testing.xls spreadsheet. The output shows the DD-path coverage of individual test cases and
an indication of any faults revealed by a failing test case. Experiment with various sets of test
cases to see if you can devise a set of test cases that has full DD-path coverage yet does not
reveal the known faults.

 9. (For mathematicians only.) For a set V to be a vector space, two operations (addition and
scalar multiplication) must be defined for elements in the set. In addition, the following
criteria must hold for all vectors x, y, and z ∈ V, and for all scalars k, l, 0, and 1:
 a. If x, y ∈ V, the vector x + y ∈ V.
 b. x + y = y + x.
 c. (x + y) + z = x + (y + z).
 d. There is a vector 0 ∈ V such that x + 0 = x.

158  ◾  Software Testing

 e. For any x ∈ V, there is a vector –x ∈ V such that x + (–x) = 0.
 f. For any x ∈ V, the vector kx ∈ V, where k is a scalar constant.
 g. k(x + y) = kx + ky.
 h. (k + l)x = kx + lx.
 i. k(lx) = (kl)x.
 j. 1x = x.

 How many of these 10 criteria hold for the “vector space” of paths in a program?

references
Beizer, B., Software Testing Techniques, Van Nostrand, New York, 1984.
Chilenski, J.J., An Investigation of Three Forms of the Modified Condition Decision Coverage (MCDC) Criterion,

DOT/FAA/AR-01/18, April 2001.
http://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc/library/ (see actlibrary.tc.faa.gov).
Huang, J.C., Detection of dataflow anomaly through program instrumentation, IEEE Transactions on Software

Engineering, Vol. SE-5, 1979, pp. 226–236.
Miller, E.F. Jr., Tutorial: Program Testing Techniques, COMPSAC ’77, IEEE Computer Society, 1977.
Miller, E.F. Jr., Automated software testing: a technical perspective, American Programmer, Vol. 4, No. 4, April

1991, pp. 38–43.
McCabe, T. J., A complexity metric, IEEE Transactions on Software Engineering, Vol. SE-2, No. 4, December

1976, pp. 308–320.
McCabe, T.J., Structural Testing: A Software Testing Methodology Using the Cyclomatic Complexity Metric,

National Bureau of Standards (Now NIST), Special Publication 500-99, Washington, DC, 1982.
McCabe, T.J., Structural Testing: A Software Testing Methodology Using the Cyclomatic Complexity Metric,

McCabe and Associates, Baltimore, 1987.
Perry, W.E., A Structured Approach to Systems Testing, QED Information Systems, Inc., Wellesley, MA, 1987.
Schach, S.R., Software Engineering, 2nd ed., Richard D. Irwin, Inc. and Aksen Associates, Inc., Homewood,

IL, 1993.

159
© 2010 Taylor & Francis Group, LLC

Chapter 9

Data Flow testing

Data flow testing is an unfortunate term because it suggests some connection with data flow
diagrams; no connection exists. Data flow testing refers to forms of structural testing that focus
on the points at which variables receive values and the points at which these values are used (or
referenced). We will see that data flow testing serves as a “reality check” on path testing; indeed,
many of the data flow testing proponents (and researchers) see this approach as a form of path test-
ing. While dataflow and slice-based testing are cumbersome at the unit level; they are well suited
for object-oriented code. We will look at two mainline forms of data flow testing: one provides a
set of basic definitions and a unifying structure of test coverage metrics, while the other is based
on a concept called a “program slice.” Both of these formalize intuitive behaviors (and analyses)
of testers; and although they both start with a program graph, both move back in the direction of
functional testing. Also, both of these methods are difficult to perform manually, and unfortu-
nately, few commercial tools exist to make life easier for the data flow and slicing testers. On the
positive side, both techniques are helpful for coding and debugging.

Most programs deliver functionality in terms of data. Variables that represent data somehow
receive values, and these values are used to compute values for other variables. Since the early
1960s, programmers have analyzed source code in terms of the points (statements and statement
fragments) at which variables receive values and points at which these values are used. Many times,
their analyses were based on concordances that list statement numbers in which variable names
occur. Concordances were popular features of second-generation language compilers (they are still
popular with COBOL programmers). Early data flow analyses often centered on a set of faults that
are now known as define/reference anomalies:

A variable that is defined but never used (referenced)
A variable that is used before it is defined
A variable that is defined twice before it is used

Each of these anomalies can be recognized from the concordance of a program. Because the
concordance information is compiler generated, these anomalies can be discovered by what is
known as static analysis: finding faults in source code without executing it.

160  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

9.1 Define/Use testing
Much of the formalization of define/use testing was done in the early 1980s (Rapps and Weyuker,
1985); the definitions in this section are compatible with those in Clarke et al. (1989), which
summarizes most define/use testing theory. This body of research is very compatible with the
formulation we developed in Chapters 4 and 8. It presumes a program graph in which nodes are
statement fragments (a fragment may be an entire statement) and programs that follow the struc-
tured programming precepts.

The following definitions refer to a program P that has a program graph G(P) and a set of
program variables V. The program graph G(P) is constructed as in Chapter 4, with statement
fragments as nodes and edges that represent node sequences. G(P) has a single-entry node and a
single-exit node. We also disallow edges from a node to itself. Paths, subpaths, and cycles are as
they were in Chapter 4. The set of all paths in P is PATHS(P).

Definition

Node n ∈ G(P) is a defining node of the variable v ∈ V, written as DEF(v, n), if and only if the value
of variable v is defined as the statement fragment corresponding to node n.

Input statements, assignment statements, loop control statements, and procedure calls are all
examples of statements that are defining nodes. When the code corresponding to such statements
executes, the contents of the memory location(s) associated with the variables are changed.

Definition

Node n ∈ G(P) is a usage node of the variable v ∈ V, written as USE(v, n), if and only if the value
of the variable v is used as the statement fragment corresponding to node n.

Output statements, assignment statements, conditional statements, loop control statements,
and procedure calls are all examples of statements that are usage nodes. When the code corre-
sponding to such statements executes, the contents of the memory location(s) associated with the
variables remain unchanged.

Definition

A usage node USE(v, n) is a predicate use (denoted as P-use) if and only if the statement n is a predi-
cate statement; otherwise, USE(v, n) is a computation use (denoted C-use).

The nodes corresponding to predicate uses always have an outdegree ≥ 2, and nodes corre-
sponding to computation uses always have an outdegree ≤ 1.

Definition

A definition/use path with respect to a variable v (denoted du-path) is a path in PATHS(P) such
that, for some v ∈ V, there are define and usage nodes DEF(v, m) and USE(v, n) such that m and
n are the initial and final nodes of the path.

Data Flow Testing  ◾  161

© 2010 Taylor & Francis Group, LLC

Definition

A definition-clear path with respect to a variable v (denoted dc-path) is a definition/use path in
PATHS(P) with initial and final nodes DEF(v, m) and USE(v, n) such that no other node in the
path is a defining node of v.

Testers should notice how these definitions capture the essence of computing with stored data
values. Du-paths and dc-paths describe the flow of data across source statements from points at
which the values are defined to points at which the values are used. Du-paths that are not defini-
tion clear are potential trouble spots. One of the main values of du-paths is they identify points
for variable “watches” and breakpoints when code is developed in an Integrated Development
Environment. Figure 9.3 illustrates this very well later in the chapter.

9.1.1 Example
We will use the commission problem and its program graph to illustrate these definitions. The
numbered pseudocode and its corresponding program graph are shown in Figure 9.1. This pro-
gram computes the commission on the sales of the total numbers of locks, stocks, and barrels sold.
The while loop is a classic sentinel controlled loop in which a value of –1 for locks signifies the end
of the sales data. The totals are accumulated as the data values are read in the while loop. After
printing this preliminary information, the sales value is computed, using the constant item prices
defined at the beginning of the program. The sales value is then used to compute the commission
in the conditional portion of the program.

Figure 9.2 shows the decision-to-decision path (DD-path) graph of the program graph in
Figure 9.1. More compression exists in this DD-path graph because of the increased computation
in the commission problem. Table 9.1 details the statement fragments associated with DD-paths.
Some DD-paths (per the definition in Chapter 8) are combined to simplify the graph. We will
need this figure later to help visualize the differences among DD-paths, du-paths, and program
slices.

Table 9.2 lists the define and usage nodes for the variables in the commission problem. We use
this information in conjunction with the program graph in Figure 9.1 to identify various defini-
tion/use and definition-clear paths. It is a judgment call whether nonexecutable statements such as
constant and variable declaration statements should be considered as defining nodes. Such nodes
are not very interesting when we follow what happens along their du-paths; but if something is
wrong, it can be helpful to include them. Take your pick. We will refer to the various paths as
sequences of node numbers.

Tables 9.3 and 9.4 present some of the du-paths in the commission problem; they are named
by their beginning and ending nodes (from Figure 9.1). The third column in Table 9.3 indicates
whether the du-paths are definition clear. Some of the du-paths are trivial—for example, those for
lockPrice, stockPrice, and barrelPrice. Others are more complex: the while loop (node sequence
<14, 15, 16, 17, 18, 19, 20>) inputs and accumulated values for total Locks, totalStocks, and total-
Barrels. Table 9.3 only shows the details for the totalStocks variable. The initial value definition for
totalStocks occurs at node 11, and it is first used at node 17. Thus, the path (11, 17), which consists
of the node sequence <11, 12, 13, 14, 15, 16, 17>, is definition clear. The path (11, 22), which
consists of the node sequence <11, 12, 13, (14, 15, 16, 17, 18, 19, 20)*, 21, 22>, is not definition
clear because values of totalStocks are defined at node 11 and (possibly several times at) node 17.
(The asterisk after the while loop is the Kleene Star notation used both in formal logic and regular
expressions to denote zero or more repetitions.)

162  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

7 8 9 10 11 12 13

14

15 21

16 22

17 23

18 24

19 25

20 26

27

28

29

30 34

35 38

36 39

37

40

41

42

43

31

32

33

1 Program Commission (INPUT,OUTPUT)
2 Dim locks, stocks, barrels As Integer
3 Dim lockPrice, stockPrice, barrelPrice As Real
4 Dim totalLocks, totalStocks, totalBarrels As Integer
5 Dim lockSales, stockSales, barrelSales As Real
6 Dim sales, commission As Real
7 lockPrice = 45.0
8 stockPrice = 30.0
9 barrelPrice = 25.0
10 totalBarrels = 0
11 totalStocks = 0
12 totalBarrels = 0
13 Input(locks)
14 While NOT(locks = –1) “locks = –1 signals end of data
15 Input(stocks, barrels)
16 totalLocks = totalLocks + locks
17 totalStocks = totalStocks + stocks
18 totalBarrels = totalBarrels + barrels
19 Input(locks)
20 EndWhile
21 Output(“Locks sold:,” totalLocks)
22 Output(“Stocks sold:,” totalStocks)
23 Output(“Barrels sold:,” totalBarrels)
24 lockSales = lockPrice*totalLocks
25 stockSales = stockPrice*totalStocks
26 barrelsSales = barrelPrice * totalBarrels
27 sales = lockSales + stockSales + barrelSales
28 Output(“Total sales: ”, sales)
29 If (sales > 1800.0)
30 �en
31 commission = 0.10 * 1000.0
32 commission = commission + 0.15 * 800.0
33 commission = commission + 0.20*(sales–1800.0)
34 Else If (sales > 1000.0)
35 �en
36 commission = 0.10 * 1000.0
37 commission = commission + 0.15*(sales–1000.0)
38 Else
39 commission = 0.10 * sales
40 EndIf
41 EndIf
42 Output(“Commission is $”, commission)
43 End Commission

Figure 9.1 Commission problem and its program graph.

Data Flow Testing  ◾  163

© 2010 Taylor & Francis Group, LLC

7 8 9 10 11 12 13

14

15 21

16 22

17 23

18

19

20

24

25

26

27

28

29

35 38

34

39

40

41

42

43

36

37

30

31

32

33

Figure 9.2 DD-path graph of commission problem pseudocode (in Figure 9.1).

164  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

9.1.2 Du-paths for Stocks
First, let us look at a simple path: the du-path for the variable stocks. We have DEF(stocks, 15) and
USE(stocks, 17), so the path <15, 17> is a du-path with respect to stocks. No other defining nodes
are used for stocks; therefore, this path is also definition clear.

9.1.3 Du-paths for Locks
Two defining and two usage nodes make the locks variable more interesting: we have DEF(locks,
13), DEF(locks, 19), USE(locks, 14), and USE(locks, 16). These yield four du-paths; they are
shown in Figure 9.3.

p1 = <13, 14>
p2 = <13, 14, 15, 16>
p3 = <19, 20, 14>
p4 = <19, 20, 14, 15, 16>

Note: du-paths p1 and p2 refer to the priming value of locks, which is read at node 13. The
locks variable has a predicate use in the while statement (node 14), and if the condition is true (as
in path p2), a computation use at statement 16. The other two du-paths start near the end of the
while loop and occur when the loop repeats. These paths provide the loop coverage discussed in
Chapter 8—bypass the loop, begin the loop, repeat the loop, and exit the loop. All these du-paths
are definition clear.

13 Input(locks)
14 While NOT(locks = –1) ‘locks = –1 signals end of data
15 Input(stocks, barrels)
16 totalLocks = totalLocks + locks
17 totalStocks = totalStocks + stocks
18 totalBarrels = totalBarrels + barrels
19 Input(locks)
20 EndWhile

p1

p2

p3

p4

13

13

13
14

14

14
14

14

19

20

19

20

19

2015

16

15

16

15

16

17

18

(Rest of
program)

Figure 9.3 Du-paths for locks.

Data Flow Testing  ◾  165

© 2010 Taylor & Francis Group, LLC

table 9.2 Define/Use Nodes for Variables in Commission problem

Variable Defined at Node Used at Node

lockPrice 7 24

stockPrice 8 25

barrelPrice 9 26

totalLocks 10, 16 16, 21, 24

totalStocks 11, 17 17, 22, 25

totalBarrels 12, 18 18, 23, 26

Locks 13, 19 14, 16

Stocks 15 17

Barrels 15 18

lockSales 24 27

stockSales 25 27

barrelSales 26 27

Sales 27 28, 29, 33, 34, 37, 38

Commission 31, 32, 33, 36, 37, 38 32, 33, 37, 41

table 9.1 DD-paths in Figure 9.1

DD-path Nodes

A 7, 8, 9, 10, 11, 12, 13

B 14

C 15, 16, 17, 18, 19, 20

D 21, 22, 23, 24, 25, 26, 27, 28

E 29

F 30, 31, 32, 33

G 34

H 35, 36, 37

I 38

J 39

K 40

L 41, 42

166  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

table 9.3 Selected Define/Use paths

Variable Path (Beginning, End) Nodes Definition Clear?

lockPrice 7, 24 Yes

stockPrice 8, 25 Yes

barrelPrice 9, 26 Yes

totalStocks 11, 17 Yes

totalStocks 11, 22 No

totalStocks 11, 25 No

totalStocks 17, 17 Yes

totalStocks 17, 22 No

totalStocks 17, 25 No

Locks 13, 14 Yes

Locks 13, 16 Yes

Locks 19, 14 Yes

Locks 19, 16 Yes

Sales 27, 28 Yes

Sales 27, 29 Yes

Sales 27, 33 Yes

Sales 27, 34 Yes

Sales 27, 37 Yes

Sales 27, 38 Yes

Data Flow Testing  ◾  167

© 2010 Taylor & Francis Group, LLC

table 9.4 Define/Use paths for Commission

Variable Path (Beginning, End) Nodes Feasible? Definition Clear?

Commission 31, 32 Yes Yes

Commission 31, 33 Yes No

Commission 31, 37 No N/A

Commission 31, 41 Yes No

Commission 32, 32 Yes Yes

Commission 32, 33 Yes Yes

Commission 32, 37 No N/A

Commission 32, 41 Yes No

Commission 33, 32 No N/A

Commission 33, 33 Yes Yes

Commission 33, 37 No N/A

Commission 33, 41 Yes Yes

Commission 36, 32 No N/A

Commission 36, 33 No N/A

Commission 36, 37 Yes Yes

Commission 36, 41 Yes No

Commission 37, 32 No N/A

Commission 37, 33 No N/A

Commission 37, 37 Yes Yes

Commission 37, 41 Yes Yes

Commission 38, 32 No N/A

Commission 38, 33 No N/A

Commission 38, 37 No N/A

Commission 38, 41 Yes Yes

168  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

9.1.4 Du-paths for totalLocks
The du-paths for totalLocks will lead us to typical test cases for computations. With two defining
nodes (DEF(totalLocks, 10) and DEF(totalLocks, 16)) and three usage nodes (USE(totalLocks,
16), USE(totalLocks, 21), USE(totalLocks, 24)), we might expect six du-paths. Let us take a
closer look.

Path p5 = <10, 11, 12, 13, 14, 15, 16> is a du-path in which the initial value of totalLocks (0)
has a computation use. This path is definition clear. The next path is problematic:

p6 = <10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 14, 21>

10 11 12 13

14

15 21

22

23

24

22

23

24

16

17

18

19

20
p7

p5

p8

p9

p6

10 11 12 13

10 11 12 13
14

14

16

17

18

19

20

16

15

17

18

19

20

16

17

18

19

20

21

14

21

14

21

15

16

10 totalLocks = 0
11 totalStocks = 0
12 totalBarrels = 0
13 Input(locks)
‘locks = –1 signals end of data
14 While NOT(locks = –1)
15 Input(stocks, barrels)
16 totalLocks = totalLocks + locks
17 totalStocks = totalStocks + stocks
18 totalBarrels = totalBarrels + barrels
19 Input(locks)
20 EndWhile
21 Output(“Locks sold:,” totalLocks)
22 Output(“Stocks sold:,” totalStocks)
23 Output(“Barrels sold:,” totalBarrels)
24 lockSales = lockPrice*totalLocks

Figure 9.4 Du-paths for totalLocks.

Data Flow Testing  ◾  169

© 2010 Taylor & Francis Group, LLC

Path p6 ignores the possible repetition of the while loop. We could highlight this by noting that
the subpath <16, 17, 18, 19, 20, 14, 15> might be traversed several times. Ignoring this for now, we
still have a du-path that fails to be definition clear. If a problem occurs with the value of totalLocks
at node 21 (the Output statement), we should look at the intervening DEF(totalLocks, 16) node.

The next path contains p6; we can show this by using a path name in place of its correspond-
ing node sequence:

p7 = <10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 14, 21, 22, 23, 24>
p7 = <p6, 22, 23, 24>

Du-path p7 is not definition clear because it includes node 16. Subpaths that begin with node 16
(an assignment statement) are interesting. The first, <16, 16>, seems degenerate. If we “expanded”
it into machine code, we would be able to separate the define and usage portions. We will disallow
these as du-paths. Technically, the usage on the right-hand side of the assignment refers to a value
defined at node 10 (see path p5). The remaining two du-paths are both subpaths of p7:

p8 = <16, 17, 18, 19, 20, 14, 21>
p9 = <16, 17, 18, 19, 20, 14, 21, 22, 23, 24>

Both are definition clear, and both have the loop iteration problem we discussed before. The
du-paths for totalLocks are shown in Figure 9.4.

9.1.5 Du-paths for Sales
There is one defining node for sales; therefore, all the du-paths with respect to sales must be defini-
tion clear. They are interesting because they illustrate predicate and computation uses. The first
three du-paths are easy:

p10 = <27, 28>
p11 = <27, 28, 29>
p12 = <27, 28, 29, 30, 31, 32, 33>

Notice that p12 is a definition-clear path with three usage nodes; it also contains paths p10 and
p11. If we were testing with p12, we know we would also have covered the other two paths. We
will revisit this toward the end of the chapter.

The IF, ELSE IF logic in statements 29 through 40 highlights an ambiguity in the original
research. Two choices for du-paths begin with path p11: one choice is the path <27, 28, 29, 30, 31,
32, 33>, and the other is the path <27, 28, 29, 34>. The remaining du-paths for sales are

p13 = <27, 28, 29, 34>
p14 = <27, 28, 29, 34, 35, 36, 37>
p15 = <27, 28, 29, 34, 38>

Note that the dynamic view is very compatible with the kind of thinking we used for DD-paths
in Chapter 8.

170  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

9.1.6 Du-paths for Commission
If you have followed this discussion carefully, you are probably dreading the analysis of du-paths
with respect to commission. You are right—it is time for a change of pace. In statements 29
through 41, the calculation of commission is controlled by ranges of the variable sales. Statements
31 to 33 build up the value of commission by using the memory location to hold intermediate
values. This is a common programming practice, and it is desirable because it shows how the final
value is computed. (We could replace these lines with the statement “commission: = 220 + 0.20 *
(sales –1800),” where 220 is the value of 0.10 * 1000 + 0.15 * 800, but this would be hard for a
maintainer to understand.) The “built-up” version uses intermediate values, and these will appear
as define and usage nodes in the du-path analysis. We decided to disallow du-paths from assign-
ment statements like 31 and 32, so we will just consider du-paths that begin with the three “real”
defining nodes: DEF(commission, 33), DEF(commission, 37), and DEF(commission, 39). Only
one usage node is used: USE(commission, 41).

9.1.7 Define/Use Test Coverage Metrics
The whole point of analyzing a program with definition/use paths is to define a set of test coverage
metrics known as the Rapps–Weyuker data flow metrics (Rapps and Weyuker, 1985). The first
three of these are equivalent to three of E.F. Miller’s metrics in Chapter 8: All-Paths, All-Edges,
and All-Nodes. The others presume that define and usage nodes have been identified for all pro-
gram variables, and that du-paths have been identified with respect to each variable. In the fol-
lowing definitions, T is a set of paths in the program graph G(P) of a program P, with the set V of
variables. It is not enough to take the cross product of the set of DEF nodes with the set of USE
nodes for a variable to define du-paths. This mechanical approach can result in infeasible paths. In
the next definitions, we assume that the define/use paths are all feasible.

Definition

The set T satisfies the All-Defs criterion for the program P if and only if for every variable v ∈ V, T
contains definition-clear paths from every defining node of v to a use of v.

Definition

The set T satisfies the All-Uses criterion for the program P if and only if for every variable v ∈ V, T
contains definition-clear paths from every defining node of v to every use of v, and to the successor
node of each USE(v, n).

Definition

The set T satisfies the All-P-Uses/Some C-Uses criterion for the program P if and only if for every
variable v ∈ V, T contains definition-clear paths from every defining node of v to every predicate
use of v; and if a definition of v has no P-uses, a definition-clear path leads to at least one computa-
tion use.

Data Flow Testing  ◾  171

© 2010 Taylor & Francis Group, LLC

Definition

The set T satisfies the All-C-Uses/Some P-Uses criterion for the program P if and only if for every
variable v ∈ V, T contains definition clear paths from every defining node of v to every computa-
tion use of v; and if a definition of v has no C-uses, a definition-clear path leads to at least one
predicate use.

Definition

The set T satisfies the All-DU-paths criterion for the program P if and only if for every variable
v ∈ V, T contains definition-clear paths from every defining node of v to every use of v and to the
successor node of each USE(v, n), and that these paths are either single loop traversals or they are
cycle free.

These test coverage metrics have several set-theory-based relationships, which are referred to as
“subsumption” in Rapps and Weyuker (1985). These relationships are shown in Figure 9.5. We
now have a more refined view of structural testing possibilities between the extremes of the (typi-
cally unattainable) All-Paths metric and the generally accepted minimum, All-Edges. What good
is all this? Define/use testing provides a rigorous, systematic way to examine points at which faults
may occur.

All-Paths

All DU-paths

All-Uses

All-Defs All P-Uses

All-Edges

All-Nodes

All C-Uses
Some P-Uses

All P-Uses
some C-Uses

Figure 9.5 rapps–Weyuker hierarchy of data flow coverage metrics.

172  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

9.1.8 Define/Use Testing for Object-Oriented Code
All of the define/use definitions thus far make no mention of where the variable is defined and where
it is used. In a procedural code, this is usually assumed to be within a unit, but it can involve proce-
dure calls to improperly coupled units. We might make this distinction by referring to these defini-
tions as “context free”; that is, the places where variables are defined and used are independent. The
object-oriented paradigm changes this—we must now consider the define and use locations with
respect to class aggregation, inheritance, dynamic binding, and polymorphism. The bottom line
is that data flow testing for object-oriented code moves from the unit level to the integration level.

9.2 Slice-Based testing
Program slices have surfaced and submerged in software engineering literature since the early
1980s. They were proposed in Mark Weiser’s dissertation in 1979 (Weiser, 1979), made more gen-
erally available in Weiser (1985), used as an approach to software maintenance in Gallagher and
Lyle (1991), and more recently used to quantify functional cohesion in Bieman (1994). During
the early 1990s, there was a flurry of published activity on slices, including a paper (Ball and Eick,
1994) describing a program to visualize program slices. This latter paper describes a tool used in
industry. (Note that it took about 20 years to move a seminal idea into industrial practice.)

Part of the utility and versatility of program slices is due to the natural, intuitively clear intent
of the concept. Informally, a program slice is a set of program statements that contributes to, or
affects the value of, a variable at some point in a program. This notion of slice corresponds to
other disciplines as well. We might study history in terms of slices—US history, European history,
Russian history, Far East history, Roman history, and so on. The way such historical slices interact
turns out to be very analogous to the way program slices interact.

We will start by growing our working definition of a program slice. We continue with the
notation we used for define/use paths: a program P that has a program graph G(P) and a set of
program variables V. The first try refines the definition in Gallagher and Lyle (1991) to allow nodes
in P(G) to refer to statement fragments.

Definition

Given a program P and a set V of variables in P, a slice on the variable set V at statement n, written
S(V, n), is the set of all statement fragments in P that contribute to the values of variables in V at
node n.

One simplifying notion—in our discussion, the set V of variables consists of a single variable,
v. Extending this to sets of more than one variable is both obvious and cumbersome. For sets V
with more than one variable, we just take the union of all the slices on the individual variables
of V. There are two basic questions about program slices, whether they are backward or forward
slices, and whether they are static or dynamic. Backward slices refer to statement fragments that
contribute to the value of v at statement n. Forward slices refer to all the program statements that
are affected by the value of v and statement n. This is one place where the define/use notions are
helpful. In a backward slice S(v, n), statement n is nicely understood as a Use node of the variable v,
that is, Use(v, n). Forward slices are not as easily described, but they certainly depend on predicate
uses and computation uses of the variable v.

Data Flow Testing  ◾  173

© 2010 Taylor & Francis Group, LLC

The static/dynamic dichotomy is more complex. We borrow two terms from database technol-
ogy to help explain the difference. In database parlance, we can refer to the intension and exten-
sions of a database. The intension (it is unique) is the fundamental database structure, presumably
expressed in a data modeling language. Populating a database creates an extension, and changes to
a populated database all result in new extensions. With this in mind, a static backward slice S(v,
n) consists of all the statements in a program that determine the value of variable v at statement n,
independent of values used in the statements. Dynamic slices refer to execution–time execution of
portions of a static slice with specific values of all variables in S(v, n). This is illustrated in Figures
9.6 and 9.7.

Listing elements of a slice S(V, n) will be cumbersome because, technically, the elements are
program statement fragments. It is much simpler to list the statement fragment numbers in P(G),
so we make the following trivial change.

Definition

Given a program P and a program graph G(P) in which statements and statement fragments are
numbered, and a set V of variables in P, the static, backward slice on the variable set V at statement
fragment n, written S(V, n), is the set of node numbers of all statement fragments in P that contrib-
ute to the values of variables in V at statement fragment n.

The idea of program slicing is to separate a program into components that have some useful
(functional) meaning. Another refinement is whether or not a program slice is executable. Adding
all the data declaration statements and other syntactically necessary statements clearly increases
the size of a slice, but the full version can be compiled and separately executed and tested. Further,
such compilable slices can be “spliced” together (Gallagher and Lyle, 1991) as a bottom–up way to
develop a program. As a test of clear diction, Gallagher and Lyle suggest the term “slice splicing.”
In a sense, this is a precursor to agile programming. The alternative is to just consider program
fragments, which we do here for space and clarity considerations. Eventually, we will develop a

13

13 13

14

19

20

14

15

16

17

18

19

20

(Rest of
program)

S(locks, 13) S(locks, 14)
S(locks, 16)
S(locks, 19)

13 Input(locks)
‘locks = –1 signals end of data
14 While NOT(locks = –1) a
15 Input(stocks, barrels)
16 totalLocks = totalLocks + locks
17 totalStocks = totalStocks + stocks
18 totalBarrels = totalBarrels + barrels
19 Input(locks)
20 EndWhile

Figure 9.6 Selected slices on locks.

174  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

lattice (a directed, acyclic graph) of static slices, in which nodes are slices and edges correspond to
the subset relationship.

The “contribute” part is more complex. In a sense, data declaration statements have an effect on
the value of a variable. For now, we only include all executable statements. The notion of contri-
bution is partially clarified by the predicate (P-use) and computation (C-use) usage distinction of
Rapps and Weyuker (1985), but we need to refine these forms of variable usage. Specifically, the
USE relationship pertains to five forms of usage:

P-use used in a predicate (decision)
C-use used in computation
O-use used for output
L-use used for location (pointers, subscripts)
I-use iteration (internal counters, loop indices)

Most of the literature on program slices just uses P-uses and C-uses. While we are at it, we
identify two forms of definition nodes:

I-def defined by input
A-def defined by assignment

13

14

15

16

17

18

21

22

23

24

19

20

10 totalLocks = 0
11 totalStocks = 0
12 totalBarrels = 0
13 Input(locks)
‘locks = –1 signals end of data
14 While NOT(locks = –1)
15 Input(stocks, barrels)
16 totalLocks = totalStocks + stocks
17 totalStocks = totalStocks + stocks
18 totalBarrels = totalBarrels + barrels
19 Input(locks)
20 EndWhile
21 Output(“Locks sold:,” totalLocks)
22 Output(“Stocks sold:,” totalStocks)
23 Output(“Barrels sold:,” totalBarrels)
24 lockSales = lockPrice*totalLocks

10 11 12 13

10 10 11 13

14 14

16 15

17

19

19

20

20

S(totalLocks, 10) S(totalLocks, 16) S(totalStocks, 17)

Figure 9.7 Selected slices in a loop.

Data Flow Testing  ◾  175

© 2010 Taylor & Francis Group, LLC

Recall our simplification that the slice S(V, n) is a slice on one variable; that is, the set V consists
of a single variable, v. If statement fragment n is a defining node for v, then n is included in the
slice. If statement fragment n is a usage node for v, then n is not included in the slice. If a statement
is both a defining and a usage node, then it is included in the slice. In a static slice, P-uses and
C-uses of other variables (not the v in the slice set V) are included to the extent that their execution
affects the value of the variable v. As a guideline, if the value of v is the same whether a statement
fragment is included or excluded, exclude the statement fragment.

L-use and I-use variables are typically invisible outside their units, but this hardly precludes the
problems such variables often create. Another judgment call: here (with some peril), we choose to
exclude these from the intent of “contribute.” Thus, O-use, L-use, and I-use nodes are excluded
from slices.

9.2.1 Example
The commission problem is used in this book because it contains interesting data flow prop-
erties, and these are not present in the triangle problem (nor in NextDate). In the following,
except where specifically noted, we are speaking of static backward slices and we only include
nodes corresponding to executable statement fragments. The examples refer to the source code
for the commission problem in Figure 9.1. There are 42 “interesting” static backward slices in
our example. They are named in Table 9.5. We will take a selective look at some interesting
slices.

The first six slices are the simplest—they are the nodes where variables are initialized.

table 9.5 Slices in Commission problem

S1: S(lockPrice, 7) S15: S(barrels, 18) S29: S(barrelSales, 26)

S2: S(stockPrice, 8) S16: S(totalBarrels, 18) S30: S(sales, 27)

S3: S(barrelPrice, 9) S17: S(locks, 19) S31: S(sales, 28)

S4: S(totalLocks, 10) S18: S(totalLocks, 21) S32: S(sales, 29)

S5: S(totalStocks, 11) S19: S(totalStocks, 22) S33: S(sales, 33)

S6: S(totalBarrels, 12) S20: S(totalBarrels, 23) S34: S(sales, 34)

S7: S(locks, 13) S21: S(lockPrice, 24) S35: S(sales, 37)

S8: S(locks, 14) S22: S(totalLocks, 24) S36: S(sales, 39)

S9: S(stocks, 15) S23: S(lockSales, 24) S37: S(commission, 31)

S10: S(barrels, 15) S24: S(stockPrice, 25) S38: S(commission, 32)

S11: S(locks, 16) S25: S(totalStocks, 25) S39: S(commission, 33)

S12: S(totalLocks, 16) S26: S(stockSales, 25) S40: S(commission, 36)

S13: S(stocks, 17) S27: S(barrelPrice, 26) S41: S(commission, 37)

S14: S(totalStocks, 17) S28: S(totalBarrels, 26) S42: S(commission, 39)

176  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

S1: S(lockPrice, 7) = {7}
S2: S(stockPrice, 8) = {8}
S3: S(barrelPrice, 9) = {9}
S4: S(totalLocks, 10) = {10}
S5: S(totalStocks, 11) = {11}
S6: S(totalBarrels, 12) = {12}

Slices 7 through 17 focus on the sentinel controlled while loop in which the totals for locks,
stocks, and barrels are accumulated. The locks variable has two uses in this loop: a P-use at frag-
ment 14 and C-use at statement 16. It also has two defining nodes, at statements 13 and 19. The
stocks and barrels variables have a defining node at 15, and computation uses at nodes 17 and 18,
respectively. Notice the presence of all relevant statement fragments in slice 8. The slices on locks
are shown in Figure 9.6.

S7: S(locks, 13) = {13}
S8: S(locks, 14) = {13, 14, 19, 20}
S9: S(stocks, 15) = {13, 14, 15, 19, 20}
S10: S(barrels, 15) = {13, 14, 15, 19, 20}
S11: S(locks, 16) = {13, 14, 19, 20}
S12: S(totalLocks, 16) = {10, 13, 14, 16, 19, 20}
S13: S(stocks, 17) = {13, 14, 15, 19, 20}
S14: S(totalStocks, 17) = {11, 13, 14, 15, 17, 19, 20}
S15: S(barrels, 18) = {12, 13, 14, 15, 19, 20}
S16: S(totalBarrels, 18) = {12, 13, 14, 15, 18, 19, 20}
S17: S(locks, 19) = {13, 14, 19, 20}

Slices 18, 19, and 20 are output statements, and none of the variables is defined; hence, the
corresponding statements are not included in these slices.

S18: S(totalLocks, 21) = {10, 13, 14, 16, 19, 20}
S19: S(totalStocks, 22) = {11, 13, 14, 15, 17, 19, 20}
S20: S(totalBarrels, 23) = {12, 13, 14, 15, 18, 19, 20}

Slices 21 through 30 deal with the calculation of the variable sales. As an aside, we could sim-
ply write S30: S(sales, 27) = S23 ∪ S26 ∪ S29 ∪ {27}. This is more like the form that Weiser (1979)
refers to in his dissertation—a natural way to think about program fragments. Gallagher and
Lyle (1991) echo this as a thought pattern among maintenance programmers. This also leads to
Gallager’s “slice splicing” concept. Slice S23 computes the total lock sales, S25 the total stock sales,
and S28 the total barrel sales. In a bottom–up way, these slices could be separately coded and
tested, and later spliced together. “Splicing” is actually an apt metaphor—anyone who has ever
spliced a twisted rope line knows that splicing involves carefully merging individual strands at just
the right places. (See Figure 9.7 for the effect of looping on a slice.)

S21: S(lockPrice, 24) = {7}
S22: S(totalLocks, 24) = {10, 13, 14, 16, 19, 20}
S23: S(lockSales, 24) = {7, 10, 13, 14, 16, 19, 20, 24}
S24: S(stockPrice, 25) = {8}

Data Flow Testing  ◾  177

© 2010 Taylor & Francis Group, LLC

S25: S(totalStocks, 25) = {11, 13, 14, 15, 17, 19, 20}
S26: S(stockSales, 25) = {8, 11, 13, 14, 15, 17, 19, 20, 25}
S27: S(barrelPrice, 26) = {9}
S28: S(totalBarrels, 26) = {12, 13, 14, 15, 18, 19, 20}
S29: S(barrelSales, 26) = {9, 12, 13, 14, 15, 18, 19, 20, 26}
S30: S(sales, 27) = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27}

Slices 31 through 36 are identical. Slice S31 is an O-use of sales; the others are all C-uses. Since
none of these changes the value of sales defined at S30, we only show one set of statement fragment
numbers here.

S31: S(sales, 28) = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27}

The last seven slices deal with the calculation of commission from the value of sales. This is
literally where it all comes together.

S37: S(commission, 31) = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 29,
30, 31}

S38: S(commission, 32) = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 29,
30, 31, 32}

S39: S(commission, 33) = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 29,
30, 31, 32, 33}

S40: S(commission, 36) = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 29,
34, 35, 36}

S41: S(commission, 37) = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 29,
34, 35, 36, 37}

S42: S(commission, 39) = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 29,
34, 38, 39}

S43: S(commission, 41) = { 7, 8, 9 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 29, 30,
31, 32, 33, 34, 35, 36, 37, 39}

Looking at slices as sets of fragment numbers (Figure 9.8) is correct in terms of our definition,
but it is also helpful to see how slices are composed of sets of previous slices. We do this next, and
show the final lattice in Figure 9.9.

S1: S(lockPrice, 7) = {7}
S2: S(stockPrice, 8) = {8}
S3: S(barrelPrice, 9) = {9}
S4: S(totalLocks, 10) = {10}
S5: S(totalStocks, 11) = {11}
S6: S(totalBarrels, 12) = {12}
S7: S(locks, 13) = {13}
S8: S(locks, 14) = S7 ∪ {14, 19, 20}
S9: S(stocks, 15) = S8 ∪ {15}
S10: S(barrels, 15) = S8
S11: S(locks, 16) = S8
S12: S(totalLocks, 16) = S4 ∪ S11 ∪ {16}
S13: S(stocks, 17) = S9 = {13, 14, 19, 20}

178  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

S14: S(totalStocks, 17) = S5 ∪ S13 ∪ {17}
S15: S(barrels, 18) = S6 ∪ S10
S16: S(totalBarrels, 18) = S6 ∪ S15 ∪ {18}
S18: S(totalLocks, 21) = S12

S43

S37

S38

S39 S42

S30

S40

S41

S31, S32,
S33, S34,
S35, S36,

S26

S25S24

S2 S14

S5 S13

S9

S8

S22

S23

S21

S12

S11S4

S7

S1

S29

S28S27

S3 S20

S16

S6

S15

S10

Figure 9.9 Full lattice on commission.

S43

S39

S38

S41 S42

S40

S30

S37

Figure 9.8 partial lattice of slices on commission.

Data Flow Testing  ◾  179

© 2010 Taylor & Francis Group, LLC

S19: S(totalStocks, 22) = S14
S20: S(totalBarrels, 23) = S16
S21: S(lockPrice, 24) = S1
S22: S(totalLocks, 24) = S12
S23: S(lockSales, 24) = S21 ∪ S22 ∪ {24}
S24: S(stockPrice, 25) = S2
S25: S(totalStocks, 25) = S14
S26: S(stockSales, 25) = S24 ∪ S25 ∪ {25}
S27: S(barrelPrice, 26) = S3
S28: S(totalBarrels, 26) = S20
S29: S(barrelSales, 26) = S27 ∪ S28 ∪ {26}
S30: S(sales, 27) = S23 ∪ S26 ∪ S29 ∪ {27}
S31: S(sales, 28) = S30
S32: S(sales, 29) = S30
S33: S(sales, 33) = S30
S34: S(sales, 34) = S30
S35: S(sales, 37) = S30
S36: S(sales, 39) = S30
S37: S(commission, 31) = S30 ∪ {29, 30, 31}
S38: S(commission, 32) = S37 ∪ {32}
S39: S(commission, 33) = S38 ∪ {33}
S40: S(commission, 36) = S30 ∪ {29, 34, 35, 36}
S41: S(commission, 37) = S40 ∪ {37}
S42: S(commission, 39) = S30 ∪ {29, 34, 38, 39}
S43: S(commission, 41) = S39 ∪ S41 ∪ S42

Several of the connections in Figure 9.9 are double-headed arrows indicating set equivalence.
(Recall from Chapter 3 that if A ⊆ B and B ⊆ A, then A = B.) We can clean up Figure 9.9 by
removing these, and thereby get a better lattice. The result of doing this is in Figure 9.10.

9.2.2 Style and Technique
When we analyze a program in terms of interesting slices, we can focus on parts of interest while
disregarding unrelated parts. We could not do this with du-paths—they are sequences that include
statements and variables that may not be of interest. Before discussing some analytic techniques,
we will first look at “good style.” We could have built these stylistic precepts into the definitions,
but then the definitions are more restrictive than necessary.

 1. Never make a slice S(V, n) for which variables v of V do not appear in statement fragment n.
This possibility is permitted by the definition of a slice, but it is bad practice. As an example,
suppose we defined a slice on the locks variable at node 27. Defining such slices necessitates
tracking the values of all variables at all points in the program.

 2. Make slices on one variable. The set V in slice S(V, n) can contain several variables, and
sometimes such slices are useful. The slice S(V, 27) where

 V = {lockSales, stockSales, barrelSales}

 contains all the elements of the slice S30: S(sales, 27) except statement 27.

180  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

 3. Make slices for all A-def nodes. When a variable is computed by an assignment statement, a
slice on the variable at that statement will include (portions of) all du-paths of the variables
used in the computation. Slice S30: S(sales, 27) is a good example of an A-def slice. Similarly
for variables defined by input statements (I-def nodes), such as S10: S(barrels, 15).

 4. There is not much reason to make slices on variables that occur in output statements. Slices
on O-use variables can always be expressed as unions of slices on all the A-defs (and I-defs)
of the O-use variable.

 5. Make slices for P-use nodes. When a variable is used in a predicate, the slice on that variable
at the decision statement shows how the predicate variable got its value. This is very useful
in decision-intensive programs such as the triangle program and NextDate.

 6. Consider making slices compilable. Nothing in the definition of a slice requires that the set
of statements is compilable; however, if we make this choice, it means that a set of compiler
directive and data declaration statements is a subset of every slice. If we added this same set of
statements to all the slices we made for the commission program, our lattices remain undis-
turbed; however, each slice is separately compilable (and therefore executable). In Chapter 1,
we suggested that good testing practices lead to better programming practices. Here, we have a
good example. Think about developing programs in terms of compilable slices. If we did this,
we could code a slice and immediately test it. We can then code and test other slices and merge
them (sometimes called “slice splicing”) into a fairly solid program. This is done in Section 9.2.3.

S43

S41 S42

S40

S30

S23

S1

S4

S12

S26 S29

S2

S5

S9

S8

S7

S13

S15

S10 S6

S14 S3 S20

S39

S38

S37

Figure 9.10 Simplified lattice on commission.

Data Flow Testing  ◾  181

© 2010 Taylor & Francis Group, LLC

9.2.3 Slice Splicing
The commission program is deliberately small, yet it suffices to illustrate the idea of “slice splicing.”
In Figures 9.11 through 9.14, the commission program is split into four slices. Statement fragment
numbers and the program graphs are as they were in Figure 9.1. Slice 1 contains the input while
loop controlled by the locks variable. This is a good starting point because both Slice 2 and Slice
3 use the loop to get input values for stocks and barrels, respectively. Slices 1, 2, and 3 each cul-
minate in a value of sales, which is the starting point for Slice 4, which computes the commission
bases on the value of sales.

This is overkill for this small example; however, the idea extends perfectly to larger programs.
It also illustrates the basis for program comprehension needed in software maintenance. Slices
allow the maintenance programmer to focus on the issues at hand and avoid the extraneous infor-
mation that would be in du-paths.

7

13

14

16

19

20

21

24

27

28

 1 Program Slice1 (INPUT,OUTPUT)
 2 Dim locks As Integer
 3 Dim lockPrice As Real
 4 Dim totalLocks As Integer
 5 Dim lockSales As Real
 6 Dim sales As Real
 7 lockPrice = 45.0
13 Input(locks)
‘locks = –1 signals end of data
14 While NOT(locks = –1)
16 totalLocks = totalLocks + locks
19 Input(locks)
20 EndWhile
21 Output(“Locks sold:”, totalLocks)
24 lockSales = lockPrice*totalLocks
27 sales = lockSales
28 Output(“Total sales: ”, sales)

Figure 9.11 Slice 1.

8 11 13

14

15

17

19

20

22

25

27

28

 1 Program Slice2 (INPUT,OUTPUT)
 2 Dim locks, stocks As Integer
 3 Dim stockPrice As Real
 4 Dim totalStocks As Integer
 5 Dim stockSales As Real
 6 Dim sales As Real
 8 stockPrice = 30.0
11 totalStocks = 0
13 Input(locks)
‘locks = –1 signals end of data
14 While NOT(locks = –1)
15 Input(stocks)
17 totalStocks = totalStocks + stocks
19 Input(locks)
20 EndWhile
22 Output(“Stocks sold:,” totalStocks)
25 stockSales = stockPrice*totalStockd
27 sales = stockSales
28 Output(“Total sales:,” sales)

Figure 9.12 Slice 2.

182  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

9.3 program Slicing tools
Any reader who has gone carefully through the preceding section will agree that program slicing
is not a viable manual approach. I hesitate assigning a slicing exercise to my university students
because the actual learning is only marginal in terms of the time spent with good tools; however,
program slicing has its place. There are a few program slicing tools; most are academic or experi-
mental, but there are a very few commercial tools. (See Hoffner [1995] for a dated comparison.)

The more elaborate tools feature interprocedural slicing, something clearly useful for large
systems. Much of the market uses program slicing to improve the program comprehension that
maintenance programmers need. One, JSlice, will be appropriate for object-oriented software.
Table 9.6 summarizes a few program slicing tools.

 1 Program Slice4 (INPUT,OUTPUT)
 6 Dim sales, commission As Real
29 If (sales>1800.0)
30 �en
31 commission = 0.10 * 1000.0
32 commission = commission + 0.15*800.0
33 commission = commission + 0.20*(sales–1800.0)
34 Else If (sales > 1000.0)
35 �en
36 commission = 0.10 * 1000.0
37 commission = commission + 0.15*(sales–1000.0)
38 Else
39 commission = 0.10 * sales
40 EndIf
41 EndIf
42 Output(“Commission is $,” commission)
43 End Commission

41

42

43

29

34

40

30

32

31

33

36

35 38

39

37

Figure 9.14 Slice 4.

9 12

14

15

17

18

19

20

23

26

27

28

13

 1 Program Slice3 (INPUT,OUTPUT)
 2 Dim locks, barrels As integer
 3 Dim barrelPrice As Real
 4 Dim totalBarrels As Integer
 5 Dim barrelSales As Real
 6 Dim sales As Real
 9 barrelPrice = 25.0
12 totalBarrels = 0
13 Input(locks)
‘locks = –1 signals end of data
14 While NOT(locks = –1)
15 Input(barrels)
18 totalBarrels = totalBarrels + barrels
19 Input(locks)
20 EndWhile
23 Output(“Barrels sold:,” totalBarrels)
26 barrelSales = barrelsPrice * totalBarrles
27 sales = barrelSales
28 Output(“Total sales:,” sales)

Figure 9.13 Slice 3.

Data Flow Testing  ◾  183

© 2010 Taylor & Francis Group, LLC

EXERCISES
 1. Think about the static versus dynamic ambiguity of du-paths in terms of DD-paths. As a

start, what DD-paths are found in the du-paths p12, p13, and p14 for sales?
 2. Try to merge some of the DD-path-based test coverage metrics into the Rapps–Weyuker

hierarchy shown in Figure 9.5.
 3. List the du-paths for the commission variable.
 4. Our discussion of slices in this chapter has actually been about “backward slices” in the

sense that we are always concerned with parts of a program that contribute to the value of a
variable at a certain point in the program. We could also consider “forward slices” that refer
to parts of the program where the variable is used. Compare and contrast forward slices with
du-paths.

references
Bieman, J.M. and Ott, L.M., Measuring functional cohesion, IEEE Transactions on Software Engineering, Vol.

SE-20, No. 8, August 1994, pp. 644–657.
Ball, T. and Eick, S.G., Visualizing program slices, Proceedings of the 1994 IEEE Symposium on Visual

Languages, St. Louis, MO, October 1994, pp. 288–295.
Clarke, L.A. et al., A formal evaluation of dataflow path selection criteria, IEEE Transactions on Software

Engineering, Vol. SE-15, No. 11, November 1989, pp. 1318–1332.
Gallagher, K.B. and Lyle, J.R., Using program slicing in software maintenance, IEEE Transactions on Software

Engineering, Vol. SE-17, No. 8, August 1991, pp. 751–761.
Hoffner, T., Evaluation and Comparison of Program Slicing Tools, Technical Report, Dept. of Computer and

Information Science, Linkoping University, Sweden, 1995.
Rapps, S. and Weyuker, E.J., Selecting software test data using dataflow information, IEEE Transactions on

Software Engineering, Vol. SE-11, No. 4, April 1985, pp. 367–375.
Weiser, M., Program Slices: Formal Psychological and Practical Investigations of an Automatic Program Abstraction

Method. PhD thesis, University of Michigan, Ann Arbor, MI. 1979.
Weiser, M.D., Program slicing, IEEE Transactions on Software Engineering, Vol. SE-10, No. 4, April 1988,

pp. 352–357.

table 9.6 Selected program Slicing tools

Tool/Product Language Static/Dynamic?

Kamkar Pascal Dynamic

Spyder ANSI C Dynamic

Unravel ANSI C Static

CodeSonar® C, C++ Static

Indus/Kaveri Java Static

JSlice Java Dynamic

SeeSlice C Dynamic

185
© 2010 Taylor & Francis Group, LLC

Chapter 10

retrospective on Unit testing

When should unit testing stop? Here are some possible answers:

 1. When you run out of time
 2. When continued testing causes no new failures
 3. When continued testing reveals no new faults
 4. When you cannot think of any new test cases
 5. When you reach a point of diminishing returns
 6. When mandated coverage has been attained
 7. When all faults have been removed

Unfortunately, the first answer is all too common, and the seventh cannot be guaranteed.
This leaves the testing craftsperson somewhere in the middle. Software reliability models provide
answers that support the second and third choices; both of these have been used with success in
industry. The fourth choice is curious: if you have followed the precepts and guidelines we have
been discussing, this is probably a good answer. On the other hand, if the reason is due to a lack
of motivation, this choice is as unfortunate as the first. The point of diminishing returns choice
has some appeal: it suggests that serious testing has continued, and the discovery of new faults has
slowed dramatically. Continued testing becomes very expensive and may reveal no new faults. If
the cost (or risk) of remaining faults can be determined, the trade-off is clear. (This is a big IF.)
We are left with the coverage answer, and it is a pretty good one. In this chapter, we will see how
using structural testing as a cross-check on functional testing yields powerful results. First, we
take a broad brush look at the unit testing methods we studied. Metaphorically, this is pictured
as a pendulum that swings between extremes. Next, we follow one swing of the pendulum from
the most abstract form of code-based testing through strongly semantic-based methods, and then
back toward the very abstract shades of specification-based testing. We do this tour with the
triangle program. After that, some recommendations for both forms of unit testing, followed by
another case study—this time of an automobile insurance example.

186  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

10.1 the test Method pendulum
As with many things in life, there is a pendulum that swings between two extremes. The test
method pendulum swings between two extremes of low semantic content—from strictly topologi-
cal to purely functional. As testing methods move away from the extremes and toward the center,
they become, at once, both more effective and more difficult (see Figure 10.1).

On the code-based side, path-based testing relies on the connectivity of a program graph—the
semantic meaning of the nodes is lost. A program graph is a purely topological abstraction of the
code, and is nearly devoid of code meaning—only the control flow remains. This gives rise to
program paths that can never be recognized as infeasible by automated means. Moving to data
flow testing, the kinds of dependencies that typically create infeasible paths can often be detected.
Finally, when viewed in terms of slices, we arrive as close as we can to the semantic meaning of
the code.

On the specification-based side, testing based only on boundary values of the variables is vul-
nerable to severe gaps and redundancies, neither of which can be known in purely specification-
based testing. Equivalence class testing uses the “similar treatment” idea to identify classes, and
in doing so, uses more of the semantic meaning of the specification. Finally, decision table testing
uses both necessary and impossible combinations of conditions, derived from the specification, to
deal with complex logical considerations.

On both sides of the testing pendulum, test case identification becomes easier as we move
toward the extremes. It also becomes less effective. As testing techniques move toward higher
semantic meaning, they become more difficult to automate—and more effective. Hmmm …
could it be that, when he wrote “The Pit and the Pendulum,” Edgar Allan Poe was actually think-
ing about testing as a pit, and methods as a pendulum? You decide. Meanwhile, these ideas are
approximated in Figure 10.2.

These graphs need some elaboration. Starting with program graph testing, notice that the
nodes contain absolutely no semantic information about the statement fragments—and the edges
just describe whether one fragment can be executed after a predecessor fragment. Paths in a

Code-based
testing

Spec-based
testing

Path
testing Data flow

testing
Slice

testing

Decision
table

testing

Equivalence
class

testing

Boundary
value

testing

Low
semantic
content

Low
semantic
contentHigh

semantic
content

Increasing tool support

Increasing ease of test case identification

Decreasing effectiveness

Figure 10.1 test method pendulum.

Retrospective on Unit Testing  ◾  187

© 2010 Taylor & Francis Group, LLC

program graph are all topologically possible—in fact, they can be generated mathematically with
Warshall’s algorithm. The problem is that the set of topologically possible paths includes both fea-
sible and infeasible paths, as we discussed in Chapter 8. Moving in the direction of McCabe’s basis
path testing adds a little semantic content. The recommended starting point is a mainline path
that represents common unit functionality. The basis path method runs into trouble after that
due to the heuristic of simply “flipping” decisions as they are encountered on the starting point
path. This also leads to the possibility of infeasible paths. When testing moves to the define/use
domain, we use more semantic meaning. We follow where values of variables are defined and later
used. The distinction between du-paths and definition-clear du-paths gives the tester even more
semantic information. Finally, backward slices do two things, they eliminate unwanted detail, and
thereby focus attention exactly where it is needed—all the statements affecting the value of a vari-
able at a given point in a program. The program slicing literature contains extensive discussions of
automatic slicing algorithms that are beyond the scope of this book.

On the specification-based side, the various forms of boundary value testing are shown as
the most abstract. All test cases are derived from properties of the input space with absolutely no
consideration about how the values are used in the unit code. When we move to equivalence class
testing, the prime factor that determines a class is the “similar treatment” principle. Clearly, this
moves in the direction of semantic meaning. Moving from equivalence class testing to decision
table testing is usually done for two reasons: the presence of dependencies among the variables and
the possibility of impossible combinations.

Test case identification effort

Number of test cases

High

Low

High

Low

Program
graph
testing

Decision
table

testing

Equivalence
class

testing

Boundary
value

testing

Du-path
testing

Basic path
testing

Slice
testing

Program
graph
testing

Decision
table

testing

Equivalence
class

testing

Boundary
value

testing

Du-path
testing

Basic path
testing

Slice
testing

Figure 10.2 Effort and efficacy of unit test methods.

188  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

The lower half of Figure 10.2 shows that, for specification-based testing, there is a true trade-
off between test case creation effort and test case execution time. If the testing is automated, as in
a jUnit environment, this is not a penalty. On the code-based side, as methods get more sophisti-
cated, they concurrently generate more test cases.

The bottom line to this discussion is that the combination of specification-based and code-
based methods depends on the nature of the unit being tested, and this is where testers can exhibit
craftsmanship.

10.2 traversing the pendulum
We will use the triangle program to explore some of the lessons of the testing pendulum. We begin
with the FORTRAN-like version so popular in the early literature. We use this implementation
here, mostly because it is the most frequently used in testing literature (Brown and Lipov, 1975;
Pressman, 1982). The flowchart from Chapter 2 is repeated here in Figure 10.3, and transformed
to a directed graph in Figure 10.4. The numbers of the flowchart symbols are preserved as node
numbers in the corresponding directed acyclic graph in Figure 10.4.

We can begin to see some of the difficulties when we base testing on a program graph. There
are 80 topologically possible paths in Figure 10.4 (and also in Figure 10.3), but only 11 of these are
feasible; they are listed in Table 10.1. Since this is at one abstract end of the testing pendulum, we
cannot expect any automated help to separate feasible from infeasible paths. Much of the infea-
sibility is due to the Match variable. Its intent was to reduce the number of decisions. The boxes
incrementing the Match variable depend on tests of equality among the three pairs of sides. Of
the eight paths from box 1 to box 7, the logically possible values of Match are 0, 1, 2, 3, and 6. The
three impossible paths correspond to exactly two pairs of sides being equal, which, by transitivity,
is impossible. There are 13 decisions in the flowchart, so the goal of reducing decisions was missed
anyway.

What suggests that this is a FORTRAN-like implementation is that, in the early days of
FORTRAN programming, memory was expensive and computers were relatively slow. On the
basis of the flowchart, a good FORTRAN programmer would compute the sums of pairs (a + b,
a + c, and b + c) only once and use these again in the decisions checking the triangle inequality
(decisions 8, 9, 10, 14, 17, and 19).

Moving on to basis path testing, we have another problem. The program graph in Figure 10.4
has a cyclomatic complexity of 14. McCabe’s basis path method would ask us to find 14 test cases,
but there are only 11 feasible paths. Again, this view is too far removed from the semantic mean-
ing of the code to help.

Data flow testing will give us some valuable insights. Consider du-paths on the Match vari-
able. It has four definition nodes, three computation uses, and four predicate uses, so there are 28
possible du-paths. Looking at the definition-clear paths will be a good start to data flow testing.
The sides, a, b, and c, have one definition node and nine use nodes. All nine du-paths on these
variables will be definition clear. That means very little can happen to these variables unless there
is an input problem.

Testing using backward static slices would be a good idea. Although no variable for this appears
in the original flowchart, we can postulate a variable, triangleType, that has the four string val-
ues shown in boxes 11, 12, 15, and 20. The first slice to test would be S(triangleType, 11), which
represents the only way to have a scalene triangle. We could test it with three test cases: (a, b, c) =
(3, 4, 5), = (4, 5, 3), and = (5, 3, 4). These triplets let each variable take on all three possibilities,

Retrospective on Unit Testing  ◾  189

© 2010 Taylor & Francis Group, LLC

a little like a Sudoku puzzle. Similar comments apply to the slice S(triangleType, 20) where the
expected value of triangleType is “Equilateral.” Here we would only need one test case, maybe
foreshadowing equivalence class testing. The last slices to test would be for isosceles triangles, and
then six ways for a, b, and c to fail to constitute sides of a triangle.

Notice that, in the pendulum swing from the very abstract program graphs to the semantically
rich slice-based testing, the testing is improved. We can expect the same on the specification-based
side.

Input a, b, c

Match = 0

1
a = b?

3
a = c?

5
b = c?

7
Match = 0?

13
Match = 1?

16
Match = 2?

17
a + c ≤ b?

14
a + b ≤ c?

8
a + b ≤ c?

9
a + c ≤ b?

10
b + c ≤ a?

19
b + c ≤ a?

18
Match = 3?

20
Equilateral

15
Isosceles

11
Scalene

12
Not a triangle

Y

Y

Y

Y

2, Match = Match + 1

4, Match = Match + 2

6, Match = Match + 3

N

N

N

N

N

N

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

Figure 10.3 Flowchart of FOrtraN-like triangle program.

190  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

V(G) = e – n + p
 = 33 – 20 + 1
 = 14

1

3

2

4

6

13

16

18 17 14

19

20 15 12 11

10

8

9

5

7

End

Figure 10.4 Directed graph of the FOrtraN-like triangle program.

table 10.1 Feasible paths in FOrtraN-Like triangle program

Path Node Sequence Description

p1 1–2–3–4–5–6–7–13–16–18–20 Equilateral

p2 1–3–5–6–7–13–16–18–19–15 Isosceles (b = c)

p3 1–3–5–6–7–13–16–18–19–12 Not a triangle (b = c)

p4 1–3–4–5–7–13–16–17–15 Isosceles (a = c)

p5 1–3–4–5–7–13–16–17–12 Not a triangle (a = c)

p6 1–2–3–5–7–13–14–15 Isosceles (a = b)

p7 1–2–3–5–7–13–14–12 Not a triangle (a = b)

p8 1–3–5–7–8–12 Not a triangle (a + b ≤ c)

p9 1–3–5–7–8–9–12 Not a triangle (b + c ≤ a)

p10 1–3–5–7–8–9–10–12 Not a triangle (a + c ≤ b)

p11 1–3–5–7–8–9–10–11 Scalene

Retrospective on Unit Testing  ◾  191

© 2010 Taylor & Francis Group, LLC

Suppose we use boundary value testing to define test cases. We will do this for both the basic
and worst-case formulations. Table 10.2 shows the test cases generated using the nominal bound-
ary value form of functional testing. The last column shows the path (from Table 10.1) taken by
the test case.

The following paths are covered: p1, p2, p3, p4, p5, p6, p7; paths p8, p9, p10, p11 are missed.
Now suppose we use a more powerful functional testing technique, worst-case boundary value
testing. We saw, in Chapter 5, that this yields 125 test cases; they are summarized here in Table
10.3 so you can see the extent of the redundant path coverage.

Taken together, the 125 test cases provide full path coverage, but the redundancy is onerous.
The next step in the pendulum progression is equivalence class testing. For the triangle prob-

lem, equivalence classes on the individual variables are pointless. Instead, we can make equivalence

table 10.2 path Coverage of Nominal Boundary Values

Case a b c Expected Output Path

1 100 100 1 Isosceles p6

2 100 100 2 Isosceles p6

3 100 100 100 Equilateral p1

4 100 100 199 Isosceles p6

5 100 100 200 Not a triangle p7

6 100 1 100 Isosceles p4

7 100 2 100 Isosceles p4

8 100 100 100 Equilateral p1

9 100 199 100 Isosceles p4

10 100 200 100 Not a triangle p5

11 1 100 100 Isosceles p2

12 2 100 100 Isosceles p2

13 100 100 100 Equilateral p1

14 199 100 100 Isosceles p2

15 200 100 100 Not a triangle p3

table 10.3 path Coverage of Worst-Case Values

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Nominal 3 3 1 3 1 3 1 0 0 0 0

Worst-case 5 12 6 11 6 12 7 17 18 19 12

192  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

classes on the types of triangles, and the six ways that the variables a, b, and c can fail to be sides
of a triangle. In Chapter 6 (Section 6.4), we ended up with these equivalence classes:

D1 = {<a, b, c>: a = b = c}
D2 = {<a, b, c>: a = b, a ≠ c}
D3 = {<a, b, c>: a = c, a ≠ b}
D4 = {<a, b, c>: b = c, a ≠ b}
D5 = {<a, b, c>: a ≠ b, a ≠ c, b ≠ c}
D6 = {<a, b, c>: a > b + c}
D7 = {<a, b, c>: b > a + c}
D8 = {<a, b, c>: c > a + b}
D9 = {<a, b, c>: a = b + c}
D10 = {<a, b, c>: b = a + c}
D11 = {<a, b, c>: c = a + b}

table 10.4 Decision table for FOrtraN-Like triangle program

c1. Match = 0 1 2

c2. a + b < c? T F! F! F T F! F! F T F! F! F

c3. a + c < b? F! T F! F F! T F! F F! T F! F

c4. b + c < a? F! F! T F F! F! T F F! F! T F

a1. Scalene ×

a2. Not a
triangle

× × × × × × × × ×

a3. Isosceles × ×

a4. Equilateral

a5. Impossible

c1. Match = 3 4 5 6

c2. a + b < c? T F! F! F — — T F! F! F

c3. a + c < b? F! T F! F — — F! T F! F

c4. b + c < a? F! F! T F — — F! F! T F

a1. Scalene

a2. Not a
triangle

× × × × × ×

a3. Isosceles ×

a4. Equilateral ×

a5. Impossible × ×

Retrospective on Unit Testing  ◾  193

© 2010 Taylor & Francis Group, LLC

Since these are equivalence classes, we will have just 11 test cases, and we know we will have
full coverage of the 11 feasible paths in Figure 10.3.

The last step is to see if decision tables will add anything to the equivalence class test cases.
They do not, but they can provide some insight into the decisions in the FORTRAN-like flow-
chart. In the decision table in Table 10.4, first notice that the condition on Match is an extended
entry. Although it is topologically possible to have Match = 4 and Match = 5, these values are
logically impossible. Conditions c2, c3, and c4 are exactly those used in the flowchart. We use the
F! (must be false) notation to denote the impossibility of more than one of these conditions to be
true. Also, note that there is no point in developing conditions on the individual variables a, b, and
c. To conclude the traversal of the pendulum, decision table–based testing did not add much, but
it did highlight why some cases are impossible.

10.3 Evaluating test Methods
Evaluating a test method reduces to ways to evaluate how effective is a set of test cases generated
by a test method, but we need to clarify what “effective” means. The easy choice is to be dogmatic:
mandate a method, use it to generate test cases, and then run the test cases. This is absolute, and
conformity is measurable; so it can be used as a basis for contractual compliance. We can improve on
this by relaxing a dogmatic mandate and require that testers choose “appropriate methods,” using the
guidelines given at the ends of various chapters here. We can gain another incremental improvement
by devising appropriate hybrid methods; we will have an example of this in Section 10.4.

Structured testing techniques yield a second choice for test effectiveness. We can use the notion
of program execution paths, which provide a good formulation of test effectiveness. We will be
able to examine a set of test cases in terms of the execution paths traversed. When a particular path
is traversed more than once, we might question the redundancy. Mutation testing, the subject of
Chapter 21, is an interesting way to assess the utility of a set of test cases.

The best interpretation for testing effectiveness is (no great surprise) the most difficult. We
would really like to know how effective a set of test cases is for finding faults present in a program.
This is problematic for two reasons: first, it presumes we know all the faults in a program. Quite
a circularity—if we did, we would take care of them. Because we do not know all the faults in
a program, we could never know if the test cases from a given method revealed them. The sec-
ond reason is more theoretical: proving that a program is fault-free is equivalent to the famous
halting problem of computer science, which is known to be impossible. The best we can do is to
work backward from fault types. Given a particular kind of fault, we can choose testing methods
(specification-based and code-based) that are likely to reveal faults of that type. If we couple this
with knowledge of the most likely kinds of faults, we end up with a pragmatic approach to testing
effectiveness. This is improved if we track the kinds (and frequencies) of faults in the software we
develop.

By now, we have convinced ourselves that the specification-based methods are indeed open to
the twin problems of gaps and redundancies; we can develop some metrics that relate the effective-
ness of a specification-based technique with the achievement of a code-based metric. Specification-
based testing techniques always result in a set of test cases, and a code-based metric is always
expressed in terms of something countable, such as the number of program paths, the number of
decision-to-decision paths (DD-paths), or the number of slices.

In the following definitions, we assume that a specification-based testing technique M gener-
ates m test cases, and that these test cases are tracked with respect to a code-based metric S that

194  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

identifies s elements in the unit under test. When the m test cases are executed, they traverse n of
the s structural elements.

Definition

The coverage of a methodology M with respect to a metric S is the ratio of n to s. We denote it as
C(M,S).

Definition

The redundancy of a methodology M with respect to a metric S is the ratio of m to s. We denote it as
R(M,S).

Definition

The net redundancy of a methodology M with respect to a metric S is the ratio of m to n. We denote
it as NR(M,S).

We interpret these metrics as follows: the coverage metric, C(M,S), deals with gaps. When this
value is less than 1, there are gaps in the coverage with respect to the metric. Notice that, when
C(M,S) = 1, algebra forces R(M,S) = NR(M,S). The redundancy metric is obvious—the bigger
it is, the greater the redundancy. Net redundancy is more useful—it refers to things actually tra-
versed, not to the total space of things to be traversed. Taken together, these three metrics give
a quantitative way to evaluate the effectiveness of any specification-based testing method (except
special value testing) with respect to a code-based metric. This is only half the battle, however.
What we really would like is to know how effective test cases are with respect to kinds of faults.
Unfortunately, information such as this simply is not available. We can come close by selecting
code-based metrics with respect to the kinds of faults we anticipate (or maybe faults we most fear).
See the guidelines near the end of this chapter for specific advice.

In general, the more sophisticated code-based metrics result in more elements (the quantity s);
hence, a given functional methodology will tend to become less effective when evaluated in terms
of more rigorous code-based metrics. This is intuitively appealing, and it is borne out by our
examples. These metrics are devised such that the best possible value is 1. Table 10.5 uses test case
data from our earlier chapters to apply these metrics to the triangle program.
Table 10.6 repeats this analysis for the commission problem.

table 10.5 Metrics for triangle program

Method m n s C(M,S) = n/s R(M,S) = m/s NR(M,S) = m/n

Nominal 15 7 11 0.64 1.36 2.14

Worst-case 125 11 11 1.00 11.36 11.36

Goal s s s 1.00 1.00 1.00

Retrospective on Unit Testing  ◾  195

© 2010 Taylor & Francis Group, LLC

10.4 Insurance premium Case Study
Here is an example that lets us compare both specification-based and code-based testing methods
and apply the guidelines. A hypothetical insurance premium program computes the semiannual
car insurance premium based on two parameters: the policyholder’s age and driving record:

 Premium = BaseRate * ageMultiplier – safeDrivingReduction

The ageMultiplier is a function of the policyholder’s age, and the safe driving reduction is given
when the current points (assigned by traffic courts for moving violations) on the policyholder’s
driver’s license are below an age-related cutoff. Policies are written for drivers in the age range of 16
to 100. Once a policyholder exceeds 12 points, the driver’s license is suspended (thus, no insurance
is needed). The BaseRate changes from time to time; for this example, it is $500 for a semiannual
premium. The data for the insurance premium program are in Table 10.7.

10.4.1 Specification-Based Testing
Worst-case boundary value testing, based on the input variables, age, and points, yields the fol-
lowing extreme values of the age and points variables (Table 10.8). The corresponding 25 test cases
are shown in Figure 10.5.

table 10.6 Metrics for Commission problem

Method m n s C(M,S) = n/s R(M,S) = m/s

Output bva 25 11 11 1 2.27

Decision table 3 11 11 1 0.27

DD-path 25 11 11 1 2.27

du-Path 25 33 33 1 0.76

Slice 25 40 40 1 0.63

table 10.7 Data for Insurance premium problem

Age Range Age Multiplier Points Cutoff Safe Driving Reduction

16 ≤ Age < 25 2.8 1 50

25 ≤ Age < 35 1.8 3 50

35 ≤ Age < 45 1.0 5 100

45 ≤ Age < 60 0.8 7 150

60 ≤ Age < 100 1.5 5 200

196  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Nobody should be content with these test cases. There is too much of the problem statement
missing. The various age cutoffs are not tested, nor are the point cutoffs. We could refine this by
taking a closer look at classes based on the age ranges.

A1 = {age: 16 ≤ age < 25}
A2 = {age: 25 ≤ age < 35}
A3 = {age: 35 ≤ age < 45}
A4 = {age: 45 ≤ age < 60}
A5 = {age: 60 ≤ age < 100}

Here are the age-dependent classes on license points.

P1(A1) = {points = 0, 1}, {points = 2, 3, …, 12}
P2(A2) = {points = 0, 1, 2, 3}, {points = 4, 5, …, 12}
P3(A3) = {points = 0, 1, 2, 3, 4, 5}, {points = 6, 7, …, 12}
P4(A4) = {points = 0, 1, 2, 3, 4, 5, 6, 7}, {points = 8, 9, 10, 11, 12}
P5(A5) = {points = 0, 1, 2, 3, 4, 5}, {points = 6, 7, …, 12}

One added complexity is that the point ranges are dependent on the age of the policyholder and
also overlap. Both of these constraints are shown in Figure 10.6. The dashed lines show the age-
dependent equivalence classes. A set of worst-case boundary value test cases is shown only for
class A4 and its two related point classes are given in Figure 10.6. Because these ranges meet at
“endpoints,” we would have the worst-case test values shown in Table 10.9. Notice that the discrete

table 10.8 Data Boundaries for Insurance premium
problem

Variable Min Min+ Nom. Max– Max

Age 16 17 54 99 100

Points 0 1 6 11 12

13

10

20 40 60 80 100

5

0

Figure 10.5 Worst-case boundary value test cases for insurance premium problem.

Retrospective on Unit Testing  ◾  197

© 2010 Taylor & Francis Group, LLC

values of the point variable do not lend themselves to the min+ and max– convention in some
cases. These are the variable values that lead to 103 test cases.

We are clearly at a point of severe redundancy; time to move on to equivalence class testing.
The age sets A1–A5, and the points sets P1–P5 are natural choices for equivalence classes. The
corresponding weak normal equivalence class test cases are shown in Figure 10.7. Since the point

13

10

20 40 60 80 100

5

0

Figure 10.6 Detailed worst-case boundary value test cases for one age class.

table 10.9 Detailed Worst-Case Values

Variable Min Min+ Nom. Max– Max

Age 16 17 20 24

Age 25 26 30 34

Age 35 36 40 44

Age 45 46 53 59

Age 60 61 75 99 100

Points(A1) 0 n/a n/a n/a 1

Points(A1) 2 3 7 11 12

Points(A2) 0 1 n/a 2 3

Points(A2) 4 5 8 11 12

Points(A3) 0 1 3 4 5

Points(A3) 6 7 9 11 12

Points(A4) 0 1 4 6 7

Points(A4) 8 9 10 11 12

Points(A5) 0 1 3 4 5

Points(A5) 6 7 9 11 12

198  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

classes are not independent, we cannot do the usual cross product. Weak robust cases are of some
value because we would expect different outputs for drivers with age less than 16, and points in
excess of 12. The additional weak robust test cases are shown as open circles in Figure 10.7.

The next step is to see if a decision table approach might help. Table 10.10 is a decision table
based on the age equivalence classes. The decision table test cases are almost the same as those
shown in Figure 10.7; the only weak robust test case missing in the decision table is that for points
exceeding 12.

What are the error-prone aspects of the insurance premium program? The endpoints of the
age ranges appear to be a good place to start, and this puts us back in boundary value mode. We
can imagine many complaints from policyholders whose premium did not reflect a recent bor-
derline birthday. Incidentally, this would be a good example of risk-based testing. Dealing with
such complaints would be costly. Also, we should consider ages under 16 and over 100. Finally,
we should probably check the values at which the safe driving reduction is lost, and maybe values

13

10

20 40 60 80 100

5

0

Figure 10.7 Weak and robust normal equivalence class test cases for insurance premium
program.

table 10.10 Insurance premium Decision table

1 2 3 4 5 6 7 8 9 10 11 12

Age is <16 16–24 25–34 35–44 45–59 60–100 >100

Points below cutoff? — T F T F T F T F T F —

ageMultiplier = 2.8 × ×

ageMultiplier = 1.8 × ×

ageMultiplier = 1.0 × ×

ageMultiplier = 0.8 × ×

ageMultiplier = 1.5 × ×

Safe driving discount × × × × ×

No policy allowed × ×

Retrospective on Unit Testing  ◾  199

© 2010 Taylor & Francis Group, LLC

of points over 12, when all insurance is lost. All of this is shown in Figure 10.7. (Notice that the
responses to these were not in the problem statement, but our testing analysis provokes us to think
about them.) Maybe this should be called hybrid functional testing: it uses the advantages of all
three forms in a blend that is determined by the nature of the application (shades of special value
testing). Hybrid appears appropriate because such selection is usually done to improve the stock.

To blend boundary value testing with weak robust equivalence class testing, note that the age
class borders are helpful. Testing the max–, max, and max+ values of one age class automatically
moves us into the next age class, so there is a slight economy. Figure 10.8 shows the hybrid test
cases for the age range 35–45 in the insurance premium problem.

10.4.2 Code-Based Testing
Our analysis thus far has been entirely specification based. To be complete, we really need the
code. It will answer questions such as whether or not the age variable is an integer (our assump-
tion thus far) or not. There is no question that the points variable is an integer. The pseudocode
implementation is minimal in the sense that it does very little error checking. The pseudocode and
its program graph are in Figure 10.9. Because the program graph is acyclic, only a finite number
of paths exist—in this case, 11. The best choice is simply to have test cases that exercise each
path. This automatically constitutes both statement and DD-path coverage. The compound case
predicates indicate multiple-condition coverage; this is accomplished only with the worst-case
boundary test cases and the hybrid test cases. The remaining path-based coverage metrics are not
applicable.

10.4.2.1 Path-Based Testing

The cyclomatic complexity of the program graph of the insurance premium program is V(G) =
11, and exactly 11 feasible program execution paths exist. They are listed in Table 10.11. If you
follow the pseudocode for the various sets of functional test cases in Chapter 5, you will find the
results shown in Table 10.12. We can see some of the insights gained from structural testing. For
one thing, the problem of gaps and redundancies is obvious. Only the test cases from the hybrid
approach yield complete path coverage. It is instructive to compare the results of these 25 test cases
with the other two methods yielding the same number of test cases. The 25 boundary value test

13

10

20 40 60 80 100

5

0

Figure 10.8 Hybrid test cases for the 35 to 45 age class.

200  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

cases only cover six of the feasible execution paths, while the 25 weak normal equivalence classes
test cases cover 10 of the feasible execution paths. The next difference is in the coverage of the con-
ditions in the case statement. Each predicate is a compound condition of the form a ≤ x < b. The
only methods that yield test cases that exercise these extreme values are the worst-case boundary
value (103) test cases and the hybrid (32) test cases. Incidentally, the McCabe baseline method will
yield 11 of the 12 decision table test cases.

10.4.2.2 Data Flow Testing

Data flow testing for this problem is boring. The driverAge, points, and safeDrivingReduction
variables all occur in six definition-clear du-paths. The “uses” for driverAge and points are both
predicate uses. Recall from Chapter 9 that the All-Paths criterion implies all the lower data flow
covers.

1

2

3

4

5 10

11

12

14
13

15

16

17

19
18

20

21

22

24
23

25

26

27

29
28

30

31

32

33

34

35

6

7

9
8

 Program insurance premium
 Dim driverAge, points As Real
 Dim baseRate, premium As Real
 1 Input(baseRate, driverAge, points)
 2 premium = 0
 3 safeDrivingReduction = 0
 4 Select Case driverAge
 5 Case 1: 16<= driverAge < 25
 6 ageMultiplier = 2.8
 7 If points < 1 �en
 8 safeDrivingReduction = 50
 9 EndIf
10 Case 2: 25<= driverAge < 35
11 ageMultiplier = 1.8
12 If points < 3 �en
13 safeDrivingReduction = 50
14 EndIf
15 Case 3: 35<= driverAge < 45
16 ageMultiplier = 1.0
17 If points < 5 �en
18 safeDrivingReduction = 100
19 EndIf
20 Case 4: 45<= driverAge < 60
21 ageMultiplier = 0.8
22 If points < 7 �en
23 safeDrivingReduction = 150
24 EndIf
25 Case 5: 60<= driverAge <= 100
26 ageMultiplier = 1.5
27 If points < 5 �en
28 safeDrivingReduction = 200
29 EndIf
30 Case 6: Else
31 Output(“Driver age out of range”)
32 End Select
33 premium = baseRate * ageMultiplier – safeDrivingReduction
34 Output(premium)
35 End

Figure 10.9 Insurance premium pseudocode and program graph.

Retrospective on Unit Testing  ◾  201

© 2010 Taylor & Francis Group, LLC

10.4.2.3 Slice Testing

Slice testing does not provide much insight either. Four slices are of interest:

S(safeDrivingReduction, 33) = { 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23,
24, 25, 27, 28, 29, 32}

S(ageMultiplier, 33) = {1, 2, 3, 4, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 32}
S(baseRate, 33) = {1}
S(Premium, 33) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32}

table 10.11 paths in Insurance premium program

Path Node Sequence

p1 1–2–3–4–5–6–7–9–32–33–34–35

p2 1–2–3–4–5–6–7–8–9–32–33–34–35

p3 1–2–3–4–10–11–12–14–32–33–34–35

p4 1–2–3–4–10–11–12–13–14–32–33–34–35

p5 1–2–3–4–15–16–17–19–32–33–34–35

p6 1–2–3–4–15–16–17–18–19–32–33–34–35

p7 1–2–3–4–20–21–22–24–32–33–34–35

p8 1–2–3–4–20–21–22–23–24–32–33–34–35

p9 1–2–3–4–25–26–27–29–32–33–34–35

p10 1–2–3–4–25–26–27–28–29–32–33–34–35

p11 1–2–3–4–30–31–32–33–34–35

table 10.12 path Coverage of Functional Methods in Insurance premium program

Figure Method
Test

Cases Paths Covered

10.5 Boundary value 25 p1, p2, p7, p8, p9, p10

10.6 Worst-case boundary value 103 p1, p2, p3, p4, p5, p6, p7, p8, p9, p10

10.7 Weak normal equivalence class 10 P1, p2, p3, p4, p5, p6, p7, p8, p9

10.7 Robust normal equivalence class 12 p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11

10.7 Decision table 12 p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11

10.8 Hybrid specification-based
(extended to all age classes)

32 p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11

202  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

The union of these slices is the whole program. The only insight we might get from slice-based
testing is that, if a failure occurred at line 33, the slices on safeDrivingReduction and ageMulti-
plier separate the program into two disjoint pieces, and that would simplify fault isolation.

10.5 Guidelines
Here is one of my favorite testing stories. An inebriated man was crawling around on the sidewalk
beneath a streetlight. When a policeman asked him what he was doing, he replied that he was
looking for his car keys. “Did you lose them here?” the policeman asked. “No, I lost them in the
parking lot, but the light is better here.”

This little story contains an important message for testers: testing for faults that are not likely
to be present is pointless. It is far more effective to have a good idea of the kinds of faults that are
most likely (or most damaging) and then to select testing methods that are likely to reveal these
faults.

Many times, we do not even have a feeling for the kinds of faults that may be prevalent. What
then? The best we can do is use known attributes of the program to select methods that deal with
the attributes—sort of a “punishment fits the crime” view. The attributes that are most helpful in
choosing specification-based testing methods are

Whether the variables represent physical or logical quantities
Whether dependencies exist among the variables
Whether single or multiple faults are assumed
Whether exception handling is prominent

Here is the beginning of an “expert system” to help with this:

 1. If the variables refer to physical quantities, boundary value testing and equivalence class
testing are indicated.

 2. If the variables are independent, boundary value testing and equivalence class testing are
indicated.

 3. If the variables are dependent, decision table testing is indicated.
 4. If the single-fault assumption is warranted, boundary value analysis and robustness testing

are indicated.
 5. If the multiple-fault assumption is warranted, worst-case testing, robust worst-case testing,

and decision table testing are indicated.
 6. If the program contains significant exception handling, robustness testing and decision table

testing are indicated.
 7. If the variables refer to logical quantities, equivalence class testing and decision table testing

are indicated.

Combinations of these may occur; therefore, the guidelines are summarized as a decision table
in Table 10.13.

Retrospective on Unit Testing  ◾  203

© 2010 Taylor & Francis Group, LLC

EXERCISES
 1. Repeat the gaps and redundancies analysis for the triangle problem using the structured

implementation in Chapter 2 and its DD-path graph in Chapter 8.
 2. Compute the coverage, redundancy, and net redundancy metrics for your study in exer-

cise 1.
 3. The pseudocode for the insurance premium program does not check for driver ages under 16

or (unlikely) over 100. The Else clause (case 6) will catch these, but the output message is not
very specific. Also, the output statement (33) is not affected by the driver age checks. Which
functional testing techniques will reveal this fault? Which structural testing coverage, if not
met, will reveal this fault?

references
Brown, J.R. and Lipov, M., Testing for software reliability, Proceedings of the International Symposium on

Reliable Software, Los Angeles, April 1975, pp. 518–527.
Pressman, R.S., Software Engineering: A Practitioner’s Approach, McGraw-Hill, New York, 1982.

table 10.13 appropriate Choices for Functional testing

c1 Variables (P, physical; L, logical) P P P P P L L L L L

c2 Independent variables? Y Y Y Y N Y Y Y Y N

c3 Single-fault assumption? Y Y N N — Y Y N N —

c4 Exception handling? Y N Y N — Y N Y N —

a1 Boundary value analysis ×

a2 Robustness testing ×

a3 Worst-case testing ×

a4 Robust worst case ×

a5 Weak robust equivalence class × × × ×

a6 Weak normal equivalence class × × × ×

a7 Strong normal equivalence class × × × × × ×

a8 Decision table × ×

IIIBEYOND UNIt tEStING

In Part III, we build on the basic ideas of unit testing covered in Part II, with one major change.
Now we are more concerned with knowing what to test. To that end, the discussion in this part
begins with the whole idea of model-based testing. Chapter 11 examines testing based on mod-
els of software development life cycles, and models of software/system behavior are discussed in
Chapter 12. Chapter 13 presents model-based strategies for integration testing, and these are
extended to system testing in Chapter 14. We return to the question of testing object-oriented
software in Chapter 15, with the main focus on points at which the object-oriented paradigm dif-
fers from the traditional paradigm. Having completed this much, we are in a position to finally
take a serious look at software complexity in Chapter 16. We apply much of this to a relatively
recent question, testing systems of systems, in Chapter 17.

207

Chapter 11

Life Cycle–Based testing

In this chapter, we begin with various models of the software development life cycle in terms of
the implications these life cycles have for testing. We took a general view in Chapter 1, where we
identified three levels (unit, integration, and system) in terms of symmetries in the waterfall model
of software development. This view has been relatively successful for decades, and these levels per-
sist; however, the advent of alternative life cycle models mandates a deeper look at these views of
testing. We begin with the traditional waterfall model, mostly because it is widely understood and
is a reference framework for the more recent models. Then we look at derivatives of the waterfall
model, and finally some mainline agile variations.

We also make a major shift in our thinking. We are more concerned with how to represent the
item tested because the representation may limit our ability to identify test cases. Take a look at
the papers presented at the leading conferences (professional or academic) on software testing—
you will find nearly as many presentations on specification models and techniques as on testing
techniques. Model-Based Testing (MBT) is the meeting place of software modeling and testing
at all levels.

11.1 traditional Waterfall testing
The traditional model of software development is the waterfall model, which is illustrated in
Figure 11.1. It is sometimes drawn as a V as in Figure 11.2 to emphasize how the basic levels of
testing reflect the early waterfall phases. (In ISTQB circles, this is known as the “V-Model.”) In
this view, information produced in one of the development phases constitutes the basis for test
case identification at that level. Nothing controversial here: we certainly would hope that system
test cases are clearly correlated with the requirements specification, and that unit test cases are
derived from the detailed design of the unit. On the upper left side of the waterfall, the tight what/
how cycles are important. They underscore the fact that the predecessor phase defines what is to
be done in the successor phase. When complete, the successor phase states how it accomplishes
“what” was to be done. These are also ideal points at which to conduct software reviews (see
Chapter 22). Some humorists assert that these phases are the fault creation phases, and those on
the right are the fault detection phases.

208  ◾  Software Testing

Two observations: a clear presumption of functional testing is used here, and an implied bottom– up
testing order is used. Here, “bottom–up” refers to levels of abstraction—unit first, then integra-
tion, and finally, system testing. In Chapter 13, bottom–up also refers to a choice of orders in
which units are integrated (and tested).

Of the three main levels of testing (unit, integration, and system), unit testing is best under-
stood. Chapters 5 through 10 are directed at the testing theory and techniques applicable to unit
testing. System testing is understood better than integration testing, but both need clarification.
The bottom–up approach sheds some insight: test the individual components, and then integrate
these into subsystems until the entire system is tested. System testing should be something that the

Requirements
specification What

How

What

How
What

How

Preliminary
design

Detailed
design

Unit
testing

Integration
testing

System
testing

Coding

Figure 11.1 the waterfall life cycle.

Requirements
specification

System
testing

Preliminary
design

Integration
testing

Detailed
design

Unit
testing

Coding

Figure 11.2 the waterfall life cycle as the V-Model.

Life Cycle–Based Testing  ◾  209

customer (or user) understands, and it often borders on customer acceptance testing. Generally,
system testing is functional instead of structural; this is mostly due to the lack of higher-level
structural notations.

11.1.1 Waterfall Testing
The waterfall model is closely associated with top–down development and design by functional
decomposition. The end result of preliminary design is a functional decomposition of the entire
system into a tree-like structure of functional components. With such a decomposition, top–down
integration would begin with the main program, checking the calls to the next-level units, and
so on until the leaves of the decomposition tree are reached. At each point, lower-level units are
replaced by stubs—throwaway code that replicates what the lower-level units would do when
called. Bottom–up integration is the opposite sequence, starting with the leaf units and work-
ing up toward the main program. In bottom–up integration, units at higher levels are replaced
by drivers (another form of throwaway code) that emulate the procedure calls. The “big bang”
approach simply puts all the units together at once, with no stubs or drivers. Whichever approach
is taken, the goal of traditional integration testing is to integrate previously tested units with
respect to the functional decomposition tree. Although this describes integration testing as a pro-
cess, discussions of this type offer little information about the methods or techniques. We return
to this in Chapter 13.

11.1.2 Pros and Cons of the Waterfall Model
In its history since the first publication in 1968, the waterfall model has been analyzed and cri-
tiqued repeatedly. The earliest compendium was by Agresti (1986), which stands as a good source.
Agresti observes that

 ◾ The framework fits well with hierarchical management structures.
 ◾ The phases have clearly defined end products (exit criteria), which in turn are convenient for

project management.
 ◾ The detailed design phase marks the starting point where individuals responsible for units

can work in parallel, thereby shortening the overall project development interval.

More importantly, Agresti highlights major limitations of the waterfall model. We shall see
that these limitations are answered by the derived life cycle models. He observes that

 ◾ There is a very long feedback cycle between requirements specification and system testing,
in which the customer is absent.

 ◾ The model emphasizes analysis to the near exclusion of synthesis, which first occurs at the
point of integration testing.

 ◾ Massive parallel development at the unit level may not be sustainable with staffing limitations.
 ◾ Most important, “perfect foresight” is required because any faults or omissions at the require-

ments level will penetrate through the remaining life cycle phases.

The “omission” part was particularly troubling to the early waterfall developers. As a result,
nearly all of the papers of requirements specification demanded consistency, completeness, and
clarity. Consistency is impossible to demonstrate for most requirements specification techniques

210  ◾  Software Testing

(decision tables are an exception), and the need for clarity is obvious. The interesting part is com-
pleteness—all of the successor life cycles assume incompleteness, and depend on some form of
iteration to gradually arrive at “completeness.”

11.2 testing in Iterative Life Cycles
Since the early 1980s, practitioners have devised alternatives in response to shortcomings of the
traditional waterfall model just mentioned. Common to all of these alternatives is the shift away
from the functional decomposition to an emphasis on iteration and composition. Decomposition
is a perfect fit both to the top–down progression of the waterfall model and to the bottom–up
testing order, but it relies on one of the major weaknesses of waterfall development cited by Agresti
(1986)—the need for “perfect foresight.” Functional decomposition can only be well done when
the system is completely understood, and it promotes analysis to the near exclusion of synthesis.
The result is a very long separation between requirements specification and a completed system,
and during this interval, no opportunity is available for feedback from the customer. Composition, on
the other hand, is closer to the way people work: start with something known and understood,
then add to it gradually, and maybe remove undesired portions.

A very nice analogy can be applied to positive and negative sculpture. In negative sculpture,
work proceeds by removing unwanted material, as in the mathematician’s view of sculpting
Michelangelo’s David: start with a piece of marble, and simply chip away all non-David. Positive
sculpture is often done with a pliable medium, such as wax. The central shape is approximated,
and then wax is either added or removed until the desired shape is attained. The wax original is
then cast in plaster. Once the plaster hardens, the wax is melted out, and the plaster “negative” is
used as a mold for molten bronze. Think about the consequences of a mistake: with negative sculp-
ture, the whole work must be thrown away and restarted. (A museum in Florence, Italy, contains
half a dozen such false starts to the David.) With positive sculpture, the erroneous part is simply
removed and replaced. We will see this is the defining essence of the agile life cycle models. The
centrality of composition in the alternative models has a major implication for integration testing.

11.2.1 Waterfall Spin-Offs
There are three mainline derivatives of the waterfall model: incremental development, evolution-
ary development, and the spiral model (Boehm, 1988). Each of these involves a series of incre-
ments or builds as shown in Figure 11.3. It is important to keep preliminary design as an integral
phase rather than to try to amortize such high-level design across a series of builds. (To do so usu-
ally results in unfortunate consequences of design choices made during the early builds that are
regrettable in later builds.) This single design step cannot be done in the evolutionary and spiral
models. This is also a major limitation of the bottom–up agile methods.

Within a build, the normal waterfall phases from detailed design through testing occur with
one important difference: system testing is split into two steps—regression and progression test-
ing. The main impact of the series of builds is that regression testing becomes necessary. The goal
of regression testing is to ensure that things that worked correctly in the previous build still work
with the newly added code. Regression testing can either precede or follow integration testing, or
possibly occur in both places. Progression testing assumes that regression testing was successful
and that the new functionality can be tested. (We like to think that the addition of new code rep-
resents progress, not a regression.) Regression testing is an absolute necessity in a series of builds

Life Cycle–Based Testing  ◾  211

because of the well-known ripple effect of changes to an existing system. (The industrial average is
that one change in five introduces a new fault.)

Evolutionary development is best summarized as client-based iteration. In this spin-off, a small
initial version of a product is given to users who then suggest additional features. This is particu-
larly helpful in applications for which time-to-market is a priority. The initial version might cap-
ture a segment of the target market, and then that segment is “locked in” to future evolutionary
versions. When these customers have a sense that they are “being heard,” they tend to be more
invested in the evolving product.

Barry Boehm’s spiral model has some of the flavor of the evolutionary model. The biggest
difference is that the increments are determined more on the basis of risk rather than on client
suggestions. The spiral is superimposed on an x–y coordinate plane, with the upper left quadrant
referring to determining objectives, the upper right to risk analysis, the lower right refers to devel-
opment (and test), and the lower left is for planning the next iteration. These four phases—deter-
mine objectives, analyze risk, develop and test, and next iteration planning—are repeated in an
evolutionary way. At each evolutionary step, the spiral enlarges.

There are two views of regression testing: one is to simply repeat the tests from the previous itera-
tion; the other is to devise a smaller set of test cases specifically focused on finding affected faults.
Repeating a full set of previous integration tests is fine in an automated testing environment, but is
undesirable in a more manual environment. The expectation of test case failure is (or should be) lower
for regression testing compared to that for progression testing. As a guideline, regression tests might
fail in only 5% of the repeated progression tests. This may increase to 20% for progression tests. If
regression tests are performed manually, there is an interesting term for special regression test cases:
Soap Opera Tests. The idea is to have long, complex regression tests, akin to the complicated plot
lines in television soap operas. A soap opera test case could fail in many ways, whereas a progression
test case should fail for only a very few reasons. If a soap opera test case fails, clearly more focused
testing is required to localize the fault. We will see this again in Chapter 20 on all-pairs testing.

Build
definition

Detailed
design

Coding

Unit
testing

Integration
testing

Regression
testing

Progression
testing

Requirements
specification

Preliminary
design

Build
sequence

How

How

How

How

What

What

What

What

Figure 11.3 Iterative development.

212  ◾  Software Testing

The differences among the three spin-off models are due to how the builds are identified. In
incremental development, the motivation for separate builds is usually to flatten the staff profile. With
pure waterfall development, there can be a huge bulge of personnel for the phases from detailed design
through unit testing. Many organizations cannot support such rapid staff fluctuations, so the system is
divided into builds that can be supported by existing personnel. In evolutionary development, the pre-
sumption of a build sequence is still made, but only the first build is defined. On the basis of that, later
builds are identified, usually in response to priorities set by the customer/user, so the system evolves to
meet the changing needs of the user. This foreshadows the customer-driven tenet of the agile methods.
The spiral model is a combination of rapid prototyping and evolutionary development, in which a
build is defined first in terms of rapid prototyping and then is subjected to a go/no-go decision based
on technology-related risk factors. From this, we see that keeping preliminary design as an integral
step is difficult for the evolutionary and spiral models. To the extent that this cannot be maintained as
an integral activity, integration testing is negatively affected. System testing is not affected.

Because a build is a set of deliverable end-user functionality, one advantage common to all
these spin-off models is that they provide earlier synthesis. This also results in earlier customer
feedback, so two of the deficiencies of waterfall development are mitigated. The next section
describes two approaches to deal with the “perfect foresight” problem.

11.2.2 Specification-Based Life Cycle Models
When systems are not fully understood (by either the customer or the developer), functional decom-
position is perilous at best. Barry Boehm jokes when he describes the customer who says “I don’t
know what I want, but I’ll recognize it when I see it.” The rapid prototyping life cycle (Figure 11.4)

Prototype cycle

Prototype
objectives

Build
prototype

Exercise
prototype

What

What

What

How

How

How

Preliminary
design

Detailed
design

Coding

Unit
testing

Integration
testing

Regression
testing

Progression
testing

Figure 11.4 rapid prototyping life cycle.

Life Cycle–Based Testing  ◾  213

deals with this by providing the “look and feel” of a system. Thus, in a sense, customers can recog-
nize what they “see.” In turn, this drastically reduces the specification-to-customer feedback loop
by producing very early synthesis. Rather than build a final system, a “quick and dirty” prototype
is built and then used to elicit customer feedback. Depending on the feedback, more prototyp-
ing cycles may occur. Once the developer and the customer agree that a prototype represents the
desired system, the developer goes ahead and builds to a correct specification. At this point, any of
the waterfall spin-offs might also be used. The agile life cycles are the extreme of this pattern.

Rapid prototyping has no new implications for integration testing; however, it has very inter-
esting implications for system testing. Where are the requirements? Is the last prototype the speci-
fication? How are system test cases traced back to the prototype? One good answer to questions
such as these is to use the prototyping cycles as information-gathering activities and then produce
a requirements specification in a more traditional manner. Another possibility is to capture what
the customer does with the prototypes, define these as scenarios that are important to the cus-
tomer, and then use these as system test cases. These could be precursors to the user stories of the
agile life cycles. The main contribution of rapid prototyping is that it brings the operational (or
behavioral) viewpoint to the requirements specification phase. Usually, requirements specification
techniques emphasize the structure of a system, not its behavior. This is unfortunate because most
customers do not care about the structure, and they do care about the behavior.

Executable specifications (Figure 11.5) are an extension of the rapid prototyping concept. With
this approach, the requirements are specified in an executable format (such as finite state machines,
StateCharts, or Petri nets). The customer then executes the specification to observe the intended
system behavior and provides feedback as in the rapid prototyping model. The executable models
are, or can be, quite complex. This is an understatement for the full-blown version of StateCharts.
Building an executable model requires expertise, and executing it requires an engine. Executable

What

What
How

How

How

Preliminary
design

Detailed
design

Coding

Unit
testing

Integration
testing

Regression
testing

Progression
testing

Executable specification cycle

Define/Revise
model

Execute
model

What

Figure 11.5 Executable specification.

214  ◾  Software Testing

specification is best applied to event-driven systems, particularly when the events can arrive in dif-
ferent orders. David Harel, the creator of StateCharts, refers to such systems as “reactive” (Harel,
1988) because they react to external events. As with rapid prototyping, the purpose of an execut-
able specification is to let the customer experience scenarios of intended behavior. Another simi-
larity is that executable models might have to be revised on the basis of customer feedback. One
side benefit is that a good engine for an executable model will support the capture of “interesting”
system transactions, and it is often a nearly mechanical process to convert these into true system
test cases. If this is done carefully, system testing can be traced directly back to the requirements.

Once again, this life cycle has no implications for integration testing. One big difference is that
the requirements specification document is explicit, as opposed to a prototype. More important, it
is often a mechanical process to derive system test cases from an executable specification. We will
see this in Chapter 14. Although more work is required to develop an executable specification, this
is partially offset by the reduced effort to generate system test cases. Here is another important dis-
tinction: when system testing is based on an executable specification, we have an interesting form
of structural testing at the system level. Finally, as we saw with rapid prototyping, the executable
specification step can be combined with any of the iterative life cycle models.

11.3 agile testing
The Agile Manifesto (http://agilemanifesto.org/) was written by 17 consultants, the Agile Alliance,
in February 2001. It has been translated into 42 languages and has drastically changed the soft-
ware development world. The underlying characteristics of all agile life cycles are

 ◾ Customer-driven
 ◾ Bottom–up development
 ◾ Flexibility with respect to changing requirements
 ◾ Early delivery of fully functional components

These are sketched in Figure 11.6. Customers express their expectations in terms of user stories,
which are taken as the requirements for very short iterations of design–code–test. When does an

Customer
expectations

Iteration
plan

User story

Design
code
test

Integration
testing

Figure 11.6 Generic agile life cycle.

Life Cycle–Based Testing  ◾  215

agile project end? When the customer has no more user stories. Looking back at the iterative mod-
els, we see the progenitors of agility, especially in Barry Boehm’s spiral model. Various websites
will list as few as 3 to as many as 40 variations of agile software development. Here we look at three
major ones, and focus on how they deal with testing.

11.3.1 Extreme Programming
Extreme Programming (XP) was first applied to a project (in a documented way) in 1996 by
Kent Beck (http://www.extremeprogramming.org/) while he was at Chrysler Corporation. The
clear success of the project, even though it was a revision of an earlier version, led to his book
(Beck, 2004). The main aspects of XP are captured in Figure 11.7. It is clearly customer-driven,
as shown by the position of user stories driving both a release plan and system testing. The release
plan defines a sequence of iterations, each of which delivers a small working component. One
distinction of XP is the emphasis on paired programming, in which a pair of developers work
closely together, often sharing a single development computer and keyboard. One person works
at the code level, while the other takes a slightly higher view. In a sense, the pair is conducting a
continuous review. In Chapter 22, we will see that this is better described as a continuous code
walk-through. There are many similarities to the basic iterative life cycle shown in Figure 11.3.
One important difference is that there is no overall preliminary design phase. Why? Because this
is a bottom–up process. If XP were truly driven by a sequence of user stories, it is hard to imagine
what can occur in the release plan phase.

11.3.2 Test-Driven Development
Test-driven development (TDD) is the extreme case of agility. It is driven by a sequence of user sto-
ries, as shown in Figure 11.8. A user story can be decomposed into several tasks, and this is where
the big difference occurs. Before any code is written for a task, the developer decides how it will
be tested. The tests become the specification. The next step is curious—the tests are run on non-
existent code. Naturally, they fail, but this leads to the best feature of TDD—greatly simplified

User
stories

Release
plan

Iteration

Iteration
plan

Pair
coding

Unit test

Acceptance
test

Small
release

Figure 11.7 the Extreme programming life cycle.

216  ◾  Software Testing

fault isolation. Once the tests have been run (and failed), the developer writes just enough code
to make the tests pass, and the tests are rerun. If any test fails, the developer goes back to the
code and makes a necessary change. Once all the tests pass, the next user story is implemented.
Occasionally, the developer may decide to refactor the existing code. The cleaned–up code is then
subjected to the full set of existing test cases, which is very close to the idea of regression testing.
For TDD to be practical, it must be done in an environment that supports automated testing,
typically with a member of the nUnit family of automated test environments. (We will have an
example of this in Chapter 19.)

Testing in TDD is interesting. Since the story-level test cases drive the coding, they ARE the
specification, so in a sense, TDD uses specification-based testing. But since the code is deliberately
as close as possible to the test cases, we could argue that it is also code-based testing. There are two
problems with TDD. The first is common to all agile flavors—the bottom–up approach prohibits
a single, high-level design step. User stories that arrive late in the sequence may obviate earlier
design choices. Then refactoring would have to also occur at the design level, rather than just at the
code level. The agile community is very passionate about the claim that repeated refactoring results
in an elegant design. Given one of the premises of agile development, namely that the customer is
not sure of what is needed, or equivalently, rapidly changing requirements, refactoring at both the
code and design levels seems the only way to end up with an elegant design. This is an inevitable
constraint on bottom–up development.

The second problem is that all developers make mistakes—that is much of the reason we test
in the first place. But consider: what makes us think that the TDD developer is perfect at devis-
ing the test cases that drive the development? Even worse: what if late user stories are inconsistent
with earlier ones? A final limitation of TDD is there is no place in the life cycle for a cross-check
at the user story level.

11.3.3 Scrum
Scrum is probably the most frequently used of all the agile life cycles. There is a pervading empha-
sis on the team members and teamwork. The name comes from the rugby maneuver in which the

No

Pass

Fail Yes

User
story

Story
tasks

Story test
cases

Run tests Refactor?

Refactor?
existing code

“Just enough”
code

Figure 11.8 test-driven development life cycle.

Life Cycle–Based Testing  ◾  217

opposing teams are locked together and try to hook the football back to their respective sides. A
rugby scrum requires organized teamwork—hence, the name for the software process.

The quick view of Scrum (the development life cycle) is that it is mostly new names for old
ideas. This is particularly true about the accepted Scrum vocabulary. Three examples: roles, cer-
emonies, and artifacts. In common parlance, Scrum roles refer to project participants; the ceremo-
nies are just meetings, the artifacts are work products. Scrum projects have Scrum masters (who
act like traditional supervisors with less administrative power). Product owners are the customers
of old, and the Scrum team is a development team. Figure 11.9 is adapted from the “official”
Scrum literature, the Scrum Alliance (http://www.scrumalliance.org/learn_about_scrum). Think
about the activities in terms of the iterative life cycle in Figure 11.3. The traditional iterations
become “sprints,” which last from 2 to 4 weeks. In a sprint, there is a daily stand-up meeting of
the Scrum team to focus on what happened the preceding day and what needs to be done in the
new day. Then there is a short burst of design–code–test followed by an integration of the team’s
work at the end of the day. This is the agile part—a daily build that contributes to a sprint-level
work product in a short interval. The biggest differences between Scrum and the traditional view
of iterative development are the special vocabulary and the duration of the iterations.

Testing in the Scrum life cycle occurs at two levels—the unit level at each day’s end, and the
integration level of the small release at the end of a sprint. Selection of the Sprint backlog from
the product backlog is done by the product owner (the customer), which corresponds roughly to
a requirements step. Sprint definition looks a lot like preliminary design because this is the point
where the Scrum team identifies the sequence and contents of individual sprints. The bottom line?
Scrum has two distinct levels of testing—unit and integration/system. Why “integration/system?”
The small release is a deliverable product usable by the product owner, so it is clearly a system-level
work product. But this is the point where all of the development work is integrated for the first
time.

Product
backlog

Sprint
backlog

Sprint
definition

Small
release

Sprint
test

Test

Coding

Design

Standup
meeting

Daily activities

Figure 11.9 the Scrum life cycle.

218  ◾  Software Testing

11.4 agile Model–Driven Development
My German friend Georg is a PhD mathematician, a software developer, and a Go player. For
several months, we had an e-mail-based discussion about agile development. At one point, Georg
asked if I play the oriental game Go. I do not, but he replied that, to be a successful Go player,
one needs both strategy and tactics. A deficiency in either one puts a Go player at a disadvantage.
In the software development realm, he equates strategy with an overall design, and tactics as unit-
level development. His take on the flavors of agile development is that the strategy part is missing,
and this leads us to a compromise between the agile world and the traditional views of software
development. We first look at Agile Model–Driven Development (AMDD) popularized by Scott
Ambler. This is followed by my mild reorganization of Ambler’s work, named here as Model–
Driven Agile Development (MDAD).

11.4.1 Agile Model–Driven Development
The agile part of AMDD is the modeling step. Ambler’s advice is to model just enough for the
current user story, and then implement it with TDD. The big difference between AMDD and
any of the agile life cycles is that there is a distinct design step. (The agilists usually express their
distaste/disdain for modeling by calling it the “Big Design Up Front” and abbreviate it as simply
the BDUF.) See Figure 11.10.

Ambler’s contribution is the recognition that design does indeed have a place in agile devel-
opment. As this was being written, there was a protracted discussion on LinkedIn started by the
question “Is there any room for design in agile software development?” Most of the thread affirms
the need for design in any agile life cycle. Despite all this, there seems to be no room in AMDD
for integration/system testing.

11.4.2 Model–Driven Agile Development
Model–driven agile development (MDAD) is my proposal for a compromise between the tra-
ditional and the agile worlds. It is stimulated by Georg’s view of the need for both strategy and
tactics, hence the compromise. How does MDAD differ from iterative development? MDAD
recommends test-driven development as the tactic and it uses Ambler’s view of short iterations.

Project
inception

Iteration
plan

Iteration

Iteration
modeling

Model
storming

Test-driven
development

Figure 11.10 the agile model–driven development life cycle.

Life Cycle–Based Testing  ◾  219

The strategy part is the emphasis on an overall model, which in turn, supports MBT. In MDAD,
the three levels of testing, unit, integration, and system, are present (Figure 11.11).

references
Agresti, W.W., New Paradigms for Software Development, IEEE Computer Society Press, Washington, DC,

1986.
Beck, K., Extreme Programming Explained: Embrace Change, 2nd ed., Addison Wesley, Boston, 2004.
Boehm, B.W., A spiral model for software development and enhancement, IEEE Computer, Vol. 21, No. 6,

May 1988, pp. 61–72.
Harel, D., On visual formalisms, Communications of the ACM, Vol. 31, No. 5, May 1988, pp. 514–530.

“Final”
system
testing

Requirements
specification

Project
modeling

Series of
iterations

Iteration

Iteration
modeling

Iteration
integration

Test-driven
development

Figure 11.11 the model–driven agile development life cycle.

221

Chapter 12

Model-Based testing

“By my faith! For more than forty years I have been speaking prose without knowing
anything about it.…”

Monsieur Jourdain in Le Bourgeois Gentilhomme

I share the sentiment of Moliere’s Monsieur Jourdain; since the first edition, this book has advo-
cated what we now call Model-Based Testing (MBT). In this chapter, we describe the basic mech-
anism, discuss how to choose appropriate models, consider the pros and cons of MBT, and provide
a short discussion of available tools. Actual examples of MBT are (and have been in the earlier
editions) scattered throughout this book.

12.1 testing Based on Models
The main advantage of modeling system behavior is that the process of creating a model usually
results in deeper insights and understanding of the system being modeled/tested. This is particu-
larly true of executable models such as finite state machines, Petri nets, and StateCharts. In Chapter
14, we will see that threads of system behavior, which are easily transformed into system level test
cases, are readily derived from many behavioral models. Given this, the adequacy of MBT will
always depend on the accuracy of the model. The essence of MBT is this sequence of steps:

 1. Model the system.
 2. Identify threads of system behavior in the model.
 3. Transform these threads into test cases.
 4. Execute the test cases (on the actual system) and record the results.
 5. Revise the model(s) as needed and repeat the process.

222  ◾  Software Testing

12.2 appropriate Models
Avvinare is one of my favorite Italian words. It refers to a process that many Italian families per-
form in autumn when they bottle wine. After buying a demijohn of bulk wine, they rinse out
the empty bottles that they have saved during the year. There are always small droplets of water
clinging to the sides of a bottle, but it is really difficult to remove them. Instead, they fill a bottle
about half full of the wine, and shake it up to dissolve the water into the wine. Next, the wine is
funneled into the next bottle, shaken, and poured into another bottle. This continues until all the
bottles have been rinsed with wine, and they are ready for bottling. Avvinare is the verb that refers
to this entire process. How would you translate this word into English? I really don’t know, but it
won’t be easy. Languages evolve to meet the expressive needs of their speakers, and this activity is
not very common in the English-speaking world. To wax esoteric, this is where software engineer-
ing meets epistemology. Since MBT begins with modeling, the choice of an appropriate model
determines the ultimate success of the associated testing. Making an appropriate choice depends
on several things: the expressive power of various models, the essential nature of the system being
modeled, and the analyst’s ability to use various models. We consider the first two of these next.

12.2.1 Peterson’s Lattice
James Peterson (1981) developed an elegant lattice of models of computation, which is summa-
rized in Figure 12.1. The arrows in the lattice signify a “more expressive than” relationship in
which the model at the origin of an arrow is more expressive than that at the end of an arrow. In
his text, Peterson carefully develops examples for each edge in the lattice. For example, he shows a
semaphore system that cannot be expressed as a finite state machine. Four models in his lattice are
fairly obscure: vector replacement systems, vector addition systems, UCLA graphs, and message

Extended
Petri nets

Vector
replacement

systems

Vector
addition
systems

Petri nets UCLA
graphs

Message systems

Semaphore (P. V) systems

Marked
graphs

Finite state
machines

Figure 12.1 peterson’s lattice.

Model-Based Testing  ◾  223

systems. There are scores of extensions to Petri nets; Peterson grouped these together for simplicity.
Marked graphs are a formalization of data flow diagrams, and Peterson shows them to be formal
duals of finite state machines.

Peterson’s lattice is a good starting point for MBT. Given an application, good practice dic-
tates choosing a model that is both necessary and sufficient—neither too weak nor too strong. If a
model is too weak, important aspects of the application will not be modeled, and hence not tested.
If a model is too strong, the extra effort to develop the model may be unnecessary.

Peterson’s lattice predates the invention of StateCharts by David Harel, which raises the ques-
tion of where they fit in Peterson’s lattice. They are at least equivalent, and probably more expressive
than most extensions of Petri nets. Several graduate students at Grand Valley State University have
explored this question, with a variety of approaches. Their work is persuasive, but as yet, I have no
formal proof of this potential equivalence. However, given a relatively complex StateChart, it can
always be expressed as an event-driven Petri net (as defined in Chapter 4). The rich language asso-
ciated with StateChart transitions will probably be difficult to express in most Petri net extensions.
One promising approach offered by DeVries (2013) is that of “Swim Lane Petri Nets.”

Figure 12.2 shows the anticipated placement of StateCharts in Peterson’s lattice. The one-way
arrow reflects the fact that a given StateChart can express concurrency (by the concurrent regions),
and true concurrency cannot be expressed in a Petri net, nor in most extensions. Part of the work
by DeVries describes Swim Lane Petri Nets. These use the UML notion of “swim lanes” to express
parallel activities. We will revisit this concept in Chapter 17 when we use it to describe interactions
among constituent systems in systems of systems. There we will use some of the prompts of the
Extended Systems Modeling Language to show cross–swim lane communication of Event-Driven
Petri Nets. Figure 12.3 shows the anticipated lattice among Event-Driven Petri Nets, Swim Lane
Event-Driven Petri Nets, and a subclass of StateCharts.

Extended
Petri nets StateCharts

Vector
replacement

systems

Vector
addition
systems

Petri nets UCLA
graphs

Message systems

Semaphore (P. V) systems

Marked
graphs

Finite state
machines

Figure 12.2 placement of StateCharts in peterson’s lattice.

224  ◾  Software Testing

12.2.2 Expressive Capabilities of Mainline Models
Peterson looked at four mainline models in terms of the kinds of behavioral issues that they can
represent. The Venn diagram in Figure 12.4 shows his summary.

12.2.3 Modeling Issues
Much of the information in this subsection is taken from Jorgensen (2009). There are two fun-
damental types of requirements specification models: those that describe structure and those that
describe behavior. These correspond to two fundamental views of a system: what a system is and
what a system does. Data flow diagrams, entity/relation models, hierarchy charts, class diagrams,
and object diagrams all focus on what a system is—the components, their functionality, and
interfaces among them. They emphasize structure. The second type, including decision tables,
finite state machines, StateCharts, and Petri nets, describes system behavior—what a system does.
Models of system behavior have varying degrees of expressive capability, the technical equivalent
of being able to express avvinare in another language.

Swim Lane
Event-Driven

Petri Nets
UML

StateCharts

Event-Driven
Petri Nets

Swim Lane
Petri Nets

Petri nets

?

Figure 12.3 Lattice with swim lane models.

Petri net 5, 6, 7

Semaphore
system

3, 4

Marked
graph

1

Finite state
machine

2

Expressive capabilities of
models in Peterson’s lattice

1. Data flow
2. Control flow
3. Conflict
4. Mutual exclusion
5. Fair scheduling
6. Communication
7. Synchronization

Figure 12.4 Expressive capabilities in peterson’s lattice.

Model-Based Testing  ◾  225

The Jorgensen (2009) reference identifies 19 behavioral modeling issues, subdivided into the
three groups described in Table 12.1. The first three are the code structuring precepts of Structured
Programming. The next group is from the Extended Systems Modeling Language group (Bruyn
et al., 1988). These prompts will be used in our modeling of systems of systems using Swim Lane
Event-Driven Petri Nets in Chapter 17. The task management category consists of the basic Petri
net mechanisms, and the last category deals with issues in event-driven systems.

Table 12.2 maps the 19 behavioral issues to five executable models, each of which is suitable
for MBT.

12.2.4 Making Appropriate Choices
Choosing an appropriate model begins with understanding the essential nature of the system to
be modeled (and tested). Once these aspects are understood, they must be related to the various
capabilities just discussed, and then the appropriate choice is simplified. The ultimate choice will

table 12.1 Expressive Capabilities of Selected Behavioral Models

Behavioral Issue Source of Issue

Sequence

Structured ProgrammingSelection

Repetition

Enable

Extended Systems Modeling Language

Disable

Trigger

Activate

Suspend

Resume

Pause

Conflict

Task Management

Priority

Mutual exclusion

Concurrent execution

Deadlock

Context-sensitive input events

Events
Multiple context output events

Asynchronous events

Event quiescence

226  ◾  Software Testing

always depend on other realities, such as company policy, relevant standards, analyst capability,
and available tools. Always choosing the most powerful model is a simple-minded choice; a better
choice might be to choose the simplest model that can express all the important aspects of the
system being modeled.

12.3 Commercial tool Support for Model-Based testing
Alan Hartman (2003) separates commercial tools for MBT into three groups:

 ◾ Modeling tools
 ◾ Model-based test input generators
 ◾ Model-based test generators

table 12.2 Expressive Capability of Five Executable Models

Behavioral Issue
Decision

Tables FSMs Petri Nets EDPNs StateCharts

Sequence No Yes Yes Yes Yes

Selection Yes Yes Yes Yes Yes

Repetition Yes Yes Yes Yes Yes

Enable No No Yes Yes Yes

Disable No No Yes Yes Yes

Trigger No No Yes Yes Yes

Activate No No Yes Yes Yes

Suspend No No Yes Yes Yes

Resume No No Yes Yes Yes

Pause No No Yes Yes Yes

Conflict No No Yes Yes Yes

Priority No No Yes Yes Yes

Mutual exclusion Yes No Yes Yes Yes

Concurrent execution No No Yes Yes Yes

Deadlock No No Yes Yes Yes

Context-sensitive input events Yes Yes Indirectly Yes Yes

Multiple context output events Yes Yes Indirectly Yes Yes

Asynchronous events No No Indirectly Yes Yes

Event quiescence No No Indirectly Yes Yes

Model-Based Testing  ◾  227

According to Hartman, modeling tools such as IBM’s Rational Rose and Telelogic’s Rhapsody
and Stalemate provide inputs to true model-based test generators, but by themselves, do not gen-
erate test cases. Model-based test input generators are a step up—they generate the input portion
of test cases, but cannot generate the expected output portion. Full model-based test generators
require some form of oracle to identify expected outputs. This is the sticking point for full test case
generation. There are some existing university and company proprietary test generation systems,
and a very few companies claim to have commercial tools available. Until this technology becomes
commercially viable, note that use case–based testing provides the expected output portion of a
test case.

Hartman’s generalization is too sweeping—we know that full test cases, with expected out-
comes, can be derived even from simple finite state machines—provided that the model shows the
expected outputs. When the modeler is the oracle, and provides expected outputs in any model,
the model can serve as a full test generator.

Mark Utting and Bruno Legeard address Model-Based Testing in their excellent book (Utting
and Legeard, 2006).

references
Bruyn, W., Jensen, R., Keskar, D. and Ward, P. An extended systems modeling language (ESML), Association

for Computing Machinery, ACM SIGSOFT Software Engineering Notes, Vol. 13, No. 1, January
1988, pp. 58–67.

DeVries, B., Mapping of UML Diagrams to Extended Petri Nets for Formal Verification, Master’s thesis,
Grand Valley State University, Allendale, MI, April 2013.

Hartman, A., Model Based Test Generation Tools, 2003, available at www.agedis.de/documents/
ModelBasedTestGenerationTools_cs.pdf.

Jorgensen, P.C., Modeling Software Behavior: A Craftsman’s Approach, CRC Press, New York, 2009.
Peterson, J.L, Petri Net Theory and the Modeling of Systems, Prentice Hall, Englewood Cliffs, NJ, 1981.
Utting, M. and Legeard, B., Practical Model-Based Testing, Morgan Kaufman Elsevier, San Francisco, 2006.

229

Chapter 13

Integration testing

In September 1999, the Mars Climate Orbiter mission failed after successfully traveling 416 mil-
lion miles in 41 weeks. It disappeared just as it was to begin orbiting Mars. The fault should
have been revealed by integration testing: Lockheed Martin Astronautics used acceleration data
in English units (pounds), while the Jet Propulsion Laboratory did its calculations with metric
units (newtons). NASA announced a $50,000 project to discover how this could have happened
(Fordahl, 1999). They should have read this chapter.

Of the three distinct levels of software testing—unit, integration, and system—integration
testing is the least well understood of these; hence in practice, it is the phase most poorly done.
This chapter examines two mainline and one less well-known integration testing strategies. They
are illustrated with a continuing procedural example, discussed in some detail, and then critiqued
with respect to their advantages and disadvantages.

Craftspersons are recognized by two essential characteristics: they have a deep knowledge of
the tools of their trade, and they have a similar knowledge of the medium in which they work
so that they understand their tools in terms of how they work with the medium. In Chapters 5
through 10, we focused on the tools (techniques) available to the testing craftsperson at the unit
level. Our goal there was to understand testing techniques in terms of their advantages and limita-
tions with respect to particular types of software. Here, we continue our emphasis on model-based
testing, with the goal of improving the testing craftsperson’s judgment through a better under-
standing of three underlying models. Integration testing for object-oriented software is integrated
into this chapter.

13.1 Decomposition-Based Integration
Mainline introductory software engineering texts, for example, Pressman (2005) and Schach
(2002), typically present four integration strategies based on the functional decomposition
tree of the procedural software: top–down, bottom–up, sandwich, and the vividly named “big
bang.” Many classic software testing texts echo this approach, Deutsch (1982), Hetzel (1988),
Kaner et al. (1993), and Mosley (1993), to name a few. Each of these strategies (except big bang)
describes the order in which units are to be integrated. We can dispense with the big bang

230  ◾  Software Testing

approach most easily: in this view of integration, all the units are compiled together and tested
at once. The drawback to this is that when (not if !) a failure is observed, few clues are available
to help isolate the location(s) of the fault. (Recall the distinction we made in Chapter 1 between
faults and failures.)

The functional decomposition tree is the basis for integration testing because it is the
main representation, usually derived from final source code, which shows the structural rela-
tionship of the system with respect to its units. All these integration orders presume that the
units have been separately tested; thus, the goal of decomposition-based integration is to test
the interfaces among separately tested units. A functional decomposition tree reflects the
lexicological inclusion of units, in terms of the order in which they need to be compiled, to
assure the correct referential scope of variables and unit names. In this chapter, our famil-
iar NextDate unit is extended to a main program, Calendar, with procedures and func-
tions. Figure 13.1 contains the functional decomposition tree for the Calendar program. The
pseudocode is given in next.

The Calendar program sketched here in pseudocode acquires a date in the form mm, dd, yyyy,
and provides the following functional capabilities:

 ◾ The date of the next day (our old friend, NextDate)
 ◾ The day of the week corresponding to the date (i.e., Monday, Tuesday, …)
 ◾ The zodiac sign of the date
 ◾ The most recent year in which Memorial Day was celebrated on May 27
 ◾ The most recent Friday the 13th

A sketch of the Calendar program is given next, followed by a condensed “skeleton,” which is the
basis for the functional decomposition in Figure 13.1.

Calendar
(Main)

isLeap weekDay

isValidDate

lastDayOfMonth

dateToDaynum

getDigits DaynumToDate isFriday isMonday

getDate nextDate Friday13th Memorial dayZodiac

Figure 13.1 Functional decomposition of Calendar program.

Integration Testing  ◾  231

Pseudocode for the Calendar Program

Main Calendar
Data Declarations
 mm, dd, yyyy, dayNumber, dayName, zodiacSign
Function isLeap (input yyyy, returns T/F)
 (isLeap is self-contained)
End Function isLeap

Procedure getDate (returns mm, dd, yyyy, dayNumber)
 Function isValidDate (inputs mm, dd, yyyy; returns T/F)
 Function lastDayOfMonth (inputs mm, yyyy, returns 28, 29, 30, or 31)
 lastDayOfMonth body
 (uses isLeap)
 end lastDayOfMonth body
 End Function lastDayOfMonth

 isValidDate body
 (uses lastDayOfMonth)
 end isValidDate body
 End Function isValidDate

 Procedure getDigits(returns mm, dd, yyyy)
 (uses Function isValidDate)
 End Procedure getDigits

 Procedure memorialDay (inputs mm, dd, yyyy; returns yyyy)
 Function isMonday (inputs mm, dd, yyyy; returns T/F)
 (uses weekDay)
 End Function isMonday

 memorialDaybody
 isMonday
 end memorialDay
 End Procedure memorialDay

Procedure friday13th (inputs mm, dd, yyyy; returns mm1, dd1, yyyy1)
 Function isFriday (inputs mm, dd, yyyy; returns T/F)
 (uses weekDay)
 End Function isFriday

 friday13th body
 (uses isFriday)
 end friday13th
End Procedure friday13th

getDate body
 getDigits
 isValidDate
 dateToDayNumber
end getDate body
End Procedure getDate
Procedure nextDate (input daynum, output mm1, dd1, yyyy1)
 Procedure dayNumToDate

232  ◾  Software Testing

 dayNumToDate body
 (uses isLeap)
 end dayNumToDate body
nextDate body
 dayNumToDate
end nextDate body
End Procedure nextDate

Procedure weekDay (input mm, dd, yyyy; output dayName)
 (uses Zeller’s Congruence)
End Procedure weekDay

Procedure zodiac (input dayNumber; output dayName)
 (uses dayNumbers of zodiac cusp dates)
End Procedure zodiac

Main program body
 getDate
 nextDate
 weekDay
 zodiac
 memorialDay
 friday13th
End Main program body

Lexicological Inclusion of the Calendar Program

Main Calendar
 Function isLeap
 Procedure weekDay
 Procedure getDate
 Function isValidDate
 Function lastDayOfMonth
 Procedure getDigits
 Procedure memorialDay
 Function isMonday
 Procedure friday13th
 Function isFriday
 Procedure nextDate
 Procedure dayNumToDate
 Procedure zodiac

13.1.1 Top–Down Integration
Top–down integration begins with the main program (the root of the tree). Any lower-level unit
that is called by the main program appears as a “stub,” where stubs are pieces of throwaway
code that emulate a called unit. If we performed top–down integration testing for the Calendar
program, the first step would be to develop stubs for all the units called by the main program—
isLeap, weekDay, getDate, zodiac, nextDate, friday13th, and memorialDay. In a stub for any unit,
the tester hard codes in a correct response to the request from the calling/invoking unit. In the
stub for zodiac, for example, if the main program calls zodiac with 05, 27, 2012, zodiacStub would
return “Gemini.” In extreme practice, the response might be “pretend zodiac returned Gemini.”

Integration Testing  ◾  233

The use of the pretend prefix emphasizes that it is not a real response. In practice, the effort to
develop stubs is usually quite significant. There is good reason to consider stub code as part of the
software project and maintain it under configuration management. In Figure 13.2, the first step
in top–down integration is shown. The gray-shaded units are all stubs. The goal of the first step is
to check that the main program functionality is correct.

Once the main program has been tested, we replace one stub at a time, leaving the others as
stubs. Figure 13.3 shows the first three steps in the gradual replacement of stubs by actual code.
The stub replacement process proceeds in a breadth-first traversal of the decomposition tree until
all the stubs have been replaced. (In Figures 13.2 and 13.3, the units below the first level are not
shown because they are not needed.)

The “theory” of top–down integration is that, as stubs are replaced one at a time, if there is
a problem, it must be with the interface to the most recently replaced stub. (Note that the fault

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Figure 13.2 First step in top–down integration.

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Figure 13.3 Next three steps in top–down integration.

234  ◾  Software Testing

isolation is similar to that of test-driven development.) The problem is that a functional decom-
position is deceptive. Because it is derived from the lexicological inclusion required by most com-
pilers, the process generates impossible interfaces. Calendar main never directly refers to either
isLeap or weekDay, so those test sessions could not occur.

13.1.2 Bottom–Up Integration
Bottom–up integration is a “mirror image” to the top–down order, with the difference that stubs
are replaced by driver modules that emulate units at the next level up in the tree. (In Figure 13.4,
the gray units are drivers.) Bottom–up integration begins with the leaves of the decomposition
tree, and use a driver version of the unit that would normally call it to provide it with test cases.
(Note the similarity to test driver units at the unit level. As units are tested, the drivers are gradu-
ally replaced, until the full decomposition tree has been traversed. Less throwaway code exists in
bottom–up integration, but the problem of impossible interfaces persists.

Figure 13.5 shows one case where a unit (zodiac) can be tested with a driver. In this case, the
Calendar driver would probably call zodiac with 36 test dates that are the day before a cusp date,
the cusp date, and the day after the cusp date. The cusp date for Gemini is May 21, so the driver
would call zodiac three times, with May 20, May 21, and May 22. The expected responses would
be “Taurus,” “Gemini,” and “Gemini,” respectively. Note how similar this is to the assert mecha-
nism in the jUnit (and related) test environments.

Calendar
(Main)

isLeap weekDay

isValidDate

lastDayOfMonth

dateToDaynum

getDigits DaynumToDate isFriday isMonday

getDate nextDate Friday13th MemorialDayzodiac

Figure 13.4 First steps in bottom–up integration.

Calendar
(driver)

isLeap weekDay getDate nextDate Friday13th MemorialDayzodiac

Figure 13.5 Bottom–up integration for zodiac.

Integration Testing  ◾  235

13.1.3 Sandwich Integration
Sandwich integration is a combination of top–down and bottom–up integration. If we think
about it in terms of the decomposition tree, we are really only doing big bang integration on a
subtree (see Figure 13.6). There will be less stub and driver development effort, but this will be
offset to some extent by the added difficulty of fault isolation that is a consequence of big bang
integration. (We could probably discuss the size of a sandwich, from dainty finger sandwiches to
Dagwood-style sandwiches, but not now.)

A sandwich is a full path from the root to leaves of the functional decomposition tree. In
Figure 13.6, the set of units is almost semantically coherent, except that isLeap is missing. This
set of units could be meaningfully integrated, but test cases at the end of February would not be
covered. Also note that the fault isolation capability of the top–down and bottom–up approaches
is sacrificed. No stubs nor drivers are needed in sandwich integration.

13.1.4 Pros and Cons
With the exception of big bang integration, the decomposition-based approaches are all intuitively
clear. Build with tested components. Whenever a failure is observed, the most recently added unit
is suspected. Integration testing progress is easily tracked against the decomposition tree. (If the
tree is small, it is a nice touch to shade in nodes as they are successfully integrated.) The top–down
and bottom–up terms suggest breadth-first traversals of the decomposition tree, but this is not
mandatory. (We could use full-height sandwiches to test the tree in a depth-first manner.)

One of the most frequent objections to functional decomposition and waterfall development is that
both are artificial, and both serve the needs of project management more than the needs of software
developers. This holds true also for decomposition-based testing. The whole mechanism is that units are
integrated with respect to structure; this presumes that correct behavior follows from individually cor-
rect units and correct interfaces. (Practitioners know better.) The development effort for stubs or drivers
is another drawback to these approaches, and this is compounded by the retesting effort.

Calendar
(Main)

isLeap weekDay

isValidDate

lastDayOfMonth

dateToDaynum

getDigits DaynumToDate isFriday isMonday

getDate nextDate Friday13th MemorialDayzodiac

Figure 13.6 Sample sandwich integration.

236  ◾  Software Testing

13.2 Call Graph–Based Integration
One of the drawbacks of decomposition-based integration is that the basis is the functional decom-
position tree. We saw that this leads to impossible test pairs. If we use the call graph instead, we
resolve this deficiency; we also move in the direction of structural testing. The call graph is devel-
oped by considering units to be nodes, and if unit A calls (or uses) unit B, there is an edge from
node A to node B. The call graph for the Calendar program is shown in Figure 13.7.

Since edges in the call graph refer to actual execution–time connections, the call graph avoids
all the problems we saw in the decomposition tree–based versions of integration. In fact, we could
repeat the discussion of Section 13.1 based on stubs and drivers in the units in Figure 13.7. This
will work well, and it preserves the fault isolation feature of the decomposition-based approaches.
Figure 13.8 shows the first step in call graph–based top–down integration.

The stubs in the first session could operate as follows. When the Calendar main program calls
getDateStub, the stub might return May 27, 2013. The zodiacStub would return “Gemini,” and so
on. Once the main program logic is tested, the stubs would be replaced, as we discussed in Section
13.1. The three strategies of Section 13.1 will all work well when stubs and drivers are based on the
call graph rather than the functional decomposition.

We are in a position to enjoy the investment we made in the discussion of graph theory.
Because the call graph is a directed graph, why not use it the way we used program graphs? This
leads us to two new approaches to integration testing: we will refer to them as pairwise integration
and neighborhood integration.

Calendar
(Main)

isLeap

weekDay

isValidDate

lastDayOfMonth

getDigits dateToDaynum dayNumToDate isFridayisMonday

getDate nextDate Friday13thmemorialDayzodiac

Figure 13.7 Call graph of Calendar program.

Calendar
(Main)

weekDaygetDate nextDate Friday13thmemorialDayzodiac

Figure 13.8 Call graph–based top–down integration of Calendar program.

Integration Testing  ◾  237

13.2.1 Pairwise Integration
The idea behind pairwise integration is to eliminate the stub/driver development effort. Instead of
developing stubs and/or drivers, why not use the actual code? At first, this sounds like big bang inte-
gration, but we restrict a session to only a pair of units in the call graph. The end result is that we have
one integration test session for each edge in the call graph. Pairwise integration results in an increased
number of integration sessions when a node (unit) is used by two or more other units. In the Calendar
example, there would be 15 separate sessions for top–down integration (one for each stub replacement);
this increases to 19 sessions for pairwise integration (one for each edge in the call graph). This is offset
by a reduction in stub/driver development. Three pairwise integration sessions are shown in Figure 13.9.

The main advantage of pairwise integration is the high degree of fault isolation. If a test fails,
the fault must be in one of the two units. The biggest drawback is that, for units involved on several
pairs, a fix that works in one pair may not work in another pair. This is yet another example of the
testing pendulum discussed in Chapter 10. Call graph integration is slightly better than the decom-
position tree–based approach, but both can be removed from the reality of the code being tested.

13.2.2 Neighborhood Integration
We can let the mathematics carry us still further by borrowing the notion of a neighborhood from
topology. (This is not too much of a stretch—graph theory is a branch of topology.) The neighborhood
of a node in a graph is the set of nodes that are one edge away from the given node. (Technically, this
is a neighborhood of radius 1; in larger systems, it makes sense to increase the neighborhood radius.)
In a directed graph, this includes all the immediate predecessor nodes and all the immediate successor
nodes (notice that these correspond to the set of stubs and drivers of the node). The neighborhoods of
getDate, nextDate, Friday13th, and weekDay are shown in Figure 13.10.

The 15 neighborhoods for the Calendar example (based on the call graph in Figure 13.7)
are listed in Table 13.1. To make the table simpler, the original unit names are replaced by node
numbers (in Figure 13.11), where the numbering is generally breadth first. The juxtaposition and
connectivity is preserved in Figure 13.11.

The information in Table 13.1 is given in Table 13.2 as the adjacency matrix for the call graph.
The column sums show the indegrees of each node, and the row sums show the outdegrees.

Calendar
(Main)

isLeap

weekDay

isValidDate

lastDayOfMonth

getDigits dateToDaynum dayNumToDate isFridayisMonday

getDate nextDate Friday13thmemorialDayzodiac

Figure 13.9 three pairs for pairwise integration.

238  ◾  Software Testing

Calendar
(Main)

isLeap

weekDay

isValidDate

lastDayOfMonth

getDigits dateToDaynum dayNumToDate isFridayisMonday

getDate nextDate Friday13thmemorialDayzodiac

Figure 13.10 three neighborhoods (of radius 1) for neighborhood integration.

table 13.1 Neighborhoods of radius 1 in Calendar Call Graph

Neighborhoods in Calendar Program Call Graph

Node Unit Name Predecessors Successors

1 Calendar (Main) (None) 2, 3, 4, 5, 6, 7

2 getDate 1 8, 9

3 zodiac 1 9

4 nextDate 1 10

5 memorialDay 1 11

6 weekday 1, 11, 12 (None)

7 Friday13th 1 12

8 getDigits 2 13

9 dateToDayNum 3 15

10 dayNumToDate 4 15

11 isMonday 5 6

12 isFriday 7 6

13 isValidDate 8 14

14 lastDayOfMonth 13 15

15 isLeap 9, 10, 14 (None)

Integration Testing  ◾  239

1

2

8 9 10

13

14 15

11 12

3 4 5 6 7

Figure 13.11 Calendar call graph with units replaced by numbers.

table 13.2 adjacency Matrix of Calendar Call Graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Row
Sum

1 1 1 1 1 1 1 6

2 1 1 2

3 1 1

4 1 1

5 1 1

6 0

7 1 1

8 1 1

9 1 1

10 1 1

11 1 1

12 1 1

13 1 1

14 1 1

15 0

Column sum 0 1 1 1 1 1 3 1 2 1 1 1 1 1 3

240  ◾  Software Testing

We can always compute the number of neighborhoods for a given call graph. Each interior
node will have one neighborhood, plus one extra in case leaf nodes are connected directly to the
root node. (An interior node has a nonzero indegree and a nonzero outdegree.) We have

 Interior nodes = nodes – (source nodes + sink nodes)

 Neighborhoods = interior nodes + source nodes

which combine to

 Neighborhoods = nodes – sink nodes

Neighborhood integration usually yields a reduction in the number of integration test sessions,
and it reduces stub and driver development. The end result is that neighborhoods are essentially
the sandwiches that we slipped past in the previous section. (It is slightly different because the base
information for neighborhoods is the call graph, not the decomposition tree.) What they share
with sandwich integration is more significant—neighborhood integration testing has the fault
isolation difficulties of “medium bang” integration.

13.2.3 Pros and Cons
The call graph–based integration techniques move away from a purely structural basis toward a
behavioral basis; thus, the underlying assumption is an improvement. (See the Testing Pendulum
in Chapter 10.) The neighborhood-based techniques also reduce the stub/driver development
effort. In addition to these advantages, call graph–based integration matches well with develop-
ments characterized by builds and composition. For example, sequences of neighborhoods can
be used to define builds. Alternatively, we could allow adjacent neighborhoods to merge (into
villages?) and provide an orderly, composition-based growth path. All this supports the use of
neighborhood-based integration for systems developed by life cycles in which composition
dominates.

The biggest drawback to call graph–based integration testing is the fault isolation problem,
especially for large neighborhoods. A more subtle but closely related problem occurs. What hap-
pens if (when) a fault is found in a node (unit) that appears in several neighborhoods? The adja-
cency matrix highlights this immediately—nodes with either a high row sum or a high column
sum will be in several neighborhoods. Obviously, we resolve the fault in one neighborhood; but
this means changing the unit’s code in some way, which in turn means that all the previously
tested neighborhoods that contain the changed node need to be retested.

Finally, a fundamental uncertainty exists in any structural form of testing: the presumption
that units integrated with respect to structural information will exhibit correct behavior. We know
where we are going: we want system-level threads of behavior to be correct. When integration test-
ing based on call graph information is complete, we still have quite a leap to get to system-level
threads. We resolve this by changing the basis from call graph information to special forms of
paths.

Integration Testing  ◾  241

13.3 path-Based Integration
Much of the progress in the development of mathematics comes from an elegant pattern: have a
clear idea of where you want to go, and then define the concepts that take you there. We do this
here for path-based integration testing, but first we need to motivate the definitions.

We already know that the combination of structural and functional testing is highly desirable
at the unit level; it would be nice to have a similar capability for integration (and system) testing.
We also know that we want to express system testing in terms of behavioral threads. Lastly, we
revise our goal for integration testing: instead of testing interfaces among separately developed
and tested units, we focus on interactions among these units. (“Co-functioning” might be a good
term.) Interfaces are structural; interaction is behavioral.

When a unit executes, some path of source statements is traversed. Suppose that a call goes
to another unit along such a path. At that point, control is passed from the calling unit to the
called unit, where some other path of source statements is traversed. We deliberately ignored this
situation in Chapter 8, because this is a better place to address the question. Two possibilities are
available: abandon the single-entry, single-exit precept and treat such calls as an exit followed by
an entry, or suppress the call statement because control eventually returns to the calling unit any-
way. The suppression choice works well for unit testing, but it is antithetical to integration testing.

13.3.1 New and Extended Concepts
To get where we need to go, we need to refine some of the program graph concepts. As before,
these refer to programs written in an imperative language. We allow statement fragments to be a
complete statement, and statement fragments are nodes in the program graph.

Definition

A source node in a program is a statement fragment at which program execution begins or resumes.
The first executable statement in a unit is clearly a source node. Source nodes also occur imme-

diately after nodes that transfer control to other units.

Definition

A sink node in a unit is a statement fragment at which program execution terminates.
The final executable statement in a program is clearly a sink node; so are statements that trans-

fer control to other units.

Definition

A module execution path is a sequence of statements that begins with a source node and ends with
a sink node, with no intervening sink nodes.

The effect of the definitions thus far is that program graphs now have multiple source and sink
nodes. This would greatly increase the complexity of unit testing, but integration testing presumes
unit testing is complete.

242  ◾  Software Testing

Definition

A message is a programming language mechanism by which one unit transfers control to another
unit, and acquires a response from the other unit.

Depending on the programming language, messages can be interpreted as subroutine invoca-
tions, procedure calls, function references, and the usual messages in an object-oriented program-
ming language. We follow the convention that the unit that receives a message (the message
destination) always eventually returns control to the message source. Messages can pass data to
other units. We can finally make the definitions for path-based integration testing. Our goal is to
have an integration testing analog of DD-paths.

Definition

An MM-path is an interleaved sequence of module execution paths and messages.
The basic idea of an MM-path (Jorgensen 1985; Jorgensen and Erickson 1994) is that we

can now describe sequences of module execution paths that include transfers of control among
separate units. In traditional software, “MM” is nicely understood as module–message; in object-
oriented software, it is clearer to interpret “MM” as method–message. These transfers are by mes-
sages, therefore, MM-paths always represent feasible execution paths, and these paths cross unit
boundaries. The hypothetical example in Figure 13.12 shows an MM-path (the solid edges) in
which module A calls module B, which in turn calls module C. Notice that, for traditional (pro-
cedural) software, MM-paths will always begin (and end) in the main program.

a1 b1 c1

c2

c3

c9

c4

c5

c8

c6 c7

b2

b3

b4

b5

a2

a3

a4

a7

a8

a5 a6

msg1

msg2

msg1
return

msg2
return

Figure 13.12 Hypothetical MM-path across three units.

Integration Testing  ◾  243

In unit A, nodes a1 and a6 are source nodes (a5 and a6 are outcomes of the decision at node
a5), and nodes a4 (a decision) and a8 are sink nodes. Similarly, in unit B, nodes b1 and b3 are
source nodes, and nodes b2 and b5 are sink nodes. Node b2 is a sink node because control leaves
unit B at that point. It could also be a source node, because unit C returns a value used at node
b2. Unit C has a single source node, c1, and a single sink node, c9. Unit A contains three module
execution paths: <a1, a2, a3, a4>, <a4, a5, a7, a8>, and <a4, a6, a7, a8>. The solid edges are edges
actually traversed in this hypothetical example. The dashed edges are in the program graphs of
the units as stand-alone units, but they did not “execute” in the hypothetical MM-path. We
can now define an integration testing analog of the DD-path graph that serves unit testing so
effectively.

Definition

Given a set of units, their MM-path graph is the directed graph in which nodes are module execu-
tion paths and edges correspond to messages and returns from one unit to another.

Notice that MM-path graphs are defined with respect to a set of units. This directly supports
composition of units and composition-based integration testing. We can even compose down to
the level of individual module execution paths, but that is probably more detailed than necessary.

We should consider the relationships among module execution paths, program paths,
DD-paths, and MM-paths. A program path is a sequence of DD-paths, and an MM-path is
a sequence of module execution paths. Unfortunately, there is no simple relationship between
DD-paths and module execution paths. Either might be contained in the other, but more likely,
they partially overlap. Because MM-paths implement a function that transcends unit boundaries,
we do have one relationship: consider the intersection of an MM-path with a unit. The module
execution paths in such an intersection are an analog of a slice with respect to the (MM-path)
function. Stated another way, the module execution paths in such an intersection are the restric-
tion of the function to the unit in which they occur.

The MM-path definition needs some practical guidelines. How long (“deep” might be better)
is an MM-path? The notion of message quiescence helps here. Message quiescence occurs when
a unit that sends no messages is reached (like module C in Figure 13.12). In a sense, this could
be taken as a “midpoint” of an MM-path—the remaining execution consists of message returns.
This is only mildly helpful. What if there are two points of message quiescence? Maybe a better
answer is to take the longer of the two, or, if they are of equal depth, the latter of the two. Points
of message quiescence are natural endpoints for an MM-path.

13.3.2 MM-Path Complexity
If you compare the MM-paths in Figures 13.12 and 13.17, it seems intuitively clear that the latter
is more complex than the former. Because these are strongly connected directed graphs, we can
“blindly” compute their cyclomatic complexities; recall the formula is V(G) = e – n + 2p, where p
is the number of strongly connected regions. Since messages return to the sending unit, we will
always have p = 1, so the formula reduces to V(G) = e – n + 2. Surprisingly, both graphs have
V(G) = 7. Clearly, MM-path complexity needs some notion of size in addition to cyclomatic com-
plexity (Figure 13.13).

244  ◾  Software Testing

13.3.3 Pros and Cons
MM-paths are a hybrid of functional and structural testing. They are functional in the sense
that they represent actions with inputs and outputs. As such, all the functional testing tech-
niques are potentially applicable. The net result is that the cross-check of the functional and
structural approaches is consolidated into the constructs for path-based integration testing. We
therefore avoid the pitfall of structural testing, and, at the same time, integration testing gains
a fairly seamless junction with system testing. Path-based integration testing works equally well
for software developed in the traditional waterfall process or with one of the composition-based
alternative life cycle models. Finally, the MM-path concept applies directly to object-oriented
software.

The most important advantage of path-based integration testing is that it is closely coupled
with actual system behavior, instead of the structural motivations of decomposition and call
graph–based integration. However, the advantages of path-based integration come at a price—
more effort is needed to identify the MM-paths. This effort is probably offset by the elimination
of stub and driver development.

13.4 Example: integrationNextDate
Our now familiar NextDate is rewritten here as a main program with a functional decom-
position into procedures and functions. This integrationNextDate is a slight extension: there
is added validity checking for months, days, and years, so the pseudocode, which follows
Figures 13.14 and 13.15, grows from 50 statements to 81. Figures 13.14 and 13.15 show the
functional decomposition and the call graph, respectively. Figure 13.16 shows the program
graphs of the units in integrationNextDate. Figure 13.17 shows the MM-path for the input date
May 27, 2012.

A

B

C

V(G) = 3

V(G) = 4

Main

getDate

validDate

lastDayOfMonth

msg1
return

msg7
return

msg6
return

msg1

msg7

msg6

Figure 13.13 Cyclomatic complexities of two MM-paths.

Integration Testing  ◾  245

13.4.1 Decomposition-Based Integration
The isLeap and lastDayOfMonth functions are in the first level of decomposition because they
must be available to both GetDate and IncrementDate. (We could move isLeap to be contained
within the scope of lastDayOfMonth.) Pairwise integration based on the decomposition in Figure
13.14 is problematic; the isLeap and lastDayOfMonth functions are never directly called by the
Main program, so these integration sessions would be empty. Bottom–up pairwise integration
starting with isLeap, then lastDayOfMonth, ValidDate, and GetDate would be useful. The pairs
involving Main and GetDate, IncrementDate, and PrintDate are all useful (but short) sessions.
Building stubs for ValidDate and lastDayOfMonth would be easy.

13.4.2 Call Graph–Based Integration
Pairwise integration based on the call graph in Figure 13.15 is an improvement over that for the
decomposition-based pairwise integration. Obviously, there are no empty integration sessions
because edges refer to actual unit references. There is still the problem of stubs. Sandwich integration
is appropriate because this example is so small. In fact, it lends itself to a build sequence. Build 1
could contain Main and PrintDate. Build 2 could contain Main, IncrementDate, lastDayOfMonth,
and IncrementDate in addition to the already present PrintDate. Finally, build 3 would add the
remaining units, GetDate and ValidDate.

isLeap

isValidDate

lastDayOfMonth

getDigits

getDate

integrationNextDate

printDateincrementDate

Figure 13.14 Functional decomposition of integrationNextDate.

integrationNextDate

getDate

isValidDate lastDayOfMonth isLeap

incrementDate printDate

msg1

msg7 msg8

msg6 msg5

msg3 msg2, msg4
Added

Added

Figure 13.15 Call graph of integrationNextDate.

246  ◾  Software Testing

Neighborhood integration based on the call graph would likely proceed with the neigh-
borhoods of ValidDate and lastDayOfMonth. Next, we could integrate the neighborhoods of
GetDate and IncrementDate. Finally, we would integrate the neighborhood of Main. Notice that
these neighborhoods form a build sequence.

integrationNextDate pseudocode

1 Main integrationNextDate ‘start program event occurs here
 Type Date
 Month As Integer
 Day As Integer
 Year As Integer
 EndType
 Dim today, tomorrow As Date
2 Output(“Welcome to NextDate!”)
3 GetDate(today) ‘msg1
4 PrintDate(today) ‘msg2
5 tomorrow = IncrementDate(today) ‘msg3
6 PrintDate(tomorrow) ‘msg4
7 End Main
8 Function isLeap(year) Boolean
9 If (year divisible by 4)
10 Then
11 If (year is NOT divisible by 100)
12 Then isLeap = True
13 Else
14 If (year is divisible by 400)
15 Then isLeap = True
16 Else isLeap = False
17 EndIf
18 EndIf
19 Else isLeap = False
20 EndIf
21 End (Function isLeap)

22 Function lastDayOfMonth(month, year) Integer
23 Case month Of
24 Case 1: 1, 3, 5, 7, 8, 10, 12
25 lastDayOfMonth = 31
26 Case 2: 4, 6, 9, 11
27 lastDayOfMonth = 30
28 Case 3: 2
29 If (isLeap(year)) ‘msg5
30 Then lastDayOfMonth = 29
31 Else lastDayOfMonth = 28
32 EndIf
33 EndCase
34 End (Function lastDayOfMonth)
35 Function GetDate(aDate) Date
 dim aDate As Date

36 Function ValidDate(aDate) Boolean ‘within scope of GetDate
 dim aDate As Date
 dim dayOK, monthOK, yearOK As Boolean
37 If ((aDate.Month > 0) AND (aDate.Month <=12)

Integration Testing  ◾  247

38 Then monthOK = True
39 Output(“Month OK”)
40 Else monthOK = False
41 Output(“Month out of range”)
42 EndIf
43 If (monthOK)
44 Then
45 If ((aDate.Day > 0) AND (aDate.Day <=
 lastDayOfMonth(aDate.Month, aDate.Year)) ‘msg6
46 Then dayOK = True
47 Output(“Day OK”)
48 Else dayOK = False
49 Output(“Day out of range”)
50 EndIf
51 EndIf
52 If ((aDate.Year > 1811) AND (aDate.Year <=2012)
53 Then yearOK = True
54 Output(“Year OK”)
55 Else yearOK = False
56 Output(“Year out of range”)
57 EndIf
58 If (monthOK AND dayOK AND yearOK)
59 Then ValidDate = True
60 Output(“Date OK”)
61 Else ValidDate = False
62 Output(“Please enter a valid date”)
63 EndIf
64 End (Function ValidDate)

 ‘ GetDate body begins here
65 Do
66 Output(“enter a month”)
67 Input(aDate.Month)
68 Output(“enter a day”)
69 Input(aDate.Day)
70 Output(“enter a year”)
71 Input(aDate.Year)
72 GetDate.Month = aDate.Month
73 GetDate.Day = aDate.Day
74 GetDate.Year = aDate.Year
75 Until (ValidDate(aDate)) ‘msg7
76 End (Function GetDate)
77 Function IncrementDate(aDate) Date
78 If (aDate.Day < lastDayOfMonth(aDate.Month)) ‘msg8
79 Then aDate.Day = aDate.Day + 1
80 Else aDate.Day = 1
81 If (aDate.Month = 12)
82 Then aDate.Month = 1
83 aDate.Year = aDate.Year + 1
84 Else aDate.Month = aDate.Month + 1
85 EndIf
86 EndIf
87 End (IncrementDate)

88 Procedure PrintDate(aDate)
89 Output(“Day is “, aDate.Month, “/”, aDate.Day, “/”, aDate.Year)
90 End (PrintDate)

248  ◾  Software Testing

1 2 3 4 5 6 Main V(G) = 1

ValidDate V(G) = 6

IncrementDate V(G) = 3

GetDate V(G) = 2 PrintDate V(G) = 1

LastDayOfMonth
V(G) = 4

isLeap V(G) = 4

7
21

22

2523 27

2624 28

35

36

39

40

46

47

48 49

50

51

52 53

54

55

41

42

43 44

45
68

69

70 71

72

7677

79

80

81

78

73

74

75

37 38

29 30

31

32

33

8

9

10

11 12

13

16

14 15

18

17
19

20
34

56

66

67

57–65

Figure 13.16 program graphs of units in integrationNextDate.

Integration Testing  ◾  249

Main V(G) = 1

LastDayOfMonth
V(G) = 4

GetDate V(G) = 2 ValidDate V(G) = 6

msg1

msg7

msg6

msg1
return

msg6
return msg7

return

1

2

34 35

36

39

40

41

21

22

23

24

25

26

27

28

31

32

33

29 30

42

43
44

45
46

47

50

51

54

55

52 53

48 49

37 38

56

66

67

57−65
3

4

5

6

Figure 13.17 MM-path for May 27, 2012.

250  ◾  Software Testing

13.4.3 MM-Path-Based Integration
Because the program is data-driven, all MM-paths begin in and return to the main program. Here
is the first MM-path for May 27, 2012 (there are others when the Main program calls PrintDate
and IncrementDate). It is shown in Figure 13.17.

Main (1, 2)
 msg1
 GetDate (34, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66)
 msg7
 validDate (35, 36, 37, 39, 40, 41, 42))
 msg6
 lastDayOfMonth (21, 22, 23, 24, 32, 33)
 ‘point of message quiescence
 ValidDate (43, 45, 46, 47, 48, 50, 51, 52, 54, 55)
 GetDate (67)
Main (3)

We are now in a strong position to describe how many MM-paths are sufficient: the set of
MM-paths should cover all source-to-sink paths in the set of units. This is subtly present in Figure
13.17. The solid edges are in the MM-path, but the dashed edges are not. When loops are present,
condensation graphs will result in directed acyclic graphs, thereby resolving the problem of poten-
tially infinite (or excessively large) number of paths.

13.5 Conclusions and recommendations
Table 13.3 summarizes the observations made in the preceding discussion. The significant
improvement of MM-paths as a basis for integration testing is due to their exact representation of
dynamic software behavior. MM-paths are also the basis for present research in data flow (define/
use) approaches to integration testing. Integration testing with MM-paths requires extra effort. As
a fallback position, perform integration testing based on call graphs.

table 13.3 Comparison of Integration testing Strategies

Strategy Basis
Ability to Test

Interfaces
Ability to Test

Co-Functionality
Fault Isolation

Resolution

Functional
decomposition

Acceptable but
can be deceptive

Limited to pairs
of units

Good, to faulty unit

Call graph Acceptable Limited to pairs
of units

Good, to faulty unit

MM-path Excellent Complete Excellent, to faulty
unit execution path

Integration Testing  ◾  251

EXERCISES
 1. Find the source and sink nodes in isValidateDate and in getDate.
 2. Write driver modules for isValidateDate and in getDate.
 3. Write stubs for isValidateDate and in getDate.
 4. Here are some other possible complexity metrics for MM-paths:

V(G) = e – n
V(G) = 0.5e – n + 2
sum of the outdegrees of the nodes
sum of the nodes plus the sum of the edges

 Make up some examples, try these out, and see if they have any explanatory value.
 5. Make up a few test cases, interpret them as MM-paths, and then see what portions of the

unit program graphs in Figure 13.16 are traversed by your MM-paths. Try to devise a “cov-
erage metric” for MM-path-based integration testing.

 6. One of the goals of integration testing is to be able to isolate faults when a test case causes
a failure. Consider integration testing for a program written in a procedural programming
language. Rate the relative fault isolation capabilities of the following integration strategies:
A = Decomposition based top–down integration
B = Decomposition based bottom–up integration
C = Decomposition based sandwich integration
D = Decomposition based “big bang” integration
E = Call graph–based pairwise integration
F = Call graph–based neighborhood integration (radius = 2)
G = Call graph–based neighborhood integration (radius = 1)

 Show your ratings graphically by placing the letters corresponding to a strategy on the
continuum below. As an example, suppose Strategies X and Y are about equal and not very
effective, and Strategy Z is very effective.

 Y
 X Z
Low High

references
Deutsch, M.S., Software Verification and Validation-Realistic Project Approaches, Prentice-Hall, Englewood

Cliffs, NJ, 1982.
Fordahl, M., Elementary Mistake Doomed Mars Probe, The Associated Press, available at http://mars.jpl.nasa.

gov/msp98/news/mco990930.html, October 1, 1999.
Hetzel, B., The Complete Guide to Software Testing, 2nd ed., QED Information Sciences, Inc., Wellesley, MA, 1988.
Jorgensen, P.C., The Use of MM-Paths in Constructive Software Development, Ph.D. dissertation, Arizona State

University, Tempe, AZ, 1985.
Jorgensen, P.C. and Erickson, C., Object-oriented integration testing, Communications of the ACM, September

1994.
Kaner, C., Falk, J. and Nguyen, H.Q., Testing Computer Software, 2nd ed., Van Nostrand Reinhold, New

York, 1993.
Mosley, D.J., The Handbook of MIS Application Software Testing, Yourdon Press, Prentice-Hall, Englewood

Cliffs, NJ, 1993.
Pressman, R.S., Software Engineering: A Practitioner’s Approach, 6th ed., McGraw-Hill, New York, 2005.
Schach, S.R., Object-Oriented and Classical Software Engineering, 5th ed., McGraw-Hill, New York, 2002.

253
© 2010 Taylor & Francis Group, LLC

Chapter 14

System testing

Of the three levels of testing, the system level is closest to everyday experience. We test many
things: a used car before we buy it, an online network service before we subscribe, and so on. A
common pattern in these familiar forms is that we evaluate a product in terms of our expecta-
tions—not with respect to a specification or a standard. Consequently, the goal is not to find faults
but to demonstrate correct behavior. Because of this, we tend to approach system testing from a
specification-based standpoint instead of from a code-based one. Because it is so intuitively famil-
iar, system testing in practice tends to be less formal than it might be, and this is compounded by
the reduced testing interval that usually remains before a delivery deadline.

The craftsperson metaphor continues to serve us. We need a better understanding of the
medium; we will view system testing in terms of threads of system-level behavior. We begin with a
new construct—an Atomic System Function (ASF)—and develop the thread concept, highlight-
ing some of the practical problems of thread-based system testing. System testing is closely coupled
with requirements specification; therefore, we shall use appropriate system-level models to enjoy
the benefits of model-based testing. Common to all of these is the idea of “threads,” so we shall see
how to identify system-level threads in a variety of common models. All this leads to an orderly
thread-based system testing strategy that exploits the symbiosis between specification-based and
code-based testing. We will apply the strategy to our simple automated teller machine (SATM)
system, first described in Chapter 2.

14.1 threads
Threads are hard to define; in fact, some published definitions are counterproductive, misleading,
or wrong. It is possible to simply treat threads as a primitive concept that needs no formal defini-
tion. For now, we will use examples to develop a “shared vision.” Here are several views of a thread:

A scenario of normal usage
A system-level test case
A stimulus/response pair
Behavior that results from a sequence of system-level inputs

254  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

An interleaved sequence of port input and output events
A sequence of transitions in a state machine description of the system
An interleaved sequence of object messages and method executions
A sequence of machine instructions
A sequence of source instructions
A sequence of MM-paths
A sequence of ASFs (to be defined in this chapter)

Threads have distinct levels. A unit-level thread is usefully understood as an execution–time path
of source instructions or, alternatively, as a sequence of DD-paths. An integration-level thread is an
MM-path—that is, an alternating sequence of module execution paths and messages. If we continue
this pattern, a system-level thread is a sequence of ASFs. Because ASFs have port events as their inputs
and outputs, a sequence of ASFs implies an interleaved sequence of port input and output events. The
end result is that threads provide a unifying view of our three levels of testing. Unit testing tests indi-
vidual functions; integration testing examines interactions among units; and system testing examines
interactions among ASFs. In this chapter, we focus on system-level threads and answer some funda-
mental questions, such as, “How big is a thread? Where do we find them? How do we test them?”

14.1.1 Thread Possibilities
Defining the endpoints of a system-level thread is a bit awkward. We motivate a tidy, graph
theory–based definition by working backward from where we want to go with threads. Here are
four candidate threads in our SATM system:

Entry of a digit
Entry of a personal identification number (PIN)
A simple transaction: ATM card entry, PIN entry, select transaction type (deposit, withdraw),

present account details (checking or savings, amount), conduct the operation, and report
the results

An ATM session containing two or more simple transactions

Digit entry is a good example of a minimal ASF. It begins with a port input event (the digit
keystroke) and ends with a port output event (the screen digit echo), so it qualifies as a stimulus/
response pair. This level of granularity is too fine for the purposes of system testing.

The second candidate, PIN entry, is a good example of an upper limit to integration testing
and, at the same time, a starting point of system testing. PIN entry is a good example of an ASF. It
is also a good example of a family of stimulus/response pairs (system-level behavior that is initiated
by a port input event, traverses some programmed logic, and terminates in one of several possible
responses [port output events]). PIN entry entails a sequence of system-level inputs and outputs.

 1. A screen requesting PIN digits.
 2. An interleaved sequence of digit keystrokes and screen responses.
 3. The possibility of cancellation by the customer before the full PIN is entered.
 4. A system disposition: a customer has three chances to enter the correct PIN. Once a correct

PIN has been entered, the user sees a screen requesting the transaction type; otherwise, a
screen advises the customer that the ATM card will not be returned, and no access to ATM
functions is provided.

System Testing  ◾  255

© 2010 Taylor & Francis Group, LLC

Several stimulus/response pairs are evident, putting ASFs clearly in the domain of system-level test-
ing. Other examples of ASFs include card entry, transaction selection, provision of transaction details,
transaction reporting, and session termination. Each of these is maximal in an integration testing sense
and minimal in a system testing sense. That is, we would not want to integration test something larger
than an ASF; at the same time, we would not want to test anything smaller as part of system testing.

The third candidate, the simple transaction, has a sense of “end-to-end” completion. A cus-
tomer could never execute PIN entry alone (a card entry is needed), but the simple transaction
is commonly executed. This is a good example of a system-level thread; note that it involves the
interaction of several ASFs.

The last possibility (the session) is actually a sequence of threads. This is also properly a part
of system testing; at this level, we are interested in the interactions among threads. Unfortunately,
most system testing efforts never reach the level of thread interaction.

14.1.2 Thread Definitions
We simplify our discussion by defining a new term that helps us get to our desired goal.

Definition

An Atomic System Function (ASF) is an action that is observable at the system level in terms of port
input and output events.

In an event-driven system, ASFs are separated by points of event quiescence; these occur when
a system is (nearly) idle, waiting for a port input event to trigger further processing. Event qui-
escence has an interesting Petri net insight. In a traditional Petri net, deadlock occurs when no
transition is enabled. In an Event-Driven Petri Net (defined in Chapter 4), event quiescence is
similar to deadlock; but an input event can bring new life to the net. The SATM system exhibits
event quiescence in several places: one is the tight loop at the beginning of an ATM session, where
the system has displayed the welcome screen and is waiting for a card to be entered into the card
slot. Event quiescence is a system-level property; it is a direct analog of message quiescence at the
integration level.

The notion of event quiescence does for ASFs what message quiescence does for MM-paths—it
provides a natural endpoint. An ASF begins with a port input event and terminates with a port
output event. When viewed from the system level, no compelling reason exists to decompose an
ASF into lower levels of detail (hence, the atomicity). In the SATM system, digit entry is a good
example of an ASF—so are card entry, cash dispensing, and session closing. PIN entry is probably
too big; perhaps we should call it a molecular system function.

Atomic system functions represent the seam between integration and system testing. They are
the largest item to be tested by integration testing and the smallest item for system testing. We
can test an ASF at both levels. We will revisit the integrationNextDate program to find ASFs in
Section 14.10.

Definition

Given a system defined in terms of ASFs, the ASF graph of the system is the directed graph in
which nodes are ASFs and edges represent sequential flow.

256  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Definition

A source ASF is an Atomic System Function that appears as a source node in the ASF graph of a sys-
tem; similarly, a sink ASF is an Atomic System Function that appears as a sink node in the ASF graph.

In the SATM system, the card entry ASF is a source ASF, and the session termination ASF is a
sink ASF. Notice that intermediary ASFs could never be tested at the system level by themselves—
they need the predecessor ASFs to “get there.”

Definition

A system thread is a path from a source ASF to a sink ASF in the ASF graph of a system.
These definitions provide a coherent set of increasingly broader views of threads, starting with

very short threads (within a unit) and ending with interactions among system-level threads. We
can use these views much like the ocular on a microscope, switching among them to see differ-
ent levels of granularity. Having these concepts is only part of the problem; supporting them is
another. We next take a tester’s view of requirements specification to see how to identify threads.

14.2 Basis Concepts for requirements Specification
Recall the notion of a basis of a vector space: a set of independent elements from which all the elements
in the space can be generated (see problem 9, Chapter 8). Instead of anticipating all the variations in
scores of requirements specification methods, notations, and techniques, we will discuss system test-
ing with respect to a basis set of requirements specification constructs: data, actions, devices, events,
and threads. Every system can be modeled in terms of these five fundamental concepts (and every
requirements specification model uses some combination of these). We examine these fundamental
concepts here to see how they support the tester’s process of thread identification.

14.2.1 Data
When a system is described in terms of its data, the focus is on the information used and created by
the system. We describe data in terms of variables, data structures, fields, records, data stores, and files.
Entity/relationship (E/R) models are the most common choice at the highest level, and some form of a
regular expression (e.g., Jackson diagrams or data structure diagrams) is used at a more detailed level.
The data-centered view is also the starting point for several flavors of object-oriented analysis. Data refers
to information that is either initialized, stored, updated, or (possibly) destroyed. In the SATM system,
initial data describes the various accounts (each with its Personal Account Number, or PAN) and their
PINs, and each account has a data structure with information such as the account balance. As ATM
transactions occur, the results are kept as created data and used in the daily posting of terminal data to
the central bank. For many systems, the data-centered view dominates. These systems are often devel-
oped in terms of CRUD actions (Create, Retrieve, Update, Delete). We could describe the transaction
portion of the SATM system in this way, but it would not work well for the user interface portion.

Sometimes threads can be identified directly from the data model. Relationships among data
entities can be one-to-one, one-to-many, many-to-one, or many-to-many; these distinctions all
have implications for threads that process the data. For example, if bank customers can have several
accounts, each account needs a unique PIN. If several people can access the same account, they need

System Testing  ◾  257

© 2010 Taylor & Francis Group, LLC

ATM cards with identical PANs. We can also find initial data (such as PAN, ExpectedPIN pairs) that
are read but never written. Such read-only data must be part of the system initialization process. If not,
there must be threads that create such data. Read-only data is therefore an indicator of source ASFs.

14.2.2 Actions
Action-centered modeling is still a common requirements specification form. This is a historical out-
growth of the action-centered nature of imperative programming languages. Actions have inputs and
outputs, and these can be either data or port events. Here are some methodology-specific synonyms
for actions: transform, data transform, control transform, process, activity, task, method, and service.
Actions can also be decomposed into lower-level actions, most notably in the data flow diagrams of
Structured Analysis. The input/output view of actions is exactly the basis of specification-based testing,
and the decomposition (and eventual implementation) of actions is the basis of code-based testing.

14.2.3 Devices
Every system has port devices; these are the sources and destinations of system-level inputs and out-
puts (port events). The slight distinction between ports and port devices is sometimes helpful to test-
ers. Technically, a port is the point at which an I/O device is attached to a system, as in serial and
parallel ports, network ports, and telephone ports. Physical actions (keystrokes and light emissions
from a screen) occur on port devices, and these are translated from physical to logical (or logical to
physical) forms. In the absence of actual port devices, much of system testing can be accomplished by
“moving the port boundary inward” to the logical instances of port events. From now on, we will just
use the term “port” to refer to port devices. The ports in the SATM system include the digit and can-
cel keys, the function keys, the display screen, the deposit and withdrawal doors, the card and receipt
slots, and several less obvious devices, such as the rollers that move cards and deposit envelopes into the
machine, the cash dispenser, the receipt printer, and so on. (See Figure 14.1 for our working example.)

Cash dispenser

Printed receipt 1 2 3

4 5 6

7 8 9

0

Deposit slot

Card slot

Enter

Clear

Cancel

Welcome to

Rock Solid Federal Credit Union

Please insert your ATM card

Figure 14.1 the Simple atM (SatM) terminal.

258  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Thinking about the ports helps the tester define both the input space that specification-based
system testing needs; similarly, the output devices provide output-based test information. For
example, we would like to have enough threads to generate all 15 SATM screens in Figure 14.2.

14.2.4 Events
Events are somewhat schizophrenic: they have some characteristics of data and some of actions.
An event is a system-level input (or output) that occurs on a port device. Similar to data, events
can be inputs to or outputs of actions. Events can be discrete (such as SATM keystrokes) or they
can be continuous (such as temperature, altitude, or pressure). Discrete events necessarily have
a time duration, and this can be a critical factor in real-time systems. We might picture input
events as destructive read-out data, but it is a stretch to imagine output events as destructive write
operations.

Events are like actions in the sense that they are the translation point between real-world physi-
cal events and internal logical manifestations of these. Port input events are physical-to-logical
translations, and, symmetrically, port output events are logical-to-physical translations. System
testers should focus on the physical side of events, not the logical side (the focus of integration
testers). Situations occur where the context of present data values changes the logical meaning of
physical events. In the SATM system, for example, the port input event of depressing button B1

Screen 6

Balance is
$dddd.dd

Screen 1

Welcome
Please insert your

ATM card

Screen 2

Please enter your PIN

Screen 3

Your PIN is incorrect.
Please try again.

Screen 4

Invalid ATM card. It will
be retained.

Screen 5
Select transaction:

balance >
deposit >

withdrawal >

Screen 7

Enter amount.
Withdrawals must
be multiples of $10

Screen 8

Insufficient funds!
Please enter a new

amount

Screen 9

Machine can only
dispense $10 notes

Screen 10

Temporarily unable to
process withdrawals.
Another transaction?

Screen 11

Your balance is being
updated. Please take
cash from dispenser.

Screen 12

Temporarily unable to
process deposits.

Another transaction?

Screen 13

Please insert deposit
into deposit slot.

Screen 14

Your new balance is
being printed. Another

transaction?

Screen 15

Please take your
receipt and ATM card.

�ank you.

Figure 14.2 SatM screens.

System Testing  ◾  259

© 2010 Taylor & Francis Group, LLC

means “balance” when screen 5 is displayed, “checking” when screen 6 is displayed, and “yes”
when screens 10, 11, and 14 are displayed. We refer to these situations as “context-sensitive port
events,” and we would expect to test such events in each context.

14.2.5 Threads
Unfortunately for testers, threads are the least frequently used of the five fundamental constructs.
Because we test threads, it usually falls to the tester to find them in the interactions among the
data, events, and actions. About the only place that threads appear per se in a requirements speci-
fication is when rapid prototyping is used in conjunction with a scenario recorder. It is easy to find
threads in control models, as we will soon see. The problem with this is that control models are
just that—they are models, not the reality of a system.

14.2.6 Relationships among Basis Concepts
Figure 14.3 is an E/R model of our basis concepts. Notice that all relationships are many-to-many:
Data and Events are inputs to or outputs of the Action entity. The same event can occur on several
ports, and typically many events occur on a single port. Finally, an action can occur in several
threads, and a thread is composed of several actions. This diagram demonstrates some of the dif-
ficulty of system testing. Testers must use events and threads to ensure that all the many-to-many
relationships among the five basis concepts are correct.

14.3 Model-Based threads
In this section, we will use the SATM system (defined in Chapter 2) to illustrate how threads can
be identified from models. Figure 14.2 shows the 15 screens needed for SATM. (This is really a
bare bones, economy ATM system!)

Finite state machine models of the SATM system are the best place to look for system testing
threads. We will start with a hierarchy of state machines; the upper level is shown in Figure 14.4.
At this level, states correspond to stages of processing, and transitions are caused by abstract logi-
cal (instead of port) events. The card entry “state,” for example, would be decomposed into lower
levels that deal with details such as jammed cards, cards that are upside down, stuck card rollers,

1..n

1..n 1..n
1..n

1..n

1..n

1..n

1..n

inputTo

Data

Event

Device

occursOn

outputOf Action

�read

sequenceOf

Figure 14.3 E/r model of basis concepts.

260  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

and checking the card against the list of cards for which service is offered. Once the details of a
macro-state are tested, we use a simple thread to get to the next macro-state.

The PIN entry state S2 is decomposed into the more detailed view in Figure 14.5. The adjacent
states are shown because they are sources and destinations of transitions from the PIN entry state
at the upper level. (This approach to decomposition is reminiscent of the old data flow diagram-
ming idea of balanced decomposition.) At the S2 decomposition, we focus on the PIN retry mech-
anism; all of the output events are true port events, but the input events are still logical events.

The transaction processing state S3 is decomposed into a more detailed view in Figure 14.6. In
that finite state machine, we still have abstract input events, but the output events are actual port
events. State 3.1 requires added information. Two steps are combined into this state: choice of the
account type and selection of the transaction type. The little “<” and “>” symbols are supposed to
point to the function buttons adjacent to the screen, as shown in Figure 14.1. As a side note, if this
were split into two states, the system would have to “remember” the account type choice in the
first state. However, there can be no memory in a finite state machine, hence the combined state.
Once again, we have abstract input events and true port output events.

S2: PIN entry

S3: Transaction
processing

S4: Another
transaction?

S5: Close ATM
session

S1: Idle

(Welcome screen)

Invalid card/screen 4

Invalid PIN/screen 3

Valid card/screen 2

Valid PIN/screens 5 then 6

Yes
Balance
inquiry Deposits Withdrawals

No/screen 14

Timeout
screen 15

3rd PIN attempt failed
screen 1

Figure 14.4 Uppermost level SatM finite state machine.

System Testing  ◾  261

© 2010 Taylor & Francis Group, LLC

S1: Idle

S2: PIN entry

S3: Transaction
choice

S2: 1st PIN try

S2: 1st PIN try

S4: 3rd PIN try

Invalid PIN
screen 1

Valid PIN
screen 5

Valid PIN
screen 5

Valid PIN
screen 5

Invalid PIN
screen 3

Invalid PIN
screen 3

Figure 14.5 Decomposition of pIN entry state.

S3: Transaction processing

S3.1: Specify account
and transaction type

S3.2: Balance
inquiry

S3.2: Deposit

S3.4: Withdrawal

S4: Another
transaction?

Balance/screen 6

Deposit/screen 13 Withdrawal/screen 7

< Checking
< Savings

Balance >
Deposit >

Withdrawal >

Transaction complete
screen 14

Transaction complete
screen 14

Valid amount
screen 11

Invalid amount
screen 9Low on cash

screen 10

Insufficient funds
screen 8

Figure 14.6 Decomposition of transaction processing state.

262  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Our final state decomposition is applied to see the details of PIN entry tries S2.1, S2.2, and
S2.3 (see Figure 14.7). Each PIN try is identical, so the lower-level states are numbered S2.n, where
n signifies the PIN try. We almost have true input events. If we knew that the expected PIN was
“2468” and if we replaced the digit entries, for example, “first digit,” with “2,” then we would
finally have true port input events. A few abstract inputs remain—those referring to valid and
invalid PINs and conditions on the number of tries.

It is good form to reach a state machine in which transitions are caused by actual port input
events, and the actions on transitions are port output events. If we have such a finite state machine,
generating system test cases for these threads is a mechanical process—simply follow a path of
transitions and note the port inputs and outputs as they occur along the path. Table 14.1 traces
one such path through the PIN try finite state machine in Figure 14.7. This path corresponds to
a thread in which a PIN is correctly entered on the first try. To make the test case explicit, we
assume a precondition that the expected PIN is “2468.” The event in parentheses in the last row of
Table 14.1 is the logical event that “bumps up” to the parent state machine and causes a transition
there to the Await Transaction Choice state.

S2.n.2: 2 digits
received

S2.n.6: Retry
decision

S2.n.3: 3 digits
received

S2.n.4: 4 digits
received

S3: Transaction
choice S1: Idle

S2.n.0: 0 digits
received

S2.n.1: 1 digit
received

S2.n: nth PIN try

Cancel

Try n < 3
screen 3

Cancel

Cancel

Cancel

Cancel

Enter key, Invalid PIN

Enter key, Valid PIN
screen 5

1st digit
echo ‘--*’

Try n = 3
screen 1

2nd digit
echo ‘--**’

3rd digit
echo ‘-***’

4th digit
echo ‘****’

Figure 14.7 Decomposition of pIN try states.

System Testing  ◾  263

© 2010 Taylor & Francis Group, LLC

The most common products for model-based testing (Jorgensen, 2009) start with a finite state
machine description of the system to be tested and then generate all paths through the graph. If
there are loops, these are (or should be) replaced by two paths, as we did at the program graph level
in Chapter 8. Given such a path, the port inputs that cause transitions are events in a system test
case; similarly for port outputs that occur as actions on transitions.

Here is a hard lesson from industrial experience. A telephone switching system laboratory tried
defining a small telephone system with finite state machines. The system, a Private Automatic
Branch Exchange (PABX), was chosen because, as switching systems go, it is quite simple. There
was a grizzled veteran system tester, Casimir, assigned to help with the development of the model.
He was well named. According to Wikipedia, his name means “someone who destroys opponent’s
prestige/glory during battle” (http://en.wikipedia.org/wiki/Casimir). Throughout the process,
Casimir was very suspicious, even untrusting. The team reassured him that, once the project was
finished, a tool would generate literally several thousand system test cases. Even better, this pro-
vided a mechanism to trace system testing directly back to the requirements specification model.
The actual finite state machine had more than 200 states, and the tool generated more than 3000
test cases. Finally, Casimir was impressed, until one day when he discovered an automatically
generated test case that was logically impossible. On further, very detailed analysis, the invalid
test case was derived from a pair of states that had a subtle dependency (and finite state machines
must have independent states). Out of 200-plus states, recognizing such dependencies is extremely
difficult. The team explained to Casimir that the tool could analyze any thread that traversed the
pair of dependent states, thereby identifying any other impossible threads. This technical triumph
was short-lived, however, when Casimir asked if the tool could identify any other pairs of depen-
dent states. No tool can do this because this would be equivalent to the famous Halting Problem.
The lesson: generating threads from finite state machines is attractive, and can be quite effective;
however, care must be taken to avoid both memory and dependence issues.

table 14.1 port Event Sequence for Correct pIN
on First try

Port Input Event Port Output Event

Screen 2 displayed with ‘- - - -’

2 Pressed

Screen 2 displayed with ‘- - - *’

4 Pressed

Screen 2 displayed with ‘- - * *’

6 Pressed

Screen 2 displayed with ‘- * * *’

8 Pressed

Screen 2 displayed with ‘* * * *’

(Valid PIN) Screen 5 displayed

264  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

14.4 Use Case–Based threads
Use Cases are a central part of the Unified Modeling Language (UML). Their main advantage is
that they are easily understood by both customers/users and developers. They capture the does view
that emphasizes behavior, rather than the is view that emphasizes structure. Customers and testers
both tend to naturally think of a system in terms of the does view, so use cases are a natural choice.

14.4.1 Levels of Use Cases
One author (Larman, 2001) defines a hierarchy of use cases in which each level adds information
to the predecessor level. Larman names these levels as follows:

 ◾ High level (very similar to an agile user story)
 ◾ Essential
 ◾ Expanded essential
 ◾ Real

The information content of these variations is shown in Venn diagram form in Figure 14.8.
Tables 14.2 through 14.4 show the gradual increase in Larman’s use case hierarchy for the

example in Table 14.1. High-level use cases are at the level of the user stories used in agile develop-
ment. A set of high-level use cases gives a quick overview of the does view of a system. Essential use
cases add the sequence of port input and output events. At this stage, the port boundary begins to
become clear to both the customer/user and the developer.

Expanded essential use cases add pre- and postconditions. We shall see that these are key to
linking use cases when they are expressed as system test cases.

Real use cases are at the actual system test case level. Abstract names for port events, such as
“invalid PIN,” are replaced by an actual invalid PIN character string. This presumes that some

Real

Expanded essential

Essential

High level

Figure 14.8 Larman’s levels of use cases.

table 14.2 High-Level Use Case for Correct pIN on First try

Use case name Correct PIN entry on first try

Use case ID HLUC-1

Description A customer enters the PIN number
correctly on the first attempt.

System Testing  ◾  265

© 2010 Taylor & Francis Group, LLC

form of testing database has been assembled. In our SATM system, this would likely include sev-
eral accounts with associated PINs and account balances (Table 14.5).

14.4.2 An Industrial Test Execution System
This section describes a system for automatic test execution that I was responsible for in the early
1980s. Since it was intended for executing regression test cases (a very boring manual assignment),
it was named the Automatic Regression Testing System (ARTS). This is as close as I ever came to
the art world. The ARTS system had a human readable system test case language that was inter-
pretively executed on a personal computer. In the ARTS language, there were two verbs: CAUSE
would cause a port input event to occur, and VERIFY would observe a port output event. In addi-
tion, a tester could refer to a limited number of devices and to a limited number of input events
associated with those devices. Here is a small paraphrased excerpt of a typical ARTS test case.

CAUSE Go-Offhook On Line 4
VERIFY Dialtone On Line 4
CAUSE TouchDigit ‘3’ On Line 4
VERIFY NoDialtone On Line 4

table 14.3 Essential Use Case for Correct pIN on First try

Use case name Correct PIN entry on first try

Use case ID EUC-1

Description A customer enters the PIN number
correctly on the first attempt.

Event Sequence

Input events Output events

1. Screen 2 shows ‘- - - - ’

2. Customer touches 1st digit

 3. Screen 2 shows ‘- - - * ’

4. Customer touches 2nd digit

 5. Screen 2 shows ‘- - * * ’

6. Customer touches 3rd digit

 7. Screen 2 shows ‘- * * * ’

8. Customer touches 4th digit

 9. Screen 2 shows ‘* * * * ’

10. Customer touches Enter

 11. Screen 5 is displayed

266  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

The physical connection to a telephone prototype required a harness that connected the per-
sonal computer with actual prototype ports. The test case language consisted of the CAUSE and
VERIFY verbs, names for port input and output events, and names for available devices that were
connected to the harness. On the input side, the harness accomplished a logical-to-physical trans-
formation, with the symmetric physical-to-logical transformation on the output side. The basic
architecture is shown in Figure 14.9.

We learned a lesson in human factors engineering. The test case language was actually free form,
and the interpreter eliminated noise words. The freedom to add noise words was intended to give test
case designers a place to put additional notes that would not be executed, but would be kept in the
test execution report. The result was test cases like this (so much for test designer freedom):

As long as it is not raining, see if you can CAUSE a Go-Offhook event right away On
Line 4, and then, see if you can VERIFY that some variation of Dialtone happened to occur

table 14.4 Expanded Essential Use Case for Correct pIN on First try

Use case name Correct PIN entry on first try

Use case ID EEUC-1

Description A customer enters the PIN number
correctly on the first attempt.

Preconditions 1. The expected PIN is known

2. Screen 2 is displayed

Event Sequence

Input events Output events

 1. Screen 2 shows ‘- - - - ’

2. Customer touches 1st digit

 3. Screen 2 shows ‘- - - * ’

4. Customer touches 2nd digit

 5. Screen 2 shows ‘- - * * ’

6. Customer touches 3rd digit

 7. Screen 2 shows ‘- * * * ’

8. Customer touches 4th digit

 9. Screen 2 shows ‘* * * * ’

10. Customer touches Enter

 11. Screen 5 is displayed

Cross reference to functions

Postconditions Select Transaction screen is active

System Testing  ◾  267

© 2010 Taylor & Francis Group, LLC

table 14.5 real Use Case for Correct pIN on First try

Use case name Correct PIN entry on first try

Use case ID RUC-1

Description A customer enters the PIN number
correctly on the first attempt.

Preconditions 1. The expected PIN is “2468”

2. Screen 2 is displayed

Event Sequence

Input events Output events

 1. Screen 2 shows ‘- - - - ’

2. Customer touches digit 2

 3. Screen 2 shows ‘- - - * ’

4. Customer touches digit 4

 5. Screen 2 shows ‘- - * * ’

6. Customer touches digit 6

 7. Screen 2 shows ‘- * * * ’

8. Customer touches digit 8

 9. Screen 2 shows ‘* * * * ’

10. Customer touches Enter

 11. Screen 5 is displayed

Cross reference to functions (normally done at this point)

Postconditions Select Transaction is active

CAUSE statements Port input events

VERIFY statements Port output events

Personal
computer

System
under

test
Harness

Figure 14.9 automated test execution system architecture.

268  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

On Line 4. Then, if you are in a good mood, why not CAUSE a TouchDigit ‘3’ action On
Line 4. Finally, (at last!), see if you can VERIFY that NoDialtone is present On Line 4.

In retrospect, the ARTS system predated the advent of use cases. Notice how the event sequence
portion of a real use case is dangerously close to an ARTS test case. I learned later that the system
evolved into a commercial product that had a 15-year lifetime.

14.4.3 System-Level Test Cases
A system-level test case, whether executed manually or automatically, has essentially the same
information as a real use case (Table 14.6).

table 14.6 System test Case for Correct pIN on First try

Test case name Correct PIN entry on first try

Test case ID TC-1

Description A customer enters the PIN number correctly
on the first attempt.

Preconditions needed to run this test case 1. The expected PIN is “2468”

2. Screen 2 is displayed

Event Sequence

Input events (performed by tester) Output events (observed by system tester)

 1. Screen 2 shows ‘- - - - ’

2. Touch digit 2

 3. Screen 2 shows ‘- - - * ’

4. Customer touches digit 4

 5. Screen 2 shows ‘- - * * ’

6. Customer touches digit 6

 7. Screen 2 shows ‘- * * * ’

8. Customer touches digit 8

 9. Screen 2 shows ‘- - - * ’

10. Customer touches Enter

 11. Screen 5 is displayed

Cross reference to functions

Postconditions Select Transaction is active

Test execution result? Pass/Fail

Test run by <tester’s name> date

System Testing  ◾  269

© 2010 Taylor & Francis Group, LLC

14.4.4 Converting Use Cases to Event-Driven Petri Nets
Event-Driven Petri Nets (EDPNs) were defined in Chapter 4. They were originally developed
for use in telephone switching systems. As the name implies, they are appropriate for any event-
driven system, particularly those characterized by context-sensitive port input events. In an EDPN
drawing, port events are shown as triangles, data places are circles, transitions are narrow rect-
angles, and the input and output connections are arrows. In an attempt at human factors design,

p2 d1 p1

p4 d2p3

s1

p6 d3p5

p8 d4p7

p10 d5p9

p11

s2

s3

s4

s5

 Port input events
 p2: 1st digit
 p4: 2nd digit
 p6: 3rd digit
 p8: 4th digit
p10: Enter

 Port output events
 p1: screen 2 ‘----’
 p3: screen 2 ‘---*’
 p5: screen 2 ‘--**’
 p7: screen 2 ‘-***’
 p9: screen 2 ‘****’
p11: screen 5

 Data places
 d1: expecting digit 1
 d2: expecting digit 2
 d3: expecting digit 3
 d4: expecting digit 4
 d5: entered PIN

 Transitions
 s1: (not named)
 s2: (not named)
 s3: (not named)
 s4: (not named)
 s5: (not named)

Figure 14.10 Event-Driven petri Net for correct pIN on first try.

270  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

EDPN diagrams show input port events as a downward pointing triangle as if they were a funnel.
Similarly, output port events are upward pointing, as if they were megaphones. Figure 14.10 is the
EDPN for our continuing example, Correct PIN on First Try.

Automatic derivation of an EDPN from a use case is only partly successful—port input events
can be derived from the input portion of the event sequence, similarly for port output events. Also,
the interleaved order of input and output events can be preserved. Finally, the pre- and postcondi-
tions are mapped to data places. There are a few problems, however.

 1. The most obvious is the port output event p1 that refers to screen 2 being displayed with four
blank positions for the PIN to be entered. It is an orphan, in the sense that it is not created by a
transition.

 2. Transitions are not named. If a person were to develop the EDPN, there would likely be
descriptive names for the transitions, for example, s1: accept first digit.

 3. An immediate cause-and-effect connection is presumed. This would fail if two out-of-
sequence input events were required to produce an output event.

 4. There is no provision for intermediate data that may be produced.
 5. The data places d1–d5 do not appear in the use case. (They could be derived from the finite

state machine, however.)

One answer to this is to follow the lead of formal systems and define the information con-
tent of a “well-formed use case.” At a minimum, a well-formed use case should conform to these
requirements.

 1. The event sequence cannot begin with an output event. This could just be considered as a
precondition.

 2. The event sequence cannot end with an input event. This could just be considered as a
postcondition.

 3. Preconditions must be both necessary and sufficient to the use case. There are no superfluous
preconditions, and every precondition must be used or needed by the use case. Similarly for
postconditions.

 4. There must be at least one precondition and at least one postcondition.

The value in deriving EDPNs from use cases is that, because they are special cases of Petri Nets,
they inherit a wealth of analytical possibilities. Here are some analyses that are easy with Petri
Nets, and all but impossible with use cases:

 1. Interactions among use cases, such as one use case being a prerequisite for another
 2. Use cases that are in conflict with others
 3. Context-sensitive input events
 4. Inverse use cases, where one “undoes” the other

14.4.5 Converting Finite State Machines to Event-Driven Petri Nets
Mathematically speaking, finite state machines are a special case of ordinary Petri Nets in which
every Petri Net transition has one input place and one output place. Since EDPNs are an extension
of ordinary Petri Nets, the conversion of finite state machines to EDPNs is guaranteed. Figure
14.11 shows a portion of the finite state machine in Figure 14.7 converted to an EDPN.

System Testing  ◾  271

© 2010 Taylor & Francis Group, LLC

In Figure 14.11, input events p2 and p12 can both occur when the ATM is awaiting the first
PIN digit. Similarly, input events p4 and p12 can both occur when the ATM is awaiting the second
PIN digit. Close examination shows three distinct paths. There are two main ways to describe these
paths—as a sequence of port input events, or as a sequence of EDPN transitions. Using the latter, the
three paths in Figure 14.11 are <s1, s2>, <s1, s4>, and <s3>. There is an interesting connection between
EDPNs and obscure database terminology. The intention of a database is the underlying data model.
Different populations of the intention are known as extensions of the database. The intention of a given
database is unique, but there can be myriad possible extensions. The same is true for unmarked versus
marked EDPNs—an unmarked EDPN can have many possible marking sequence executions.

14.4.6 Which View Best Serves System Testing?
Of the three views in this section, use cases are the best for communication between customers/users
and developers; however, they do not support much in the way of analysis. Finite state machines are
in common use, but composing finite state machines inevitably leads to the well-known “finite state
machine explosion.” Finite state machine–based support tools are available, but the explosion part is
problematic. Both of these notations can be converted to EDPNs, although some information must be
added to EDPNs derived from use cases. The big advantage of EDPNs is that they are easily composed
with other EDPNs, and the intension/extension relationship between an unmarked EDPN and various
markings (execution sequences) makes them the preferred choice for system testing. We did not discuss
deriving system test cases from an EDPN, but the process is obvious.

14.5 Long versus Short Use Cases
There is an element of foreshadowing in the preceding material. Early on, we spoke of various
thread candidates. In that discussion, we saw a range of very short to very long threads. Each of
these choices translates directly to our three models, use cases, finite state machines, and EDPNs.

p2 p12

p12p4
p3

p5

s1 s3

s2 s4

d1

d2

d3

d4

 Port input events
 p2: 1st digit
 p4: 2nd digit
p12: Cancel

 Port output events
 p3: screen 2 ‘---*’
 p5: screen 2 ‘--**’

 Data places
 d1: expecting digit 1
 d2: expecting digit 2
 d3: expecting digit 3
 d4: retry decision

 Transitions
 s1: get 1st digit
 s2: get 2nd digit
 s3: Cancel before 1st digit
 s4: Cancel before 2nd digit

Figure 14.11 Event-Driven petri Net from part of finite state machine in Figure 14.12.

272  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

In the use case domain, the usual view is that a use case is a full, end-to-end, transaction. For the
SATM system, full use cases would start and end with screen 1, the Welcome screen. In between,
some path would occur, either as a specific use case, a path in the finite state machine, or as a
marking in the full EDPN. The problem with this is that there is a large number of paths in either
model, and a large number of individual use cases. The end-to-end use case is a “long use case.”
The use cases in Chapter 22 (Software Technical Reviews) are short use cases. As a quick example
of a long use case, consider a story with the following sequence:

A customer enters a valid card, followed by a valid PIN entry on the first try. The customer
selects the Withdraw option, and enters $20 for the withdrawal amount. The SATM sys-
tem dispenses two $10 notes and offers the customer a chance to request another transac-
tion. The customer declines, the SATM system updates the customer account, returns the
customer’s ATM card, prints a transaction receipt, and returns to the Welcome screen.

Here we suggest “short use cases,” which begin with a port input event and end with a port
output event. Short use cases must be at the Expanded Essential Use Case level, so the pre- and
postconditions are known. We can then develop sequences of short use cases with the connections
based on the pre- and postconditions. Short use case B can follow short use case A if the postcondi-
tions of A are consistent with the preconditions of B. The long use case above might be expressed
in terms of four short use cases:

 1. Valid card
 2. Correct PIN on first try
 3. Withdrawal of $20
 4. Select no more transitions

table 14.7 Short Use Cases for Successful SatM transactions

Short Use Case Description

SUC1 Valid ATM card swipe

SUC2 Invalid ATM card swipe

SUC3 Correct PIN attempt

SUC4 Failed PIN attempt

SUC5 Choose Balance

SUC6 Choose Deposit

SUC7 Choose Withdrawal: valid withdrawal amount

SUC8 Choose Withdrawal: amount not a multiple of $20

SUC9 Choose Withdrawal: amount greater than account balance

SUC10 Choose Withdrawal: amount greater than daily limit

SUC11 Choose no other transaction

SUC12 Choose another transaction

System Testing  ◾  273

© 2010 Taylor & Francis Group, LLC

The motivation for short use cases is that there are 1909 possible paths through the SATM
finite state machine in Figure 14.5 considering all four state decompositions. The great major-
ity of these are due to failed PIN entry attempts (six ways to fail, one way to be successful).
Table 14.7 lists a useful set of short use cases for successful SATM transactions. If we added
short use cases for all the ways that PIN entry can fail, we would have good coverage of the
SATM system.

Figure 14.12 shows the short use cases from Table 14.7 linked with respect to a slightly differ-
ent finite state machine model of the SATM system.

What about the ways PIN entry can fail? One could argue that this is really a unit-level ques-
tion; hence, we do not need short use cases for these possibilities. On the other hand, there are
only 13 transitions in the detailed view of PIN entry in Figure 14.7, and we have port inputs and
outputs for the digit entry transitions. (The transitions for the five possible points of cancellation
and the invalid four-digit PIN all have an intermediate state to simplify the figure.) Table 14.8 lists
the short use cases for complete PIN entry coverage.

SUC 1

SUC 2

SUC 4

SUC 4

SUC 4

SUC 3 SUC 3

SUC 3

SUC 5

SUC 6

SUC 7

SUC 8
SUC 9

SUC 10

SUC 11
SUC 11 SUC 11

SUC 11

SUC 11

SUC 11

SUC 12

S1: Card
swipe

S2: 1st
PIN try

S3: 2nd
PIN try

S3:
Transaction

choice

S6:
Balance

S7:
Deposit

S8: Valid
withdrawal

S12: Close
session?

S9: Not multiple
of $20

S10: Funds
insufficient

S11: Low
on cash

S4: 3rd
PIN try

Figure 14.12 SatM finite state machine with short use cases causing transitions.

274  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Now we see the advantage of short use cases—1909 long use cases are covered by the 25 short
use cases. The advantage of model-based testing becomes yet clearer with this compression. Note
the similarity to node and edge test coverage at the unit level that we saw in Chapter 8.

14.6 How Many Use Cases?
When a project is driven by use cases, there is the inevitable question as to how many use cases are
needed. Use case–driven development is inherently a bottom–up process. In the agile world, the
answer is easy—the customer/user decides how many use cases are needed. But what happens in a
non-agile project? Use case–driven development is still (or can be) an attractive option. In this sec-
tion, we examine four strategies to help decide how many bottom–up use cases are needed. Each
strategy employs an incidence matrix (see Chapter 4). We could have a fifth strategy if bottom–up
use case development is done in conjunction with a gradually developed model, as we just saw in
Section 14.5.

14.6.1 Incidence with Input Events
As use cases are identified jointly between the customer/user and developers, both parties gradu-
ally identify port-level input events. This very likely is an iterative process, in which use cases
provoke the recognition of port input events, and they, it turn, suggest additional use cases. These
are kept in an incidence showing which use cases require which port input events. As the process
continues, both parties reach a point where the existing set of input events is sufficient for any
new use case. Once this point is reached, it is clear that a minimal set of use cases covers all the

table 14.8 Short Use Cases for Failed pIN Entry attempts

Short Use Case Description

SUC13 Digit 1 entered

SUC14 Digit 2 entered

SUC15 Digit 3 entered

SUC16 Digit 4 entered

SUC17 Enter with valid PIN

SUC18 Cancel before digit 1

SUC19 Cancel after digit 1

SUC20 Cancel after digit 2

SUC21 Cancel after digit 3

SUC22 Cancel after digit 4

SUC23 Enter with invalid PIN

SUC24 Next PIN try

SUC25 Last PIN try

System Testing  ◾  275

© 2010 Taylor & Francis Group, LLC

port level input events. Table 14.9 lists (most of) the port input events for the SATM system, and
Table 14.10 shows their incidence with the first 12 short use cases. Exercise 5 asks you to develop
a similar table for the PIN entry use cases.

Both Tables 14.9 and 14.10 should be understood as the result of an iterative process, which is
inevitable in a bottom–up approach. If port inputs are identified that are not used anywhere, we
know we need at least one more short use case. Similarly, if we have a short use case that does not
involve any of the existing port input events, we know we need at least one more event.

14.6.2 Incidence with Output Events
The matrix showing the incidence of short use cases with port output events is developed in the
same iterative way as that for input events. Table 14.11 lists the port output events for the SATM
system. As you develop this incidence matrix (see Exercise 5), you should note if any screen is never
used in the finite state machines in Figures 14.4 through 14.7. This is also revisited in Chapter 22
on Software Technical Reviews.

table 14.9 SatM port Input Events

Port Input Event Description

e1 Valid ATM card swipe

e2 Invalid ATM card swipe

e3 Correct PIN attempt

e4 Touch Enter

e5 Failed PIN

e6 Touch Cancel

e7 Touch button corresponding to Checking

e8 Touch button corresponding to Savings

e9 Choose Balance

e10 Choose Deposit

e11 Enter deposit amount

e12 Choose Withdrawal

e13 Enter withdrawal amount

e14 Valid withdrawal amount

e15 Withdrawal amount not a multiple of $20

e16 Withdrawal amount greater than account balance

e17 Withdrawal amount greater than cash in SATM

e18 Touch button corresponding to Yes

e19 Touch button corresponding to No

276  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

table 14.10 Short Use Case Incidence Matrix with port Input Events

SUC

Port Input Events

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 X

2 X

3 X X

4 X X X

5 X X X

6 X X X X

7 X X X X X

8 X X X X X

9 X X X X X

10 X X X X X

11 X

12 X

table 14.11 SatM port Output Events

Port Input Event Description

Screen 1 Welcome. Please insert your ATM card.

Screen 2 Please enter your PIN.

Screen 3 Your PIN is incorrect. Please try again.

Screen 4 Invalid ATM card. It will be retained.

Screen 5 Select transaction: balance, deposit, or withdrawal.

Screen 6 Your account balance is $– – –.–.

Screen 7 Enter withdrawal amount. Must be a multiple of $10.

Screen 8 Insufficient funds. Please enter a new withdrawal amount.

Screen 9 Sorry. Machine can only dispense $10 notes.

Screen 10 Temporarily unable to process withdrawals. Another transaction?

Screen 11 Your balance is updated. Please remove cash from dispenser.

Screen 12 Temporarily unable to process deposits. Another transaction?

Screen 13 Please insert deposit envelope into slot.

Screen 14 Your new balance is being printed. Another transaction?

Screen 15 Please take your receipt and ATM card.

System Testing  ◾  277

© 2010 Taylor & Francis Group, LLC

14.6.3 Incidence with All Port Events
In practice, the incidence approach needs to be done for all port-level events. This is just a combination
of the discussions in Sections 16.2.1 and 16.2.2. One advantage of the full port event incidence matrix
is that it can be reordered in useful ways. For example, the short use cases could be placed together, or
possibly listed in a sensible transaction-based order. The port events can also be permuted into cohesive
subgroups, for example, input events related to PIN entry, or output events related to deposits.

14.6.4 Incidence with Classes
There is a perennial debate among object-oriented developers as to how to begin—use cases first,
or classes first. One of my colleagues (a very classy person) insists on the class-first approach, while
others are more comfortable with the use case first view. A good compromise is to develop an inci-
dence matrix showing which classes are needed to support which use cases. Often, it is easier to
identify classes for a use case, rather than for a full system. As with the other incidence matrices,
this approach provides a good answer to when a sufficient set of classes has been identified.

14.7 Coverage Metrics for System testing
In Chapter 10, we saw the advantage of combining specification-based and code-based testing
techniques, because they are complementary. We are in the same position now with system test-
ing. The model–based approaches of Section 14.3 can be combined with the use case–based
approaches of Section 14.4. Further, the incidence matrices of Section 14.6 can be used as a basis
for specification-based system test coverage metrics.

14.7.1 Model-Based System Test Coverage
We can use model-based metrics as a cross-check on use case–based threads in much the same way
that we used DD-paths at the unit level to identify gaps and redundancies in specification-based
test cases. We really have pseudostructural testing (Jorgensen, 1994) because the node and edge
coverage metrics are defined in terms of a model of a system, not derived directly from the system
implementation. In general, behavioral models are only approximations of a system’s reality, which
is why we could decompose our models down to several levels of detail. If we made a true code-
based model, its size and complexity would make it too cumbersome to use. The big weakness of
model-based metrics is that the underlying model may be a poor choice. The three most common
behavioral models (decision tables, finite state machines, and Petri nets) are appropriate to trans-
formational, interactive, and concurrent systems, respectively.

Decision tables and finite state machines are good choices for ASF testing. If an ASF is described
using a decision table, conditions typically include port input events, and actions are port output events.
We can then devise test cases that cover every condition, every action, or, most completely, every rule.
For finite state machine models, test cases can cover every state, every transition, or every path.

Thread testing based on decision tables is cumbersome. We might describe threads as sequences
of rules from different decision tables, but this becomes very messy to track in terms of coverage.
We need finite state machines as a minimum, and if any form of interaction occurs, Petri nets are
a better choice. There, we can devise thread tests that cover every place, every transition, and every
sequence of transitions.

278  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

14.7.2 Specification-Based System Test Coverage
The model-based approaches to thread identification are clearly useful, but what if no behavioral
model exists for a system to be tested? The testing craftsperson has two choices: develop a behav-
ioral model or resort to the system-level analogs of specification-based testing. Recall that when
specification-based test cases are identified, we use information from the input and output spaces
as well as the function itself. We describe system testing threads here in terms of coverage metrics
that are derived from three of the basis concepts (events, ports, and data).

14.7.2.1 Event-Based Thread Testing

Consider the space of port input events. Five port input thread coverage metrics are easily defined.
Attaining these levels of system test coverage requires a set of threads such that

Port Input 1: each port input event occurs
Port Input 2: common sequences of port input events occur
Port Input 3: each port input event occurs in every “relevant” data context
Port Input 4: for a given context, all “inappropriate” input events occur
Port Input 5: for a given context, all possible input events occur

The Port Input 1 metric is a bare minimum and is inadequate for most systems. Port Input 2
coverage is the most common, and it corresponds to the intuitive view of system testing because it
deals with “normal use.” It is difficult to quantify, however. What is a common sequence of input
events? What is an uncommon one?

The last three metrics are defined in terms of a “context.” The best view of a context is that it is
a point of event quiescence. In the SATM system, screen displays occur at the points of event qui-
escence. The Port Input 3 metric deals with context-sensitive port input events. These are physical
input events that have logical meanings determined by the context within which they occur. In the
SATM system, for example, a keystroke on the B1 function button occurs in five separate contexts
(screens displayed) and has three different meanings. The key to this metric is that it is driven by
an event in all of its contexts. The Port Input 4 and Port Input 5 metrics are converses: they start
with a context and seek a variety of events. The Port Input 4 metric is often used on an informal
basis by testers who try to break a system. At a given context, they want to supply unanticipated
input events just to see what happens. In the SATM system, for example, what happens if a func-
tion button is depressed during the PIN entry stage? The appropriate events are the digit and can-
cel keystrokes. The inappropriate input events are the keystrokes on the B1, B2, and B3 buttons.

This is partially a specification problem: we are discussing the difference between prescribed
behavior (things that should happen) and proscribed behavior (things that should not happen). Most
requirements specifications have a hard time only describing prescribed behavior; it is usually testers
who find proscribed behavior. The designer who maintains my local ATM system told me that once
someone inserted a fish sandwich in the deposit envelope slot. (Apparently they thought it was a
waste receptacle.) At any rate, no one at the bank ever anticipated insertion of a fish sandwich as a
port input event. The Port Input 4 and Port Input 5 metrics are usually very effective, but they raise
one curious difficulty. How does the tester know what the expected response should be to a pro-
scribed input? Are they simply ignored? Should there be an output warning message? Usually, this is
left to the tester’s intuition. If time permits, this is a powerful point of feedback to requirements spec-
ification. It is also a highly desirable focus for either rapid prototyping or executable specifications.

System Testing  ◾  279

© 2010 Taylor & Francis Group, LLC

We can also define two coverage metrics based on port output events:

Port Output 1: each port output event occurs
Port Output 2: each port output event occurs for each cause

Port Output 1 coverage is an acceptable minimum. It is particularly effective when a system has
a rich variety of output messages for error conditions. (The SATM system does not.) Port Output 2
coverage is a good goal, but it is hard to quantify. For now, note that Port Output 2 coverage refers
to threads that interact with respect to a port output event. Usually, a given output event only has
a small number of causes. In the SATM system, screen 10 might be displayed for three reasons: the
terminal might be out of cash, it may be impossible to make a connection with the central bank to
get the account balance, or the withdrawal door might be jammed. In practice, some of the most
difficult faults found in field trouble reports are those in which an output occurs for an unsuspected
cause. Here is one example: My local ATM system (not the SATM) has a screen that informs me that
“Your daily withdrawal limit has been reached.” This screen should occur when I attempt to withdraw
more than $300 in one day. When I see this screen, I used to assume that my wife has made a major
withdrawal (thread interaction), so I request a lesser amount. I found out that the ATM also produces
this screen when the amount of cash in the dispenser is low. Instead of providing a lot of cash to the
first users, the central bank prefers to provide less cash to more users.

14.7.2.2 Port-Based Thread Testing

Port-based testing is a useful complement to event-based testing. With port-based testing, we ask,
for each port, what events can occur at that port. We then seek threads that exercise input ports
and output ports with respect to the event lists for each port. (This presumes such event lists have
been specified; some requirements specification techniques mandate such lists.) Port-based testing
is particularly useful for systems in which the port devices come from external suppliers. The main
reason for port-based testing can be seen in the E/R model of the basis constructs (Figure 14.3).
The many-to-many relationship between devices and events should be exercised in both direc-
tions. Event-based testing covers the one-to-many relationship from events to ports, and, con-
versely, port-based testing covers the one-to-many relationship from ports to events. The SATM
system fails us at this point—no SATM event occurs at more than one port.

14.8 Supplemental approaches to System testing
All model-based testing approaches have been open to the criticism that the testing is only as good
as the underlying model. There is no escaping this. In response, some authorities recommend vari-
ous “random” supplements. Two such techniques, mutation testing and fuzzing, are discussed in
Chapter 21. In this section, we consider two fallback strategies, each of which has thread execution
probability as a starting point. Both operational profiling and risk-based testing are responses to
the “squeeze” on available system testing time.

14.8.1 Operational Profiles
In its most general form, Zipf ’s law holds that 80% of the activities occur in 20% of the space.
Activities and space can be interpreted in numerous ways: people with messy desks hardly ever

280  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

use most of their desktop clutter; programmers seldom use more than 20% of the features of their
favorite programming language, and Shakespeare (whose writings contain an enormous vocabu-
lary) uses a small fraction of his vocabulary most of the time. Zipf ’s law applies to software (and
testing) in several ways. The most useful interpretation for testers is that the space consists of all
possible threads, and activities are thread executions (or traversals). Thus, for a system with many
threads, 80% of the execution traverses only 20% of the threads.

Recall that a failure occurs when a fault is executed. The whole idea of testing is to execute test
cases such that, when a failure occurs, the presence of a fault is revealed. We can make an impor-
tant distinction: the distribution of faults in a system is only indirectly related to the reliability of
the system. The simplest view of system reliability is the probability that no failure occurs during
a specific time interval. (Notice that no mention is even made of faults, the number of faults, or
fault density.) If the only faults are “in the corners” on threads that are seldom traversed, the over-
all reliability is higher than if the same number of faults were on “high-traffic” threads. The idea
of operational profiles is to determine the execution frequencies of various threads and to use this
information to select threads for system testing. Particularly when test time is limited (usually),
operational profiles maximize the probability of finding faults by inducing failures in the most
frequently traversed threads. Here we use our SATM system. In Figure 14.13, the short use case
labels on the transitions in Figure 14.12 are replaced by estimated transition probabilities.

0.02

0.04
0.04

0.04

S1: Card
swipe

S2: 1st
PIN try

S3: 2nd
PIN try

S5:
Transaction

choice

S6:
Balance

S7:
Deposit

S8: Valid
withdrawal

S12: Close
session?

S9: Not multiple
of $20

S10: Funds
insufficient

S11: Low
on cash

S4: 3rd
PIN try

0.98

0.96 0.96

0.96

0.02
0.05

0.05

0.85

0.02

0.01

1.00

1.00

1.00

1.00
1.00

1.00

Figure 14.13 transition probabilities in SatM finite state machine of Figure 14.12.

System Testing  ◾  281

© 2010 Taylor & Francis Group, LLC

Finite state machines are the preferred model for identifying thread execution probabilities.
The mathematics behind this is that the transition probabilities can be expressed is a “transition
matrix” where the element in row i, column j is the probability of the transition from state i to
state j. Powers of the transition matrix are analogous to the powers of the adjacency matrix when
we discussed reachability in Chapter 4. For small systems, it is usually easier to show the transi-
tion probabilities in a spreadsheet, as in Table 14.12. Once the thread probabilities are known,
they sorted according to execution probability, most to least probable. This is done in Table 14.13.

Just as the quality of model-based testing is limited by the correctness of the underlying model, the
analysis of operational profiles is limited by the validity of the transition probability estimates. There
are strategies to develop these estimates. One is to use historical data from similar systems. Another
is to use customer-supplied estimates. Still another is to use a Delphi approach in which a group of
experts give their guesses, and some average is determined. This might be based on convergence of a
series of estimates, or possibly by having seven experts, and eliminating the high and low estimates.

table 14.12 Spreadsheet of SatM transition probabilities

Path Transition Probabilities Path Probability

First try S1, S2, S5, S6, S12 0.999 0.96 0.02 1 1 0.019181

S1, S2, S5, S7, S12 0.999 0.96 0.05 1 1 0.047952

S1, S2, S5, S8, S12 0.999 0.96 0.85 1 1 0.815184

S1, S2, S5, S9, S12 0.999 0.96 0.05 1 1 0.047952

S1, S2, S5, S10, S12 0.999 0.96 0.02 1 1 0.019181

S1, S2, S5, S11, S12 0.999 0.96 0.01 1 1 0.009590

Second
try

S1, S2, S3, S5, S6, S12 0.999 0.04 0.96 0.02 1 0.000767

S1, S2, S3, S5, S7, S12 0.999 0.04 0.96 0.05 1 0.001918

S1, S2, S3, S5, S8, S12 0.999 0.04 0.96 0.85 1 0.032607

S1, S2, S3, S5, S9, S12 0.999 0.04 0.96 0.05 1 0.001918

S1, S2, S3, S5, S10, S12 0.999 0.04 0.96 0.02 1 0.000767

S1, S2, S3, S5, S11, S12 0.999 0.04 0.96 0.01 1 0.000384

Third try S1, S2, S3, S4, S5, S6, S12 0.999 0.04 0.04 0.96 0.02 0.000031

S1, S2, S3, S4, S5, S7, S12 0.999 0.04 0.04 0.96 0.05 0.000077

S1, S2, S3, S4, S5, S8, S12 0.999 0.04 0.04 0.96 0.85 0.001304

S1, S2, S3, S4, S5, S9, S12 0.999 0.04 0.04 0.96 0.05 0.000077

S1, S2, S3, S4, S5, S10, S12 0.999 0.04 0.04 0.96 0.02 0.000031

S1, S2, S3, S4, S5, S11, S12 0.999 0.04 0.04 0.96 0.01 0.000015

Bad card S1, S1 0.001 1 1 1 1 0.001000

PIN failed S1, S2, S3, S1 0.999 0.04 0.04 0.04 1 0.000064

282  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Whatever approach is used, the final transition probabilities are still estimates. On the positive side, we
could do a sensitivity analysis. In this situation, the overall ordering of probabilities is not particularly
sensitive to small variations in the individual transition probabilities.

Operational profiles provide a feeling for the traffic mix of a delivered system. This is helpful for
reasons other than only optimizing system testing. These profiles can also be used in conjunction with
simulators to get an early indication of execution time performance and system transaction capacity.

14.8.2 Risk-Based Testing
Risk-based testing is a refinement of operational profiles. Just knowing which threads are most
likely to execute might not be enough. What if a malfunction of a somewhat obscure thread were
to be extremely costly? The cost might be in terms of legal penalties, loss of revenue, or difficulty
of repair. The basic definition of risk is

table 14.13 SatM Operational profile

Path Transition Probabilities Path Probability

First try S1, S2, S5, S8, S12 0.999 0.96 0.85 1 1 81.5184%

First try S1, S2, S5, S7, S12 0.999 0.96 0.05 1 1 4.7952%

First try S1, S2, S5, S9, S12 0.999 0.96 0.05 1 1 4.7952%

Second try S1, S2, S3, S5, S8, S12 0.999 0.04 0.96 0.85 1 3.2607%

First try S1, S2, S5, S6, S12 0.999 0.96 0.02 1 1 1.9181%

First try S1, S2, S5, S10, S12 0.999 0.96 0.02 1 1 1.9181%

First try S1, S2, S5, S11, S12 0.999 0.96 0.01 1 1 0.9590%

Second try S1, S2, S3, S5, S7, S12 0.999 0.04 0.96 0.05 1 0.1918%

Second try S1, S2, S3, S5, S9, S12 0.999 0.04 0.96 0.05 1 0.1918%

Third try S1, S2, S3, S4, S5, S8, S12 0.999 0.04 0.04 0.96 0.85 0.1304%

Bad card S1, S1 0.001 1 1 1 1 0.1000%

Second try S1, S2, S3, S5, S6, S12 0.999 0.04 0.96 0.02 1 0.0767%

Second try S1, S2, S3, S5, S10, S12 0.999 0.04 0.96 0.02 1 0.0767%

Second try S1, S2, S3, S5, S11, S12 0.999 0.04 0.96 0.01 1 0.0384%

Third try S1, S2, S3, S4, S5, S7, S12 0.999 0.04 0.04 0.96 0.05 0.0077%

Third try S1, S2, S3, S4, S5, S9, S12 0.999 0.04 0.04 0.96 0.05 0.0077%

PIN failed S1, S2, S3, S1 0.999 0.04 0.04 0.04 1 0.0064%

Third try S1, S2, S3, S4, S5, S6, S12 0.999 0.04 0.04 0.96 0.02 0.0031%

Third try S1, S2, S3, S4, S5, S10, S12 0.999 0.04 0.04 0.96 0.02 0.0031%

Third try S1, S2, S3, S4, S5, S11, S12 0.999 0.04 0.04 0.96 0.01 0.0015%

System Testing  ◾  283

© 2010 Taylor & Francis Group, LLC

 Risk = cost * (probability of occurrence)

Since operational profiles give the (estimate of) probability of occurrence, we only need to make
an estimate of the cost factor.

Hans Schaefer, a consultant who specializes in risk-based testing, advises that the first step is
to group the system into risk categories. He advises four risk categories: Catastrophic, Damaging,
Hindering, and Annoying (Schaefer, 2005). Next, the cost weighting is assessed. He suggests a
logarithmic weighting: 1 for low cost of failure, 3 for medium, and 10 for high. Why logarithmic?
Psychologists are moving in this direction because subjects who are asked to rank factors on linear
scales, for example, 1 for low and 5 for high, do not make enough of a distinction in what is usu-
ally a subjective assessment. Table 14.14 is the result of this process for our SATM use cases in
Table 14.13. In this assessment, failure of a deposit was the most severe.

table 14.14 SatM risk assessment

Use Case Description
Use Case

Probability
Cost of
Failure Risk

First try, normal withdrawal 81.5184% 3 2.4456

First try, deposit 4.7952% 10 0.4795

First try, withdrawal but insufficient funds 1.9181% 10 0.1918

First try, withdrawal not multiple of $20 4.7952% 3 0.1439

Second try, normal withdrawal 3.2607% 3 0.0978

First try, withdrawal, ATM low on cash 0.9590% 10 0.0959

First try, balance inquiry 1.9181% 1 0.0192

Second try, deposit 0.1918% 10 0.0192

Insertion of invalid ATM card 0.1000% 10 0.0100

Second try, withdrawal insufficient funds 0.0767% 10 0.0077

Second try, withdrawal not multiple of $20 0.1918% 3 0.0058

Third try, normal withdrawal 0.1304% 3 0.0039

Second try, withdrawal, ATM low on cash 0.0384% 10 0.0038

Second try, balance inquiry 0.0767% 1 0.0008

Third try, deposit 0.0077% 10 0.0008

Third try, withdrawal but insufficient funds 0.0031% 10 0.0003

Third try, withdrawal not multiple of $20 0.0077% 3 0.0002

PIN entry failed after third attempt 0.0064% 3 0.0002

Third try, withdrawal, ATM low on cash 0.0015% 10 0.0002

Third try, balance inquiry 0.0031% 1 0.0000

284  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Schaefer’s risk categories applied to the SATM use cases are given below. Deposit failures are
seen as most severe because a customer may depend on a deposit being made to cover other checks.
Balance inquiries are least severe because a malfunction is only inconvenient.

Catastrophic: deposits, invalid withdrawals
Damaging: normal withdrawals
Hindering: invalid ATM card, PIN entry failure
Annoying: balance inquiries

The risk-ordered SATM use cases in Table 4.14 differ slightly from their operational profile in
Table 14.13. The normal withdrawal after a successful PIN entry on the first try still heads the list,
mostly due to its high probability.

As a refinement, Schaefer suggests assigning several attributes to a use case and giving these
attributes weighting values. For our SATM system, we might consider factors such as customer
convenience, bank security, and identity theft.

14.9 Nonfunctional System testing
The system testing ideas thus far discussed have been based on specification-based, or behavioral,
requirements. Functional requirements are absolutely in the does view, as they describe what a
system does (or should do). To generalize, nonfunctional testing refers to how well a system per-
forms its functional requirements. Many nonfunctional requirements are categorized onto “-abilities”:
reliability, maintainability, scalability, usability, compatibility, and so on. While many practitioners
have clear ideas on the meaning of the -abilities in their product domains, there is not much stan-
dardization of either the terms or the techniques. Here we consider the most common form of
nonfunctional testing—stress testing.

14.9.1 Stress Testing Strategies
Synonymously called performance testing, capacity testing, or load testing, this is the most com-
mon, and maybe the most important form of nonfunctional testing. Because stress testing is so
closely related to the nature of the system being tested, stress testing techniques are also applica-
tion dependent. Here we describe three common strategies, and illustrate them with examples.

14.9.1.1 Compression

Consider the performance of a system in the presence of extreme loads. A web-based application
may be very popular, and its server might not have the capacity. Telephone switching systems use
the term Busy Hour Call Attempts (BHCAs) to refer to such offered traffic loads. The strategy in
those systems is best understood as compression.

A local switching system must recognize when a subscriber originates a call. Other than sens-
ing a change in subscriber line status from idle to active, the main indicator of a call attempt is
the entry of digits. Although some dial telephones still exist, most subscribers use digit keys. The
technical term is Dual Tone Multifrequency (DTMF) tones, as the usual 3 × 4 array of digit keys
has three frequencies for the columns and four frequencies for the rows of digit keypads. Each digit
is therefore represented by two frequency tones, hence the name. The local switching system must
convert the tones to a digital form, and this is done with a DTMF receiver.

System Testing  ◾  285

© 2010 Taylor & Francis Group, LLC

Here is a hypothetical example, with simplified numbers, to help understand the compression
strategy. Suppose a local switching system must support 50,000 BHCAs. To do so, the system
might have 5000 DTMF receivers. To test this traffic load, somehow 50,000 call originations
must be generated in 60 minutes. The whole idea of compression strategies it to reduce these num-
bers to more manageable sizes. If a prototype only has 50 DTMF receivers, the load testing would
need to generate 500 call attempts.

This pattern of compressing some form of traffic and associated devices to handle the offered
traffic occurs in many application domains, hence the general term, traffic engineering.

14.9.1.2 Replication

Some nonfunctional requirements may be unusually difficult to actually perform. Many times,
actual performance would destroy the system being tested (destructive vs. nondestructive test-
ing). There was a Calvin and Hobbes comic strip that succinctly explained this form of testing.
In the first frame, Calvin sees a sign on a bridge that says “Maximum weight 5 tons.” He asks
his father how this is determined. The father answers that successively heavier trucks are driven
over the bridge until the bridge collapses. In the last frame, Calvin has his standard shock/horror
expression. Rather than destroy a system, some form of replication can be tried. Two examples
follow.

One of the nonfunctional requirements for an army field telephone switching center was that
it had to be operational after a parachute drop. Actually doing this was both very expensive and
logistically complex. None of the system testers knew how to replicate this; however, in consulta-
tion with a former paratrooper, the testers learned that the impact of a parachute drop is similar
to jumping off a ten-foot (three meter) wall. The testers put a prototype on a fork lift skid, lifted it
to a height of ten feet, and tilted it forward until it fell off the skid. After hitting the ground, the
prototype was still operational, and the test passed.

One of the most dangerous incidents for aircraft is a mid-air collision with a bird. Here is
an excerpt of a nonfunctional requirement for the F 35 jet aircraft built by Lockheed Martin
(Owens et al., 2009).

The Canopy System Must Withstand Impact of a 4 lb Bird at 480 Knots on the Reinforced
Windscreen and 350 Knots on the Canopy Crown Without:

 ◾ Breaking or Deflecting so as to Strike the Pilot When Seated in the Design Eye
“High” Position,

 ◾ Damage To The Canopy That Would Cause Incapacitating Injury To The Pilot, or
 ◾ Damage That Would Preclude Safe Operation of, or Emergency Egress from the

Aircraft

Clearly it would be impossible to arrange a mid-air bird collision, so the Lockheed Martin
testers replicated the problem with an elaborate cannon that would shoot a dead chicken at the
windscreen and at the canopy. The tests passed.

There is an urban legend, debunked on Snopes.com, about follow-up on a British (or French,
or fill-in-your-favorite-country) firm that used the same idea for canopy testing, but their tests
all failed. When they asked the US testers why the failures were so consistent, they received a
wry answer: “you need to thaw the chicken first.” Why mention this? If nonfunctional testing is
done with a replication strategy, it is important to replicate, as closely as possible, the actual test
scenario. (But it is funny.)

286  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

14.9.2 Mathematical Approaches
In some cases, nonfunctional testing cannot be done either directly, indirectly, or with commercial
tools. There are three forms of analysis that might help—queuing theory, reliability models, and
simulation.

14.9.2.1 Queuing Theory

Queuing theory deals with servers and queues of tasks that use the service. The mathematics behind
queuing theory deals with task arrival rates, and service times, as well as the number of queues and the
number of servers. In everyday life, we see examples of queuing situations: checkout lines in a grocery
store, lines to buy tickets at a movie theater, or lift lines at a ski area. Some settings, for example, a local
post office, uses a single queue of patrons waiting for service at one of several clerk positions. This hap-
pens to be the most efficient queuing discipline—single queue, multiple server. Service times represent
some form of system capacity, and queues represent traffic (transactions) offered to the system.

14.9.2.2 Reliability Models

Reliability models are somewhat related to queuing theory. Reliability deals with failure rates
of components and computes characteristics such as likelihood of system failure, mean time to
failure (MTTF), mean time between failures (MTBF), and mean time to repair (MTTR). Given
actual or assumed failure rates of system components, these quantities can be computed.

A telephone switching system has a reliability requirement of not more than two hours of down-
time in 40 years of continuous operation. This is an availability of 0.99999429, or stated negatively,
failure rate of 5.7 × 10–6, (0.0000057). How can this be guaranteed? Reliability models are the first
choice. They can be expressed as tree diagrams or as directed graphs, very similar to the approach
used to compute an operational profile. These models are based on failure rates of individual system
components that are linked together physically, and abstractly in the reliability model.

A digital end office intended for the rural U.S. market had to be certified by an agency of the
U.S. government, the Rural Electric Administration (REA). That body followed a compression
strategy, and required an on-site test for six months. If the system functioned with less than 30
minutes of downtime, it was certified. A few months into the test interval, the system had less than
two minutes of downtime. Then a tornado hit the town and destroyed the building that contained
the system. The REA declared the test to be a failure. Only extreme pleading resulted in a retest.
The second time, there was less than 30 seconds of downtime in the six-month interval.

Reliability models have a solid history of applicability to physical systems, but can they be
applied to software? Physical components can age, and therefore deteriorate. This is usually shown
in the Weibull distribution, in which failures drop to nearly zero rapidly. Some forms show an
increase after an interval that represents the useful life of a component. The problem is that
software, once well tested, does not deteriorate. The main difference between reliability models
applied to software versus hardware comes down to the arrival rate of failures. Testing based on
operational profiles, and the extension to risk-based testing is a good start; however, no amount of
testing can guarantee the absence of software faults.

14.9.2.3 Monte Carlo Testing

Monte Carlo testing might be considered a last resort in the system tester’s arsenal. The basic idea
of Monte Carlo testing is to randomly generate a large number of threads (transactions) and then

System Testing  ◾  287

© 2010 Taylor & Francis Group, LLC

see if anything unexpected happens. The Monte Carlo part comes from the use of pseudorandom
numbers, not from the fact that the whole approach is a gamble. Monte Carlo testing has been suc-
cessful in applications where computations involving physical (as opposed to logical, see Chapter
6) variables are used. The major drawback to Monte Carlo testing is that the large number of
random transactions requires a similarly large number of expected outputs in order to determine
whether a random test case passes or fails.

14.10 atomic System Function testing Example
We can illustrate ASF testing on our integrationNextDate pseudocode. This version differs slightly
from that in Chapter 13. A few output statements were added to make ASF identification more
visible.

1 Main integrationNextDate ‘start program event occurs here
 Type Date
 Month As Integer
 Day As Integer
 Year As Integer
 EndType
 Dim today As Date
 Dim tomorrow As Date
2 Output(“Welcome to NextDate!”)
3 GetDate(today) ‘msg1
4 PrintDate(today) ‘msg2
5 tomorrow = IncrementDate(today) ‘msg3
6 PrintDate(tomorrow) ‘msg4
7 End Main

8 Function isLeap(year) Boolean
9 If (year divisible by 4)
10 Then
11 If (year is NOT divisible by 100)
12 Then isLeap = True
13 Else
14 If (year is divisible by 400)
15 Then isLeap = True
16 Else isLeap = False
17 EndIf
18 EndIf
19 Else isLeap = False
20 EndIf
21 End (Function isLeap)

22 Function lastDayOfMonth(month, year) Integer
23 Case month Of
24 Case 1: 1, 3, 5, 7, 8, 10, 12
25 lastDayOfMonth = 31
26 Case 2: 4, 6, 9, 11
27 lastDayOfMonth = 30
28 Case 3: 2

288  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

29 If (isLeap(year)) ‘msg5
30 Then lastDayOfMonth = 29
31 Else lastDayOfMonth = 28
32 EndIf
33 EndCase
34 End (Function lastDayOfMonth)

35 Function GetDate(aDate) Date
 dim aDate As Date

36 Function ValidDate(aDate) Boolean ‘within scope of GetDate
 dim aDate As Date
 dim dayOK, monthOK, yearOK As Boolean

37 If ((aDate.Month > 0) AND (aDate.Month < = 12)
38 Then monthOK = True
39 Output(“Month OK”)
40 Else monthOK = False
41 Output(“Month out of range”)
42 EndIf
43 If (monthOK)
44 Then
45 If ((aDate.Day > 0) AND (aDate.Day < =
 lastDayOfMonth(aDate.Month, aDate.Year)) ‘msg6
46 Then dayOK = True
47 Output(“Day OK”)
48 Else dayOK = False
49 Output(“Day out of range”)
50 EndIf
51 EndIf
52 If ((aDate.Year > 1811) AND (aDate.Year < = 2012)
53 Then yearOK = True
54 Output(“Year OK”)
55 Else yearOK = False
56 Output(“Year out of range”)
57 EndIf
58 If (monthOK AND dayOK AND yearOK)
59 Then ValidDate = True
60 Output(“Date OK”)
61 Else ValidDate = False
62 Output(“Please enter a valid date”)
63 EndIf
64 End (Function ValidDate)

 ‘GetDate body begins here
65 Do
66 Output(“enter a month”)
67 Input(aDate.Month)
68 Output(“enter a day”)
69 Input(aDate.Day)
70 Output(“enter a year”)
71 Input(aDate.Year)
72 GetDate.Month = aDate.Month
73 GetDate.Day = aDate.Day
74 GetDate.Year = aDate.Year
75 Until (ValidDate(aDate)) ‘msg7
76 End (Function GetDate)

System Testing  ◾  289

© 2010 Taylor & Francis Group, LLC

77 Function IncrementDate(aDate) Date
78 If (aDate.Day < lastDayOfMonth(aDate.Month)) ‘msg8
79 Then aDate.Day = aDate.Day + 1
80 Else aDate.Day = 1
81 If (aDate.Month = 12)
82 Then aDate.Month = 1
83 aDate.Year = aDate.Year + 1
84 Else aDate.Month = aDate.Month + 1
85 EndIf
86 EndIf
87 End (IncrementDate)

88 Procedure PrintDate(aDate)
89 Output(“Day is “, aDate.Month, “/”, aDate.Day, “/”, aDate.Year)
90 End (PrintDate)

14.10.1 Identifying Input and Output Events
Recall that an ASF begins with a port input event, conducts some processing, and, depending
on the project-chosen granularity, ends with one or more port output events. We can identify
ASFs from source code by locating the nodes at which port inputs and outputs occur. Table
14.15 lists the port input and output events in integrationNextDate and the corresponding node
numbers.

table 14.15 Location of port Events in integrationNextDate

Input Events Node Output Event Description Node

e0: Start program event 1 e7: Welcome message 2

e1: Center a valid month 67 e8: Print today’s date 4

e2: Enter an invalid month 67 e9: Print tomorrow’s date 6

e3: Enter a valid day 69 e10: “Month OK” 39

e4: Enter an invalid day 69 e11: “Month out of range” 41

e5: Enter a valid year 71 e12: “Day OK” 47

e6: Enter an invalid year 71 e13: “Day out of range” 49

e14: “Year OK” 54

e15: “Year out of range” 56

e16: “Date OK” 60

e17: “Please enter a valid date” 62

e18: “Enter a month” 66

e19: “Enter a day” 68

e20: “Enter a year” 70

e21: “Day is month, day, year” 89

290  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

14.10.2 Identifying Atomic System Functions
The next step is to identify the ASFs in terms of the port input and output events. Table 14.16
contains the first attempt at ASF identification. There is a subtle problem with this first set of ASFs.
They presume that the states in the ASF graph in Figure 14.14 are independent, but they are not.
As we have seen, dependent nodes often lead to impossible paths.

The ASF graph shows all the ways both valid months, days, and years can be entered, but the
transition to ASF-8 (or to ASF-9) depends on the history of previous ASFs. Since FSMs have no
memory, these transitions are necessarily undefined.

table 14.16 First attempt at aSFs

Atomic System Function Inputs Outputs

ASF-1: start program e0 e7

ASF-2: enter a valid month e1 e10

ASF-3: enter an invalid month e2 e11

ASF-4: enter a valid day e3 e12

ASF-5: enter an invalid day e4 e13

ASF-6: enter a valid year e5 e14

ASF-7: enter an invalid year e6 e15

ASF-8: print for valid input

ASF-9: print for invalid input

?

ASF-1

ASF-2

ASF-4

ASF-6

ASF-3

ASF-5

ASF-7

ASF-8 ASF-9

Figure 14.14 Directed graph of atomic System Functions for integrationNextDate.

System Testing  ◾  291

© 2010 Taylor & Francis Group, LLC

14.10.3 Revised Atomic System Functions
The Do Until loop from nodes 65 to 75 allows for many mistakes. The checking for valid month,
day, and year values is linear, but all three must be correct to terminate the Do Until loop. Since
we can make any number of input variable mistakes, in any order, there is no way to represent
in an ASF graph when the Do Until loop will terminate. Incidentally, this is case of the Anna
Karenina principle (see Diamond, 1997). The principle refers to situations where a conjunction of
criteria must all be true; any one becoming false negates the whole situation. It comes from the
first sentence in Leo Tolstoy’s famous Russian novel, Anna Karenina: “Happy families are all alike;
every unhappy family is unhappy in its own way.”

The second attempt (see Table 14.17) postulates larger ASFs (maybe they are “molecular”?) that
have pluralities of port inputs and port outputs.

Now each ASF is the entry of a triple (month, day, year). ASFs 2, 3, and 4 make one mistake
at a time, and ASF-5 gets all the values right. Would we really need the last four (two or three
mistakes at a time)? Probably not. That kind of testing should have been done at the unit level.
Figure 14.15 is the new ASF graph for the first five of the “revised” ASFs.

table 14.17 Second attempt at aSFs

Atomic System Function Inputs Outputs

ASF-1: start program e0 e7

ASF-2: enter a date with an invalid month, valid day, and
valid year

e2, e3,
e5

e11, e12, e14,
e17

ASF-3: enter a date with an invalid day, valid month, and
valid year

e1, e4,
e5

e10, e13, e14,
e17

ASF-4: enter a date with an invalid year, valid day, and
valid month

e1, e3,
e6

e10, e12, e15,
e17

ASF-5: enter a date with valid month, day, and year e1, e3,
e5

e10, e12, e14, e16,
e21

ASF-6: enter a date with valid month, invalid day, and
invalid year

e1, e4,
e6

e10, e13, e15,
e17

ASF-7: enter a date with valid day, invalid month, and
invalid year

e2, e3,
e6

e11, e12, e15,
e17

ASF-8: enter a date with valid year, invalid day, and
invalid month

e5, e4,
46

e14, e13, e15,
e17

ASF-9: enter a date with invalid month, invalid day, and
invalid year

e2, e4,
e6

e11, e13, e15,
e17

292  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

EXERCISES
 1. One of the problems of system testing, particularly with interactive systems, is to anticipate

all the strange things the user might do. What happens in the SATM system if a customer
enters three digits of a PIN and then leaves?

 2. To remain “in control” of abnormal user behavior (the behavior is abnormal, not the user),
the SATM system might introduce a timer with a 30-second time-out. When no port input
event occurs for 30 seconds, the SATM system could ask if the user needs more time. The
user can answer yes or no. Devise a new screen and identify port events that would imple-
ment such a time-out event.

 3. Suppose you add the time-out feature described in Exercise 2 to the SATM system. What
regression testing would you perform?

 4. Make an additional refinement to the PIN try finite state machine (Figure 14.6) to implement
your time-out mechanism from Exercise 2, then revise the thread test case in Table 14.3.

 5. Develop an incidence matrix similar to Table 14.10 for the PIN entry short use cases in
Table 14.8.

 6. Does it make sense to use test coverage metrics in conjunction with operational profiles?
Same question for risk-based testing. Discuss this.

For questions 7 through 9, revisit the description of the Garage Door Controller in Chapter 2
and the corresponding finite state machine in Chapter 4.

 7. Develop extended essential use cases for the Garage Door Controller.
 8. The input and output events for the Garage Door Controller are shown in Figure 4.6. Use

these as starting points for incidence matrices of your use cases with respect to input events,
output events, and all events.

 9. Develop Event-Driven Petri Nets for the Garage Door Controller.

references
Diamond, J., Guns, Germs, and Steel, W. W. Norton, New York, 1997.
Jorgensen, P.C., System testing with pseudo-structures, American Programmer, Vol. 7, No. 4, April 1994,

pp. 29–34.

ASF-1

ASF-2 ASF-4

ASF-3

ASF-5

Figure 14.15 Directed graph of five atomic System Functions for integrationNextDate.

System Testing  ◾  293

© 2010 Taylor & Francis Group, LLC

Jorgensen, P.C., Modeling Software Behavior: A Craftsman’s Approach, CRC Press, New York, 2009.
Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design, 2nd ed.,

Prentice-Hall, Upper Saddle River, NJ, 2001.
Schaefer, H., Risk based testing, strategies for prioritizing tests against deadlines, Software Test Consulting,

http://home.c2i.net/schaefer/testing.html, 2005.
Owens, S.D., Caldwell, E.O. and Woodward, M.R., Birdstrike certification tests of F-35 canopy and airframe

structure, 2009 Aircraft Structural Integrity Program (ASIP) Conference, Jacksonville, FL, December
2009, also can be found at Trimble, S., July 28, 2010, http://www.flightglobal.com/blogs/the-dew-
line/2010/07/video-f-35-birdstrike-test-via.html and http://www.flightglobal.com/blogs/the-dewline/
Birdstrike%20Impact%20Studies.pdf.

295

Chapter 15

Object-Oriented testing

Both theoretical and practical work on the testing of object-oriented software has flourished since
the second half of the 1990s, leading to the clear dominance of the paradigm in 2013. One of the
original hopes for object-oriented software was that objects could be reused without modification
or additional testing. This was based on the assumption that well-conceived objects encapsulate
functions and data “that belong together,” and once such objects are developed and tested, they
become reusable components. The new consensus is that there is little reason for this optimism—
object-oriented software has potentially more severe testing problems than those for traditional
software. On the positive side, the Unified Modeling Language (UML) is clearly the de facto
framework for object-oriented software development.

15.1 Issues in testing Object-Oriented Software
Our goal in this section is to identify the testing issues raised by object-oriented software. First, we
have the question of levels of testing; this, in turn, requires clarification of object-oriented units.
Next, we consider some of the implications of the strategy of composition (as opposed to func-
tional decomposition). Object-oriented software is characterized by inheritance, encapsulation,
and polymorphism; therefore, we look at ways that traditional testing can be extended to address
the implications of these issues. In the remaining sections, we examine class testing, integration,
system testing, UML-based testing, and the application of data flow testing to object-oriented
software. We will do this using the object-oriented calendar version of the integrationNextDate
procedural example and the windshield wiper controller.

15.1.1 Units for Object-Oriented Testing
Traditional software has a variety of definitions for “unit.” Two that pertain to object-oriented
software are

A unit is the smallest software component that can be compiled and executed.
A unit is a software component that would never be assigned to more than one designer to develop.

296  ◾  Software Testing

These guidelines can be contradictory. Certain industrial applications have huge classes; these
clearly violate the one-designer, one-class definition. In such applications, it seems better to define
an object-oriented unit as the work of one person, which likely ends up as a subset of the class
operations. In an extreme case, an object-oriented unit might be a subclass of a class that contains
only the attributes needed by a single operation or method. (In this chapter, we will use “opera-
tion” to refer to the definition of a class function and “method” to refer to its implementation.)
For such units, object-oriented unit testing reduces to traditional testing. This is a nice simplifica-
tion but somewhat problematic because it shifts much of the object-oriented testing burden onto
integration testing. Also, it does not exploit the gains made by encapsulation.

The class-as-unit choice has several advantages. In a UML context, a class has an associated
StateChart that describes its behavior. Later, we shall see that this is extremely helpful in test case
identification. A second advantage is that object-oriented integration testing has clearer goals,
namely, to check the cooperation of separately tested classes, which echoes traditional software
testing.

15.1.2 Implications of Composition and Encapsulation
Composition (as opposed to decomposition) is the central design strategy in object-oriented soft-
ware development. Together with the goal of reuse, composition creates the need for very strong
unit testing. Because a unit (class) may be composed with previously unknown other units, the
traditional notions of coupling and cohesion are applicable. Encapsulation has the potential to
resolve this concern, but only if the units (classes) are highly cohesive and very loosely coupled.
The main implication of composition is that, even presuming very good unit-level testing, the real
burden is at the integration testing level.

Some of this is clarified by example. Suppose we revisit the Saturn windshield wiper system
from an object-oriented viewpoint. We would most likely identify three classes: lever, wiper, and
dial; their behavior is shown by the finite state machines (which are special cases of StateCharts) in
Figure 15.1. The pseudocode for one choice of the interfaces of these classes is as follows:

Class lever(leverPosition;
 private senseLeverUp(),
 private senseLeverDown())
Class dial(dialPosition;
 private senseDialUp(),
 private senseDialDown())
Class wiper(wiperSpeed;
 setWiperSpeed(newSpeed))

The lever and dial classes have operations that sense physical events on their respective devices.
When these methods (corresponding to the operations) execute, they report their respective device
positions to the wiper class. The interesting part of the windshield wiper example is that the lever
and the dial are independent devices, and they interact when the lever is in the INT (intermittent)
position. The question raised by encapsulation is, where should this interaction be controlled?

The precept of encapsulation requires that classes only know about themselves and operate on
their own. Thus, the lever does not know the dial position, and the dial does not know the lever
position. The problem is that the wiper needs to know both positions. One possibility, as shown in
the previous interface, is that the lever and dial always report their positions, and the wiper figures

Object-Oriented Testing  ◾  297

out what it must do. With this choice, the wiper class becomes the “main program” and contains
the basic logic of the whole system.

Another choice might be to make the lever class the “smart” object because it knows when it
is in the INT state. With this choice, when the response to a lever event puts the lever in the INT
state, a method gets the dial status (with a getDialPosition message) and simply tells the wiper
what speed is needed. With this choice, the three classes are more tightly coupled, and, as a result,
less reusable. Another problem occurs with this choice. What happens if the lever is in the INT
position and a subsequent dial event occurs? There would be no reason for the lever to get the new
dial position, and no message would be sent to the wiper class.

A third choice might be to make the wiper the main program (as in the first choice), but use a
Has relation to the lever and dial classes. With this choice, the wiper class uses the sense operations
of the lever and dial classes to detect physical events. This forces the wiper class to be continuously
active, in a polling sense, so that asynchronous events at the lever and dial can be observed.

Consider these three choices from the standpoint of composition and encapsulation. The first
choice (cleverly named because it is the best) has very little coupling among the classes. This maxi-
mizes the potential of the classes to be reused (i.e., composed in unforeseen ways). For example,
a cheaper windshield wiper might omit the dial altogether, and an expensive windshield wiper
might replace the three-position dial with a “continuous” dial. Similar changes might be made to
the lever. In the other two choices, the increased coupling among the classes reduces their ability
to be composed. Our conclusion: good encapsulation results in classes that can more easily be
composed (and thus reused) and tested.

15.1.3 Implications of Inheritance
Although the choice of classes as units seems natural, the role of inheritance complicates this
choice. If a given class inherits attributes and/or operations from super classes, the stand-alone
compilation criterion of a unit is sacrificed. Binder (1996) suggests “flattened classes” as an answer.

Lever

Off

Int

Low

Dial Wiper

1 0 wipes/minute

6 wipes/minute

12 wipes/minute

20 wipes/minute

30 wipes/minute

60 wipes/minute

2

3

High

leverUp

leverUp

dialUp

dialUp

dialDown

dialDown

leverUp

leverDown

leverDown

leverDown

Figure 15.1 Behavior of windshield wiper classes.

298  ◾  Software Testing

A flattened class is an original class expanded to include all the attributes and operations it inher-
its. Flattened classes are mildly analogous to the fully flattened data flow diagrams of Structured
Analysis. (Notice that flattened classes are complicated by multiple inheritance, and really com-
plicated by selective and multiple selective inheritance.) Unit testing on a flattened class solves the
inheritance problem, but it raises another. A flattened class will not be part of a final system, so
some uncertainty remains. Also, the methods in a flattened class might not be sufficient to test the
class. The next work-around is to add special-purpose test methods. This facilitates class-as-unit
testing but raises a final problem: a class with test methods is not (or should not be) part of the
delivered system. This is perfectly analogous to the question of testing original or instrumented
code in traditional software. Some ambiguity is also introduced: the test methods can also be
faulty. What if a test method falsely reports a fault, or worse, incorrectly reports success? Test
methods are subject to the same false-positive and false-negative outcomes as medical experi-
ments. This leads to an unending chain of methods testing other methods, very much like the
attempt to provide external proofs of consistency of a formal system.

Figure 15.2 shows a UML inheritance diagram of a part of our earlier Simple Automated Teller
Machine (SATM) system; some functionality has been added to make this a better example. Both
checking and savings accounts have account numbers and balances, and these can be accessed
and changed. Checking accounts have a per-check processing charge that must be deducted from
the account balance. Savings accounts draw interest that must be calculated and posted on some
periodic basis.

If we did not “flatten” the checkingAccount and savingsAccount classes, we would not have
access to the balance attributes, and we would not be able to access or change the balances. This
is clearly unacceptable for unit testing. Figure 15.3 shows the “flattened” checkingAccount and
savingsAccount classes. These are clearly stand-alone units that are sensible to test. Solving one
problem raises another: with this formulation, we would test the getBalance and setBalance opera-
tions twice, thereby losing some of the hoped-for economies of object orientation.

Account

accountNumber
Balance

getBalance()
setBalance()

checkingAccount

checkProcessingCharge
checkNumber

postCharge()

savingsAccount

postInterest()

interestRate

Figure 15.2 UML inheritance.

Object-Oriented Testing  ◾  299

15.1.4 Implications of Polymorphism
The essence of polymorphism is that the same method applies to different objects. Considering
classes as units implies that any issues of polymorphism will be covered by the class/unit testing.
Again, the redundancy of testing polymorphic operations sacrifices hoped-for economies.

15.1.5 Levels of Object-Oriented Testing
Three or four levels of object-oriented testing are used, depending on the choice of what consti-
tutes a unit. If individual operations or methods are considered to be units, we have four levels:
operation/method, class, integration, and system testing. With this choice, operation/method test-
ing is identical to unit testing of procedural software. Class and integration testing can be well
renamed as intraclass and interclass testing. The second level, then, consists of testing interactions
among previously tested operations/methods. Integration testing, which we will see is the major
issue of object-oriented testing, must be concerned with testing interactions among previously
tested classes. Finally, system testing is conducted at the port event level, and is (or should be)
identical to system testing of traditional software. The only difference is where system-level test
cases originate.

15.1.6 Data Flow Testing for Object-Oriented Software
When we considered data flow testing in Chapter 9, it was restricted to a single unit. The issues of
inheritance and composition require a deeper view. The emerging consensus in the object-oriented
testing community is that some extension of data flow “should” address these special needs. In
Chapter 9, we saw that data flow testing is based on identifying define and use nodes in the pro-
gram graph of a unit and then considering various define/use paths. Procedure calls in traditional
software complicate this formulation; one common work-around is to embed called procedures
into the unit tested (very much like fully flattened classes). Later in this chapter (Section 15.4),
we develop a revision of Event-Driven Petri Nets (EDPNs) that exactly describes data flow among
object-oriented operations. Within this formulation, we can express the object-oriented extension
of data flow testing.

checkingAccount

accountNumber
Balance
checkProcessingCharge
checkNumber

getBalance()
setBalance()
postCharge()

savingsAccount

accountNumber
Balance
interestRate

getBalance()
setBalance()
postInterest()

Figure 15.3 Flattened checkingaccount and savingsaccount classes.

300  ◾  Software Testing

15.2 Example: ooNextDate
Very little documentation is required by UML at the unit/class level. Here, we add the class
responsibility collaboration (CRC) cards for each class, followed by the class pseudocode, and
then the program graphs for the class operations (see Figures 15.4 through 15.7). CRC cards are
not formally part of UML.

1

2

3

testIt Date.constructor

4

5

6

7

Date.printDate

19

20

Date.increment

1512

13

14

8

9

10

11

16

17

18

Figure 15.4 program graphs for testIt and Date classes.

21

22

23

24

25

28

29

30

33

31 32

Day.constructor Day.setDay Day.increment

a

b

26

27

Day.setCurrentPos Day.getDay

Figure 15.5 program graphs for Day class.

Object-Oriented Testing  ◾  301

15.2.1 Class: CalendarUnit
Responsibility: Provides an operation to set its value in inherited classes and provides a Boolean
operation that tells whether an attribute in an inherited class can be incremented.

class CalendarUnit ‘abstract class
 currentPos As Integer
 CalendarUnit(pCurrentPos)
 currentPos = pCurrentPos
 End ‘CalendarUnit

47

48

49

52

50 51

a

b

Month.constructor Month.setCurrentPos Month.getMonth

Month.setMonth Month.getMonthsize boolean.increment

34

35

36

37

41

42

43 44

45

46

38

39

40

Figure 15.6 program graphs for Month class.

60

61

64

62 63

a

b

53

54

55

56

boolean.increment

Year.setCurrentPos Year.constructor Year.getYear

boolean.isLeap

57

58

59

Figure 15.7 program graphs for Year class.

302  ◾  Software Testing

a setCurrentPos(pCurrentPos)
b currentPos = pCurrentPos
 End ‘setCurrentPos
 abstract protected Boolean increment()

15.2.2 Class: testIt
Responsibility: Serves as a test driver by creating a test date object, then requesting the object to
increment itself, and finally, to print its new value.

class testIt
 main()
1 testdate = instantiate Date(testMonth, testDay, testYear) msg1
2 testdate.increment() msg2
3 testdate.printDate() msg3
 End ‘testIt

15.2.3 Class: Date
Responsibility: A Date object is composed of day, month, and year objects. A Date object increments
itself using the inherited Boolean increment methods in Day and Month objects. If the day and month
objects cannot be incremented (e.g., last day of the month or year), Date’s increment method resets day
and month as needed. In the case of December 31, it also increments the year. The printDate operation
uses the get() methods in Day, Month, and Year objects and prints a date value in mm/dd/yyyy format.

class Date
 private Day d
 private Month m
 private Year y
4 Date(pMonth, pDay, pYear)
5 y = instantiate Year(pYear) msg4
6 m = instantiate Month(pMonth, y) msg5
7 d = instantiate Day(pDay, m) msg6
 End ‘Date constructor
8 increment ()
9 if (NOT(d.increment())) msg7
10 Then
11 if (NOT(m.increment())) msg8
12 Then
13 y.increment() msg9
14 m.setMonth(1,y) msg10
15 Else
16 d.setDay(1, m) msg11
17 EndIf
18 EndIf
 End ‘increment

19 printDate ()
20 Output (m.getMonth()+”/”+ msg12
 d.getDay()+”/”+ msg13
 y.getYear()) msg14
 End ‘printDate

Object-Oriented Testing  ◾  303

15.2.4 Class: Day
Responsibility: A Day object has a private month attribute that the increment method uses to see
if a day value can be incremented or reset to 1. Day objects also provide get() and set() methods.

class Day isA CalendarUnit
 private Month m
21 Day(pDay, Month pMonth)
22 setDay(pDay, pMonth) msg15
 End ‘Day constructor

23 setDay(pDay, Month pMonth)
24 setCurrentPos(pDay) msg16
25 m = pMonth
 End ‘setDay

26 getDay()
27 return currentPos
 End ‘getDay

28 boolean increment()
29 currentPos = currentPos + 1
30 if (currentPos < = m.getMonthSize()) msg17
31 Then return ‘True’
32 Else return ‘False’
33 EndIf
 End ‘increment

15.2.5 Class: Month
Responsibility: Month objects have a value attribute that is used as a subscript to an array of values
of last month days (e.g., the last day of January is 31, the last day of February is 28, and so on).
Month objects provide get() and set() services, and the inherited Boolean increment method. The
possibility of February 29 is determined with the isleap message to a Year object.

 class Month isA CalendarUnit
 private Year y
 private sizeIndex = <31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31>
34 Month(pcur, Year pYear)
35 setMonth(pCurrentPos, Year pyear) msg18
 End ‘Month constructor

36 setMonth(pcur, Year pYear)
37 setCurrentPos(pcur) msg19
38 y = pYear
 End ‘setMonth

39 getMonth()
40 return currentPos
 End ‘getMonth

41 getMonthSize()
42 if (y.isleap()) msg20

304  ◾  Software Testing

43 Then sizeIndex[1] = 29
44 Else sizeIndex[1] = 28
45 EndIf
46 return sizeIndex[currentPos -1]
 End ‘getMonthSize

47 boolean increment()
48 currentPos = currentPos + 1
49 if (currentPos > 12)
50 Then return ‘False’
51 Else return ‘True’
52 EndIf
 End ‘increment

15.2.6 Class: Year
Responsibility: In addition to the usual get() and set() methods, a Year object increments itself
when the test date is December 31 of any year. Year objects provide a Boolean service that tells
whether the current value corresponds to a leap year.

class Year isA CalendarUnit
53 Year(pYear)
54 setCurrentPos(pYear) msg21
 End ‘Year constructor

55 getYear()
56 return currentPos
 End ‘getYear

57 boolean increment()
58 currentPos = currentPos + 1
59 return ‘True’
 End ‘increment

60 boolean isleap()
61 if (((currentPos MOD 4 = 0) AND NOT(currentPos MOD 100 = 0))
 OR (currentPos MOD 400 = 0))
62 Then return ‘True’
63 Else return ‘False’
64 EndIf
 End ‘isleap

15.3 Object-Oriented Unit testing
In this section, we revisit the question of whether a class or a method is a unit. Most of the object-
oriented literature leans toward the class-as-unit side, but this definition has problems. The guide-
lines mentioned in Section 15.1.1 also make sense for object-oriented software, but they do not
resolve whether classes or methods should be considered as units. A method implements a single
function, and it would not be assigned to more than one person, so methods might legitimately be
considered as units. The smallest compilation requirement is problematic. Technically, we could

Object-Oriented Testing  ◾  305

compile a single-method class by ignoring the other methods in the class (probably by comment-
ing them out), but this creates an organizational mess. We will present both views of object-
oriented unit testing; you can let particular circumstances decide which is more appropriate.

15.3.1 Methods as Units
Superficially, this choice reduces object-oriented unit testing to traditional (procedural) unit test-
ing. A method is nearly equivalent to a procedure, so all the traditional specification-based and
code-based testing techniques apply. Unit testing of procedural code requires stubs and a driver
test program to supply test cases and record results. Mock objects are the object-oriented analogue
of this practice. Since instances of the nUnit framework are available for most object-oriented lan-
guages, the assert mechanism in those frameworks is the most convenient choice.

When we look more closely at individual methods, we see the happy consequence of encapsula-
tion: they are generally simple. The pseudocode and corresponding program graphs for the classes
that make up the ooCalendar application are in Section 15.2. Notice that the cyclomatic com-
plexities of the various operations are uniformly low. Date.increment has the highest cyclomatic
complexity, and it is only V(G) = 3. To be fair, this implementation is intentionally simple—no
checking is necessary for valid inputs. With validity checking, the cyclomatic complexities would
increase. As we saw in Chapter 6, equivalence class testing is a good choice for logic-intensive
units. The Date.increment operation treats the three equivalence classes of days:

D1 = {day: 1 < = day < last day of the month}
D2 = {day: day is the last day of a non-December month}
D3 = {day: day is December 31}

At first, these equivalence classes appear to be loosely defined, especially D1, with its reference
to the unspecified last day of the month and no reference to which month. Thanks to encapsula-
tion, we can ignore these questions. (Actually, the questions are transferred to the testing of the
Month.increment operation.)

Even though the cyclomatic complexity is low, the interface complexity is quite high. Looking
at Date.increment again, notice the intense messaging: messages are sent to two operations in the
Day class, to one operation in the Year class, and to two operations in the Month class. This means
that nearly as much effort will be made to create the proper stubs as in identifying test cases.
Another more important consequence is that much of the burden is shifted to integration testing.
In fact, we can identify two levels of integration testing: intraclass and interclass integration.

15.3.2 Classes as Units
Treating a class as a unit solves the intraclass integration problem, but it creates other problems.
One has to do with various views of a class. In the static view, a class exists as source code. This
is fine if all we do is code reading. The problem with the static view is that inheritance is ignored,
but we can fix this by using fully flattened classes. We might call the second view the compile-time
view because this is when the inheritance actually “occurs.” The third view is the execution-time
view, when objects of classes are instantiated. Testing really occurs with the third view, but we still
have some problems. For example, we cannot test abstract classes because they cannot be instanti-
ated. Also, if we are using fully flattened classes, we will need to “unflatten” them to their original
form when our unit testing is complete. If we do not use fully flattened classes, in order to compile

306  ◾  Software Testing

a class, we will need all the other classes above it in the inheritance tree. One can imagine the
software configuration management implications of this requirement.

The class-as-unit choice makes the most sense when little inheritance occurs, and classes
have what we might call internal control complexity. The class itself should have an “interesting”
(mildly complex, nontrivial) StateChart, and there should be a fair amount of internal messaging.
To explore class-as-unit testing, we will revisit the windshield wiper example with a more complex
version.

15.3.2.1 Pseudocode for Windshield Wiper Class

The three classes discussed in Section 15.1.2 are merged into one class here. With this formulation,
operations sense lever and dial events and maintain the state of the lever and dial in the leverPosi-
tion and dialPosition state variables. When a dial or lever event occurs, the corresponding sense
method sends an (internal) message to the setWiperSpeed method, which, in turn, sets its cor-
responding state variable wiperSpeed. Our revised windshieldWiper class has three attributes, get
and set operations for each variable, and methods that sense the four physical events on the lever
and dial devices.

class windshieldWiper
 private wiperSpeed
 private leverPosition
 private dialPosition
 windshieldWiper(wiperSpeed, leverPosition, dialPosition)
 getWiperSpeed()
 setWiperSpeed()
 getLeverPosition()
 setLeverPosition()
 getDialPosition()
 setDialPosition()
 senseLeverUp()
 senseLeverDown()
 senseDialUp(),
 senseDialDown()
End class windshieldWiper

The class behavior is shown in the StateChart in Figure 15.8, where the three devices appear
in the orthogonal components. The StateChart notation treats orthogonal regions as truly concur-
rent regions. Another way to look at this property is that orthogonal regions can represent com-
municating finite state machines. In the Dial and Lever components, transitions are caused by
events, whereas the transitions in the wiper component are all caused by propositions that refer to
what state is “active” in the Dial or Lever orthogonal components. (Such propositions are part of
the rich syntax of transition annotations permitted in the StateMate product.)

15.3.2.2 Unit Testing for Windshield Wiper Class

Part of the difficulty with the class-as-unit choice is that there are levels of unit testing. In our
example, it makes sense to proceed in a bottom–up order beginning with the get/set methods for
the state variables (these are only present in case another class needs them). The dial and lever sense
methods are all quite similar; pseudocode for the senseLeverUp method is given next.

Object-Oriented Testing  ◾  307

senseLeverUp()
 Case leverPosition Of
 Case 1: Off
 leverPosition = Int
 Case dialPosition Of
 Case 1:1
 wiperSpeed = 6
 Case 2:2
 wiperSpeed = 12
 Case 3:3
 wiperSpeed = 20
 EndCase ‘dialPosition
 Case 2:Int
 leverPosition = Low
 wiperSpeed = 30
 Case 3: Low
 leverPosition = High
 wiperSpeed = 60
 Case 4: High
 (impossible; error condition)
 EndCase ‘leverPosition
End enseLeverUp

Testing the senseLeverUp method will require checking each of the alternatives in the Case
and nested Case statements. The tests for the “outer” Case statement cover the corresponding
leverUp transitions in the StateChart. In a similar way, we must test the leverDown, dialUp, and

Off

Int

Low

High

leverUp

leverUp

leverUp

dialUp

dialUp

dialDown

dialDown

leverDown

leverDown

leverDown

Lever

Dial

Wiper

1

2

3

0 wipes/minute

6 wipes/minute

12 wipes/minute

20 wipes/minute

30 wipes/minute

60 wipes/minute

InState(Int)

InState(1)

InState(2)

InState(3)

InState(1)InState(2)

InState(2)InState(3)

InState(Off)

InState(Low)

InState(Low)InState(High)

InState(Int)

Figure 15.8 Windshield wiper StateChart.

308  ◾  Software Testing

dialDown methods. Once we know that the Dial and Lever components are correct, we can test
the wiper component. Pseudocode for the test driver class will look something like this:

class testSenseLeverUp
 wiperSpeed
 leverPos
 dialPos
 testResult ‘boolean
main()
 testCase = instantiate windshieldWiper(0, Off, 1)
 windshieldWiper.senseLeverUp()
 leverPos = windshieldWiper.getLeverPosition()
 If leverPos = Int
 Then testResult = Pass
 Else testResult = Fail
 EndIf
End ‘main

There would be two other test cases, testing the transitions from INT to LOW, and LOW to
HIGH. Next, we test the rest of the windshieldWiper class with the following pseudocode.

class test WindshieldWiper
 wiperSpeed
 leverPos
 dialPos
 testResult ‘boolean
main()
 testCase = instantiate windshieldWiper(0, Off, 1)
 windshieldWiper.senseLeverUp()
 wiperSpeed = windshieldWiper.getWiperSpeed()
 If wiperSpeed = 6
 Then testResult = Pass
 Else testResult = Fail
 EndIf
End ‘main

Two subtleties occur here. The instantiate windshieldWiper statement sets the preconditions
of the test case. The test case in the pseudocode happens to correspond to the default entry states
of the Dial and Lever components of the StateChart in Figure 15.8. Notice it is easy to force other
preconditions. The second subtlety is more obscure. The wiper component of the StateChart has
what we might call the tester’s (or external) view of the class. In this view, the wiper default entries
and transitions are caused by various “inState” propositions. The implementation, however, causes
these transitions by using the set methods to change the values of the state variables.

The use case in Table 15.1 describes a typical scenario of windshield Lever and Dial events.
The corresponding test cases are given in Table 15.2. This example represents the cusp between
integration and system testing for object-oriented code.

We have the StateChart definition of the class behavior; therefore, we can use it to define our
test cases in much the same way that we used finite state machines to identify system-level test
cases. StateChart-based class testing supports reasonable test coverage metrics. Some obvious ones
are

Object-Oriented Testing  ◾  309

Every event
Every state in a component
Every transition in a component
All pairs of interacting states (in different components)
Scenarios corresponding to customer-defined use cases

Table 15.2 contains test cases with the instantiate statements (to establish preconditions) and
expected outputs for the “every transition in a component” coverage level for the Lever component.

Notice that the higher levels of coverage actually imply an intraclass integration of methods,
which seem to contradict the idea of class-as-unit. The scenario coverage criterion is nearly identi-
cal to system-level testing. Here is a use case and the corresponding message sequences needed in
a test class.

class testScenario
 wiperSpeed
 leverPos

table 15.1 Lever and Dial Use Case

Use case name Normal usage

Use case ID UC-1

Description The windshield wiper is in the OFF position, and the Dial is at the
1 position; the user moves the lever to INT, and then moves the
dial first to 2 and then to 3; the user then moves the lever to LOW;
the user moves the lever to INT, and then to OFF.

Preconditions 1. The Lever is in the OFF position.

 2. The Dial is at the 1 position.

 3. The wiper speed is 0.

Event Sequence

Input Events Output Events

 1. Move lever to INT 2. Wiper speed is 6

 3. Move dial to 2 4. Wiper speed is 12

 5. Move dial to 3 6. Wiper speed is 20

 7. Move lever to LOW 8. Wiper speed is 30

 9. Move lever to INT 10. Wiper speed is 20

 11. Move lever to OFF 12. Wiper speed is 0

Postconditions 1. The Lever is in the OFF position.

 2. The Dial is at the 3 position.

 3. The wiper speed is 0.

310  ◾  Software Testing

 dialPos
 step1OK ‘boolean
 step2OK ‘boolean
 step3OK ‘boolean
 step4OK ‘boolean
 step5OK ‘boolean
 step6OK ‘boolean
main()
 testCase = instantiate windshieldWiper(0, Off, 1)
 windshieldWiper.senseLeverUp()
 wiperSpeed = windshieldWiper.getWiperSpeed()
 If wiperSpeed = 4
 Then step1OK = Pass
 Else step1OK = Fail
 EndIf

 windshieldWiper.senseDialUp()
 wiperSpeed = windshieldWiper.getWiperSpeed()
 If wiperSpeed = 6
 Then step2OK = Pass
 Else step2OK = Fail
 EndIf

 windshieldWiper.senseDialUp()
 wiperSpeed = windshieldWiper.getWiperSpeed()
 If wiperSpeed = 12
 Then step3OK = Pass
 Else step3OK = Fail
 EndIf

 windshieldWiper.senseLeverUp()
 wiperSpeed = windshieldWiper.getWiperSpeed()
 If wiperSpeed = 20
 Then step4OK = Pass
 Else step4OK = Fail
 EndIf

 windshieldWiper.senseLeverDown()
 wiperSpeed = windshieldWiper.getWiperSpeed()
 If wiperSpeed = 12
 Then step5OK = Pass
 Else step5OK = Fail
 EndIf

 windshieldWiper.senseLeverDown()
 wiperSpeed = windshieldWiper.getWiperSpeed()
 If wiperSpeed = 0
 Then step6OK = Pass
 Else step6OK = Fail
 EndIf
End ‘main

Object-Oriented Testing  ◾  311

15.4 Object-Oriented Integration testing
Of the three main levels of software testing, integration testing is the least understood; this is true
for both traditional and object-oriented software. As with traditional procedural software, object-
oriented integration testing presumes complete unit-level testing. Both unit choices have implica-
tions for object-oriented integration testing. If the operation/method choice is taken, two levels of
integration are required: one to integrate operations into a full class, and one to integrate the class
with other classes. This should not be dismissed. The whole reason for the operation-as-unit choice
is that the classes are very large, and several designers were involved.

Turning to the more common class-as-unit choice, once the unit testing is complete, two steps
must occur: (1) if flattened classes were used, the original class hierarchy must be restored, and
(2) if test methods were added, they must be removed.

Once we have our “integration test bed,” we need to identify what needs to be tested. As we
saw with traditional software integration, static and dynamic choices can be made. We can address
the complexities introduced by polymorphism in a purely static way: test messages with respect
to each polymorphic context. The dynamic view of object-oriented integration testing is more
interesting.

15.4.1 UML Support for Integration Testing
In UML-defined, object-oriented software, collaboration and sequence diagrams are the basis for
integration testing. Once this level is defined, integration-level details are added. A collaboration
diagram shows (some of) the message traffic among classes. Figure 15.9 is a collaboration diagram
for the ooCalendar application. A collaboration diagram is very analogous to the Call Graph we
used in Chapter 13. As such, a collaboration diagram supports both the pairwise and neighbor-
hood approaches to integration testing.

With pairwise integration, a unit (class) is tested in terms of separate “adjacent” classes that
either send messages to or receive messages from the class being integrated. To the extent that the
class sends/receives messages from other classes, the other classes must be expressed as stubs. All
this extra effort makes pairwise integration of classes as undesirable as we saw pairwise integration
of procedural units to be. On the basis of the collaboration diagram in Figure 15.9, we would have
the following pairs of classes to integrate:

table 15.2 test Cases for Lever Component

Test
Case

Preconditions (Instantiate
Statement)

windshieldWiper
Event

Expected
leverPos

1 windshieldWiper(0,Off,1) senseLeverUp() INT

2 windshieldWiper(0,Int,1) senseLeverUp() LOW

3 windshieldWiper(0,Low,1) senseLeverUp() HIGH

4 windshieldWiper(0,High,1) senseLeverDown() LOW

5 windshieldWiper(0,Low,1) senseLeverDown() INT

6 windshieldWiper(0,Int,1) senseLeverDown() OFF

312  ◾  Software Testing

testIt and Date, with stubs for Year, Month, and Day
Date and Year, with stubs for testIt, Month, and Day
Date and Month, with stubs for testIt, Year, and Day
Date and Day, with stubs for testIt, Month, and Year
Year and Month, with stubs for Date and Day
Month and Day, with stubs for Date and Year

One drawback to basing object-oriented integration testing on collaboration diagrams is that,
at the class level, the behavior model of choice in UML is the StateChart. For class-level behavior,
StateCharts are an excellent basis of test cases, and this is particularly appropriate for the class-as-
unit choice. The problem, however, is that in general it is difficult to compose StateCharts to see
behavior at a higher level (Regmi, 1999).

Neighborhood integration raises some very interesting questions from graph theory. Using
the (undirected) graph in Figure 15.9, the neighborhood of Date is the entire graph, while the
neighborhood of testIt is just Date. Mathematicians have identified various “centers” of a linear
graph. One of them, for example, is the ultracenter, which minimizes the maximum distances to
the other nodes in the graph. In terms of an integration order, we might picture the circular ripples
caused by tossing a stone in calm water. We start with the ultracenter and the neighborhood of
nodes one edge away, then add the nodes two edges away, and so on. Neighborhood integration of
classes will certainly reduce the stub effort, but this will be at the expense of diagnostic precision.
If a test case fails, we will have to look at more classes to find the fault.

A sequence diagram traces an execution-time path through a collaboration diagram. (In UML,
a sequence diagram has two levels: at the system/use case level and at the class interaction level.)
Thick, vertical lines represent either a class or an instance of a class, and the arrows are labeled with
the messages sent by (instances of) the classes in their time order. The portion of the ooCalendar
application that prints out the new date is shown as a sequence diagram in Figure 15.10.

testIt Date Month

Year

Day

1. create
2. increment
3. printDate

1. create
2. increment
3. getYear

1. create
2. increment
3. getMonth
4. setMonth

1. create
2. increment
3. getDay
4. setDay

Figure 15.9 Collaboration diagram for ooCalendar.

Object-Oriented Testing  ◾  313

To the extent that sequence diagrams are created, they are a reasonable basis for object-oriented
integration testing. They are nearly equivalent to the object-oriented version of MM-paths (which
we define in the next subsection). An actual test for this sequence diagram would have pseudocode
similar to this:

1. testDate
2. d.setDay(27)
3. m.setMonth(5)
4. y.setYear(2013)
5. Output (“Expected value is 5/27/2013”)
6. testIt.printDate
7. Output (“Actual output is...”)
8. End testDate

Statements 2, 3, and 4 use the previously unit-tested methods to set the expected output in the
classes to which messages are sent. As it stands, this test driver depends on a person to make a pass/
fail judgment based on the printed output. We could put comparison logic into the testDriver class
to make an internal comparison. This might be problematic in the sense that, if we made a mistake
in the code tested, we might make the same mistake in the comparison logic.

Using collaboration diagrams or sequence diagrams as a basis for object-oriented integration
testing is suboptimal. Collaboration diagrams force a pairwise approach to integration testing.
Sequence diagrams are a little better, but somehow the integration tester needs all the sequence
diagrams that pertain to a particular set of units to be integrated. A third, non-UML strategy is to
use the call graph that we discussed in Chapter 13. Recall that nodes in a call graph can be either
procedural units or object-oriented methods. For object-oriented integration, edges represent mes-
sages from one method to another. The remainder of the call graph–based integration strategies
apply to object-oriented integration testing.

15.4.2 MM-Paths for Object-Oriented Software
Definition

An object-oriented MM-path is a sequence of method executions linked by messages.
When we spoke of MM-paths in traditional software, we used “message” to refer to the invo-

cation among separate units (modules), and we spoke of module execution paths (module-level

Time

testIt Date
.printDate

1. printDate 2. setDay

3. setMonth

4. setYear

Day
d.setDay

Month
m.setMonth

Year
y.setYear

Figure 15.10 Sequence diagram for printDate.

314  ◾  Software Testing

threads) instead of full modules. Here, we use the same acronym to refer to an alternating sequence
of method executions separated by messages—thus, Method/Message Path. Just as in traditional
software, methods may have several internal execution paths. We choose not to operate at that
level of detail for object-oriented integration testing. An MM-path starts with a method and
ends when it reaches a method that does not issue any messages of its own; this is the point of
message quiescence. Figure 15.11 shows the extension of call graphs to object-oriented software.
The classes, methods, and messages all refer to the ooNextDate pseudocode in Section 15.2. In

testIt

Main

msg1

msg6

msg7

msg11

msg16 msg15

msg13

msg18

msg19

msg17

msg5

msg8

msg4

msg21

msg20

msg14

msg9

msg10

msg12

msg2
msg3

Date

getDate()

increment()

printDate()

Day

Day()

setCurrentPos()

setCurrentPos()

setCurrentPos()

increment()

increment()

increment()

setDay()

setMonth()

getMonth()

setYear()

Year

Year()

getYear()

getMonthSize()

getDay()

Month()

Month

Figure 15.11 potential message flow in ooNextDate.

Object-Oriented Testing  ◾  315

one sense, this figure is a very detailed view of the collaboration graph; it shows all the potential
message flows, very much like the discussion of intension versus extension we had for EDPNs in
Chapter 14. With this view, we can understand object-oriented integration testing independently
of the choices of units as operations or classes.

Here is a partial MM-path for the instantiate Date with the value January 3, 2013. The state-
ment and message numbers are from the pseudocode in Section 15.2. This MM-path is shown in
Figure 15.12.

testIt

Date

getDate()

printDate()

increment()

Main

Day

Month

Year

Month()

Day()

setCurrentPos()

increment()

setDay()

getDay()

setCurrentPos()

increment()

setMonth()

getMonth()

Year()

setCurrentPos()

increment()

setYear()

getYear()

getMonthSize()

msg21

msg19

msg18

msg16 msg15

msg4

msg5

msg1

msg6

Figure 15.12 MM-path for January 3, 2013.

316  ◾  Software Testing

testIt<1>
 msg1
Date:testdate<4, 5>
 msg4
Year:y<53, 54>
 msg21
Year:y.setCurrentPos<a, b>
 (return to Year.y)
 (return to Date:testdate)
Date:testdate<6>
 msg5
Month:m<34, 35>
 msg18
Month:m.setMonth<36, 37>
 msg19
Month:m.setCurrentPos<a, b>
 (return to Month:m.setMonth)
 (return to Month:m)
 (return to Date:testdate)
Date:testdate<7>
 msg6
Day:d<21, 22>
 msg15
Day:d.setDay<23, 24>
 msg16
Day:d.setCurrentPos<a, b>
 (return to Day:d.setDay)
Day:d.setDay<25)
 (return to Day:d)
 (return to Date:testdate)

Here is a more interesting MM-path, for the instantiated date April 30, 2013 (Figure
15.13).

testIt<2>
 msg2
Date:testdate.increment<8,9>
 msg7
Day:d.increment<28, 29> ‘now Day.d.currentPos = 31
 msg17
Month:m.getMonthSize<41, 42>
 msg20
Year:y.isleap<60, 61, 63, 64> ‘not a leap year
 (return to Month:m.getMonthSize)
Month:m.getMonthSize<44, 45, 46> ‘returns month size = 30
 (return to Day:d.increment)
Day:d.increment<32, 33> ‘returns false
 (return to Date:testdate.increment)
Date:testdate.increment<10, 11>
 msg8
Month:m.increment<47, 48, 49, 51, 52> ‘returns true
 (return to Date:testdate.increment)
Date:testdate.increment<15, 16>
 msg11

Object-Oriented Testing  ◾  317

Day:d.setDay<23, 24, 25> ‘now day is 1, month is 5
 (return to Date:testdate.increment)
Date:testdate.increment<17, 18>
 (return to testIt)

Having a directed graph formulation puts us in a position to be analytical about choosing
MM-path-based integration test cases. First, we might ask how many test cases will be needed.
The directed graph in Figure 15.11 has a cyclomatic complexity of 23 (the return edges of each
message are not shown, but they must be counted). While we could certainly find that many

testIt

Date

getDate()

printDate()

increment()

Main

Day

Month

Year

Month()

Day()

setCurrentPos()

increment()

setDay()

getDay()

setCurrentPos()

increment()

setMonth()

getMonth()

Year()

setCurrentPos()

increment()

setYear()

getYear()

getMonthSize()

msg2 msg5

msg7

msg11

msg4

msg20

msg17

Figure 15.13 MM-path for april 30, 2013.

318  ◾  Software Testing

basis paths, there is no need to do this because a single MM-path will cover many of these paths,
and many more are logically infeasible. A lower limit would be three test cases; the MM-paths
beginning with statements 1, 2, and 3 in the testIt pseudocode. This might not be sufficient
because, for example, if we choose an “easy” date (like January 3, 2013), the messages involving
isLeap and setMonth will not occur. Just as we saw with unit-level testing of procedural code,
as a minimum, we need a set of MM-paths that covers every message. The 13 decision table–
based test cases we identified for NextDate in Chapter 8 constitute a thorough set of integration
test cases for the ooCalendar application. This is a point where the code-based view of object-
oriented integration testing gives insights that we cannot get from the specification-based view.
We can look for MM-paths to make sure that every message (edge) in the graph of Figure 15.11
is traversed.

15.4.3 A Framework for Object-Oriented Data Flow Testing
MM-paths were defined to serve as integration testing analogs of DD-paths. As we saw for proce-
dural software, DD-path testing is often insufficient; and in such cases, data flow testing is more
appropriate. The same holds for integration testing of object-oriented software; if anything, the
need is greater for two reasons: (1) data can get values from inheritance tree and (2) data can be
defined at various stages of message passing.

Program graphs formed the basis for describing and analyzing data flow testing for procedural
code. The complexities of object-oriented software exceed the expressive capabilities of directed
(program) graphs. This subsection presents an expressive framework within which data flow test-
ing questions for object-oriented software can be described and analyzed.

15.4.3.1 Event-/Message-Driven Petri Nets

Event-driven Petri nets were defined in Chapter 4; we extend them here to express the message
communication among objects. Figure 15.14 shows the notational symbols used in an event-
and message-driven Petri net (EMDPN). The fused triangle shape for messages is intended
to convey that a message is an output of the sending method and an input to the destination
method.

Port input event

Port output event

Message send/return

Method execution pathDate (place)

p

p

Figure 15.14 Symbols for event-/message-driven petri nets (E/MDpN).

Object-Oriented Testing  ◾  319

Definition

An event- and message-driven Petri net (EMDPN) is a quadripartite directed graph (P, D, M, S,
In, Out) composed of four sets of nodes, P, D, M, and S, and two mappings, In and Out, where

P is a set of port events
D is a set of data places
M is a set of message places
S is a set of transitions
In is a set of ordered pairs from (P ∪ D ∪ M) × S
Out is a set of ordered pairs from S × (P ∪ D ∪ M)

We retain the port input and output events because these will certainly occur in event-driven,
object-oriented applications. Obviously, we still need data places, and we will interpret Petri net
transitions as method execution paths. The new symbol is intended to capture the essence of
interobject messages:

They are an output of a method execution path in the sending object.
They are an input to a method execution path in the receiving object.
The return is a very subtle output of a method execution path in the receiving object.
The return is an input to a method execution path in the sending object.

Figure 15.15 shows the only way that the new message place can appear in an EMDPN.
The EMDPN structure, because it is a directed graph, provides the needed framework for data

flow analysis of object-oriented software. Recall that data flow analysis for procedural code centers
on nodes where values are defined and used. In the EMDPN framework, data is represented by a
data place, and values are defined and used in method execution paths. A data place can be either
an input to or an output of a method execution path; therefore, we can now represent the define/
use paths (du-path) in a way very similar to that for procedural code. Even though four types of
nodes exist, we still have paths among them; so we simply ignore the types of nodes in a du-path
and focus only on the connectivity.

Object A

Object B

Figure 15.15 Message connection between objects.

320  ◾  Software Testing

15.4.3.2 Inheritance-Induced Data Flow

Consider an inheritance tree in which the value of a data item is defined; in that tree, consider a
chain that begins with a data place where the value is defined, and ends at the “bottom” of the tree.
That chain will be an alternating sequence of data places and degenerate method execution paths,
in which the method execution paths implement the inheritance mechanism of the object-oriented
language. This framework therefore supports several forms of inheritance: single, multiple, and
selective multiple. The EMDPN that expresses inheritance is composed only of data places and
method execution paths, as shown in Figure 15.16.

15.4.3.3 Message-Induced Data Flow

The EMDPN in Figure 15.17 shows the message communication among three objects. As an exam-
ple of a define/use path, suppose mep3 is a Define node for a data item that is passed on to mep5,
modified in mep6, and finally used in the Use node mep2. We can identify these two du-paths:

du1 = <mep3, msg2, mep5, d6, mep6, return(msg2), mep4, return(msg1), mep2>
du2 = <mep6, return(msg2), mep4, return(msg1), mep2>

d1 d3 d5

d6

d4

d2

mep 1

mep 2

mep 3
mep 5

mep 6

mep 4

Message 1 Message 2

Figure 15.17 Data flow from message passing.

isA isA isA

Figure 15.16 Data flow from inheritance.

Object-Oriented Testing  ◾  321

In this example, du2 is definition clear; du1 is not. Although we do not develop data flow test-
ing for object-oriented software here, this formulation will support that endeavor.

15.4.3.4 Slices?

It is tempting to assert that this formulation also supports slices in object-oriented software. The
fundamentals are there, so we could go through the graph theory motions. Recall that the more
desirable form of a slice is one that is executable. This appears to be a real stretch, and without it,
such slices are interesting only as a desk-checking approach to fault location.

15.5 Object-Oriented System testing
System testing is (or should be) independent of system implementation. A system tester does not
really need to know if the implementation is in procedural or object-oriented code. As we saw in
Chapter 14, the primitives of system testing are port input and output events, and we know how to
express system-level threads as EDPNs. The issue is how to identify threads to be used as test cases.
In Chapter 14, we used the requirements specification models, particularly the behavioral models,
as the basis of thread test case identification. We also discussed pseudostructural coverage metrics
in terms of the underlying behavioral models. In a sense, this chapter is very object oriented: we
inherit many ideas from system testing of traditional software. The only real difference in this
chapter is that we presume the system has been defined and refined with the UML. One emphasis,
then, is finding system-level thread test cases from standard UML models. At the system level,
as we saw in Chapter 14, a UML description is composed of various levels of use cases, a use case
diagram, class definitions, and class diagrams.

15.5.1 Currency Converter UML Description
We will use the currency converter application as an example for system testing. Because the UML from
the Object Management Group is now widely accepted, we will use a rather complete UML descrip-
tion, in the style of Larman (1997). The terminology and UML content generally follow the Larman
UML style, with the addition of pre- and postconditions in expanded essential use cases (EEUCs).

15.5.1.1 Problem Statement

The currency converter application converts U.S. dollars to any of four currencies: Brazilian reals,
Canadian dollars, European Community euros, and Japanese yen. The user can revise inputs and
perform repeated currency conversion.

15.5.1.2 System Functions

In the first step, sometimes called project inception, the customer/user describes the application in
very general terms. This might take the form of “user stories,” which are precursors to use cases.
From these, three types of system functions are identified: evident, hidden, and frill. Evident func-
tions are the obvious ones. Hidden functions might not be discovered immediately, and frills are
the “bells and whistles” that so often occur. Table 15.3 lists the system functions for the currency
converter application.

322  ◾  Software Testing

15.5.1.3 Presentation Layer

Pictures are still worth a thousand words. The third step in Larman’s approach is to sketch the
user interface; our version is in Figure 15.18. This much information can support a customer walk-
through to demonstrate that the system functions identified can be supported by the interface.

15.5.1.4 High-Level Use Cases

The use case development begins with a very high-level view. Notice, as the succeeding levels of
use cases are elaborated, much of the early information is retained. It is convenient to have a short,
structured naming convention for the various levels of use cases. Here, for example, HLUC refers
to high-level use case (where would we be without acronyms?). Very few details are provided in a
high-level use case; they are insufficient for test case identification. The main point of high-level
use cases is that they capture a narrative description of something that happens in the system to
be built.

Currency converter
U.S. Dollar amount

Equivalent in ...

Brazil

Canada

Japan

European community

Compute

Clear

Quit

Figure 15.18 Currency converter GUI.

table 15.3 System Functions for Currency Converter application

Reference No. Function Category

R1 Start application Evident

R2 End application Evident

R3 Input US dollar amount Evident

R4 Select country Evident

R5 Perform conversion calculation Evident

R6 Clear user inputs and program outputs Evident

R7 Maintain exclusive–or relationship among countries Hidden

R8 Display country flag images Frill

Object-Oriented Testing  ◾  323

HLUC 1 Start application.

Description The user starts the currency conversion application in Windows®.

HLUC 2 End application.

Description The user ends the currency conversion application in Windows.

HLUC 3 Convert dollars.

Description The user inputs a US dollar amount and selects a country; the application
computes and displays the equivalent in the currency of the selected country.

HLUC 4 Revise inputs.

Description The user resets inputs to begin a new transaction.

HLUC 5 Repeated conversions, same dollar amount.

Description The user inputs a US dollar amount and selects a country; the application
computes and displays the equivalent in the currency of the selected country.

HLUC 6 Revise inputs.

Description A US dollar amount has been entered OR a country has been selected.

HLUC 7 Abnormal case: no country selected.

Description User enters a dollar amount and clicks on the Compute button without
selecting a country.

HLUC 8 Abnormal case: no dollar amount entered.

Description User selects a country and clicks on the Compute button without entering a
dollar amount.

HLUC 9 Abnormal case: no dollar amount entered and no country selected.

Description User clicks on the Compute button without entering a dollar amount and
without selecting a country.

15.5.1.5 Essential Use Cases

Essential use cases add “actor” and “system” events to a high-level use case. Actors in UML are
sources of system-level inputs (i.e., port input events). Actors can be people, devices, adjacent

324  ◾  Software Testing

systems, or abstractions such as time. Since the only actor is the User, that part of an essential use
case is omitted. The numbering of actor actions (port input events) and system responses (port
output events) shows their approximate sequences in time. In EUC3, for example, human observ-
ers cannot detect the sequence of system responses 4 and 5; they would appear to be simultaneous.
Also, because some of the essential use cases are obvious, they are deleted; however, the numbering
still refers to the high-level use cases.

EUC-1 Start application

Description The user starts the currency conversion
application in Windows.

Event Sequence

Input Events Output Events

 1. The user starts the application, either
with a Run … command or by double
clicking the application icon.

 2. The currency conversion application GUI
appears on the monitor and is ready for
user input.

EUC-3 Convert dollars

Description The user inputs a US dollar amount and selects
a country; the application computes and
displays the equivalent in the currency of the
selected country.

Event Sequence

Input Events Output Events

 1. The user enters a dollar amount.

 2. The dollar amount is displayed on the GUI.

 3. The user selects a country.

 4. The name of the country’s currency is
displayed.

 5. The flag of the country is displayed.

 6. The user requests a conversion
calculation.

 7. The equivalent currency amount is
displayed.

Object-Oriented Testing  ◾  325

EUC-4 Revise inputs

Description The user resets inputs to begin a new transaction.

Event Sequence

Input Events Output Events

 1. The user enters a dollar amount.

 2. The dollar amount is displayed on the GUI.

 3. The user selects a country.

 4. The name of the country’s currency is
displayed.

 5. The flag of the country is displayed.

 6. The user cancels the inputs.

 7. The name of the country’s currency is
removed.

 8. The flag of the country is no longer visible.

EUC-7 Abnormal case: no country selected

Description The user enters a dollar amount and clicks on
the cmdCompute button without selecting a
country.

Event Sequence

Input Events Output Events

 1. The user enters a dollar amount. 2. The dollar amount is displayed on the GUI.

 3. User clicks the Compute button. 4. A message box appears with the caption
“must select a country.”

 5. The user closes the message box. 6. The message box is no longer visible.

 7. The flag of the country is no longer visible.

15.5.1.6 Detailed GUI Definition

Once a set of essential use cases has been identified, the graphical user interface (GUI) is fleshed
out with design-level detail. Here, we implement the currency converter in Visual Basic and fol-
low a recommended naming convention for Visual Basic controls as shown in Figure 15.19. (For
readers not familiar with Visual Basic, this design uses four types of controls: text boxes for input,
labels for output, option buttons to indicate choices, and command buttons to control the execu-
tion of the application.) These controls will be referred to in the EEUCs. Again for space reasons,
only selected EEUCs will be included.

326  ◾  Software Testing

15.5.1.7 Expanded Essential Use Cases

The EEUCs are the penultimate refinement of the high-level use cases. Here, we add pre- and post-
condition information (not part of the Larman flavor), information about alternative sequences of
events, and a cross-reference to the system functions identified very early in the process. The other
expansion is that more use cases are identified and added at this point. This is a normal part of any
specification and design process: more detailed views provide more detailed insights. Note that the
numeric tracing across levels of use cases is lost at this point.

The pre- and postconditions warrant some additional comment. We are only interested in con-
ditions that directly pertain to the EEUC defined, as in the Chapter 14 discussion of well-formed
use cases. We could always add preconditions such as “power is on,” and “computer is running
under Windows”; however, if these are not used, they are not added to the preconditions. Similar
comments apply to postconditions.

EEUC-1 Start application

Description The user starts the currency conversion
application in Windows.

Preconditions Currency conversion application in (disk)
storage

Event Sequence

Input Events Output Events

 1. User double-clicks currency conversion
application icon

 2. frmCurrConv appears on screen

Postconditions 1. Currency conversion application is in
memory

 2. txtDollar has focus

Currency converter
U.S. Dollar amount
Equivalent in ...

Brazil

Canada

Japan

European community

Compute

Clear

Quit

label1
label2
label3

optBrazil

optCanada

optEU

optJapan

frmCurrConv
txtDollar
lblEquivAmount

cmdCompute

cmdClear

cmdQuit

Figure 15.19 Detailed GUI definition.

Object-Oriented Testing  ◾  327

EEUC-3 Normal usage (dollar amount entered first)

Description The user inputs a US dollar amount and
selects a country; the application computes
and displays the equivalent in the currency
of the selected country.

Preconditions txtDollar has focus

Event Sequence

Input Events Output Events

 1. User enters US dollar amount on
keyboard

 2. Dollar amount appears in txtDollar

 3. User clicks on a country button 4. Country currency name appears in
lblEquiv

 5. User clicks cmdCompute button 6. Computed equivalent amount appears
in lblEqAmount

Postconditions cmdClear has focus

EEUC-4 Repeated conversions, same country

Description The user inputs a US dollar amount and
selects a country; the application computes
and displays the equivalent in the currency
of the selected country.

Preconditions txtDollar has focus

Event Sequence

Input Events Output Events

 1. User enters US dollar amount on
keyboard

 2. Dollar amount appears in txtDollar

 3. User clicks on a country button 4. Country currency name appears in
lblEquiv

 5. User clicks cmdCompute button 6. Computed equivalent amount appears
in lblEqAmount

 7. User clicks on txtDollar 8. txtDollar has focus

 9. User enters different US dollar amount
on keyboard

 10. Dollar amount appears in txtDollar

 11. User clicks cmdCompute button 12. Computed equivalent amount appears
in lblEqAmount

Postconditions cmdClear has focus

328  ◾  Software Testing

15.5.1.8 Real Use Cases

In Larman’s terms, real use cases are only slightly different from the EEUCs. Phrases such as “enter
a US dollar amount” must be replaced by the more specific “enter 125 in txtDollar.” Similarly,
“select a country” would be replaced by “click on the optBrazil button.” In the interest of space
(and reduced reader boredom), real use cases are omitted. Note that system-level test cases could
be mechanically derived from real use cases.

15.5.2 UML-Based System Testing
Our formulation lets us be very specific about system-level testing; there are at least four identifi-
able levels with corresponding coverage metrics for GUI applications. The first level is to test the
system functions given as the first step in Larman’s UML approach (see Table 15.3). These are
cross-referenced in the extended essential use cases, so we can easily build an incidence matrix
such as Table 15.4.

Examining the incidence matrix, we can see several possible ways to cover the seven system
functions. One way would be to derive test cases from real use cases that correspond to extended
essential use cases 1, 2, 5, and 6. These will need to be real use cases as opposed to the EEUCs.
The difference is that specific countries and dollar values are used, instead of the higher-level
statements such as “click on a country button” and enter a dollar amount. Deriving system test
cases from real use cases is mechanical: the use case preconditions are the test case precondi-
tions, and the sequences of actor actions and system responses map directly into sequences of
user input events and system output events. The set of extended essential use cases 1, 2, 5, and
6 is a nice example of a set of regression test cases; taken together, they cover all seven system
functions.

The second level is to develop test cases from all of the real use cases. Assuming that the
customer approved of the original EEUCs, this is the minimally acceptable level of system test

table 15.4 Incidence Matrix of Use Cases with System Functions

EEUC R1 R2 R3 R4 R5 R6 R7

1 × — — — — — —

2 — × — — — — —

3 — — × × × — —

4 — — × × × — —

5 — — × × × — ×

6 — — × × — × ×

7 — — × — × — —

8 — — × — × — —

9 — — — — × — —

Object-Oriented Testing  ◾  329

coverage. Here is a sample system-level test case derived from the real use case based on extended
essential use case EEUC3. (Assume the exchange rate for 1 euro is US$1.31.)

System test case 3 Normal usage (dollar amount entered first)

Test performed by Paul Jorgensen

Preconditions txtDollar has focus

Event Sequence

Input Events Output Events

 1. Enters 10 on the keyboard

 2. Observe 10 appears in txtDollar

 3. Click on optEU button

 4. Observe “euros” appears in label3

 5. Clicks cmdCompute button

 6. Observe “7.60” appears in lblEquivAmount

Postconditions cmdClear has focus

Test result Pass (on first attempt)

Date run May 27, 2013

The third level is to derive test cases from the finite state machines derived from a finite state
machine description of the external appearance of the GUI, as we did in Chapter 14 for the SATM
system. The fourth level is to derive test cases from state-based event tables; this makes sense for
states with a high outdegree of transitions. This is an “exhaustive” level because it exercises every
possible event for each state. It is not truly exhaustive, however, because we have not tested all
sequences of events across states. The other problem is that it is an extremely detailed view of sys-
tem testing that is likely very redundant with integration- and even unit-level test cases.

15.5.3 StateChart-Based System Testing
A caveat is required here. StateCharts are a fine basis for system testing. The problem is that
StateCharts are prescribed to be at the class level in UML. There is no easy way to compose
StateCharts of several classes to get a system-level StateChart (Regmi, 1999). A possible work-
around is to translate each class-level StateChart into a set of EDPNs, and then compose the
EDPNs.

EXERCISE
 1. The ooCalendar problem can be extended in several ways. One extension is to add an astro-

logical content: each zodiac sign has a name and a beginning date (usually the 21st of a
month). Add attributes and methods to the month class so that testIt can find the zodiac
sign for a given date.

330  ◾  Software Testing

references
Binder, R.V., The free approach for testing use cases, threads, and relations, Object, Vol. 6, No. 2, February

1996, pp. 73–75.
Jorgensen, P.C., Modeling Software Behavior: A Craftsman’s Approach, CRC Press, New York, 2009.
Larman, C., Applying UML and Patterns, Prentice-Hall, Upper Saddle River, New Jersey, 1997.
Regmi, D.R., Object-Oriented Software Construction Based on State Charts, Grand Valley State University

Master’s project, Allendale, MI, 1999.

331

Chapter 16

Software Complexity

Most discussions of software complexity focus on two main models—cyclomatic (or decisional)
complexity, and textual complexity as measured by the Halstead metrics. Both approaches are
commonly used at the unit level; however, both can also be used at the integration and system
levels. This chapter takes a closer look at software complexity at all three levels—unit, integration,
and system. At the unit level, the basic cyclomatic complexity model (also known as McCabe
complexity) is extended in two ways. Integration-level complexity applies cyclomatic complexity
to a directed graph in which units are nodes and edges represent either object-oriented messages
or procedural calls. After discussing the complexities due to object-oriented practice, system-level
complexity is expressed in terms of an incidence matrix that relates the is and does views of a soft-
ware system.

Software complexity is usually analyzed as a static (i.e., compile-time) property of source code,
not an execution-time property. The approaches discussed here are derived either directly from
source code, or possibly from design- and specification-level models. Why worry about software
complexity? It has the most direct bearing on the extent of required software testing, but also, it
is an indicator of difficulty in software maintenance, particularly program comprehension. As
software complexity increases, development effort also increases, although this is a little deceptive
since much of the analysis is based on existing code (too late!). Finally, an awareness of software
complexity may lead to improved programming practices, and even better design techniques.

16.1 Unit-Level Complexity
The description of unit-level complexity begins with the notion of a program graph from Chapter
8 (Path Testing). Recall that for a program written in an imperative programming language, its
program graph is a directed graph in which nodes are either entire statements or fragments of a
statement, and edges represent flow of control (there is an edge from node i to node j if and only
if the statement [or statement fragment] corresponding to node j can be executed immediately
after the statement or statement fragment corresponding to node i). The program graph represents
the control flow structure of the source code, and this leads to the usual definition of cyclomatic
complexity.

332  ◾  Software Testing

16.1.1 Cyclomatic Complexity
Definition: In a strongly connected directed graph G, its cyclomatic complexity, denoted by V(G),
is given by V(G) = e – n + p, where

e is the number of edges in G
n is the number of nodes in G
p is the number of connected regions in G

In code that conforms to structured programming (single entry, single exit), we always have
p = 1. There is some confusion in the literature about the formula for V(G). There are two formulas
commonly seen:

 (1) V(G) = e – n + p
 (2) V(G) = e – n + 2p

Equation (1) refers to a directed graph G that is strongly connected, that is, for any two nodes
nj and nk of G, there is a path from nj to nk, and a path from nk to nj. Since the program graph of a
structured program has a single-entry node and a single-exit node, the graph is not quite strongly
connected because there is no path from the sink node to the source node. The usual way to apply
the formula is to add an edge from the sink node to the source node. If an edge is added, Equation
(1) applies; otherwise, equation (2) applies. With this definition, and given a program graph,
the cyclomatic complexity is determined by simply counting the nodes and edges, and applying
equation (2). This is fine for small programs, but what about a program graph such as the one in
Figure 16.1? Even for program graphs of this size, counting nodes and edges is tedious. For that
matter, drawing the program graph is also tedious. Fortunately, there is a more elegant way, based
on an insight from directed graph theory. We next develop two shortcuts.

16.1.1.1 “Cattle Pens” and Cyclomatic Complexity

Cyclomatic complexity refers to the number of independent cycles in a strongly connected directed
graph. When drawn in the usual way (as in Figure 16.1), these cycles are easily identified visually,
and this can be done for simple programs. Rather than count all the nodes and edges in a larger
graph, we can imagine nodes to be fence posts, and edges to be fencing used in a cattle pen. Then
the number of “cattle pens” can be counted visually. (The more esoteric term is “enclosed regions,”
which the topologists prefer.) In the program graph in Figure 16.1, there are 37 edges and 31
nodes. Since the graph is not strongly connected, equation (2) applies, and V(G) = 37 – 31 + 2 = 8.
The eight “cattle pens” are also numbered (notice that one pen is “outside” all the others). Drawing
the directed graph to identify cattle pens is still tedious. Again, there is a more elegant way, based
on more definitions from graph theory.

16.1.1.2 Node Outdegrees and Cyclomatic Complexity

As we saw in Chapter 4, the indegree of a node in a directed graph is the number of edges that ter-
minate on the node. Similarly, the outdegree of a node in a directed graph is the number of edges
that originate at the node. These are commonly denoted for node n as inDeg(n) and outDeg(n).
We need another definition to replace the thinking that went into the cattle pen approach.

Software Complexity  ◾  333

Definition

The reduced outdegree of node n in a directed graph is one less than the outdegree of n.
Denote the reduced outdegree of node n as reducedOut(n); then we can write

 reducedOut(n) = outDeg(n) – 1

We use the reduced outdegree of nodes in a program graph to compute its cyclomatic complex-
ity. Notice that a cattle pen “begins” with a node with outDeg > = 2. Table 16.1 shows the nodes
in Figure 16.1 that satisfy this observation.

22

36

37

33
34

35

31

27

2524
23

29

26

30

28

32

1 2

4

5

3

6

108 9

12

14 15

21

18

16

13

17

19

20

11

7

520

21 25

24

23

19

29

30

26

27

28

31

15

13

12

14
4

16

17

18

2
11

3
108

9

7

68

5

4

22

1
3

1

2

7

6

Figure 16.1 Mildly complex program graph.

table 16.1 reduced Outdegrees in Figure 16.1

Node outDeg reducedOut

1 2 1

7 3 2

13 2 1

19 3 2

26 2 1

Total = 7

334  ◾  Software Testing

The sum of the reduced outdegrees is the number of cattle pens, but this does not count the “out-
side” cattle pen, which makes 8—the cyclomatic complexity of the directed graph. The outdegrees
can be determined from the source code, eliminating the need to draw the directed graph, and per-
form the other tedious steps. As a guideline, a simple loop determines a cattle pen, as do the If, Then
and If, Then, Else statements. Switch (Case) statements with k alternatives determine k – 1 cattle pens.
So now, finding cyclomatic complexity is reduced to determining the reduced outdegrees of all deci-
sion-making statements in the source code. We can state this as a formal theorem (without proof).

Theorem: Given a directed graph G of n nodes, the cyclomatic complexity V(G) of G is given
by the sum of the reduced outdegrees of the nodes of G plus 1, that is

 V G i
i

n

() = + ()

=
∑1

1

…reducedOut

16.1.1.3 Decisional Complexity

Cyclomatic complexity is a start, but it is an oversimplification. Why? Because all decision-making
statements are not equal—compound conditions add complexity. Consider the following code
fragment from a program that computes the type of triangle formed by three integers, a, b, and c.
The fragment applies the triangle inequality that requires that each side of a triangle is strictly less
than the sum of the other two sides.

1. If (a < b + c) AND (b < a + c) AND (c < a + b)
2. Then IsATriangle = True
3. Else IsATriangle = False
4. Endif

The program graph of this fragment is very simple—it has a cyclomatic complexity of 2. From
a software testing standpoint, we would apply multiple condition testing, or we could rewrite the
fragment as follows, with the resulting cyclomatic complexity of 4:

1. If (a < b + c)
2. Then If (b < a + c)
3. Then If (c < a + b)
4. Then IsATriangle = True
5. Else IsATriangle = False
6. EndIf ‘(c < a + b)
7. Else IsATriangle = False
8. EndIf ‘(b < a + c)
9. Else IsATriangle = False
10. EndIf ‘(a < b + c)

The program graphs of these fragments are in Figure 16.2. The added complexity of compound
conditions cannot be determined from a program graph—it must be derived from the source
code. Doing a full multiple conditional testing analysis for a compound condition entails making
a truth table in which the simple conditions are considered as individual propositions, and then
finding the truth table of the compound expression. For now, we choose to simplify this and just
define the added complexity of compound conditions to be one less than the number of simple
conditions in the expression. Why one less? The compound condition creates a unit of cyclomatic
complexity, so this avoids “double counting.”

Software Complexity  ◾  335

16.1.2 Computational Complexity
Thus far, we have focused on what might be called control complexity, or maybe decisional com-
plexity—basically looking at the edges leaving nodes in a program graph. But what about the
nodes themselves? Just as with decisions, all nodes are not “created equal.” To explore this, we use
the definitions of DD-path and DD-path graph made in Chapter 8.

Recall that DD-path execution is like a sequence of dominoes: once the first statement exe-
cutes, every statement in the DD-path executes, until the next decision point is reached. At this
point, we can begin to think about the length of a DD-path. Since a DD-path contains no inter-
nal decision-making statements for any program P, the cyclomatic complexity of P equals the
cy clomatic complexity of the DD-path graph of P. Our problem is now reduced to considering
the computational complexity of a DD-path, and this is where the Halstead metrics are useful.

16.1.2.1 Halstead’s Metrics

For a given program (DD-path), consider the operators and operands in the program code.
Operators include the usual arithmetic and logical operators, as well as built-in functions such as
square root. Operands are identifiers. The Halstead metrics are based on the following quantities,
derived from the source code of the program (DD-path):

 ◾ The number of distinct operators, n1
 ◾ The number of distinct operands, n2
 ◾ The total number of operators, N1
 ◾ The total number of operands, N2

On the basis of these, Halstead defines

 ◾ Program length as N = N1 + N2
 ◾ Program vocabulary as n = n1 + n2
 ◾ Program volume as V = N log2(n)
 ◾ Program difficulty as D = (n1N2)/2n2

V(G) = 4V(G) = 2

10

8

6

5

3

2

1

9 7 4

1

3

4

2

Figure 16.2 program graphs of two equivalent program fragments.

336  ◾  Software Testing

Of these, the formula for program volume seems to make the most sense, but we could choose
to use program difficulty, as this seems to be linguistically related to our goal of describing soft-
ware complexity.

16.1.2.2 Example: Day of Week with Zeller’s Congruence

Here we compare two slightly different implementations of Zeller’s congruence, which determines
the day of the week of a given date. The inputs d, m, y are day, month, and year, respectively.
Tables 16.2 and 16.3 show the values of the inputs to Halstead’s metrics.

First implementation

if (m < 3) {
 m += 12;
 y –= 1;
 }
int k = y% 100;
int j = y/100;
int dayOfWeek = ((d + (((m + 1) * 26)/10) + k + (k/4) + (j/4)) + (5 * j))%7;

table 16.2 Halstead’s Metrics for First Implementation

Operator
Number of

Occurrences Operand
Number of

Occurrences

If 1 m 3

< 1 y 3

+= 1 k 3

–= 1 j 3

= 3 dayOfWeek 1

% 2 d 1

/ 4 3 1

+ 6 12 1

* 2 1 1

n1 = 9 N1 = 21 100 2

26 1

10 1

4 2

5 1

7 1

n2 = 15 N2 = 25

Software Complexity  ◾  337

Second implementation

if (month < 3)
 {
 month += 12;
 –year;
 }
 return dayray[(int)(day + (month + 1) * 26/10 + year +
 year/4 + 6 * (year/100) + year/400)% 7];

Table 16.4 shows the Halstead metrics for the two implementations. Look at the two versions,
and decide if you think these metrics are helpful. Remember that these are very small fragments.

The calculations in Table 16.4 are rounded to a reasonable precision. Both versions have nearly
equal totals of distinct operators and operands. The big difference is in the number of occurrences
(21 vs. 16 and 25 vs. 20, yielding program lengths of 46 and 36). However, the Microsoft Word
editor provides the text statistics in Table 16.5, which show that the first version is longer in two
senses. Does sheer length add complexity? It depends on what is being done with the code. Size,
the number of operators, and the number of operands have clear implications for program com-
prehension and software maintenance. The testing for the two versions is identical.

table 16.3 Halstead’s Metrics for Second Implementation

Operator
Number of

Occurrences Operand
Number of

Occurrences

If 1 Month 3

< 1 Year 5

+= 1 Dayray 1

– 1 Day 1

Return 1 3 1

+ 6 12 1

* 2 1 1

/ 2 26 1

% 1 10 1

n1 = 9 N1 = 16 4 1

6 1

100 1

400 1

7 1

n2 = 14 N2 = 20

338  ◾  Software Testing

16.2 Integration-Level Complexity
The entire discussion in Section 16.1 on unit-level complexity applies to both procedural code and
to object-oriented methods. The differences in these two paradigms are first noticed at the inte-
gration level—in fact they are restricted to that level. At the integration testing level, the concern
shifts from correctness of individual units to correct function across units. One presumption of
integration-level testing is that the units have been thoroughly tested “in isolation.” Therefore, the
attention shifts to interfaces among units and what we might call “communication traffic.” As
with unit-level complexity, we use directed graphs to help our discussion and analysis. The starting
point is the call graph from Chapter 13.

Definition

Given a program written in an imperative programming language, its call graph is a directed graph
in which nodes correspond to units, and edges correspond to messages.

For object-oriented code, if method A sends a message to method B, there is an edge from
node A to node B. For procedural code, if unit A refers to unit B, there is an edge from node A to
node B. As a general rule, the integration-level call graphs of procedural code are less complex than
those of functionally equivalent object-oriented code. At the same time, the unit-level complexity
of methods is typically less than that of procedures. This almost suggests a “law of conservation of
complexity,” in which complexity does not disappear from object-oriented code; it just relocates
to the integration level. (This is beyond the scope of this chapter, so it remains an observation.)

table 16.4 Halstead Metrics for two Implementations

Halstead’s Metric Version 1 Version 2

Program length, N = N1 + N2 21 + 25 = 46 16 + 20 = 36

Program vocabulary, n = n1 + n2 9 + 15 = 24 9 + 14 = 23

Program volume, V = Nlog2(n) 46 (log2(24)) =

46*4.58 = 210.68

36 (log2(23)) =

36*4.52 = 162.72

Program difficulty, D = (n1N2)/2n2 (9*25)/2*15 =

225/30 = 7.500

(9*20)/2*14 =

180/28 = 6.428

table 16.5 Character Counts in two Versions

Size Attribute Version 1 Version 2

Characters (no spaces) 99 107

Characters (with spaces) 147 157

Lines 7 7

Software Complexity  ◾  339

16.2.1 Integration-Level Cyclomatic Complexity
Cyclomatic complexity at the integration level echoes the approach we took at the unit level, only
now we use a call graph instead of a program graph. As before, we need to distinguish between
strongly connected call graphs and call graphs that are “almost” strongly connected. Recall we had
two equations for this distinction:

 (1) V(G) = e – n + p, for strongly connected call graphs
 (2) V(G) = e – n + 2p for call graphs that have a single source node and multiple sink nodes

Notice that the next definitions apply to both object-oriented and procedural code. We repeat
two definitions from Chapter 4 next.

Definition

Given the call graph of a program (regardless of language paradigm), the integration-level cyclo-
matic complexity is the cyclomatic complexity of the call graph.

Definition

Given a directed graph G with n nodes, its adjacency matrix is the n × n matrix A = (ai,j), where ai,j =
1 if there is an edge from node i to node j, 0 otherwise.

As we saw in Chapter 4, all of the information in a directed graph can be derived from its
(unique!) adjacency matrix, except for the geometric placement of nodes and edges. For example,
the sum of elements in row n is the outdegree of node n; similarly, the sum of elements in column
n is the indegree of node n. The sum of the indegrees and outdegrees a node is the degree of the
node. Since every edge contributes to the outdegree of some node, this, in turn, together with the
number of nodes yields the cyclomatic complexity V(G) = edges – nodes + 2p.

Given this, many times it is simpler to provide an adjacency matrix rather than a drawn call graph.
Section 16.3 develops a full example of unit- and integration-level complexity for a rewritten version of
NextDate. The call graph of that version is in Figure 16.3, followed by its adjacency matrix (Table 16.6).

Main

GetDate

ValidDate lastDayOfMonth isLeap

IncrementDate printDate

msg1

msg7 msg8

msg6 msg5

msg3 msg2, msg4
Added

Added

Figure 16.3 Call graph of integration version.

340  ◾  Software Testing

Integration-level call graphs are seldom (never?) strongly connected, but we can still derive
everything we need from the adjacency matrix of a call graph. The sum of the row sums (or col-
umn sums) is 7. Nodes with outdegree = 0 must be sink nodes; thus, for each sink node, we would
add an edge to make the call graph strongly connected. There are two such nodes in Figure 16.3,
so the calculation of integration-level cyclomatic complexity is

 V(G) = edges – nodes + 1 = 9 – 7 + 1 = 3

16.2.2 Message Traffic Complexity
As we saw with unit-level complexity, only considering cyclomatic complexity is an oversimplifica-
tion. Just as not all decisions are equal, neither are all interfaces. Suppose, for example, that we find
one method repeatedly sending messages to the same destination—clearly this adds to the overall
complexity, and we would like to consider this in our integration testing. To do this, we use an
extended adjacency matrix of the call graph. In the extended version, rather than just 1’s and 0’s,
an element shows the number of times a method (or a unit) refers to another method (unit). For
the Figure 16.3 example, this only happens once, when the Main unit calls printDate twice. We
would have this extended adjacency matrix.

table 16.6 adjacency Matrix of Call Graph in Figure 16.3

M
ai

n

G
et

D
at

e

In
cr

em
en

t D
at

e

p
ri

n
tD

at
e

Va
lid

D
at

e

la
st

D
ay

O
f M

o
n

th

is
le

ap

ro
w

 s
u

m
 (o

u
td

eg
re

e)

Main 1 1 1 3

GetDate 1 1

IncrementDate 1 1

printDate 0

ValidDate 1 1

lastDayOfMonth 1 1

isleap 0

Column sum 0 1 1 1 1 2 1 7

Software Complexity  ◾  341

16.3 Software Complexity Example
The NextDate program (usually expressed as a function) is rewritten here as a main program with
a functional decomposition into procedures and functions (Figure 16.4). The pseudocode grows
from 50 statements to 81. Figures 16.5 through 16.7 show the program graphs of units in yet
another integration version of NextDate. The functional decomposition is shown in Figure 16.4,
and the call graph is shown in Figure 16.3. The points of added decisional complexity are noted
as comments in bold font.

Main

GetDate printDateIncrementDateisLeap lastDayOfMonth

ValidDate

Figure 16.4 Functional decomposition on integration version of NextDate.

1 2 3 4 5 6

Main V(G) = 1

isLeap V(G) = 4

7

8

9

10

11

17
19

20

12

13

16

14 15

18

1 Main integrationNextDate

Type Date
 Month As Integer
 Day As Integer
 Year As Integer
End Type

Dim today As Date
Dim tomorrow As Date

2 GetDate(today)
3 PrintDate(today)
4 tomorrow = IncrementDate(today)
5 PrintDate(tomorrow)
6 End Main

‘msg1
’msg2
‘msg3
’msg4

7 Function isLeap(year) Boolean
8 If (year divisible by 4)
9 �en
10 If (year is NOT divisible by 100)
11 �en isLeap = True
12 Else
13 If (year is divisible by 400)
14 �en isLeap = True
15 Else isLeap = False
16 EndIf
17 Endif
18 Else isLeap = False
19 Endif
20 End (Function isLeap)

Figure 16.5 program graph of integrationNextDate, part 1.

342  ◾  Software Testing

21

22

23

24

25

26

32

33

27

28

29 30

31

68

69

70

79

80

81

71

72

73 75

74

78

77 76

LastDayOfMonth
V(G) = 4

IncrementDate V(G) = 3

PrintDate V(G) = 1

21 Function lastDayOfMonth(month, year) Integer
22 Case month Of
23 Case 1: 1, 3, 5, 7, 8, 10, 12
24 lastDayOfMonth = 31
25 Case 2: 4, 6, 9, 11
26 lastDayOfMonth = 30
27 Case 3: 2
28 If (isLeap(year)) ‘msg5
29 �en lastDayOfMonth = 29
30 Else lastDayOfMonth = 28
31 EndIf
32 EndCase
33 End (Function lastDayOfMonth)

68 Function IncrementDate(aDate) Date
69 If (aDate.Day < lastDayOfMonth(aDate.Month))
‘msg8
70 �en aDate.Day = aDate.Day + 1
71 Else aDate.Day = 1
72 If (aDate.Month = 12)
73 �en aDate>month = 1
74 aDate.Year = aDate.Year + 1
75 Else aDate.Month = aDate.Year + 1
76 EndIf
77 EndIf
78 End (IncrementDate)

79 Procedure PrintDate(aDate)
80 Output(“Day is *, aDate.Month, ”/” aDate.Day, “/”,
aDate.Year)
81 End (PrintDate)

Figure 16.6 program graph of integrationNextDate, part 2.

Software Complexity  ◾  343

35

36

39

40

46

47

48 49

50

51

54

55

5267

66

56

34

57−65

53

41

42

45

43 44

37 38

ValidDate V(G) = 6

GetDate V(G) = 2

34 Function GetDate(aDate Date
 dim aDate As Date
35 Function ValidDate(aDate) Boolean ‘within scope of GetDate
 dim aDate As Date
 dim dayOK, monthOk, yearOK As Boolean
36 If ((aDate.Month > 0) AND (aDate.Month <=12)
 ’added decisional complexity = +1
37 �en monthOK = True
38 Else monthOK = False
39 EndIf
40 If (monthOK)
41 �en
42 If ((aDate.Day > 0) AND ‘msg6
 (aDate.Day <= lastDayOfMonth(aDate.Month, aDate.Year))
 ’added decisional complexity = +1
43 �en dayOK = True
44 Else dayOK = False
45 EndIf
46 EndIf
47 If ((aDate.Year > 1811) AND (aDate.Year <= 2012)
 ’added decisional complexity = +1
48 �en yearOK = True
49 Else yearOK = False
50 EndIf
51 If (monthOK AND dayOK AND yearOK)
 ’added decisional complexity = +2
52 �en ValidDate = True
53 Else ValidDate = False
54 EndIf
55 End (Function ValidDate)

‘ GetDate body begins here
56 Do
57 Output(“enter a month”)
58 Input(aDate.Month)
59 Output(“enter a day”)
60 Input(aDate.Day)
61 Output(“enter a year”)
62 Input(aDate.Year)
63 GetDat.Month = aDate.Month
64 GetDate.Day = aDate.Day
65 GetDate.Year = aDate.Year
66 Until (ValidDate(aDate)) ’msg7
67 End (Function GetDate)

Figure 16.7 program graph of integrationNextDate, part 3.

344  ◾  Software Testing

16.3.1 Unit-Level Cyclomatic Complexity

Unit
Cyclomatic
Complexity

Added
Decisional
Complexity

Total Unit
Complexity

Main integrationNextDate 1 0 1

GetDate 2 0 2

IncrementDate 3 0 3

PrintDate 1 0 1

ValidDate 6 5 11

lastDayOfMonth 4 0 4

isLeap 4 0 4

Sum of total unit complexities 26

16.3.2 Message Integration-Level Cyclomatic Complexity
In Figure 16.3, edges are added from printDate to Main and from isLeap to Main to make the
graph a strongly connected directed graph. (So now the V(G) = e – + p formula applies.)

 V(G(call graph)) = 9 – 7 + 1 = 3

The Extended Adjacency Message Traffic Increment = 1, so the total integration-level complex-
ity is 4, added to the unit-level complexity (25) gives a total complexity of 29.

16.4 Object-Oriented Complexity
The Chidamber/Kemerer (CK) metrics are the best-known metrics for object-oriented software
(Chidamber and Kemerer, 1994). The names for the six CK metrics are almost self-explanatory;
some can be derived from a call graph; others use the unit-level complexity discussed in Section 16.2.

 ◾ WMC—Weighted Methods per Class
 ◾ DIT—Depth of Inheritance Tree
 ◾ NOC—Number of Child Classes
 ◾ CBO—Coupling between Classes
 ◾ RFC—Response for Class
 ◾ LCOM—Lack of Cohesion on Methods

16.4.1 WMC—Weighted Methods per Class
The WMC metric counts the number of methods in a class and weights them by their cyclomatic
complexity. This weighting can easily be extended to include the notion of decisional complexity

Software Complexity  ◾  345

in Section 16.2. As with procedural code, this metric is a good predictor of implementation and
testing effort.

16.4.2 DIT—Depth of Inheritance Tree
The name says it all. If we made another call graph to show inheritance, this is the length of the lon-
gest inheritance path from root to leaf node. This is directly derivable from a standard UML Class
Inheritance Diagram. While comparatively large values of the DIT metric imply good reuse, this
also increases testing difficulty. One strategy is to “flatten” the inheritance classes such that all inher-
ited methods are in one class for testing purposes. Current guidelines recommend a limit of DIT = 3.

16.4.3 NOC—Number of Child Classes
The Number of Child Classes of a class in the inheritance diagram for the DIT metric is simply
the outdegree of each node. This is very analogous to the cyclomatic complexity of the call graph.

16.4.4 CBO—Coupling between Classes
This metric is a carryover from the procedural coupling metrics central to the Structured Analysis
design technique, in which coupling is increased when one unit refers to variables in another unit.
In the procedural version, several levels of coupling were identified. These can all be applied to
object-oriented methods. As is the case with procedural code, greater coupling implies both greater
testing and greater maintenance difficulty. Well-designed classes should reduce the CBO values.

16.4.5 RFC—Response for Class
The RFC method refers to the length of the message sequence that results from an initial message. In
Chapter 13, we saw that this is also the “length” of the integration-level testing construct, the MM-path.

16.4.6 LCOM—Lack of Cohesion on Methods
The LCOM metric is another direct extension of the cohesion metric for procedural code. LCOM
is the number of methods that use a given instance variable in the class, and is computed for each
instance variable.

16.5 System-Level Complexity
While it is conceptually possible to consider cyclomatic complexity at the system level, the sizes make this
unwieldy—it can be done, and there are commercial tools that support this, but the results are not par-
ticularly helpful. In the words of R.J. Hamming: “The purpose of computing is insight, not numbers.”

Part of system-level complexity stems from how closely intertwined are the software units.
This is nicely shown in an incidence matrix that relates use cases to classes (or even to methods) as
we noted in Chapter 14. Rows correspond to use cases, and columns to classes (or methods). Then
an “×” in row i column j means that class (method) j is used to support the execution of use case i.
Note that for procedural code, the incidence is between features and procedures/functions. Now
consider whether this matrix is sparse or dense—a sparse incidence indicates that much of the

346  ◾  Software Testing

software is only loosely interwoven, making maintenance and testing relatively easy. Conversely,
a dense incidence means that the units are tightly coupled, and therefore highly interdependent.
With dense incidence, we can expect more ripple effect of simple changes, and a greater need for
rigorous regression testing after a change is made. As an aside, the incidence matrix serves as a
handy way to control the items to be regression tested.

EXERCISES
 1. Compare the cyclomatic complexity of the procedural implementation of NextDate with

the total complexity of the integration version. Then do the same for the object-oriented ver-
sion in Chapter 15.

 2. Consider a calendar function that finds the zodiac sign for a given date. Compare the total
complexities of the pseudocode descriptions of zodiac1, zodiac2, and zodiac3.

Zodiac1 uses a procedure validEntry to check the valid ranges of month, day, and year.

public zodiac1(month, day, year)
{
 if (validEntry(month, day, year))
 {
 if (month = 3 AND day > = 21 OR month = 4 AND day < = 19) {
 return(“Aries”);
 } else if (month = 4 OR month = 5 AND day < = 20) {
 return(“Taurus”);
 } else if (month = 5 OR month = 6 AND day < = 20) {
 return(“Gemini”);
 } else if (month = 6 OR month = 7 AND day < = 22) {
 return(“Cancer”);
 } else if (month = 7 OR month = 8 AND day < = 22) {
 return(“Leo”);
 } else if (month = 8 OR month = 9 AND day < = 22) {
 return(“Virgo”);
 } else if (month = 9 OR month = 10 AND day < = 22) {
 return(“Libra”);
 } else if (month = 10 OR month = 11 AND day < = 21) {
 return(“Scorpio”);
 } else if (month = 11 OR month = 12 AND day < = 21) {
 return(“Sagittarius”);
 } else if (month = 12 OR month = 1 AND day < = 19) {
 return(“Capricorn”);
 } else if (month = 1 OR month = 2 AND day < = 18) {
 return(“Aquarius”);
 } else {
 return(“Pisces”);
 }
 } else {
 return(“Invalid Date”);
 }
 }

Software Complexity  ◾  347

Zodiac2 presumes that the values of month, day, and year are valid. The zodiac signs are
assumed to be in an array zodiac(i).

public Zodiac2(month, day, year)
{
 switch(month
 {
 case 1: {if(day() > = 20)
 return zodiac[0];
 else
 return zodiac[3]; }
 case 2: {if(day() > = 19)
 return zodiac[7];
 else
 return zodiac[0]; }
 case 3: {if(day() > = 21)
 return zodiac[1];
 else
 return zodiac[7]; }
 case 4: {if(day() > = 20)
 return zodiac[10];
 else
 return zodiac[1]; }
 case 5: {if(day() > = 21)
 return zodiac[4];
 else
 return zodiac[10]; }
 case 6: {if(day() > = 21)
 return zodiac[2];
 else
 return zodiac[4]; }
 case 7: {if(day() > = 23)
 return zodiac[5];
 else
 return zodiac[2]; }
 case 8: {if(day() > = 23)
 return zodiac[11];
 else
 return zodiac[5]; }
 case 9: {if(day() > = 23)
 return zodiac[6];
 else
 return zodiac[11]; }
 case 10: {if(day() > = 23)
 return zodiac[9];
 else
 return zodiac[6]; }
 case 11: {if(day() > = 22)
 return zodiac[8];
 else
 return zodiac[9]; }
 case 12: {if(day() > = 20)
 return zodiac[3];

348  ◾  Software Testing

 else
 return zodiac[8]; }
 default:
 return zodiac[12]; }
 }

This design choice uses the “ordinal day of the year.” Feb. 1 is ordinal day 32. It presumes a
function that converts a date to the ordinal day of the year. This version only works for common
years. A one-day correction would be needed for leap years.

public String zodiac3()
 { switch(month)
 { case 1: if(ordinalDay<20)
 return “Capricorn”;
 case 2: if(ordinalDay<50)
 return “Aquarius”;
 case 3: if(ordinalDay<79)
 return “Pisces”;
 case 4: if(ordinalDay<109)
 return “Aries”;
 case 5: if(ordinalDay< = 140)
 return “Taurus”;
 case 6: if(ordinalDay<171)
 return “Gemini”;
 case 7: if(ordinalDay<203)
 return “Cancer”;
 case 8: if(ordinalDay<234)
 return “Leo”;
 case 9: if(ordinalDay<265)
 return “Virgo”;
 case 10: if(ordinalDay<295)
 return “Libra”;
 case 11: if(ordinalDay<325)
 return “Scorpio”;
 case 12: if(ordinalDay<355)
 return “Sagittarius”;
 else
 return “Capricorn”;
 }
}

reference
Chidamber, S.R. and Kemerer, C.F., A metrics suite for object-oriented design, IEEE Transactions of Software

Engineering, Vol. 20, No. 6, 1994, pp. 476–493.

349

Chapter 17

Model-Based testing for
Systems of Systems

On March 2, 2012, a class EF-4 tornado struck the town of Henryville, Indiana (USA). The tornado
had winds of 170 mph and left a path of destruction 50 miles long. My wife and I were driving south
on Interstate 65; when we were about 50 miles north of Henryville, we saw an Indiana state police
car with a sign directing motorists to move to the left lane of the highway. This was the beginning
of a direct experience with a “system of systems.” Soon, traffic came to a halt, and then impatient
drivers started using the right lane anyway, quickly bringing that lane also to a stop. Then we saw
emergency vehicles and heavy equipment heading south using the shoulder of the road. We learned
from a truck driver that a tornado had hit Henryville about an hour earlier, and that the emergency
vehicles and heavy equipment were attempting to reach the devastated area. We noticed that there
was very little northbound traffic on Interstate 65, so clearly, northbound traffic south of Henryville
was also stopped. The next day, we saw that a highway rest area had been converted to a command
center for the Indiana National Guard to coordinate the disaster relief effort. This effort involved:

 ◾ The Indiana state police
 ◾ Local and county police departments
 ◾ Regional fire departments
 ◾ Regional ambulance services
 ◾ Heavy (tree moving) equipment from the public utility companies
 ◾ The Indiana National Guard
 ◾ Traffic helicopters from Indianapolis television stations
 ◾ The US Weather Bureau
 ◾ (And probably many others)

Consider how this all happened. How did these disparate groups come together for an emer-
gency? How did they communicate? Was there any central coordination?

Systems of systems have become an increasingly important topic in several areas of software
engineering. In this chapter, we look at some of the early definitions (Maier, 1999), some SysML

350  ◾  Software Testing

techniques to specify requirements of these systems, and finally, we develop a new model to
describe systems of systems and their model-based testing.

17.1 Characteristics of Systems of Systems
We all experience complex systems every day, but what distinguishes a complex system from a
system of systems? Some early attempts to clarify this distinction are

 ◾ A “super system”
 ◾ A collection of cooperating systems
 ◾ A collection of autonomous systems
 ◾ A set of component systems

These early attempts all get at the central idea, but they would also apply to systems such as an
automobile, an integrated MIS system in a company, and even the human body. There is a growing
clarity of definitions for the underlying nature of systems of systems. Maier begins his distinction
by noting two fundamental differences—systems of systems are either directed or collaborative.
Initially, he used “collaborative systems” as a synonym for “systems of systems,” with the defining
characteristic that systems of systems are “built from components which are large scale systems in
their own right.” He offers air defense networks, the Internet, and emergency response teams as
better examples. Maier then provides some more specific attributes:

 ◾ They are built from components that are (or can be) independent systems.
 ◾ They have managerial/administrative independence.
 ◾ They are usually developed in an evolutionary way.
 ◾ They exhibit emergent (as opposed to preplanned) behaviors.

In addition, he observes that the components may not be co-located, and this imposes a
constraint on information sharing. The generally accepted term for the components is “constitu-
ent system,” and a general architecture is shown in Figure 17.1. Notice that constituent systems

Constituent
system 1

Constituent
system 3

Constituent
system 2

Constituent
system 4

Control
center

Figure 17.1 Generic view of a system of systems.

Model-Based Testing for Systems of Systems  ◾  351

may have links other than to the central control point. The control center portion leads to three
important distinctions that Maier makes regarding the nature of cooperation among the con-
stituent systems.

Definition (Maier, 1999)

A directed system of systems is designed, built, and managed for a specific purpose.
A collaborative system of systems has limited centralized management and control.
A virtual system of systems has no centralized management and control.

The dominant characteristic that distinguishes these categories is the manner in which they
communicate and control/cooperate. Maier further asserts that there are two essential require-
ments that a potential system of systems must satisfy:

 1. The constituent systems must be stand-alone systems in their own right.
 2. Each constituent has administrative independence from the other constituents.

Maier’s three categories were extended (Lane, 2012) to include a fourth category: acknowl-
edged. In order from most to least controlling, we have directed, acknowledged, collaborative, and
virtual systems of systems.

Systems of systems (abbreviated as SoS) can evolve. The Henryville tornado incident began
as a virtual system of systems—there was no centralized control point. When the Indiana
state police arrived, it evolved into a collaborative system of systems. By the next morning,
the Indiana National Guard had turned a rest area into a command center, and it was then an
acknowledged system of systems. Why is this not a directed system of systems? The constitu-
ents are all independent systems that can function in their own right, and each has separate
administrative control; however, as a system of systems, it was never created with that purpose
in mind.

17.2 Sample Systems of Systems
To gain some insight into Maier’s categories of systems of systems, we consider one example of
each type. The emphasis in this section is how the constituent systems communicate, and how
they are, or might be, controlled.

17.2.1 The Garage Door Controller (Directed)
A nearly complete garage door controller system (see Chapter 2) is shown as a system of systems
in Figure 17.2. Some elements must be present, namely, the drive motor, a wall-mount button,
and the extreme limit sensors. The other constituents are optional but common. The portable
opener is usually kept in a car, and there may be two or more of these. Sometimes a digit keypad
is mounted on the outside of a garage, possibly so children can enter after school. The openers
and digit keypads send weak radio signals to the wireless receiver, which in turn, controls the
drive motor. A possible Internet-based controller is not shown, but could be added. Finally, the

352  ◾  Software Testing

light beam and resistance sensors are added as optional safety devices. Many of the constituent
systems are made by separate manufacturers and are integrated into a commercial garage door
opener system.

The garage door controller satisfies most of Maier’s definitional criteria—there is a true central
controller, and commercial versions of the full system of systems can evolve with the addition of
some constituent systems (e.g., the digit keypad).

17.2.2 Air Traffic Management System (Acknowledged)
At a commercial airport (or at any controlled airfield), the air traffic controllers use an air
traffic management system (yet another ATM) to manage takeoffs and landings. Figure 17.3
shows the major constituent systems for an air traffic control system. The first decision an air

Digit
keypad

Well-mount
button

Light
beam

Drive
motor

Lamp

Wireless
receiver

Portable
opener

Extreme
limit

sensor

Obstacle
(resistance)

sensor

Garage
door

controller

Figure 17.2 Garage door controller constituents.

Weather
instruments

Air traffic
management

Runways
monitor

Arriving
aircraft

Departing
aircraft

Lateral
separation

Vertical
separation

Figure 17.3 air traffic management system constituents.

Model-Based Testing for Systems of Systems  ◾  353

traffic controller must make is runway allocation. This depends mostly on the wind direction,
but it may also consider local noise restrictions. Arriving aircraft generally have preference
over departing aircraft, because an aircraft on the ground can just stay out of the way of land-
ing aircraft. Airborne aircraft are subject to three forms of separation, each of which must be
maintained—vertical separation, lateral separation, and time separation. The only exception to
these protocols is that, in an emergency situation, the pilot of an arriving aircraft can request
emergency landing priority.

Why is this “acknowledged” and not “directed”? In general, the air traffic controllers, as the
name implies, control everything involved with runway use, separation, landing, and departing
aircraft. However, emergencies can occur, as we shall see later, making this an acknowledged
systems of systems.

17.2.3 The GVSU Snow Emergency System (Collaborative)
Grand Valley State University (GVSU) is located in western Michigan where significant
snowfall events can and do occur. In extreme events, the campus must be closed for the safety
of students, faculty, and staff. In a snow emergency, it is important to prevent vehicles from
coming to the campus, or if they are already there, to remove them safely. The Information
Technology office maintains a “reverse 911” system to notify all parties (students, faculty, and
staff) by both email and telephone if there is a snow emergency and the attendant campus
closure. If a snow emergency is declared before 6:00 a.m., local television and radio stations
are notified (Figure 17.4).

The Campus Safety Department (campus police) acts as the control point in a snow emergency.
Campus safety cruisers are posted at the entrances to the campus to turn away any arriving traffic.
When a snow emergency begins during a class day, the problem is more complex. All automobiles
in campus parking lots must be removed so that the snow removal process can begin. This may
entail just the university grounds equipment; however, in an extreme snowfall, supplemental snow
plowing may be obtained from local snow removal companies and the county highway depart-
ment. All the constituents have primary functions, but in a snow emergency, these responsibilities
become secondary to the overall snow emergency procedures.

Information
technology

Snow
emergency
notification

Television
and radio
stations

US
Weather
Bureau

GVSU
campus
safety

GVSU
grounds

Parking
lot snow
removal

Local
snowplow
services

County
Highway

Dept.

Figure 17.4 GVSU Snow Emergency System constituents.

354  ◾  Software Testing

17.2.4 The Rock Solid Federal Credit Union (Virtual)
The hypothetical Rock Solid Federal Credit Union (RSFCU) is a small credit union organized
under the auspices of the U.S. government. All credit unions are non-profit organizations that
exist to serve their members. Member services include

 ◾ Opening and closing accounts
 ◾ Making loans (mortgage, home equity, auto/boat, and signature)
 ◾ Credit counseling

In addition, there are administrative functions, including

 ◾ Staff management (salary, work assignments, hire/fire responsibilities)
 ◾ Interfacing with the board of directors
 ◾ Public relations

Because the RSFCU is federally chartered, there are levels of government control and respon-
sibilities, including local, state, and federal interfaces. To conduct its business, the RSFCU works
with several constituent systems. The major ones are shown in Figure 17.5.

The RSFCU is a virtual system of systems because each of the constituent systems can, in some
cases, make demands on the credit union. In turn, the credit union can make demands on some of
the other constituents. Each of the constituents clearly has administrative autonomy, but there are
also established patterns of collaboration. To make a mortgage loan, for example, all of the parties
except the Federal Reserve Bank are involved.

17.3 Software Engineering for Systems of Systems
Very little published work exists to apply software engineering principles and techniques to sys-
tems of systems. Some of the early work (Maier, 1999; Lane, 2012) is described here, as well as

Fannie Mae

U.S. Federal
Reserve

Bank

National
Credit Union
Association

RSFCU
(Credit
Union)

Mortgage
consultant

Mortgage
broker

Credit
card

service

Credit
Rating
Bureau

Figure 17.5 Constituents of a small federal credit union.

Model-Based Testing for Systems of Systems  ◾  355

some original material. We will refer to all of this as a UML dialect. After illustrating how this
UML dialect can represent systems of systems, we will turn to an approach that supports model-
based testing of systems of systems.

17.3.1 Requirements Elicitation
In a webinar, Jo Ann Lane described an emergency response system of systems that dealt with
grass fires in southern California (Lane, 2012). Lane offers a waterfall-like sequence of activities to
describe general requirements of a given system of systems. The steps include

 ◾ Identifying resources—potential constituent systems, and modeling them with SysML
 ◾ Determining options—responsibilities and dependencies
 ◾ Assessing options—expressed as use cases
 ◾ Identifying a workable combination of constituent systems
 ◾ Allocating responsibilities to constituent systems

In the next few sections, we revise and extend the standard UML practices to make them work
for systems of systems. These are illustrated with the examples in Section 17.2.

17.3.2 Specification with a Dialect of UML: SysML
There are three parts to the SysML dialect—class-like definitions of a constituent system in terms
of its responsibilities to other constituents and the services it provides. Use cases show the flow
across constituents for overall system of system functions, and traditional UML sequence dia-
grams to show the incidence of these use cases with constituent systems.

17.3.2.1 Air Traffic Management System Classes

The SysML dialect extends and revises some of the traditional UML models. In the SysML dia-
lect, constituent systems are modeled as classes in which responsibilities with other classes occupy
the position of attributes, and the services take the place of class methods. Two of the constituent
systems from Figure 17.3 are described as “classes” in text format here.

Incoming aircraft

Responsibilities to other constituents

 ◾ Communicate with air traffic controller

Services

 ◾ Fly aircraft
 ◾ Land aircraft
 ◾ Remain prepared for emergency situations

356  ◾  Software Testing

Air traffic controller

Responsibilities to other constituents

 ◾ Incoming aircraft
 ◾ Departing aircraft
 ◾ Runway (status)
 ◾ Separation instruments
 ◾ Weather instruments

Services

 ◾ Assign runways on the basis of weather conditions
 ◾ Monitor separation instruments
 ◾ Assign landing clearance
 ◾ Assign takeoff clearance
 ◾ Maintain runway status

17.3.2.2 Air Traffic Management System Use Cases and Sequence Diagrams

In both the standard UML and in the dialect used here, classes constitute the is view that focuses
on the structure and components of a system (and systems of systems).

The is view is most useful to developers, but less so for customer/users and testers, who utilize the
does view, which focuses on behavior. Use cases are the earliest UML model that relate to the does
view, and they are widely recognized as the preferred view of customer/users. The UML sequence
diagram is the only place where the does view is related to the is view. Figure 17.6 is a sequence
diagram of the Normal Landing use case. For our dialect, we added Actors (constituent systems)
to the use case format. Also, the usual Event Sequence of a standard UML use case is replaced by
the sequence of constituent system actions.

Air
traffic

controller
Incoming

aircraft
Lateral

separation
sensor

Vertical
separation

sensor

Landing
time

separation
sensor

Landing request
Lateral separation OK?

Vertical separation OK?

Landing time separation OK?

Figure 17.6 Sequence diagram of Normal Landing.

Model-Based Testing for Systems of Systems  ◾  357

Normal Landing Use Case

ID: Name SoS UC1: Normal aircraft landing

Description
The procedure that governs an arriving aircraft
under normal conditions.

Actor(s) 1. Air traffic controller

 2. Incoming aircraft

 3. Separation sensors (vertical, lateral, and time)

Preconditions 1. Designated runway clear

 2. Incoming aircraft ready to land

Action Sequence

Actor Action

Incoming aircraft 1. Requests clearance to land

Air traffic controller 2. Checks all separation sensors

Lateral separation 3. OK

Vertical separation 4. OK

Time separation 5. OK

Air traffic controller 6. Landing clearance given

Incoming aircraft 7. Initiates landing procedures

Incoming aircraft 8. On assigned runway

Incoming aircraft 9. Taxi to assigned gate

Air traffic controller 10. Landing complete

Postconditions 1. Runway available to other aircraft

In November 1993, a commercial aircraft was on its final landing approach to a runway
at Chicago’s O’Hare International Airport. When the incoming aircraft was at an altitude of
about 100 ft, a pilot waiting to take off saw that the landing aircraft had not lowered its land-
ing gear. There is no direct communication between landing and departing aircraft, so the
pilot contacted the O’Hare field control tower about the impending disaster. The control tower
waved off the landing aircraft, and a disaster was avoided. This is the subject of our second use
case and sequence diagram. In this use case, aircraft L is the landing aircraft, and aircraft G is
the one on the ground. We can imagine that the second use case could be a continuation of the
first one at action step 7. We can also imagine that everyone involved was very relieved once the
postcondition was attained.

358  ◾  Software Testing

November 1993 Incident Use Case

ID: Name SoS UC2: November 1993 Incident at O’Hare Field

Description Aircraft on final approach had landing gear up.
Pilot on taxiway saw this and notified control tower.

Actor(s) 1. Air traffic controller

 2. Incoming aircraft L

 3. Aircraft G waiting to take off

Preconditions 1. Aircraft L cleared to land

 2. Aircraft G waiting to take off

 3. Aircraft L has landing gear up

Action Sequence

Actor Action

Air traffic controller 1. Authorizes aircraft L to land

Aircraft L 2. Initiates landing preparation

Aircraft L 3. Fails to lower landing gear

Aircraft L 4. 100 ft above end of assigned runway

Aircraft G 5. Aircraft G pilot radios air traffic controller

Air traffic controller 6. Terminates landing permission

Aircraft L 7. Aircraft L aborts landing

Aircraft L 8. Aircraft L regains altitude over runway

Air traffic controller 9. Instructs aircraft L to circle and land

Air traffic controller 10. Thanks pilot of aircraft G

Air traffic controller 11. Authorizes aircraft L to land

Aircraft L 12. Landing complete

Postconditions 1. Runway available to other aircraft

This incident happened when I arrived in Chicago to make a presentation on software technical
reviews. Oddly enough, the topic of the day was the importance of review checklists. Obviously,
the pilot of the landing aircraft did not pay attention to the landing checklist. In a television news
report later, a Federal Aviation Authority official commented that he was far more worried about
routine flights than flights during extreme conditions. His reason—people are far more attentive
in extreme situations. The sequence diagram for the November 1993 incident is in Figure 17.7.
Notice that many of the “internal” actions (2, 3, and 4) are important to the use case, but they do
not appear in the sequence diagram.

Model-Based Testing for Systems of Systems  ◾  359

17.3.3 Testing
Testing for systems of systems must focus on the ways in which constituent systems communicate.
Just as integration testing presumes complete unit-level testing, the testing of systems of systems
must presume that the constituent systems have been thoroughly tested as stand-alone components.
The SysML dialect models are only general guidelines for system of systems testing. The primary goal
of testing for systems of systems is to focus on the communication among constituents. In the next
section, we develop a set of primitives that describe the types of communication among constituent
systems. They will be presented as Petri nets, and we will use them to describe the control distinctions
that are the essence of the four levels of cooperation (directed, acknowledged, voluntary, or virtual).

17.4 Communication primitives for Systems of Systems
The distinctions among the four types of systems of systems reduce to the manner in which
the constituents communicate with each other. In this section, we first map the prompts of the
Extended Systems Modeling Language (ESML) into Swim Lane Petri nets. In Section 17.5, we use
the Petri net forms of the ESML prompts in swim lanes to illustrate the communication mecha-
nisms of the four types of systems of systems. We understand swim lanes to be device oriented,
very similar to the orthogonal regions of StateCharts. More specifically, we will use swim lanes
to represent constituent systems and the ESML prompts to represent the types of communication
among constituents. Finally in Section 17.6, we illustrate the systems of systems communication
using Swim Lane Event-Driven Petri Nets on the November 1993 incident.

The first candidate for a set of communication primitives is the set of ESML prompts. Most
of these express the power of the central controlling constituent, so they are clearly applicable
to directed systems of systems, and probably also to acknowledged systems of systems. We need
similar primitives for the collaborative and virtual systems of systems. Here we propose four new
primitives: Request, Accept, Reject, and Postpone.

17.4.1 ESML Prompts as Petri Nets
The ESML real-time extension to structured analysis (Bruyn et al., 1988) was developed as a way
to describe how one activity in a data flow diagram can control another activity. There are five

Incoming
aircraft L

Air
traffic

controller

Waiting
aircraft G

Landing authorized

Landing cancelled

New landing instructions

Pilot reports emergency

�anks pilot

Figure 17.7 Sequence diagram of November 1993 incident.

360  ◾  Software Testing

basic ESML prompts: Enable, Disable, Trigger, Suspend, and Resume, and they are most appro-
priate to directed and acknowledged systems of systems. Two others are pairs of the original five:
Activate is an Enable followed by a Disable, and Pause is a Suspend followed by a Resume. The
ESML prompts are represented as traditional Petri nets and briefly described in this section. The
marking and firing of Petri nets are described in Chapter 4.

17.4.1.1 Petri Net Conflict

We describe the Petri net conflict first because it appears in some of the ESML prompts. Figure 17.8
shows the basic Petri net conflict pattern—the place p2 is an input to both the function 1 and func-
tion 2 transitions. All three places are marked, so both transitions are enabled, in the Petri net sense.
(“Enabling” is an overloaded term here—the ESML sense refers to a prompt, and the Petri net transi-
tion sense refers to a property of a transition.) If we choose to fire the function 1 transition, the tokens
in places p1 and p2 are consumed, and this disables the function 2 transition, hence the conflict.

In the air traffic management and control example, two constituents, arriving and departing
aircraft, both use the same runway, putting them in contention for the limited resource—a good
example of Petri net conflict. Since arriving aircraft have preference over departing aircraft, we
have an instance of the interlock mechanism described next.

17.4.1.2 Petri Net Interlock

An interlock is used to assure that one action precedes (or has priority over) another. In Petri nets,
this is accomplished by an interlock place, labeled “i” in Figure 17.9 that is an output of the pre-
ferred transition and is an input to the secondary transition. The only way the interlock place can
be marked is for the preferred transition to fire.

p1 p2

ipreferred action secondary action

Figure 17.9 petri net interlock.

p1 p2 p3

function 1 function 2

Figure 17.8 petri net conflict.

Model-Based Testing for Systems of Systems  ◾  361

17.4.1.3 Enable, Disable, and Activate

The Enable prompt expresses the interaction in which one action permits another action to occur.
There is no requirement that the second action actually does occur, just that it may occur. In the
Petri net in Figure 17.10, the transition labeled “controlled action” has two input places. For it to
be an enabled transition, both its input places must be marked. But the place labeled “e/d” can
only be marked if the enable transition is fired. The controlled action then has one of its prerequi-
sites, but it still needs to wait for the other input place to be marked. When the controlled action
transition fires, it marks the e/d place again, so that it remains enabled.

At a controlled airfield, the air traffic controller selects a runway, and then gives permission
to arriving aircraft to land. We can model this with the Enable prompt. Owing to the interlock
relationship between arriving and departing aircraft, this effectively causes a Disable prompt for
the aircraft waiting to take off. Since aircraft landings clearly begin and end, this can also be inter-
preted as an Activate prompt. The air traffic controller “activates” the landing process.

The Disable prompt depends on the Petri net conflict pattern. The disable transition and the
controlled action transitions in Figure 17.10 are in conflict with respect to the e/d place. If the dis-
able transition fires, the controlled action transition cannot fire. Also, the e/d place acts as an inter-
lock between the enable and disable transitions, so a controlled action can only be disabled after it
has been enabled. The original ESML team found that the Enable, Disable sequence occurred so
frequently, it acquired a name: Activate.

17.4.1.4 Trigger

The Trigger prompt (Figure 17.11) is a stronger version of the Enable prompt—it causes the con-
trolled action to occur immediately. In ordinary language, we could say that the effect of Enable
is “you may” and that of Trigger is “you must, now!” Notice that Trigger has the same renewal
pattern that we saw with Enable. We could modify this if necessary so that Trigger is a one-time
action. Just removing the output edge from the controlled action back to the “t” place suffices. The
ESML committee never made this distinction.

17.4.1.5 Suspend and Resume

The ESML Suspend and Resume prompts are shown in Figure 17.12. When they occur together,
their sequence is known as the ESML Pause prompt. Suspend has the same interrupting power
as the Trigger prompt—it can interrupt an ongoing activity, and when the interrupting task is

e/d

Controlled action

Enable

Disable

Figure 17.10 ESML Enable, Disable, and activate.

362  ◾  Software Testing

complete, the Resume prompt assures that the interrupted activity does not have to start over—it
resumes where it left off. Conversationally, we could say “Stop what you are doing.”

As with the Enable/Disable pair, Suspend and Resume have an interlock place, noted as “s” in
Figure 17.12. An activity can only be resumed after it has been suspended, so place “s” is an inter-
lock between the Suspend and Resume actions. Also, the Suspend action and the intermediate
step action are in Petri net conflict with respect to the marked input place of the intermediate step.
Presumably, a Suspend is followed by a Trigger to another required action, which, when complete,
leads to a Resume prompt.

The November 1993 incident described earlier is a good example of where the Suspend and
Resume prompts could be used. There is no direct communication between landing and departing
aircraft, so the pilot on the ground contacted the O’Hare field control tower about the impending
disaster. The control tower waved off the landing aircraft (Suspend), and once the disaster was
avoided, issued a Resume.

t

Controlled action

Trigger

Figure 17.11 ESML trigger.

Step 1

Intermediate step

Final step

Resume

s

Suspend

Figure 17.12 ESML Suspend, resume, and pause.

Model-Based Testing for Systems of Systems  ◾  363

17.4.2 New Prompts as Swim Lane Petri Nets
The directed and acknowledged systems of systems are characterized by a strong, usually central,
controlling constituent. Collaborative and virtual systems of systems do not have this strong posi-
tion; the constituents are more autonomous. Can a constituent in one of these systems of systems
control another? Certainly, but it is more likely that the communication is more collaborative
than controlling. Four new primitives are proposed here to capture this more collaborative com-
munication—Request, Accept, Reject, and Postpone. As with the ESML prompts, they can and
should interact.

Parallel activities are shown in UML as “swim lanes” to connote that a swimmer in one lane
is separated from a swimmer in an adjacent lane. In Section 17.4.1, we mapped each of the ESML
prompts into Petri nets. We understand swim lanes to be device oriented, very similar to the
orthogonal regions of StateCharts. More specifically, we will use swim lanes to represent constitu-
ent systems, and the communication prompts to represent the types of communication among
constituents. Finally, we illustrate the systems of systems communication using Swim Lane Petri
Nets on the November 1999 incident. In this subsection, the constituent systems are all members
of either collaborative or virtual systems of systems.

17.4.2.1 Request

In Figure 17.13, constituent A requests a service from constituent B, and receives a response to the
request. The figure only shows the interaction from the point of view of constituent A because the
response choice of constituent B is not known. In general, a response is either Accepted, Rejected,
or Postponed.

17.4.2.2 Accept

The Accept and Reject primitives are nearly identical, except for the nature of the response (see
Figures 17.14 and 17.15).

Constituent
system B

Constituent
system A

Request

Request
pending

Response

Await response

Make request

Figure 17.13 request petri net.

364  ◾  Software Testing

17.4.2.3 Reject

The “not done” part of a Reject response could be problematic for testers. How can something that
does not happen be tested? The Accept and Reject responses are often subject to a Petri net conflict
in the receiving constituent, as in Figure 17.16.

Figure 17.17 shows a fairly complete picture of the Petri net conflicts in both constituents.
Constituent A makes a request of constituent B. In turn, B either accepts or rejects the request, so either
the “done” or the “not done” place is marked, and this resolves the Petri net conflict in constituent A.

17.4.2.4 Postpone

What happens if constituent B is busy with an internal priority, and receives a request from con-
stituent A? The interlock pattern is how constituent B completes its preferred task before respond-
ing to the request from constituent A (see Figure 17.18).

17.4.2.5 Swim Lane Description of the November 1993 Incident

See Figure 17.19.

Constituent
system B

Constituent
system A

Request

Done

Accept request

Figure 17.14 accept petri net.

Constituent
system B

Constituent
system A

Request

Not done

Reject request

Figure 17.15 reject petri net.

Model-Based Testing for Systems of Systems  ◾  365

17.5 Effect of Systems of Systems Levels on prompts
When the ESML committee first defined the five prompts, there was some confusion about
sequences of prompts. For example, could a Suspend take precedence over a Trigger? Part of the
confusion was that the ESML committee was not thinking in terms of systems of systems. To
some extent, the definition of the four levels of systems of systems resolves these questions.

One way to begin clarification of this is to postulate two types of communication—com-
mands and requests. The four new prompts are already known as requests, but what about the

Constituent system B

Request

Done

Not done

Accept requestReject request

Figure 17.16 accept and reject petri net conflict.

Constituent system B Constituent system A

Request

Done

Not done

Make request

Accept request

Request complete Request denied

Request
pending

Reject request

Figure 17.17 Connections among request, accept, and reject petri nets.

366  ◾  Software Testing

original ESML prompts? The Trigger, Suspend, Disable, and Resume prompts are all commands,
whereas Enable is more of a request.

17.5.1 Directed and Acknowledged Systems of Systems
The central controllers in directed and acknowledged systems of systems are clearly intended to have
the “command” power of Trigger, Suspend, Disable, and Resume with respect to their constituents.
What about the reverse? Does it make sense for a constituent to “control” the central controller? This
seems appropriate when a constituent communicates with what would be an interrupt in software.
Consider the safety features in the garage door controller—when an obstacle is encountered, or when
the light beam is crossed. The motor immediately stop and reverses to open the garage door.

Constituent system B Constituent system A

Request

Done

Make request

Request complete

Request
pending

p1

Preferred
action

Postponed
requesti

Figure 17.18 postpone petri net.

Trigger

s

Landing aircraft Air traffic controller Pilot on ground

Landing clearance

Lower landing gear

Gear down

Lower flaps

Flaps down

Land aircraft

Resume

Suspend

Recognize emergency

Figure 17.19 Swim lane petri net for November 1993 incident.

Model-Based Testing for Systems of Systems  ◾  367

17.5.2 Collaborative and Virtual Systems of Systems
Because they lack the strong central controlling constituent, both of these types of systems of sys-
tems can use any of the prompts. In the RSFCU, for example, the U.S. government can (and does)
make Trigger prompts. At the same time, the credit union can make immediate demands of some
of its constituents. The same relationships occur in the GVSU Snow Emergency system of systems.

EXERCISES
 1. Discuss whether the Disable prompt should have the same interrupting power as the Suspend

prompt. Use examples if you wish.
 Questions 2 and 3 revisit the description of the garage door controller in Chapter 2 and

the corresponding finite state machine in Chapter 4.
 2. Decide which of the four types of systems of systems best describes the garage door controller.
 3. Use swim lane Petri nets to show the interactions in the garage door controller.

references
Bruyn, W., Jensen, R., Keskar, D. and P. Ward., An extended systems modeling language based on the data

flow diagram, ACM Software Engineering Notes, Vol. 13, No. 1, 1988, pp. 58–67.
Lane, J.A., System of Systems Capability-to-Requirements Engineering, Viterbi School of Engineering, University

of Southern California, webinar given February 2012.
Maier, M., Architecting principles for systems-of-systems, System Engineering, Vol. 1, No. 4, 1999,

pp. 251–315.

369

Chapter 18

Exploratory testing

Consider a person admitted to a hospital emergency room (ER) who has trouble breathing. The
ER physician is tasked with identifying the underlying problem and then devising a medical
response. How does the ER physician proceed? First, a case history of relevant information about
the patient is gathered. The next likely step is a few broad-spectrum tests that are intended to
eliminate common causes of the breathing difficulty. Knowledge obtained from one test usually
leads to follow-up, more specific tests. Throughout this process, the ER physician is guided by
extensive experience and domain knowledge. This same pattern applies to software testing in the
process known as exploratory testing.

18.1 Exploratory testing Explored
Andy Tinkham and Cem Kaner present a concise summary of the work (and people) that defined
exploratory testing (Tinkham and Kaner, 2003). They identify five essential characteristics of
exploratory testing. It is interactive; it involves concurrent cognition and execution; it is highly
creative; it intends to produce results quickly; and it reduces the traditional emphasis on formal
test documents. The first two characteristics also describe a classic learning system. In testing
terms, the exploratory tester learns about the system under test, and uses this new knowledge to
explore the system more deeply with more focused tests—very much like the professor giving an
oral examination. Because exploratory testing is also highly creative, it is difficult to describe the
process precisely. It clearly depends on the attitude and motivation of the tester, but it also depends
on the nature of the system under test and on the priorities of the system stakeholders. One quick
example: imagine the differing priorities of a highly reliable telephone switching system versus the
extreme time-to-market pressure of an e-commerce application.

On the surface, exploratory testing seems to be a sophisticated alias for the special value test-
ing discussed in Chapter 5. Here, pun intended, we explore exploratory testing, but first, we need
to explore the metaphor. One sense of “explore” is to investigate the unknown. This sense conjures
up images of a scientist in a laboratory, or of a world explorer. Both images are relevant—think
about the contributions famous world explorers have made to the world body of knowledge. The
Lewis and Clark expedition into the Louisiana Purchase is a good example. Thomas Jefferson

370  ◾  Software Testing

wanted to know more about the sizeable chunk of North America that he bought from France.
Lewis and Clark assembled a well-rounded team for their expedition, including army personnel,
hunters and trappers, craftsmen, naturalists, and a Shoshone woman, Sacajewea, who was famil-
iar with much of the Missouri River basin. More importantly, she could communicate with the
native people.

The expedition began with congressional approval and a detailed plan devised by Thomas
Jefferson, then the United States President. In a letter dated June 20, 1803, Thomas Jefferson wrote
(Jackson, 1978):

“The object of your mission is to explore the Missouri river, & such principal stream of
it, as, by its course & communication with the waters of the Pacific Ocean, whether the
Columbia, Oregan, Colorado or and other river may offer the most direct & practicable
water communication across this continent, for the purposes of commerce.

Beginning at the mouth of the Missouri, you will take careful observations of latitude
& longitude, at all remarkeable points on the river, & especially at the mouths of rivers, at
rapids, at islands, & other places & objects distinguished by such natural marks & charac-
ters of a durable kind, as that they may with certainty be recognised hereafter. The courses
of the river between these points of observation may be supplied by the compass the log-line
& by time, corrected by the observations themselves. The variations of the compass too, in
different places, should be noticed.

The interesting points of the portage between the heads of the Missouri, & of the
water offering the best communication with the Pacific ocean, should also be fixed by
observation, & the course of that water to the ocean, in the same manner as that of the
Missouri.

Your observations are to be taken with great pains & accuracy, to be entered distinctly
& intelligibly for others as well as yourself, to comprehend all the elements necessary, with
the aid of the usual tables, to fix the latitude and longitude of the places at which they were
taken, and are to be rendered to the war-office, for the purpose of having the calculations
made concurrently by proper persons within the U.S. Several copies of these as well as of
your other notes should be made at leisure times, & put into the care of the most trustworthy
of your attendants, to guard, by multiplying them, against the accidental losses to which
they will be exposed. A further guard would be that one of these copies be on the paper of
the birch, as less liable to injury from damp than common paper.

The commerce which may be carried on with the people inhabiting the line you will
pursue, renders a knowledge of those people important. You will therefore endeavor to make
yourself acquainted, as far as a diligent pursuit of your journey shall admit, with the names
of the nations & their numbers;

the extent & limits of their possessions; their relations with other tribes of nations; their
language, traditions, monuments;

their ordinary occupations in agriculture, fishing, hunting, war, arts, & the implements
for these;

their food, clothing, & domestic accommodations;
the diseases prevalent among them, & the remedies they use;
moral & physical circumstances which distinguish them from the tribes we know; pecu-

liarities in their laws, customs & dispositions;
and articles of commerce they may need or furnish, & to what extent.”

Exploratory Testing  ◾  371

The Lewis and Clark Expedition lasted 28 months and brought back much detailed informa-
tion about the region. They arrived at the mouth of the Columbia River in what is now Astoria,
Oregon. (Of course, they still had the return trip to complete!) Most people (with the exception of
the Native Americans) considered the expedition to be an enormous success. It certainly opened
the way for waves of new settlers. The key part, as far as exploratory testing is concerned, is that
their implementation of Jefferson’s instructions is almost perfectly analogous to the goals and
techniques of exploratory testing:

 ◾ They knew what they were looking for (a route to the Pacific).
 ◾ They had appropriate staffing and other resources.
 ◾ They learned as they explored.
 ◾ They were given plenty of time.
 ◾ They were required to carefully document what they saw.

A second form of exploration illustrates the learning component of exploratory testing; it
occurs when a professor gives an oral examination to a student. The first similarity is that the pro-
fessor clearly has extensive domain knowledge. Second, the professor wishes to explore the extent
to which the student has mastered the subject matter. The third, and most instructive, similarity
is that, when the student shows a weakness, the professor asks follow-up questions to explore the
extent of the weakness; thus, knowledge gained from the answer to one question provokes a related
question. This pattern is called adaptive testing.

These forms of exploration help explain the difference between special value testing and
exploratory testing. As noted in Chapter 5, special value testing depends on the skill, insight,
domain knowledge, and experience of the tester. The tester postulates test cases that “seem to be
important” in that they might reveal faults. This is exploration, in a sense, but there is no feedback
(other than pass/fail results of test case execution). Most often, the past experience of the tester is
the greatest asset, as in the professor who gives an oral examination. By contrast, the exploratory
tester is more focused, and has better technology to help discover faults—much like the Lewis and
Clark Expedition. The essence of exploratory testing, per James Bach (2003), one of the origina-
tors of the term, is “… simultaneous learning, test design, and test execution.” Bach agrees that
an exploratory tester is most like the professor giving an oral exam. When an exploratory tester
encounters suspicious behavior in a program, he will design and execute more tests to isolate the
problem. The fault may reside in a normal part of the program that would not be found by spe-
cial value testing. Results of some tests determine the nature of additional tests. It is the learning
aspect that separates special value testing from exploratory testing.

18.2 Exploring a Familiar Example
The commission problem offers a chance to replicate exploratory testing. Suppose we know that
a given implementation is faulty; the objective of traditional software testing is to simply verify
the presence of faults. Exploratory testing goes a step further, and tries to discover the nature
of revealed faults. Recall that the commission problem deals with a salesperson who sells inter-
changeable rifle parts: locks, stocks, and barrels. The locks cost $45, the stocks cost $30, and
the barrels cost $25; so a complete rifle costs $100. When our hypothetical salesperson reports
monthly sales, the commission carries an incentive: 10% on the first $1000, 15% on sales between
$1001 and $1800, and 20% on sales over $1800.

372  ◾  Software Testing

In the first few months, the neophyte salesperson never exceeds the $1000 goal, and the com-
mission is correct. When sales finally reach the 15% level, however, the salesperson’s commission
is less than expected. One month, when sales are nearly $2000, the commission was slightly
more than expected. The inquisitive salesperson began the exploration with four equations (locks,
stocks, and barrels are, respectively, the numbers of each item sold):

 (1) Sales = 45*locks + 30*stocks + 35*barrels
 (2) Commission = 0.10*sales (for $0 ≤ sales ≤ $1000)
 (3) Commission = $100 + 0.15*(sales – $1000) (for $1000 < sales ≤ $1800)
 (4) Commission = $220 + 0.20*(sales – $1800) (for sales > $1800)

If our progressive salesperson had access to a spreadsheet, she would have seen something like
Table 18.1.

What could go wrong with equation (1)? The sales column is correct, but maybe there were
off-setting errors in the coefficients. So the first exploration is to see what happens when only one
item is sold. The coefficients are clearly correct (Table 18.2).

To explore equation (3), our intrepid salesperson wanted to devise sales near the $1000 com-
mission incentive point. Conveniently enough (who said this is a contrived example?), the coef-
ficients lend themselves well to this task. The results are in Table 18.3.

table 18.1 First Exploration

Case
No. Locks Stocks Barrels Sales

Expected
Commission

Computed
Commission Pass?

Expected
Less

Computed

1 1 1 1 $100.00 $10.00 $10.00 Pass $0.00

2 8 8 8 $800.00 $80.00 $80.00 Pass $0.00

3 10 10 10 $1000.00 $100.00 $100.00 Pass $0.00

4 11 11 11 $1100.00 $115.00 $100.00 Fail $15.00

5 17 17 17 $1700.00 $205.00 $190.00 Fail $15.00

6 18 18 18 $1800.00 $220.00 $205.00 Fail $15.00

7 19 19 19 $1900.00 $240.00 $260.00 Fail –$20.00

table 18.2 Second Exploration

Case
No. Locks Stocks Barrels Sales

Expected
Commission

Computed
Commission Pass?

Expected
Less

Computed

1 10 0 0 $450.00 $45.00 $45.00 Pass $0.00

2 0 10 0 $300.00 $30.00 $30.00 Pass $0.00

3 0 0 10 $250.00 $25.00 $25.00 Pass $0.00

Exploratory Testing  ◾  373

Aha!, reasoned our algebraic salesperson, the only thing wrong with equation (3) must be the
amount subtracted from sales. Solving the two equations:

 (3 should be) $100.75 = $100 + 0.15($1005 – $1000)

 (3 computed) $85.25 = $100 + 0.15($1005 – x),

 x = $1100

The salesperson reasoned that, in fact, the calculation was

 (3 faulty) Commission = $100 + 0.15*(sales – $1100)

Notice the exploratory process in this little, and yes, contrived, example. The salesperson had
domain knowledge of the commission policy, and investigated what might have been wrong. After
eliminating one possibility (incorrect coefficients), tried other tests. Finally, with some algebraic
analysis, the salesperson found the problem.

As a footnote, we might imagine that our diligent salesperson reported this fault, and was told,
yes, that was the old policy and the commission program had not been updated.

18.3 Observations and Conclusions
James Bach maintains that anyone who tests software does a certain amount of exploratory test-
ing. It is more accurate to say that debugging one’s own code is exploratory testing. Because the
descriptions of these forms of testing are so general, it is difficult to draw precise conclusions about
them. Here are mine:

 1. Exploratory testing is appropriate, but difficult, in an agile programming environment. The
whole idea of follow-up tests based on the outcome of previous tests presumes a completed
application.

 2. Exploratory testing is inherently dependent on the domain experience of the tester. By anal-
ogy, how effectively could a computer science professor conduct an oral examination for a
history major?

table 18.3 third Exploration

Case
No. Locks Stocks Barrels Sales

Expected
Commission

Computed
Commission Pass?

Expected
Less

Computed

1 22 0 0 $990.00 $99.00 $99.00 Pass $0.00

2 21 0 2 $995.00 $99.50 $99.50 Pass $0.00

3 21 1 1 $1000.00 $100.00 $100.00 Pass $0.00

4 21 2 0 $1005.00 $100.75 $85.75 Fail $15.00

374  ◾  Software Testing

 3. To be successful, the exploratory tester must be highly motivated, curious, and creative. A
dull, disinterested tester will not be able to devise interesting follow-up tests.

 4. Exploratory testing defies predictive measurement. This is true of any essentially creative
activity, not just software testing. Even a very effective exploratory tester cannot estimate
how much additional testing is needed, and it is theoretically impossible to determine how
many faults remain. A conscientious exploratory tester can tell when no more faults are
being revealed. Imagine the difficulty Meriwether Lewis would have had predicting the date
of completion of his expedition.

 5. Management of exploratory testing is reduced to insistence on having a clear charter, and
requiring documented tests and results.

 6. The effectiveness of exploratory testing is inversely proportional to the size and complexity of
the system under test. Since exploratory testing does not work well with a team approach, an
individual tester will always have some threshold of system comprehension. An exploratory
tester can certainly “explore” a large, complex system, but it will be difficult to keep track of
all the follow-up tests.

EXERCISES
 1. Here is a true story (but the name is changed to protect the guilty):

 Ralph was the project manager of a small telephone switching system development. He
started out as an electrical engineer, specifically as a logic designer. As his career progressed,
he acquired solid domain knowledge of telephone switching systems. When the project pro-
totype was completed, and when the first increment of software was loaded, Ralph signed
up for three hours of scarce system test time. At the end of his session, he called the whole
project team together and announced that the system was “full of holes” and that much
work remained. When asked for more details, all Ralph could say was that he tried “a bunch
of things” and most of them did not work. There was no record of faults found, no indica-
tion of the tests that were executed, and nothing was repeatable to help isolate the faults.

 Discuss the ways in which Ralph’s testing conforms to and differs from exploratory
testing.

 2. If you look carefully at Table 18.1, there is another fault, this time in favor of our adjective-
laden salesperson. Did she report the second fault, as an honest salesperson, or did she say
nothing, and become a greedy salesperson? You can use the exploreCommission.xls spread-
sheet to detect the other fault.

references
Bach, J., Exploratory Testing Explained, Vol. 1.3, April 2003, available at www.satisfice.com/articles/et-article.

pdf.
Jackson, D., ed. Letters of the Lewis and Clark Expedition with Related Documents, 2nd ed., University of

Illinois Press, Urbana, IL, 1978 (2 volumes).
Kaner, C., The Context-Driven Approach to Software Testing, STAR East, Orlando, FL, 2002.
Tinkham, A. and Kaner, C., Exploring exploratory testing, 2003, available at www.testingeducation.org/a/

explore.pdf.

375

Chapter 19

test-Driven Development

“Pick a little, talk a little, pick a little, talk a little, pick, pick, pick, talk a lot, pick a
little more.”

from Meredith Wilson’s musical, The Music Man!

If we replace “pick” with “test” and “talk” with “code,” the song captures the essence of Test-Driven
Development: write tests and code in small, incremental, alternating steps. A test case is written
first, and, in the absence of the corresponding code, the test case fails when executed. Immediately,
just enough code is written so that the test case will pass. (Nota bene: “pass” means the observed
outputs are consistent with the expected outputs.) As code size increases, refactoring is permit-
ted, but all the original tests must still pass (otherwise the refactoring is faulty!). Test-Driven
Development (or just TDD for short) has become very popular in the agile programming commu-
nity. Here we take a closer look at the process, using our standby example, the NextDate program.

19.1 test-then-Code Cycles
Test-Driven Development has matured to the point where there are both commercial and free
tools to support the process. Two of the tenets of Extreme Programming are clearly present in
TDD: doing just enough (the “You Aren’t Going to Need It” directive) and always having a work-
ing, albeit possibly incomplete, version of the program. Take time to follow the example carefully.
The convention in the example is that source code in boldface font is what has been added to
make the corresponding test case pass. Advocates of TDD are quick to claim that fault isolation
is almost trivial in the TDD process. At any point in the process, all previous test cases must have
passed. If a new test case fails, the fault can only be in the most recently added code. This is gener-
ally true, but it is not immediately obvious that it will always be true for “deeper” faults, such as
those revealed only by data flow testing.

Test-Driven Development is guided by a sequence of user stories obtained from the customer/
user. Table 19.1 contains the sequence of user stories developed in this section. One of the assump-
tions of all agile programming variants is that the customer may not know exactly what is desired,

376  ◾  Software Testing

and that seeing an implemented (and tested!) part of the eventual application often leads to addi-
tional user stories. The whole user story-driven process is very dependent on the order in which
stories are given/received. In this example, the stories appear in an extremely bottom–up order—
this is ideal for TDD, but it may not happen in practice. There is a companion question of story
granularity; this is deferred to Section 19.3.3.

table 19.1 NextDate User Stories

User Stories

 1. The program compiles.

 2. A day can be input and displayed.

 3. An input month can be displayed.

 4. An input year can be displayed.

 5. A day below minimum can be detected.

 6. A day above maximum can be detected.

 7. A month below minimum can be detected.

 8. A month above maximum can be detected.

 9. A year below minimum can be detected.

 10. A year above maximum can be detected.

 11. Day = 31 in a 30 day month.

 12. Day = 30 in February (note: also need Day = 31 in February).

 13. Day = 29 in February in a common year.

 14. Day = 29 in February in a leap year.

 15. A year divisible by 4 is a leap year (except for century years).

 16. A year not divisible by 4 is a common year.

 17. A century year not divisible by 400 is a common year.

 18. A century year divisible by 400 is a leap year.

 19. Increment a non-last day of a month.

 20. Increment the last day of a 30-day month.

 21. Increment the last day of a 31-day month.

 22. Increment December 31.

 23. Increment February 28 in a common year.

 24. Increment February 28 in a leap year.

 25. Increment February 29 in a leap year.

Test-Driven Development  ◾  377

In this sequence of user stories, only the most recent test is shown (to conserve space). In prac-
tice, all tests are present and run automatically. Here, the new code added to make the new test
pass is in boldface font.

User Story 1 The program compiles.
 Input: the NextDate source code.
 Expected Output: OK
 Pseudocode
 Program NextDate
 End NextDate

User Story 2 A day can be input and displayed
 Input: 15
 Expected Output: day = 15
Pseudocode
Program NextDate
 dim thisDay As Integer
 Input (thisDay)
 Output (“day =”, thisDay)
End NextDate

User Story 3 An input month can be displayed
 Input: 15, 11
 Expected Output: day = 15
 month = 11
Pseudocode
Program NextDate
 dim thisDay As Integer
 dim thisMonth As Integer
 Input (thisDay)
 Output (“day = ”, thisDay)
 Input (thisMonth)
 Output (“month = ”, thisMonth)
End NextDate

User Story 4 An input year can be displayed
 Input: 15, 11, 2005
 Expected Output: day = 15
 month = 11
 year = 2005
Pseudocode
Program NextDate
 dim thisDay As Integer
 dim thisMonth As Integer
 dim thisYear As Integer
 Input (thisDay)
 Output (“day =”, thisDay)
 Input (thisMonth)
 Output (“month =”, thisMonth)
 Input (thisYear)
 Output (“year =”, thisYear)
End NextDate

378  ◾  Software Testing

Refactor Code (this one is trivial, but it saves space)
Program NextDate
 dim thisDay, thisMonth, thisYear As Integer
 Input (thisDay, thisMonth, thisYear)
 Output (“day =”, thisDay, “month =”, thisMonth, “year =”, thisYear)
End NextDate

User Story 5 A day below minimum can be detected
 Input: 0, 11, 2005
 Expected Output:
 day = 0 is below minimum
 month = 11
 year = 2005
Pseudocode
Program NextDate
 dim thisDay, thisMonth, thisYear As Integer
 Input (thisDay, thisMonth, thisYear)
 If (thisDay < 1) Then
 Output (“day =”, thisDay, “is below minimum”)
 Output (“month =”, thisMonth, “year =”, thisYear)
 Else
 Output (“day =”, thisDay, “month =”, thisMonth, “year =”,
 thisYear)
 EndIf
End NextDate

User Story 6 A day above maximum can be detected
 Input: 32, 11, 2005
 Expected Output:
 day = 32 is above maximum
 month = 11
 year = 2005
Pseudocode
Program NextDate
 dim thisDay, thisMonth, thisYear As Integer
 Input (thisDay, thisMonth, thisYear)
 If (thisDay < 1) Then
 Output (“day =”, thisDay, “is below minimum”)
 Output (“month =”, thisMonth, “year =”, thisYear)
 Else
 Output (“day =”, thisDay, “month =”, thisMonth, “year =”,
 thisYear)
 EndIf
 If (thisDay > 31) Then
 Output (“day =”, thisDay, “is above maximum”)
 Output (“month = “, thisMonth, “year = “, thisYear)
 Else
 Output (“day = “, thisDay, “month = “, thisMonth, “year = “,
 thisYear)
 EndIf
End NextDate

Test-Driven Development  ◾  379

Refactor Code (Refactor the sequential tests of thisDay into a nested IF
statement.)

Program NextDate
 dim thisDay, thisMonth, thisYear As Integer
 Input (thisDay, thisMonth, thisYear)
 If (thisDay > = 1) AND (thisDay < = 31) Then
 Output (“day =”, thisDay, “month =”, thisMonth, “year =”, thisYear)
 Else
 If (thisDay < 1) Then
 Output (“day =”, thisDay, “is below minimum”)
 Output (“month =”, thisMonth, “year =”, thisYear)
 EndIf
 If (thisDay > 31) Then
 Output (“day =”, thisDay, “is above maximum”)
 Output (“month =”, thisMonth, “year =”, thisYear)
 EndIf
 EndIf
End NextDate

User Story 7 A month below minimum can be detected
 Input: 15, 0, 2005
 Expected Output: day = 15
 month = 0 is below minimum
 year = 2005

User Story 8 A month above maximum can be detected
 Input: 15, 13, 2005
 Expected Output: day = 15
 month = 13 is above maximum
 year = 2005

User Story 9 A year below minimum can be detected
 Input: 15, 11, 1811
 Expected Output: day = 15
 month = 11
 year = 1811 is below minimum

User Story 10 A year above maximum can be detected
 Input: 15, 11, 2013
 Expected Output: day = 15
 month = 11
 year = 2013 is above maximum

Pseudocode (after adding code similar to that for day validity, and
refactoring)

380  ◾  Software Testing

Program NextDate
 dim thisDay, thisMonth, thisYear As Integer
 Input (thisDay, thisMonth, thisYear)
 If (thisDay > = 1) AND (thisDay < = 31) Then
 Output (“day =”, thisDay)
 Else
 If (thisDay < 1) Then
 Output (“day =”, thisDay, “is below minimum”)
 Else
 If (thisDay > 31) Then
 Output (“day =”, thisDay, “is above maximum”)
 EndIf
 EndIf
 If (thisMonth > = 1) AND (thisMonth < = 12) Then
 Output (“month =”, thisMonth)
 Else
 If (thisMonth < 1) Then
 Output (“month =”, thisMonth, “is below minimum”)
 Else
 If (thisMonth > 12) Then
 Output (“month =”, thisMonth, “is above maximum”)
 EndIf
 EndIf
 If (thisYear > = 1812) AND (thisYear < = 2012) Then
 Output (“year =”, thisYear)
 Else
 If (thisYear < 1812) Then
 Output (“year =”, thisYear, “is below minimum”)
 Else
 If (thisYear > 2012) Then
 Output (“year =”, thisYear, “is above maximum”)
 EndIf
 EndIf
End NextDate

At this point, the input data value ranges have been checked. The next iterations deal with
impossible days in a given month. To save space, the data validity checking code is deleted. In
TDD practice, of course, it would still be present.

User Story 11 Day = 31 in a 30-day month
 Input: 31, 11, 2005
 day = 31 cannot happen when month is 11
 month = 11
 year = 2005
Pseudocode
Program NextDate
 dim thisDay, thisMonth, thisYear As Integer
 Input (thisDay, thisMonth, thisYear)
 ‘data validity checking code would normally be here
 If (thisDay = 31) AND thisMonth IN {2, 4, 6, 9, 11} Then
 Output(“day =”, thisDay, “cannot happen when month is”,
 thisMonth)

Test-Driven Development  ◾  381

 EndIf
End NextDate

User Story 12 Day > = 29 in February
 Input: 30, 2, 2005
 Expected Output:
 day = 30 cannot happen when month is February
 month = 2
 year = 2005
Pseudocode
Program NextDate
 dim thisDay, thisMonth, thisYear As Integer
 Input (thisDay, thisMonth, thisYear)
 ‘data validity checking code would normally be here
 If (thisDay = 31) AND thisMonth IN {2, 4, 6, 9, 11} Then
 Output(“day =”, thisDay, “cannot happen when month is”, thisMonth)
 EndIf
 If (thisDay > = 29) AND thisMonth = 2 Then
 Output(“day =”, thisDay, “cannot happen in February”)
 EndIf
End NextDate

User Story 13 Day = 29 in February in a common year
 Input: 29, 2, 2005
 Expected Output:
 day = 29 cannot happen when month is February in a
 common year
 month = 2
 year = 2005
 day = 29
Pseudocode
Program NextDate
 dim thisDay, thisMonth, thisYear As Integer
 Input (thisDay, thisMonth, thisYear)
 ‘data validity checking code would normally be here
 If (thisDay = 31) AND thisMonth IN {2, 4, 6, 9, 11} Then
 Output(“day =”, thisDay, “cannot happen when month is”, thisMonth)
 EndIf
 If (thisDay > = 29) AND thisMonth = 2 Then
 Output(“day =”, thisDay, “cannot happen in February”)
 EndIf
 ‘Note: isLeap is a Boolean function that returns true when the
 ‘argument corresponds to a leap year. Cannot run this test case until
 ‘Function isLeap is tested.
 If (thisDay = 29) AND thisMonth = 2 AND NOT(isLeap(this year))
 Then Output(“day =”, thisDay, “cannot happen in February in a
 common year”)
 EndIf
End NextDate

382  ◾  Software Testing

An anomaly occurs here. The developer postulated a Boolean function, isLeap, that responds
with True or False depending on whether the input year is a leap or a common year. This function
would have to be tested before the test “current” case. Possibly, this would be another point of
refactoring. Function isLeap is the subject of the next few user stories.

User Story 14 A year divisible by 4 is a leap year (except for century
years)
 Input: 2004
 Expected Output: True
Pseudocode
Function isLeap(year) As Boolean
 dim year As Integer
 ‘1812 < = year < = 2012 is given, and tested in main program
 isLeap = False
 ‘MOD is the modulo arithmetic built-in operator in most languages
 If ((year MOD 4) = 0) Then
 IsLeap = True
 EndIf
End isLeap

User Story 15 A year not divisible by 4 is a common year.
 Input: 2005
 Expected Output: False
Pseudocode
Function isLeap(year) As Boolean
 dim year As Integer
 ‘1812 < = year < = 2012 is given, and tested in main program
 isLeap = False
 ‘MOD is the modulus built-in operator in most languages
 If ((year MOD 4) = 0) Then
 IsLeap = True
 Else
 IsLeap = False
 EndIf
End isLeap

User Story 16 A century year not divisible by 400 is a common year.
 Input: 1900
 Expected Output: False
Pseudocode
Function isLeap(year) As Boolean
 dim year As Integer
 ‘1812 < = year < = 2012 is given, and tested in main program
 isLeap = False
 ‘MOD is the modulus built-in operator in most languages
 If (((year MOD 4) = 0) AND NOT(year MOD 100 = 0)) Then
 IsLeap = True
 Else
 IsLeap = False
 EndIf
End isLeap

Test-Driven Development  ◾  383

User Story 17 A century year divisible by 400 is a leap year.
 Input: 2000
 Expected Output: True
Pseudocode
Function isLeap(year) As Boolean
 dim year As Integer
 ‘1812 < = year < = 2012 is given, and tested in main program
 isLeap = False
 ‘MOD is the modulus built-in operator in most languages
 If (((year MOD 4) = 0) AND NOT(year MOD 100 = 0)) OR
 ((year MOD 400) = 0) Then
 IsLeap = True
 Else
 IsLeap = False
 EndIf
End isLeap

Comment: TDD shows a clear advantage in the development of Function isLeap. In a class-
room experiment, only a few students were able to code the full condition (in user story 17)
directly from the definition. The TDD build-up nicely simplifies this somewhat confusing condi-
tion. Now the user stories return to date validity tests.

User Story 18 Day = 29 in February in a leap year
 Input: 29, 2, 2004
 Expected Output: day = 1
 month = 3
 year = 2004
Pseudocode
Program NextDate
 dim thisDay, thisMonth, thisYear As Integer
 Input (thisDay, thisMonth, thisYear)
 ‘data validity checking code would normally be here
 If (thisDay = 31) AND thisMonth IN {2, 4, 6, 9, 11} Then
 Output(“day =”, thisDay, “cannot happen when month is”, thisMonth)
 EndIf
 If (thisDay = 30) AND thisMonth = 2 Then
 Output(“day =”, thisDay, “cannot happen in February”)
 EndIf
 If (thisDay = 29) AND thisMonth = 2 AND NOT(isLeap(this year))
 Then Output(“day =”, thisDay, “cannot happen in February in a
 common year”)
 Else
 Output(day = 1, month = 3, year = this year)
 EndIf
End NextDate

384  ◾  Software Testing

The first 10 user stories checked to see that values of day, month, and year are in the appropri-
ate ranges. User stories 11 to 18 deal with valid and impossible dates. The remaining user stories
deal with correct date increments. By now, the basic “test a little, code a little” principle should
be clear. The remaining user stories are shown in Section 19.3.3 where the question of user story
granularity is discussed.

19.2 automated test Execution (testing Frameworks)
Test-Driven Development depends on an environment in which it is easy to postulate and run
tests. To facilitate TDD, test execution frameworks have been written for most mainline program-
ming languages. Most of these environments require the tester to write a test driver program that
contains the actual test case data—both inputs and expected outputs. Section 19.3 contains a
Java/JUnit example. Here is a partial list of TDD frameworks for various programming languages
from Wikipedia (http://en.wikipedia.org/wiki/XUnit) that demonstrates the variety of languages
for which TDD frameworks are available.

AUnit—a unit testing framework for Ada programming language
AsUnit for ActionScript
AS2Unit—a unit testing framework for ActionScript2.0
As2libUnitTest—a unit testing framework for ActionScript2.0
CUnit—a unit testing framework for C
CuTest—a cute unit testing framework for C
CFUnit—a unit testing framework for ColdFusion
CPPUnit—a unit testing framework for C++
csUnit—a unit testing framework for the .NET programming languages
DBUnit—a unit testing framework for databases as a JUnit extension
DUnit—a unit testing module for Delphi
FoxUnit—a unit testing framework for Visual FoxPro
FRUIT—FORTRAN Unit Testing Framework
fUnit—a unit testing framework for Fortran
FUTS—the Framework for Unit Testing SAS
GUnit—a unit testing framework for C with GNOME support
HttpUnit—testing framework for Web applications, typically used in combination with JUnit
jsUnit—a unit testing framework for client-side (in-browser) JavaScript
JUnit—a unit testing framework for Java
JUnitEE—a unit testing framework for JavaEE
MbUnit—a unit testing framework for Microsoft.NET
NUnit for Microsoft.NET
ObjcUnit—JUnit-like unit testing framework for Objective-C
OCUnit—a unit testing framework for Objective-C
OUnit—a unit testing framework for Ocaml
PHPUnit—a unit testing framework for PHP
PyUnit—a unit testing module for Python
RBUnit—a unit testing framework for REALbasic

Test-Driven Development  ◾  385

SimpleTest for PHP
SUnit—a unit testing framework for Smalltalk (the original xUnit framework)
Test::Class—another unit testing module for Perl
Test::Unit—a unit testing module for Perl
Test::Unit—a unit testing module for Ruby
Testoob—an extended testing framework for use with PyUnit
TSQLUnit—a unit testing framework for Transact-SQL
VbaUnit—a unit testing framework for Visual Basic for Applications
VbUnit—a unit testing framework for Visual Basic

19.3 Java and JUnit Example
The JUnit program is typical of the TDD test frameworks. Here is the Java code that corresponds
to most of the example in Section 19.2.

19.3.1 Java Source Code

//class ValidDate checks if a date is correct, by Dr. Christian Trefftz
public class ValidDate

{public static boolean isLeap(int year)
 {if (((year%4) ==0) && !((year%100) ==0) || ((year%400) ==0))
 return true;
 else
 return false;}
 //validRangeForDay will return true if the parameter thisDay is in the
valid range
 public static boolean validRangeForDay(int thisDay)
 {if ((thisDay > = 1) && (thisDay < = 31))
 {System.out.println(“Day = “+thisDay);
 return true;}
 else {if (thisDay < 1)
 {System.out.println(“Day = “+thisDay+” is below minimum.”);
 return false;}
 else
 if (thisDay > 31)
 { System.out.println(“Day = “+thisDay+” is above maximum.”);
 return false;}
 }
 return false;}
//validRangeForMonth will return true if the parameter thisMonth is in
the valid range
 public static boolean validRangeForMonth(int thisMonth) {
 if ((thisMonth > = 1) && (thisMonth < = 12))
 {System.out.println(“Month = “+thisMonth);
 return true;}

386  ◾  Software Testing

 else
 {if (thisMonth < 1)
 {System.out.println(“Month = “+thisMonth+” is below minimum.”);
 return false;}
 else
 if (thisMonth > 12)
 {System.out.println(“Month = “+thisMonth+” is above maximum.”);
 return false;}
 }
 return false;}
 //validRangeForYear will return true if the parameter thisYear is in
the valid range
 public static boolean validRangeForYear(int thisYear) {
 if ((thisYear > = 1812) && (thisYear < = 2012))
 {System.out.println(“Year = “+thisYear);
 return true;}
 else
 {if (thisYear < 1812) {
 System.out.println(“Year = “+thisYear+” is below minimum.”);
 return false;}
 else
 if (thisYear > 2012)
 {System.out.println(“Year = “+thisYear+” is above maximum.”);
 return false;}
 }
 return false;}
 //validCombination will return true if the parameters are a valid combination
 public static boolean validCombination(int thisDay,int thisMonth,int
thisYear){
 if ((thisDay = = 31) && ((thisMonth = = 2) || (thisMonth = =4) ||
(thisMonth = = 6) || (thisMonth = =9) || (thisMonth = = 11)))
 {System.out.println(“Day = “+thisDay+” cannot happen when month is
“+thisMonth);
 return false;}
 if ((thisDay = = 30) && (thisMonth = = 2))
 {System.out.println(“Day = “+thisDay+” cannot happen in February”);
 return false;}
 if ((thisDay = = 29) && (thisMonth = = 2) && !(isLeap(thisYear)))
 {System.out.println(“Day = “+thisDay+” cannot happen in February.”);
 return false;}
 return true;}
//validDate will return true if the combination of the parameters is valid
public static boolean validDate(int thisDay,int thisMonth,int thisYear)
 {if (!validRangeForDay(thisDay))
 {return false;}
 if (!validRangeForMonth(thisMonth))
 {return false;}
 if (!validRangeForYear(thisYear))
 {return false;}
 if (!validCombination(thisDay,thisMonth,thisYear)) {
 return false;}
 //If this point is reached, the date is valid
 return true;}}

Test-Driven Development  ◾  387

19.3.2 JUnit Test Code
To test a Java unit, the tester must first write a test program such as the one that follows. This
establishes a connection between the Java unit to be tested and the JUnit framework. Actual test
cases use the assertEquals method, where an assertion contains the pass/fail result of executing the
called unit with test case values. For example, the assertion

 assertEquals(true, ValidDate.validDate(29, 2, 2000));

asks JUnit to run the validDate method of ValidDate with the test case corresponding to February
29, 2000. This is a valid date, and the expected JUnit response is “true.” Similarly, the assertion
below tests an invalid February date.

 assertEquals(false, ValidDate.validDate(29, 2, 2001));

Here is the actual JUnit test code.

//The test class ValidDateTest, by Dr. Christian Trefftz
public class ValidDateTest extends junit.framework.TestCase
{
 //Default constructor for test class ValidDateTest
 public ValidDateTest()
 {}
 //Sets up the test fixture. Called before every test case method.
 protected void setUp()
 {}
 //Tears down the test fixture. Called after every test case method.
 protected void tearDown()
 {}
 public void testIsLeap()
 {assertEquals(true, ValidDate.isLeap(2000));
 assertEquals(false, ValidDate.isLeap(1900));
 assertEquals(false, ValidDate.isLeap(1999));}
 public void testValidRangeForDay()
 {assertEquals(false, ValidDate.validRangeForDay(-1));
 assertEquals(false, ValidDate.validRangeForDay(32));
 assertEquals(true, ValidDate.validRangeForDay(20));}
 public void testValidRangeForMonth()
 {assertEquals(false, ValidDate.validRangeForMonth(0));
 assertEquals(false, ValidDate.validRangeForMonth(13));
 assertEquals(true, ValidDate.validRangeForMonth(6));}
 public void testValidRangeForYear()
 {assertEquals(false, ValidDate.validRangeForYear(1811));
 assertEquals(false, ValidDate.validRangeForYear(2013));
 assertEquals(true, ValidDate.validRangeForYear(1960));}
 public void testValidCombination()
 {assertEquals(false, ValidDate.validCombination(31, 4, 1960));
 assertEquals(false, ValidDate.validCombination(29, 2, 2001));
 assertEquals(true, ValidDate.validCombination(29, 2, 2000));
 assertEquals(true, ValidDate.validCombination(28, 2, 2001));}
 public void testValidDate()
 {assertEquals(true, ValidDate.validDate(29, 2, 2000));

388  ◾  Software Testing

 assertEquals(false, ValidDate.validDate(29, 2, 2001));
 assertEquals(true, ValidDate.validDate(11, 10, 2006));
 assertEquals(false, ValidDate.validDate(04, 30, 1960));
 assertEquals(true, ValidDate.validDate(30, 04, 1960));}
 }

19.4 remaining Questions
19.4.1 Specification or Code Based?
Is TDD code based, or specification based? In a sense, a test case is a very low level specification,
so TDD seems to be specification based. However, test cases are very closely associated with code,
so it has the appearance of code-based testing. Certainly, code coverage, at least at the DD-path
level, is unavoidable. Is it a stretch to claim that the set of all test cases constitutes a requirements
specification? Imagine the reaction of a customer trying to understand a TDD program from the
set of test cases. In the agile programming sense, however, the purpose of each test case can be
considered to be a user story, and user stories are accepted by customers. It is really a question of
level of detail, and this leads to a variant of TDD. Practitioners who object to tiny, incremental
steps suggest that “larger” test cases, followed by larger chunks of code, are preferable. This has the
advantage of introducing a small element of code design, and probably reduces the frequency of
refactoring. Then the strictly bottom–up approach of “pure” TDD is complemented by top–down
thinking.

19.4.2 Configuration Management?
Superficially, TDD appears to be a configuration management nightmare. Even a program as
small as NextDate has dozens of versions in its growth from inception to completion. This is
where refactoring comes in. TDD forces a bottom–up approach to code development. At cer-
tain points, the conscientious programmer will see that the code can be reorganized into some-
thing more elegant. There are no rules as to when refactoring should occur, but when it does, it
is important to note that the original test cases are preserved. If the refactored code fails to pass
all tests, there is a problem in the refactoring. Again, note the simple fault isolation. Refactoring
points (once all test cases have passed) are good candidates for configuration management
actions. These are points where a design object is, or can be, promoted to configuration item
status. If later code causes earlier test cases to fail, this is another clear configuration manage-
ment point. The configuration item should be demoted to a design object, which by definition,
is subject to change.

19.4.3 Granularity?
The sequence of user stories in the example in Section 19.3.1 uses very fine-grained level of detail.
As an alternative, consider the enlarged granularity of user stories in Table 19.2. With “larger” user
stories, a particular user story is broken down to a series of finer tasks, and code is developed for

Test-Driven Development  ◾  389

table 19.2 User Story Granularity

Large-Grain User Stories Fine-Grain User Stories

 1. The program compiles. 1. The program compiles.

 2. A date can be input and displayed. 2. A day can be input and displayed.

 3. An input month can be displayed.

 4. An input year can be displayed.

 3. Invalid days can be recognized. 5. A day below minimum can be detected.

 6. A day above maximum can be detected.

 4. Invalid months can be recognized. 7. A month below minimum can be detected.

 8. A month above maximum can be detected.

 5. Invalid years can be recognized. 9. A year below minimum can be detected.

 10. A year above maximum can be detected.

 6. Invalid dates can be recognized. 11. Day = 31 in a 30 day month.

 12. Day > = 29 in February.

 13. Day = 29 in February in a common year.

 14. Day = 29 in February in a leap year.

 7. Leap years can be recognized. 15. A year divisible by 4 is a leap year.

 16. A year not divisible by 4 is a common year.

 17. A century year not divisible by 400 is a
common year.

 18. A century year divisible by 400 is a leap year.

 8. Valid dates can be incremented. 19. Increment a non-last day of a month.

 20. Increment the last day of a 30-day month.

 21. Increment the last day of a 31-day month.

 22. Increment December 31.

 23. Increment February 28 in a common year.

 24. Increment February 28 in a leap year.

 25. Increment February 29 in a leap year.

390  ◾  Software Testing

each task. In this way, the fault isolation is preserved. To distinguish between these granularity
choices, sometimes the larger version is named “story-driven development.”

19.5 pros, Cons, and Open Questions of tDD
As with most innovations, TDD has its advantages, disadvantages, claims, and unanswered ques-
tions. The advantages of TDD are very clear. Owing to the extremely tight test/code cycles, some-
thing always works. In turn, this means a TDD project can be turned over to someone else,
likely a programming pair, for continued development. Probably the biggest advantage of TDD
is the excellent fault isolation. If a test fails, the cause must be the most recently added code.
Finally, TDD is supported by an extensive variety of test frameworks, including those listed in
Section 19.2.

It is nearly impossible, or at best, very cumbersome, to perform TDD in the absence of test
frameworks. There really is not much of an excuse for this because the frameworks are readily
available for most programming languages. If a tester cannot find a test framework for the project
language, TDD is a poor choice. (It is probably better to just change programming languages.)
At a deeper level, TDD is inevitably dependent on the ingenuity of the tester. Good test cases
are necessary but not sufficient for TDD to produce good code. Part of the reason is that the
bottom– up nature of TDD provides little opportunity for elegant design. TDD advocates respond
by claiming that a good design is eventually accomplished by a series of refactorings, each of which
improves the code a little bit. A final disadvantage of TDD is that the bottom–up process makes
it unlikely that “deeper faults,” such as those only revealed by data flow testing, will be revealed
by the incrementally created test cases. These faults require a more comprehensive understanding
of the code, and this disadvantage is exacerbated by the possibility of the thread interaction faults
discussed in Chapter 17.

Any new technology or technique has a set of open questions, and this is certainly true for
TDD. The easiest question is that of scale-up to large applications. It would seem that there are
practical limits as to how much an individual can “keep in mind” during a development. This is
one of the early motivating factors for program modularity and information hiding, which are
the foundations of the object-oriented paradigm. If size is a problem, complexity is even more
serious. Can systems developed with TDD effectively deal with questions such as reliability
and safety? Such questions usually require sophisticated models, but these are not produced in
TDD. Finally, there is the question of support for long-term maintenance. The agile program-
ming community and the TDD advocates maintain that there is no need for the documenta-
tion produced by the more traditional development approaches. The more extreme advocates
even argue against comments in source code. Their view: the test cases are the specification,
and well-written code, with meaningful variable and method names, is self-documenting. Time
will tell.

19.6 retrospective on MDD versus tDD
The Northern Cheyenne people of the North American plains have teaching stories based on
what they observe in nature. When they speak of the Medicine Wheel, they associate animals
with each of the four directions, and the animals have qualities that are seen in nature. One
interesting pair is the Eagle and the Mouse. The Eagle sees the “big picture” and therefore

Test-Driven Development  ◾  391

understands the important relationships among things. The Mouse, on the other hand, sees
only the ground where it scurries, and the grasses it encounters—a very detailed view. Living
by the Medicine Wheel means that each view is honored—each view is needed to have better
understanding.

It is unlikely that the Northern Cheyenne ever thought much about Model-Driven Development
(MDD) and TDD, but the lessons are obvious: both are needed to have better understanding, in
this case, of a program to be developed. This really is not too surprising. In the 1970s and 1980s,
camps in the software community passionately debated the merits of specification-based versus
code-based testing. Thoughtful people soon concluded that some blend of both approaches is nec-
essary. To illustrate these two approaches, consider our Boolean function, isLeap, that determines
whether a given year is a common or a leap year.

A model-driven approach to developing isLeap would likely begin with a decision table (Table
19.3) showing the relationships among the phrases of the definition.

The advantage of using a decision table for the model is that it is complete, consistent,
and not redundant. Rule r1 refers to century years that are leap years, while rule r2 refers to
century years that are common years. Rule r3 describes non-century leap years, and rule r8
describes non-century common years. The other rules are logically impossible. If we write
isLeap from this decision table, we would get something like the Visual Basic function in
Figure 19.1.

Notice that there are four paths from the source node to the sink node. The path through
node 8 corresponds to rule r1, the one through nodes 9 and 10 to rule r2, and so on. Coding nested
If logic three levels deep is probably not what the average developer would do, at least not on the
first try. (And it is even less likely that a developer would get it correct on the first try. Score one
for MDD.)

The test-driven approach results in a different form of complexity. Referring to the code for
user stories 14 through 17 on Section 19.1, notice that the TDD code gradually developed a com-
pound If statement, rather than the nested If logic in the MDD version (slightly refactored again
in Figure 19.2).

table 19.3 Leap Year Decision table

Conditions r1 r2 r3 r4 r5 r6 r7 r8

c1. year is a multiple of 4 T T T T F F F F

c2. year is a century year T T F F T T F F

c3. year is a multiple of 400 T F T F T F T F

Actions

Logically impossible × × × ×

a1. year is a common year × ×

a2. year is a leap year × ×

Test case: year = 2000 1900 2008 2011

392  ◾  Software Testing

1

2

3

4

5

6

7

8

11

14

17

10 13 16

9 12 15

Public function isLeap(year) As Boolean
 Dim c1, c2, c3 As Boolean
 Dim year As Integer
1 isLeap = False
2 c1 = (year Mod 4 = 0) ' leap years are divisible by 4
3 c2 = (year Mod 100 = 0) ' but century years are common years
4 c3 = (year Mod 400 = 0) ' unless they are divisible by 400
5 If c1 �en
6 If c2 �en
7 If c3 �en
8 isLeap = True 'rule r1
9 Else
10 isLeap = False 'rule r2
11 End If
12 Else
13 isLeap = True 'rule r4
14 End If
15 Else
16 isLeap = False 'rule r8
17 End If
End Function

Figure 19.1 MDD version of isLeap.

Public function isLeap(year) As Boolean
 Dim c1, c2, c3 As Boolean
 Dim year As Integer

1 c1 = (year Mod 4 = 0)
2 c2 = (year Mod 100 = 0)
3 c3 = (year Mod 400 = 0)
4 isLeap = False
5 If ((c1 AND NOT(c2)) OR (c3)) �en
6 isLeap = True
7 End If
8 End Function

1

2

3

4

5

7

8

6

Figure 19.2 tDD version of isLeap.

Test-Driven Development  ◾  393

As a cross check, here is the truth table for the compound condition.

(c1 AND NOT(c2)) OR (c3)

c1 c2 c3 NOT(c2) c1 AND NOT(c2) (c1 AND NOT(c2)) OR c3 Year

T T T F F T 2000

T T F F F F 1900

T F T T T T Imp

T F F T T T 2008

F T T F F T Imp

F T F F F F Imp

F F T T F T Imp

F F F T F F 2011

Notice that the same test cases and impossibilities (the “Imp” entries) occur in the rows of the
truth table, and the columns of the decision table; therefore, the two versions of isLeap are logi-
cally equivalent. Looking at the program graphs of the two implementations, the MDD version
seems to be more complex. In fact, the cyclomatic complexity of the MDD version is 4, while that
of the TDD version is only 2. From a testing standpoint, however, the compound condition in the
TDD version requires multiple condition coverage. Both versions end up with the same necessary
(and sufficient) four test cases.

What, if any, conclusions can we draw from this? The MDD approach yields the Eagle’s view
of the full picture. We know from the way decision tables work that the result is correct. We had
to do a little more work to reach the same level of confidence with the TDD approach; however, in
the end, the two implementations are logically equivalent. The apparent difference in cyclomatic
complexity is negated by the need for multiple condition coverage testing. The nested If complex-
ity is moved into condition complexity—it does not disappear.

Any weaknesses? The MDD approach ultimately depends on the modeling skill; similarly,
the TDD approach depends on testing skill. No significant difference there. What about size?
The MDD version is longer: 17 statement fragments versus 9, but the TDD process requires more
keystrokes. No significant difference here either.

The biggest difference would seem to be maintenance. Presumably, the modeling would be
more helpful to a maintainer—the Eagle again. But the test cases from the TDD approach will
help the maintainer recreate and isolate a fault—the Mouse view.

395

Chapter 20

a Closer Look at all
pairs testing

When it was first introduced, the All Pairs testing possibility was extremely popular. According
to James Bach, more than 40 journal articles and conference papers have been written about the
technique (Bach and Schroeder, 2003). It continues to be discussed in recent books on software
testing, it is in the ISTQB Advanced Level syllabus, and the practitioner conferences continue to
offer tutorials on All Pairs testing. It is tempting to say that more has been written about All Pairs
testing than is known. In this chapter, as the title implies, we take a closer look at the All Pairs
testing technique, answering these questions:

 ◾ What is the All Pairs technique?
 ◾ Why is it so popular?
 ◾ When does it work well?
 ◾ When is it not appropriate?

The chapter ends with recommendations for appropriate use.

20.1 the all pairs technique
The All Pairs testing technique has its origins in statistical design of experiments. There, orthogo-
nal arrays are a means of generating all pairs of experimental variables such that each pair occurs
with equal probability. Mathematically, the statistical technique derives from Latin Squares
(Mandl, 1985). The NIST papers by Wallace and Kuhn (2000, 2001) captured the attention of
the software development community, particularly the agile community. The papers concluded
that 98% of the defects in software-controlled medical systems were due to the interaction of
pairs of variables.

396  ◾  Software Testing

Given a program with n input variables, the All Pairs technique is a way to identify each pair.
Mathematically, this is commonly called the number of combinations of n things taken two at a
time, and is computed by the formula

 nC2 = (n!)/((2!)(n – 2)!)

which is the basis for the well-known “combinatorial explosion.” The first 20 values of nC2 are
graphed in Figure 20.1. With the All Pairs technique, for example, the 66 pairs of interactions
among 12 variables are exercised in a single test case.

Perhaps the most commonly cited example of All Pairs testing was developed by Bernie Berger
and presented at the STAREast conference in 2003 (Berger, 2003). His paper contains a mortgage
application example that has 12 input variables. (In a private e-mail, he said that “12” is a sim-
plification.) Berger identified equivalence classes for the 12 variables, varying in number between
seven classes for two variables to two classes for six variables. The cross product of the equivalence
classes results in 725,760 test cases. Applying the All Pairs technique, this is reduced to 50 test
cases—quite a reduction.

The All Pairs technique is supported by a commercial tool, the Automatic Efficient Test
Generator (AETG) system (Cohen, 1994). It is also supported by a free program that is available
from James Bach at his website (http://www.satisfice.com). The technique makes the following
assumptions:

 ◾ Meaningful equivalence classes can be identified for each program input.
 ◾ Program inputs are independent.
 ◾ There is no order to program inputs.
 ◾ Faults are due only to the interaction of pairs of program inputs.

The necessity of each assumption is demonstrated (with counter-examples) next.

20.1.1 Program Inputs
As we have seen in earlier chapters, program inputs can be either events or data. The All Pairs tech-
nique refers only to data; that is, inputs are values of variables, not events. It is useful to distinguish

0
20
40
60
80

100
120
140
160
180
200

0 5 10 15 20 25

Figure 20.1 Combinatorial explosion.

A Closer Look at All Pairs Testing  ◾  397

between physical and logical variables, as in Chapter 10, Table 10.13. As a guideline, physical
variables are usually associated with some unit of measure, such as velocity, altitude, temperature,
or mass. Logical variables are seldom associated with units of measure; instead, they usually refer
to some enumerated type, such as a telephone directory number or an employee identification
number. It is usually easier to identify equivalence classes for logical variables.

As a counter-example, consider the triangle program. The three sides, a, b, and c, are all inte-
gers and are arbitrarily bounded by 1 ≤ side ≤ 200. The sides are physical variables, measured in
some unit of length. What equivalence classes apply to a, b, and c? Only the robust equivalence
classes that deal with valid and invalid input values of a side:

EqClass1(side) = {x: x is an integer and x < 1} (invalid values)
EqClass2(side) = {x: x is an integer and 1 ≤ x ≤ 200} (valid values)
EqClass3(side) = {x: x is an integer and x > 200} (invalid values)

The actual Notepad input file to Bach’s allpairs.exe program is

side a side b side c
a < 1 b < 1 c < 1
1 ≤ a ≤ 200 1 ≤ b ≤ 200 1 ≤ c ≤ 200
a > 200 b > 200 c > 200

An interested tester might postulate equivalence classes such as one in which exactly two sides
are equal, but such classes are on triples of triangle program inputs, not on individual variables.
Table 20.1 contains the allpairs.exe output generated for these equivalence classes; the actual test
cases are in Table 20.2.

As expected from the allpairs.exe output, there is never an opportunity to choose values for the
sides that correspond to an actual triangle. Because six of the nine equivalence classes deal with
invalid values, this only exercises data validity, not correct function with valid values.

table 20.1 allpairs.exe Output

Case Side a Side b Side c Pairings

1 a < 1 b < 1 c < 1 3

2 a < 1 1 ≤ b ≤ 200 1 ≤ c ≤ 200 3

3 a < 1 b > 200 c > 200 3

4 1 ≤ a ≤ 200 b < 1 1 ≤ c ≤ 200 3

5 1 ≤ a ≤ 200 1 ≤ b ≤ 200 c < 1 3

6 1 ≤ a ≤ 200 b > 200 c < 1 2

7 a > 200 b < 1 c > 200 3

8 a > 200 1 ≤ b ≤ 200 c < 1 2

9 a > 200 b > 200 1 ≤ c ≤ 200 3

10 1 ≤ a ≤ 200 1 ≤ b ≤ 200 c > 200 2

398  ◾  Software Testing

20.1.2 Independent Variables
The NextDate function violates the independent variables assumption. There are dependencies
between the day and month variables (a 30-day month cannot have day = 31) and between month
and year (the last day of February depends on whether the year is leap or common). The day,
month, and year variables are logical variables, and they are amenable to useful equivalence classes.
In Chapter 6, we had the following equivalence classes and we used a decision table to deal with
the dependencies. Table 20.3 is an extended entry decision table; it is the result of algebraically
reducing the complete decision table in Chapter 6. It is “canonical” in the sense that it exactly

table 20.2 triangle program test Cases Generated by
allpairs.exe

Case Side a Side b Side c Expected Output

1 –3 –2 –4 Not a triangle

2 –3 5 7 Not a triangle

3 –3 201 205 Not a triangle

4 6 –2 9 Not a triangle

5 6 5 –4 Not a triangle

6 6 201 –4 Not a triangle

7 208 –2 205 Not a triangle

8 208 5 –4 Not a triangle

9 208 201 7 Not a triangle

10 6 5 205 Not a triangle

table 20.3 Canonical Decision table of Valid NextDate Variables

Rules 1 2 3 4 5 6 7 8 9 10

Day D6 D4 D7 D5 D7 D5 D1 D2 D2 D3

Month M1 M1 M2 M2 M3 M3 M4 M4 M4 M4

Year — — — — — — — Y1 Y2 Y2

Day = 1 × × × × ×

Day++ × × × × ×

Month = 1 × ×

Month++ × × ×

Year++ ×

A Closer Look at All Pairs Testing  ◾  399

represents all the combinations of valid variable values. The dependencies among day, month, and
year are all expressed in the canonical decision table for NextDate.

The base equivalence classes from Chapter 6 are repeated here:

For day:
D1 = {1 ≤ day ≤ 27}
D2 = {28}
D3 = {29}
D4 = {30}
D5 = {31}

For month:
M1 = {30-day months}
M2 = {31-day months except December}
M3 = {December}
M4 = {February}

For year:
Y1 = {common years}
Y2 = {leap years}

Table 20.3 shows the result of combining rules from a complete extended entry decision table
with the day equivalence classes

D6 = D1 ∪ D2 ∪ D3 = {1 ≤ day ≤ 29}
D7 = D1 ∪ D2 ∪ D3 ∪ D4 = {1 ≤ day ≤ 30}

The allpairs.exe test cases for NextDate are given in Table 20.4. Note that the 10 canonical
test cases are only partly present in the 20 All Pairs test cases. Since the All Pairs algorithm does
not merge decision table rules, some of the generated test cases correspond to a single rule in the
canonical decision table. For example, All Pairs test cases 1, 3, and 15 all correspond to rule 1;
cases 2, 4, 16, and 18 correspond to rule 3; and cases 6, 8, 12, and 14 correspond to rule 5. The
redundancy is understandable. The more serious problems are the missing test case (for rule 8)
and the invalid test cases (cases 7, 9, and 19). The missing test case consists of the interaction of
all three variables, so the All Pairs algorithm cannot be expected to find this one. The invalid test
cases are all due to dependencies among pairs of variables; these demonstrate the necessity of the
independent variable assumption.

20.1.3 Input Order
Applications that use a Graphical User Interface (GUI) frequently allow inputs to be entered in
any order. Figure 20.2 is a simple GUI for a simplified currency converter. A user can enter a whole
US dollar amount up to $10,000, select one of three currencies, and then click on the Compute
button to display the equivalent amount in the selected currency. The Clear All button can be
clicked at any time; it resets the US dollar amount and resets any selected currency. Once a US
dollar amount has been entered, a user may perform a series of currency conversions by first select-
ing a currency type, then clicking on Compute, then repeating this sequence for other currencies.
The Quit button ends the application.

400  ◾  Software Testing

table 20.4 all pairs test Cases for NextDate

Case Day Month Year Pairings Valid? DT Rule

1 1–27 30-day Leap 3 Yes 1

2 1–27 31-day Common 3 Yes 3

3 28 30-day Common 3 Yes 1

4 28 31-day Leap 3 Yes 3

5 29 February Leap 3 Yes 10

6 29 December Common 3 Yes 5

7 30 February Common 3 No

8 30 December Leap 3 Yes 5

9 31 30-day Leap 2 No

10 31 31-day Common 2 Yes 4

11 1–27 February ~Leap 1 Yes 7

12 1–27 December ~Common 1 Yes 5

13 28 February ~Common 1 Yes 9

14 28 December ~Leap 1 Yes 5

15 29 30-day ~Common 1 Yes 1

16 29 31-day ~Leap 1 Yes 3

17 30 30-day ~Leap 1 Yes 2

18 30 31-day ~Common 1 Yes 3

19 31 February ~Leap 1 No

20 31 December ~Common 1 Yes 6

U.S. Dollars to convert

Equivalent in ...

Compute

Clear all

Quit

Euros

Swiss francs

British pounds

Figure 20.2 Currency Conversion GUI.

A Closer Look at All Pairs Testing  ◾  401

Because there is no control on the sequence of user input events, the Compute button must
anticipate invalid user input sequences. It produces five error messages:

Error message 1: No US dollar amount entered
Error message 2: No currency selected
Error message 3: No US dollar amount entered and no currency selected
Error message 4: US dollar amount cannot be negative
Error message 5: US dollar amount cannot be greater than $10,000

Clicking on the Compute button is therefore a context-sensitive input event, with six con-
texts—the five that result in the error messages, and an input US dollar amount in the valid range.
The data contexts of an input event are clearly pairs of interest to a tester, so the All Pairs technique
should be appropriate.

At first glance, the Currency Conversion GUI seems to lend itself nicely to the All Pairs tech-
nique. The following equivalence classes are derived naturally from the description and are shown
in Table 20.5:

USdollar1 = {No entry}
USdollar2 = {<$0}
USdollar3 = {$1–$10K}
USdollar4 = {>$10K}
Currency1 = {Euros}
Currency2 = {Pounds}
Currency3 = {Swiss francs}
Currency4 = {Nothing selected}
Operation1 = {Compute}
Operation2 = {Clear All}
Operation3 = {Quit}

The first four columns of Table 20.6 are the allpairs.exe program outputs. The (tester-provided)
expected outputs are in the last column. The “~Compute” in test cases 15 and 16 is an allpairs.exe
output that directs the tester to pick an operation other than Compute. (It is an extension of the
“Don’t Care” entry in decision tables.) Notice that only error messages 1, 4, and either 2 or 5 are
generated. Test case 9 generates a fourth context, in which the equivalent currency in pounds is
computed. This is the only actual computation—the All Pairs test cases never check the conver-
sion of dollars to euros or to Swiss francs.

table 20.5 allpairs.exe Input for Currency
Conversion GUI

US Dollar Currency Operation

No entry Euros Compute

<$0 Pounds Clear All

$1–$10K Swiss francs Quit

>$10K Nothing selected

402  ◾  Software Testing

There is a more subtle problem with the All Pairs algorithm—the order of inputs can make a
surprising difference, even though it should be irrelevant. Table 20.7 just changes the order of US
dollar inputs, and the resulting test cases are in Table 20.8. With just this slight change, two cur-
rency conversions are performed (to British pounds and to Swiss francs), but only error messages
3, 4, and 5 are generated.

The change is caused by the way in which the algorithm picks pairs of variables. The early
test cases contain the greatest number of pairs, and the later ones contain the fewest. This means

table 20.6 allpairs.exe test Cases for Currency Conversion GUI

Case US Dollar Currency Operation Expected Output

1 No entry Euros Compute Error message 1

2 No entry Pounds Clear All Pounds reset

3 No entry Swiss francs Quit Application ends

4 <$0 Euros Clear All US dollar amount reset, euros reset

5 <$0 Pounds Compute Error message 4

6 <$0 Swiss francs Compute Error message 4

7 <$0 Nothing selected Quit Application ends

8 $1–$10K Euros Quit Application ends

9 $1–$10K Pounds Compute Equivalent in Pounds

10 $1–$10K Swiss francs Clear All US dollar amount and Swiss francs
reset

11 >$10K Pounds Quit Application ends

12 >$10K Nothing selected Compute Error message 5 or Error message 2

13 >$10K Euros Clear All US dollar amount reset, euros reset

14 No entry Nothing selected Clear All No change in GUI

15 $1–$10K Nothing selected ~Compute ?

16 >$10K Swiss francs ~Compute ?

table 20.7 allpairs.exe Input in Different Order

US Dollar Currency Operation

<$0 Euros Compute

$1–$10K Pounds Clear All

>$10K Swiss francs Quit

No entry Nothing selected

A Closer Look at All Pairs Testing  ◾  403

that a potential All Pairs tester needs to be clever about the order in which classes of a variable are
presented to the algorithm.

20.1.4 Failures Due Only to Pairs of Inputs
By definition, the All Pairs technique only potentially reveals faults due to the interaction of two
variables. The NextDate counter-example showed that faults due to interaction of three variables
(e.g., February 28 in a common year) will not be detected. This cannot be an indictment of the
All Pairs technique—the advocates are quite clear that the intent is to find faults due only to the
interaction of pairs of values. Orthogonal arrays and the OATS technique can be used to find
interactions among three or more variables. As long as the program being tested uses logical vari-
ables, there is not too much risk. If a program involves computations with physical variables, some
insight will likely be needed. Suppose, for example, a ratio is computed, and the numerator and
denominator are from different classes. There may be no problem with nominal values, but a very
large numerator divided by a very small denominator might cause an overflow fault. Worst-case
boundary value testing would be a more likely method to reveal such a fault.

table 20.8 allpairs.exe test Cases (Note Differences with table 20.6)

Case US Dollar Currency Operation Expected Output

1 <$0 Euros Compute Error message 4

2 <$0 Pounds Clear All US dollar amount reset, pounds reset

3 <$0 Swiss francs Quit Application ends

4 $1–$10K Euros Clear All US dollar amount reset, euros reset

5 $1–$10K Pounds Compute Equivalent in pounds

6 $1–$10K Swiss francs Compute Equivalent in Swiss francs

7 $1–$10K Nothing selected Quit Application ends

8 >$10K Euros Quit Application ends

9 >$10K Pounds Compute Error message 5

10 >$10K Swiss francs Clear All US dollar amount reset, Swiss francs
reset

11 No entry Pounds Quit Application ends

12 No entry Nothing selected Compute Error message 3

13 No entry Euros Clear All Euros reset

14 <$0 Nothing selected Clear All US dollar amount reset

15 >$10K Nothing selected ~Compute ?

16 No entry Swiss francs ~Compute ?

404  ◾  Software Testing

20.2 a Closer Look at the NISt Study
Most introductory logic courses discuss a class of arguments known as informal fallacies. One of
these, the Fallacy of Extension, occurs when an argument is extended from a simple to an extreme
situation where it is easier to persuade the point to be made. The conclusion is then brought back
to the simple case. The Fallacy of Extension most commonly occurs when someone is asking for
special consideration, and the response is something like “What if we let EVERYONE have that
exception?”

There is an element of the Fallacy of Extension in the myriad of papers that emphasize how the
All Pairs algorithm compresses an enormous number of test cases into a smaller, more manage-
able set. While the popular papers cite the NIST study as the basis for the All Pairs technique,
the NIST papers (Wallace and Kuhn, 2000, 2001) never stress this idea of compression; rather,
they stress that faults due to more than two variables are relatively rare (2% in the examples they
studied). Both papers are concerned with describing faults, identifying root causes, and suggesting
fairly standard software engineering techniques to avoid similar faults in future systems.

The closest the NIST papers come to the dominant All Pairs emphasis on test case compres-
sion is when they discuss their analysis of 109 failure reports. They note that, “Only three of the
109 failure reports indicated that more than two conditions were required to cause the failure”
(Wallace and Kuhn, 2000). Further, “The most complex of these [three failures] involved four
conditions.” The conclusion of that part of the report is that “… of the 109 reports that are
detailed, 98% showed that the problem could have been detected by testing the device with all
pairs of parameter settings.” The report notes that most medical devices only have “a relatively
small number of inputs variables, each with either a small discrete set of possible settings or a finite
range of values.” Then the Fallacy of Extension occurs. Quoting from Wallace and Kuhn (2000):

Medical devices vary among treatment areas, but in general have a relatively small number
of input variables, each with either a small discrete set of possible settings, or a finite range
of values. For example, consider a device that has 20 inputs, each with 10 settings, for a
total of 1020 combinations of settings. The few hundred test cases that can be built under
most development budgets will of course cover less than a tiny fraction of a percent of the
possible combinations. The number of pairs of settings is in fact very small, and since each
test case must have a value for each of the ten variables, more than one pair can be included
in a single test case. Algorithms based on orthogonal Latin squares are available that can
generate test data for all pairs (or higher order combinations) at a reasonable cost. One
method makes it possible to cover all pairs of values for this example using only 180 test
cases [8].

What is really perplexing about this is they preface it with the note that most devices only have
a few input settings, so the extension to 1020 cases makes little sense.

20.3 appropriate applications for all pairs testing
Table 20.9 presents two considerations that help determine whether All Pairs is appropriate for
a given application. The first consideration is whether the application is static or dynamic. Static
applications are those in which all inputs are available before calculation begins. David Harel
refers to such applications as “transformational” because they transform their inputs into output

A Closer Look at All Pairs Testing  ◾  405

data (Harel, 1988). Classic COBOL programs with their Input, Processing, and Output divisions
are good examples of static applications.

Dynamic applications are those in which not all of the inputs that determine the ultimate path
through a program are available at the onset of calculation. Harel uses the term “reactive” to convey
the fact that these applications react to inputs that occur in time sequence. The difference between
static and dynamic applications is analogous to the difference between combinatorial and sequential
circuits of discrete components. Because the order of inputs in important, dynamic applications are
not very appropriate to the All Pairs technique. There is no way to guarantee that interesting pairs
will occur in the necessary order. Also, dynamic applications frequently contain context-sensitive
input events in which the logical meaning of a physical input is determined by the context in which
it occurs. The currency conversion example in Section 20.1.3 contains context-sensitive input events.

The second consideration is whether the application executes on a single or on multiple pro-
cessors. The All Pairs technique cannot guarantee appropriate pairs of input data across multiple
processors. Race conditions, duration of events in real time, and asynchronous input orders are
common in multiprocessing applications, and these needs will likely not be met by All Pairs.
Therefore, applications on the dynamic side of the partition, whether in single or in multiple pro-
cessors, are not appropriate for All Pairs.

The remaining quadrant, static applications in a multiple processing environment, is less clear.
These applications are usually computation intensive (hence the need for parallel processing). If
they are truly static, within a processor, All Pairs can be an appropriate choice.

20.4 recommendations for all pairs testing
All Pairs testing is just another shortcut. When the time allocated for testing shrinks, as it fre-
quently does, shortcuts are both attractive and risky. If the following questions can all be answered
“yes,” then the risk of using All Pairs is reduced.

 ◾ Are the inputs exclusively data (rather than a mix of data and events)?
 ◾ Are the variables logical (rather than physical)?
 ◾ Are the variables independent?
 ◾ Do the variables have useful equivalence classes?
 ◾ Is the order of inputs irrelevant (i.e., is the application both static and single processor)?

Since the All Pairs algorithm only generates the input portion of a test case, one last question:
can the expected outputs for All Pairs test cases be determined?

EXERCISE
 1. Download the allpairs.exe program from James Bach’s website and experiment with your

version of the YesterDate program.

table 20.9 applications appropriate for all pairs testing

Single Processor Multiple Processors

Static All Pairs potentially OK All Pairs cannot deal with input orders

Dynamic All Pairs potentially problematic All Pairs cannot deal with input orders

406  ◾  Software Testing

references
Bach, J. and Schroeder, P.J., Pairwise testing: A best practice that isn’t, STARWest, San Jose, CA, October 2003.
Berger, B., Efficient testing with all-pairs, STAREast, Orlando, FL, May 2003.
Cohen, D.M., Dalal, S.R., Kajla, A. and Patton, G.C., The Automatic Efficient Test Generator (AETG) sys-

tem, Proceedings of the 5th International Symposium on Software Reliability Engineering, IEEE Computer
Society Press, 1994, pp. 303–309.

Harel, D., On visual formalisms, Communications of the ACM, Vol. 31, No. 5, May 1988, pp. 514–530.
Mandl, R., Orthogonal Latin squares: An application of experiment design to compiler testing, Communications

of the ACM, Vol. 28, No. 10, 1985 pp. 1054–1058.
Wallace, D.R. and Kuhn, D.R., Converting System Failure Histories into Future Win Situations, available at

http://hissa.nist.gov/effProject/handbook/failure/hase99.pdf, 2000.
Wallace, D.R. and Kuhn, D.R., Failure modes in medical device software: An analysis of 15 years of recall data,

International Journal of Reliability, Quality, and Safety Engineering, Vol. 8, No. 4, 2001, pp. 351–371.

407

Chapter 21

Evaluating test Cases

Quis custodiet ipsos custodes?

Juvenal (Satire VI, lines 347–8)
ca. late 1st century, a.d.

Just as the Roman satirist Juvenal asked who would guard the guards, no matter how carefully a
set of tests is developed, software testers should ask how good are their test cases. Edsger Dykstra
observed that testing can detect the presence of faults but can never assert their absence. Who tests
the test cases? More precisely, how can a set of test cases be tested? One answer has been around
for more than 30 years—mutation testing. A more recent addition, “fuzzing,” is closer to random
testing. The idea that fishing creel counts as an estimate of test case success is both novel and suc-
cessful. We take a brief look at all three approaches in this chapter.

21.1 Mutation testing
A story persists, now considered to be an urban legend, about an early space program error in a
FORTRAN program in which a period was used instead of a comma (Myers, 1976). The state-
ment was (supposedly) a statement like

 DO 20 I = 0,100,2

that was entered as DO 20, I = 0,100.2, which should have defined a Do-loop terminating at state-
ment number 20 in which the loop index, I, was to vary from 0 to 100 in steps of 2. Other versions
have the blanks being eliminated, creating an assignment statement

 DO20I = 100.2

With the typographical error, the loop used the default increment of 1. Supposedly, this error caused
a Mariner I probe to Venus to fail. This kind of fault could have been caught by mutation testing.

408  ◾  Software Testing

The term mutant is borrowed from biology, where it refers to a small variation of an original
organism. Mutation testing begins with a unit and a set of test cases for that unit, such that all
the test cases pass when executed. Then a small change is made to the original unit, and the test
cases are run on the mutant. If all the test cases pass, we know that the mutant was undetected.
At this point there are two possibilities—either the small change resulted in a logically equiva-
lent program, or the set of test cases was incapable of detecting the change. This raises one of the
problems of mutation testing—identification of equivalent mutants. We need some definitions to
frame this discussion.

21.1.1 Formalizing Program Mutation
Definition

A mutant P′ of a program P is the result of making a change to the source code of the original
program P.

Mutation testing uses small changes, usually only one, to the source code of P. Mutation test-
ing begins when there is a set T of test cases of P such that, for every test case t ∈ T, the test passes;
specifically, the expected output of P executing t matches the observed output. The point of muta-
tion testing is to see if the set T detects the small changes in any mutant.

Definition

Given a program P, a mutant P′, a set of test cases T such that every t ∈ T passes for P, the mutant
P′ is killed if at least one test case t ∈ T fails.

Definition

Given a program P, a mutant P′, a set of test cases T such that every t ∈ T passes both for P and
for P′, the mutant P′ is considered to be a live mutant.

Live mutants are the hardest part of mutation. There are only two possibilities—either a live
mutant P′ is logically equivalent to P, or the test cases in T are not sufficient to reveal the differ-
ence. Why is this a problem? Determining if P and P′ are logically equivalent is formally undecid-
able. At this point, the theory of mutation testing develops guideline quantities that involve ratios
of the number of killed mutants to the total number of mutants (which includes an undecidable
number of equivalent mutants).

Definition

Suppose a program P, and a set M of mutations of P, and a set of test cases T results in x killed
mutants out of y total mutants in M. Then, the ratio x/y is the mutation score of P with respect to M.

Higher values of mutation score increase the confidence in the utility of the original test set
T. At this point, it is clear that there is a large amount of computation associated with mutation.
Until very recently, the computational size relegated mutation testing to the status of an academic
curiosity. At this writing, there are a few tools available; most are freeware.

Evaluating Test Cases  ◾  409

21.1.2 Mutation Operators
Ammann and Offut (2008) are two of the long-term mutation researchers. In their book, they
develop 11 categories of mutation operators (Hmmm … could this be “mutation overkill”? Sorry,
I just couldn’t resist the pun.) To get the flavor of these replacements, the most common mutations
are the result of replacing a syntactic element with another member of the same set. For example,
the set of arithmetic operators, A, is the set

 A = {+, –, *, /, %}.

(We could add exponentiation and other primitives if we wished.) Similarly, the set of relational
operators, R, is the set

 R = {<, <=, ==, ≠, >, >=}

The third common set of replacements, L, deals with logical connectives that we met in Chapter 3:

 L = {∧, ∨, ⊕, ∼, →}

At this point, a mutation tester’s creativeness can extend the basic idea to unit-specific choices.
If a program uses trigonometric functions, they can all be replaced by other trig functions; simi-
larly for statistical functions. In Chapter 16, we came close to this when we discussed Halstead’s
metrics. There, all of these were just lumped together into the set of operations in a program. The
next three subsections use a free, online mutation testing tool (PIT) to analyze three of our previ-
ously worked examples, isLeap (from NextDate), isTriangle (from the Triangle program), and a
version of the commission problem. Mutation testers can let their imaginations run wild with the
“mutation explosion.” Recall the Boolean function isLeap from our earlier examples.

Public Function isLeap(year) As Boolean
 Dim year As Integer
 Dim c1, c2, c3 As Boolean
1. c1 = (year% 4 == 0)
2. c2 = (year% 100 == 0)
3. c3 = (year% 400 == 0)
4. isLeap = False
5. If ((c1 AND NOT(c2)) OR (c3)) Then
6. IsLeap = True
7. Else
8. IsLeap = False
9. EndIf
End Function

The “mutation explosion” is only hinted at here. In a full mutation, there are four mutations
of the % operation in statement 1, compounded by five replacements of the == connective. Since
mutations are made singly, there would be nine mutations of statement 1, similarly nine each for
statements 2 and 3. The compound condition in statement 5 contains three logical connectives,
and each of these could be replaced by four other connectives. Then we can add slight changes to
the constants: we might replace 4 any of {–4, 3, 0, 5} and 100 any of {101, 0, 99, –100}. Altogether,
we can imagine dozens of mutants of the basic isLeap.

410  ◾  Software Testing

21.1.2.1 isLeap Mutation Testing

Here isLeap is coded as a Java method, isLeapYear, and a class test fixture, TestisLeap. My col-
league and friend, Dr. Christian Trefftz, developed and ran the examples in this section.

public class IsLeap
{
 public static boolean isLeapYear(int value)
 {
 return (value % 4 == 0 && value % 100 != 0)||value % 400 == 0;
 }
}

import org.junit.Test;
import static org.junit.Assert.*;

public class TestIsLeap
{
 @Test
 public void testIsLeapYear()
 {
 assertTrue(IsLeap.isLeapYear(2012));
 assertTrue(IsLeap.isLeapYear(2000));
 assertTrue(!IsLeap.isLeapYear(2013));
 assertTrue(!IsLeap.isLeapYear(1900));
 }
}

PIT is a freeware mutation program that integrates well with Java. Here are the results reported
by PIT version 0.29:

 1. Replaced integer modulus with multiplication: KILLED -> TestIsLeap.testIsLeapYear(Test
IsLeap)

 2. Replaced integer modulus with multiplication: KILLED -> TestIsLeap.testIsLeapYear(Test
IsLeap)

 3. Replaced return of integer sized value with (x == 0 ? 1 : 0): KILLED -> TestIsLeap.test
IsLeapYear(TestIsLeap)

 4. Negated conditional: KILLED -> TestIsLeap.testIsLeapYear(TestIsLeap)
 5. Negated conditional: KILLED -> TestIsLeap.testIsLeapYear(TestIsLeap)
 6. Negated conditional: KILLED -> TestIsLeap.testIsLeapYear(TestIsLeap)
 7. Replaced integer modulus with multiplication: KILLED -> TestIsLeap.testIsLeapYear(Test

IsLeap)

PIT performs selected mutation by examining the source code and selecting likely mutator
replacement mechanisms. In this example, the following mutators were used by PIT:

 ◾ INCREMENTS_MUTATOR
 ◾ CONDITIONALS_BOUNDARY_MUTATOR
 ◾ RETURN_VALS_MUTATOR

Evaluating Test Cases  ◾  411

 ◾ VOID_METHOD_CALL_MUTATOR
 ◾ INVERT_NEGS_MUTATOR
 ◾ MATH_MUTATOR
 ◾ NEGATE_CONDITIONALS_MUTATOR

21.1.2.2 isTriangle Mutation Testing

public class IsTriangle
{
 public static boolean isATriangle(int a, int b, int c)
 {
 return ((a < (b + c)) && (b < (a + c)) && (c < (a + b)));
 }
}

import org.junit.Test;
import static org.junit.Assert.*;

public class TestIsTriangle
{
 @Test
 public void testIsTriangle()
 {
 assertTrue(IsTriangle.isATriangle (3,4,5));
 assertTrue(!IsTriangle.isATriangle (5,2,3));
 assertTrue(!IsTriangle.isATriangle (6,2,3));
 assertTrue(!IsTriangle.isATriangle (2,5,3));
 assertTrue(!IsTriangle.isATriangle (2,6,3));
 assertTrue(!IsTriangle.isATriangle (3,2,5));
 assertTrue(!IsTriangle.isATriangle (3,2,6));
 }
}

Excerpts from the PIT report

 1. Negated conditional: KILLED -> TestIsTriangle.testIsTriangle(TestIsTriangle)
 2. Changed conditional boundary: KILLED -> TestIsTriangle.testIsTriangle(TestIsTriangle)
 3. Negated conditional: KILLED -> TestIsTriangle.testIsTriangle(TestIsTriangle)
 4. Negated conditional: KILLED -> TestIsTriangle.testIsTriangle(TestIsTriangle)
 5. Replaced integer addition with subtraction: KILLED -> TestIsTriangle.testIsTriangle(Test

IsTriangle)
 6. Replaced return of integer sized value with (x == 0 ? 1 : 0): KILLED -> TestIsTriangle.

testIsTriangle(TestIsTriangle)
 7. Replaced integer addition with subtraction: KILLED -> TestIsTriangle.testIsTriangle(Test

IsTriangle)
 8. Changed conditional boundary: KILLED -> TestIsTriangle.testIsTriangle(TestIsTriangle)
 9. Replaced integer addition with subtraction: KILLED -> TestIsTriangle.testIsTriangle(Test

IsTriangle)
 10. Changed conditional boundary: KILLED -> TestIsTriangle.testIsTriangle(TestIsTriangle)

412  ◾  Software Testing

Active mutators

 ◾ INCREMENTS_MUTATOR
 ◾ CONDITIONALS_BOUNDARY_MUTATOR
 ◾ RETURN_VALS_MUTATOR
 ◾ VOID_METHOD_CALL_MUTATOR
 ◾ INVERT_NEGS_MUTATOR
 ◾ MATH_MUTATOR
 ◾ NEGATE_CONDITIONALS_MUTATOR

Tests examined

 ◾ TestIsTriangle.testIsTriangle(TestIsTriangle) (92 ms)

21.1.2.3 Commission Mutation Testing

This example is more interesting. In the PIT report, we see that two mutants (11 and 17) survived.
Sadly, there is no further information about the surviving mutations. This run would give a muta-
tion score of 19/21, or 0.905. The previous two examples had perfect mutation scores (1.0).

public class SalesCommission
{
 public static int calcSalesCommission (int locks, int stocks, int barrels)
 {
 int sales,commision;
 sales = 45*locks + 30*stocks + 25*barrels;
 if (sales <= 1000)
 commission = sales*0.10;
 if ((sales > 1000) && (sales <= 1800))
 commission = 100 + (sales – 1000)*0.15;
 if ((sales > 1800)
 commission = 100 + 800*0.15 + (sales – 1800)*0.20;

 return commission;
 }
}

import org.junit.Test;
import static org.junit.Assert.*;

public class TestSalesCommission
{
 @Test
 public void testCommission()
 {
 assertEquals(SalesCommission.calcSalesCommission (1,1,1), 10);
 assertEquals(SalesCommission.calcSalesCommission (8,8,8), 80);
 assertEquals(SalesCommission.calcSalesCommission (10,10,10), 100);
 assertEquals(SalesCommission.calcSalesCommission (11,11,11), 115);
 assertEquals(SalesCommission.calcSalesCommission (17,17,17), 205);

Evaluating Test Cases  ◾  413

 assertEquals(SalesCommission.calcSalesCommission (18,18,18), 220);
 assertEquals(SalesCommission.calcSalesCommission (19,19,19), 240);
 assertEquals(SalesCommission.calcSalesCommission (10,0,0), 45);
 assertEquals(SalesCommission.calcSalesCommission (0,10,0), 30);
 assertEquals(SalesCommission.calcSalesCommission (0,0,10), 25);
 }
}

Excerpts from PIT report

 1. Replaced integer addition with subtraction: KILLED -> TestSalesCommission.testCommis
sion(TestSalesCommission)

 2. Replaced integer multiplication with division: KILLED -> TestSalesCommission.testCom
mission(TestSalesCommission)

 3. Replaced integer multiplication with division: KILLED -> TestSalesCommission.testCom
mission(TestSalesCommission)

 4. Replaced integer addition with subtraction: KILLED -> TestSalesCommission.testCommis
sion(TestSalesCommission)

 5. Replaced integer multiplication with division: KILLED -> TestSalesCommission.testCom
mission(TestSalesCommission)

 6. Changed conditional boundary: KILLED -> TestSalesCommission.testCommission(Test
SalesCommission)

 7. Negated conditional: KILLED -> TestSalesCommission.testCommission(TestSalesCommis
sion)

 8. Replaced double multiplication with division: KILLED -> TestSalesCommission.testCom
mission(TestSalesCommission)

 9. Changed conditional boundary: KILLED -> TestSalesCommission.testCommission(Test
SalesCommission)

 10. Negated conditional: KILLED -> TestSalesCommission.testCommission(TestSalesCommis
sion)

 11. Changed conditional boundary: SURVIVED
 12. Negated conditional: KILLED -> TestSalesCommission.testCommission(TestSalesCommis

sion)
 13. Replaced double multiplication with division: KILLED -> TestSalesCommission.testCom

mission(TestSalesCommission)
 14. Replaced integer subtraction with addition: KILLED -> TestSalesCommission.testCommis

sion(TestSalesCommission)
 15. Replaced double addition with subtraction: KILLED -> TestSalesCommission.testCommis

sion(TestSalesCommission)
 16. Negated conditional: KILLED -> TestSalesCommission.testCommission(TestSalesCommis

sion)
 17. Changed conditional boundary: SURVIVED
 18. Replaced double addition with subtraction: KILLED -> TestSalesCommission.testCommis

sion(TestSalesCommission)
 19. Replaced integer subtraction with addition: KILLED -> TestSalesCommission.testCommis

sion(TestSalesCommission)
 20. Replaced double multiplication with division: KILLED -> TestSalesCommission.testCom

mission(TestSalesCommission)

414  ◾  Software Testing

 21. Replaced return of integer sized value with (x == 0 ? 1 : 0): KILLED -> TestSalesCommission.
testCommission(TestSalesCommission)

Active mutators

 ◾ INCREMENTS_MUTATOR
 ◾ CONDITIONALS_BOUNDARY_MUTATOR
 ◾ RETURN_VALS_MUTATOR
 ◾ VOID_METHOD_CALL_MUTATOR
 ◾ INVERT_NEGS_MUTATOR
 ◾ MATH_MUTATOR
 ◾ NEGATE_CONDITIONALS_MUTATOR

Tests examined

 ◾ TestSalesCommission.testCommission(TestSalesCommission) (112 ms)

21.2 Fuzzing
Fuzzing is an academic curiosity that began at the University of Wisconsin (Miller et al., 1989). In
true romance novel form, the seminal report notes that, “on a dark and stormy night…” the idea
was accidentally discovered. Barton Miller and two graduate students, Lars Fredriksen and Bryan
So, were using a dial-up Internet connection during a storm. Electronic noise on the line generated
garbled character strings that caused failures on several UNIX utilities. This piqued their curiosity,
and evolved into a protracted study. Their study examined 88 utilities running on seven UNIX
versions, and the attendant faults revealed by random character strings.

Since then, the idea of fuzzing has been extended to several operating systems. “Fuzzers” are
programs that present random strings of characters as inputs to both command line and interac-
tive applications. The random strings are an advantage in that they can reveal situations a tester
would never think of. The downside is that the expected output part of a test case cannot be
defined. This is not too much of a problem because usually the response to faulty input is an error
message.

This is very similar to the “automatic dialers” used in telephone switching system prototypes
(but they generate multifrequency digits, not dial pulse digits). These devices generate large num-
bers of calls to random prototype directory numbers, with the objective of determining a lost call
ratio. These systems also double as traffic generators.

21.3 Fishing Creel Counts and Fault Insertion
Fish and wildlife management offices in states with strong fishing programs use a method based
on “creel counts” to assess the success of fish stocking policies. As an example, the Rogue River
near Rockford, Michigan, is a designated trout stream. Every year, it is stocked with hatchery fish.
The adipose fin (near the tail) is removed, and during the season, anglers are asked to participate in
creel counts in which they voluntarily report their catches. On the basis of this data, stream man-
agement can make an estimate of the relative populations of wild (with adipose fin) and hatchery

Evaluating Test Cases  ◾  415

trout. Suppose, for example, that the Rogue River is stocked with 1000 marked trout, and that
during the fishing season, the creel report totals are 500 fish caught, of which 300 are hatchery
trout. The stream management team would conclude that 60% of the trout in the Rogue River
are hatchery (planted) fish. The total populations could also be estimated; in this case, the 500
fish caught represent 30% of the total population. This approach to estimation assumes that the
hatchery and wild fish are mixed in a uniform way.

The same idea can be applied to estimate the success of test cases and the number of remain-
ing faults not caught by an existing set of test cases. Suppose an organization keeps demographic
information on the numbers and types of faults found in developed programs. Assuming new
programs are roughly similar, a set of known faults is added to the “wild code” and then the exist-
ing set of test cases is run on the “stocked” code. If the set of test cases reveals all the inserted
faults, the organization can be pretty confident that the set of test cases is acceptable. If only half
the inserted faults are revealed, the number of “wild faults” probably represents only half the total
number of faults.

The efficacy of a fault insertion approach clearly assumes that the demographic profile of
inserted faults is reasonably representative of the “wild fault” population.

EXERCISE
 1. Discuss whether or not the creel count approach to fault detection might be used to opti-

mize the starting set of test cases. Once a set of test cases finds all the inserted faults, would
it be possible to reduce the number of test cases?

references
Ammann, P. and Offutt, J., Introduction to Software Testing, Cambridge University Press, New York, 2008.
Juvenal (Satire VI, lines 347–8), ca. late 1st century, a.d.
Miller, B. et al., An Empirical Study of the Reliability of UNIX Utilities, 1989, ftp://ftp.cs.wisc.edu/paradyn/

technical_papers/fuzz.pdf
Myers, G.J., Software Reliability: Principles & Practice, Wiley, New York, 1976, p. 25.

417
© 2010 Taylor & Francis Group, LLC

Chapter 22

Software technical reviews

“A stitch in time saves nine.”

Francis Baily, 1797

Conventional wisdom echoes the English astronomer Baily in many aspects of daily life, from oil
changes in a car to preventative software maintenance. In so many ways, we all depend on forms
of reviews—surgical second opinions, movie and restaurant reviews, home safety inspections,
Federal Aviation Authority aircraft inspections, and so on (add your favorites).

Are software technical reviews a form of testing? The generally accepted answer is a considered
“yes.” This is amplified by the chapters on software reviews in the International Software Testing
Certification Board (ISTQB) Foundation and Advanced Level Syllabi (ISTQB 2007, 2012).
Software testing seeks to identify faults by causing failures, as discussed in Chapter 1. Software
reviews try to identify faults (not software failures), but an identified fault typically morphs into
faulty code, which, when executed, causes a failure.

Much of the material in this chapter is based on experience in the development of telephone
switching system software. Those applications could have a 30-year serviceable lifetime; hence,
software maintenance could last that long. In self-defense, that organization refined its review
process over an interval of 15 years, resulting in “industrial-strength technical inspections.” The
industrial strength part refers to a process that was gradually refined, and which contains several
subtle checks and balances.

It is helpful to understand software reviews as a critical evaluation of a work product, per-
formed by people who are technically competent. A software review is, or should be, a scheduled,
budgeted development activity with formal entry and exit criteria.

22.1 Economics of Software reviews
Many development organizations are reluctant to institute software reviews, mostly because of a
shortsighted view of cost of preparation. As far back as 1981, Barry Boehm dispelled this notion
with his graph of fault resolution costs as a function of when they are discovered (see Figure 22.1)

418  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

(Boehm, 1981). This is a remarkable comparison as it relates data from three diverse organizations.
(As a curious footnote, the GTE AEL project closest to the line in the Acceptance phase is the
project for which I prepared data on Dr. Boehm’s request.) The cost axis is a logarithmic scale, and
the straight line of best fit means that correction costs increase exponentially with time.

As early as 1982, Roger Pressman (Pressman, 1982) used a defect amplification model that was
presented in a course at the IBM System Sciences Institute. The model describes how defects from
one waterfall phase might be amplified in a following phase. Some defects might be simply passed
through, and others might be amplified by work done in the successor phase. The defects then
form their own waterfall, something probably not intended by the waterfall model. The report
continues by postulating a defect detection step in which technical inspections detect a percent-
age of defects before they can be passed on to successor phases. Pressman presents a hypothetical
example showing two versions of a waterfall-based software development—one with technical
inspections and one without. The result: 12 defects without reviews were reduced to 3 after reviews
at three development phases. This is a hypothetical example, but it illustrates a widely agreed-on
fact—reviews reduce faults, and consequently, the overall development cost.

More recently, Karl Wiegers (1995) reports that, in an unnamed German company, correcting
defects found by testing was 14.5 times the cost to find the problem in an inspection, and this
grew to 68 times the inspection cost if the defect was reported by a customer. Wiegers continues
with an updated IBM statistic: correcting defects found in a released product was 45 times the cost
if the defect was fixed at design time. He asserts that, while technical inspections may constitute
5%–15% of total project cost, “Jet Propulsion Laboratory estimated a net savings of $7.5 million
from 300 inspections performed on software they produced for NASA” and “another company
reports annual savings of $2.5 million.” One last Wiegers statistic: in another unnamed company,
the cost to fix a defect found by inspection was $146 compared with the cost to fix a defect found
by customer: $2900, resulting in a cost/benefit ratio of 0.0503.

Fault resolution costs

0.2

0.5

1.0

2

5

10

20

50

100

0.1
Requirements Design Code Dev. test Acceptance Operation

Median, TRW survey

IBM (SDD)

GTE (AEL)

Relative cost

*

Figure 22.1 relative costs of defect resolution. (From Boehm, B., Software Engineering
Economics, Englewood Cliffs, NJ: prentice-Hall, 1981.)

Software Technical Reviews  ◾  419

© 2010 Taylor & Francis Group, LLC

The bottom line? People in development organizations make mistakes, and the earlier these
are caught, the cheaper they are to resolve. To be effective, reviews need both process and reviewer
credibility, and they must consider human factors. In the next sections, we describe the roles in
a review; we then look at and compare three types of reviews, the materials needed to conduct a
thorough review, a time-tested review process, and review etiquette. The chapter concludes with a
rather surprising study done at Grand Valley State University.

22.2 roles in a review
In all three types of reviews, there are similar roles. A review team consists of the person who
developed the work product, reviewers, a review leader, and a recorder. These roles may involve
some duplication, and in some cases, some may be missing. Reviews are an interesting point in a
software project because the technical and management roles intersect there. The outcome of each
type of review is a technical recommendation to the responsible administrator, and this is a crucial
point at which responsibility transfers from developers to management.

22.2.1 Producer
As the name implies, this is the person who created the work product being examined. The pro-
ducer is present in the review meeting but may not contribute much as one of the reviewers. Why?
We all know it is much easier to proofread someone else’s work rather than one’s own. The same
holds true for technical reviews. In Section 22.3, the roles that a producer may have in the differ-
ent types of reviews are discussed. At the end of all types of technical reviews, the producer will be
the person who resolves the action items identified during the review meeting.

22.2.2 Review Leader
Review leaders are responsible for the overall success of the review. They have the following duties:

 ◾ Schedule the actual review meeting
 ◾ Ensure that all members of the review team have the appropriate review materials
 ◾ Conduct the actual review meeting
 ◾ Write the review report

To do all of this, a review leader must be technically competent, be well organized, have leader-
ship ability, and must be able to prioritize. Above all, a review leader must be able to conduct an
orderly, well-paced business meeting. There are lessons to be learned from a poorly run business
meeting. Such meetings are characterized by some or all of the following:

 ◾ Participants see them as a waste of time.
 ◾ The wrong people are at the meeting.
 ◾ There is no agenda, or if there is, it is not followed.
 ◾ There is no prior preparation.
 ◾ No issues are identified.
 ◾ The discussion is easily side-tracked.
 ◾ Time is spent fixing problems rather than just identifying them.

420  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Any one of these will doom a review meeting, and it is the responsibility of the review leader
to assure that they do not occur.

22.2.3 Recorder
Because of connotations associated with “secretary,” the preferred term for this role is review
recorder. As the title implies, the recorder takes notes during the review meeting. To do this,
recorders must be able to track conversations and write notes in parallel—quite a skill, and
not all of us have that ability. It is helpful if recorders can write clearly and succinctly because
the recorded notes will be the basis for the formal review report. Often the recorder helps the
review leader write the review report. It is a good practice for the recorder to have a “mini-
review” in the last few minutes of the review meeting to go over the notes to see if anything
was missed.

22.2.4 Reviewer
The individual reviewers are responsible for objectively reviewing the work product. To do
this, they must be technically competent, and should not have any biases or irrelevant per-
sonal agendas. The reviewers identify issues and assign a severity level to each item. During the
review meeting, these issues are discussed, and the severity level may be changed by consensus.
Before the review meeting, each reviewer submits a review ballot that contains the following
information:

 ◾ Reviewer name
 ◾ Review preparation time
 ◾ A list of issues with severity
 ◾ An overall review disposition recommendation (OK as is, accept with minor rework, major

rework with a new review needed)

22.2.5 Role Duplication
In smaller organizations, it may be necessary for one person to fill two review roles. Here are some
common pairings, and a short comment on each possibility:

 ◾ Review leader is the producer—this happens in a walkthrough. It is usually a poor idea,
particularly if the producer is technically insecure.

 ◾ Review leader is the recorder—this can work, but it is difficult.
 ◾ Review leader is a reviewer—this works reasonably well, but is very time consuming.

22.3 types of reviews
There are three fundamental types of software reviews: walkthroughs, technical inspections, and
audits. Each of these is described here, and then compared with the others. Before doing that, we
clarify reasons to conduct a review. Here is a list of frequently given reasons:

Software Technical Reviews  ◾  421

© 2010 Taylor & Francis Group, LLC

 ◾ Communication among developers
 ◾ Training, especially for new personnel, or for personnel recently added to a project
 ◾ Management progress reporting
 ◾ Defect discovery
 ◾ Performance evaluation (of the work product producer)
 ◾ Team morale
 ◾ Customer (re)assurance

All of these can happen with a software review; however, the best (some say only!) reason to
have reviews is to discover defects. With this focus, all of the other “reasons” turn out to be diver-
sions, and each diminishes the defect discovery goal.

22.3.1 Walkthroughs
Walkthroughs are the most common form of review, and they are the least formal. They often
involve just two people, the producer and a colleague. There is generally no preparation ahead of
the walkthrough, and usually little or no documentation is produced. The producer is the review
leader; therefore, the utility of a walkthrough depends on the real goal of the producer. It is easy
for a producer/review leader to direct the walkthrough to the “safe” parts of the work product, and
avoid the portions where the producer is unsure. This is clearly a degenerate case, but it happens,
particularly when technical people resent the review process. Walkthroughs are most effective at
the source code level, and on other small work products.

22.3.2 Technical Inspections
Pioneered by Michael Fagan while he was at IBM in the 1970s, technical inspections are the most
effective form of software reviews. They are a highly formal process, and more details of techni-
cal inspections are given in Sections 22.4 and 22.5. The effectiveness of technical inspections is a
result of several success factors, including

 ◾ A documented inspection process
 ◾ Formal review training
 ◾ Budgeted review preparation time
 ◾ Sufficient lead time
 ◾ Thoughtful identification of the inspection team
 ◾ A refined review checklist
 ◾ Technically competent participants
 ◾ “Buy in” by both technical and management personnel

22.3.3 Audits
Audits are usually performed by some external group, rather than the development team. Audits
may be conducted by a software quality assurance group, a project group, an outside agency,
or possibly a government standards agency. Audits are not primarily concerned with finding
defects—the main concern is conformance to some expectations, either internal or external. This
is not to diminish the importance of audits—they can be very expensive because they require

422  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

significant preparation time. Whereas a technical inspection meeting may last 60 to 90 minutes,
an audit may last a full day or more. Audits may be required by contract, and an unsatisfactory
audit usually results in expensive corrective actions.

22.3.4 Comparison of Review Types
The main characteristics of the three review types are summarized in Table 22.1.

Because technical inspections are the most effective at finding defects early, they are the focus
of the remainder of this chapter.

22.4 Contents of an Inspection packet
One of the success factors of a technical inspection is the packet of materials that the inspection
team uses in its preparation. Each inspection packet item is described in the succeeding subsec-
tions. The Appendix contains a sample inspection packet for a use case inspection.

22.4.1 Work Product Requirements
As mentioned earlier, technical inspections are valuable because they find faults early in a develop-
ment process. In the waterfall life cycle, and in many of its derivatives, the early phases are char-
acterized by tight what/how cycles, in which one phase describes what must be done in the next
phase, and the successor phase describes “how” it responds to the “what” definition. These tight
what/how cycles are ideally suited for technical inspections; therefore, one important element in
the inspection packet is the work product requirements. Without this, the review team will not be
able to determine if the “how” part has actually been accomplished.

22.4.2 Frozen Work Product
Once an inspection team has been identified, each member receives the full inspection packet.
This is a point at which three software project disciplines converge: development, management,
and configuration management. In the configuration management view, a work product is called
a “design item.” Once a design item has been reviewed and approved, it becomes a “configuration
item.” Design items can be changed by the responsible designers (producers), but configuration
items are frozen, meaning that they cannot be changed by anyone unless they are first demoted to

table 22.1 Comparison of review types

Aspect Walkthrough Inspection Audit

Coverage Broad, sketchy Deep Varies with auditor(s)

Driver Producer Checklist Standard

Preparation time Low High Could be very high

Formality Low High Rigid

Effectiveness Low High Low

Software Technical Reviews  ◾  423

© 2010 Taylor & Francis Group, LLC

design item status. Once a design item enters the inspection process, the producer may no longer
make changes to it. This ensures that the full inspection team is literally on the same page.

22.4.3 Standards and Checklists
When given a work product to inspect, how does a reviewer know what to do? What to look for?
In a mature inspection process, the organization has checklists appropriate to the various work
products subject to inspections. A checklist identifies the kinds of problems that a reviewer should
look for. Checklists are refined over time, and many companies consider their inspection check-
lists to be proprietary information. (Who would like to share with the world what their product
weak points and concerns are?)

A good checklist is modified as it is used. In fact, one inspection meeting agenda item can be to
ask whether any changes in the checklist are needed. Checklists should be public in a development
organization. One side benefit is that checklists can improve the development process. This is very
similar to the use of grading rubrics in the academic world. If students know the grading criteria,
they are much more likely to submit a better assignment. When developers consult a checklist,
they know what historical situations have been fault-prone, and therefore they can proactively deal
with these potential problems.

There is a wealth of online material to get started with developing checklists. One paper
(http://portal.acm.org/citation.cfm?id=308798) surveys 117 checklists from 24 sources. Different
categories of checklist items are discussed and examples are provided of good checklist items as
well as those that should be avoided. Karl Weigers’ website is another good source for checklists
(http://www.processimpact.com/pr_goodies.shtml).

Applicable standards play a role similar to checklists. Development organizations may have
code-naming standards, for example, or required templates for test case definition. Conformance
to applicable standards is usually required, and is therefore and easy item on an inspection check-
list. As with checklists, standards may be subject to change, albeit more slowly.

22.4.4 Review Issues Spreadsheet
Individual reviewers identify issues and submit them to the review leader. A spreadsheet with
columns as shown in Table 22.2 greatly facilitates the process that the review leader uses to merge
the inputs from the full inspection team.

table 22.2 Individual reviewer Issues Spreadsheet

<Work product information>

<Reviewer Name>

<Preparation Date>

<Reviewer Preparation Time>

Location Checklist

Issue # Page Line Item Severity Description

1 1 18 Typo 1 Change “accound” to “account”

424  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Information in the individual reviewer issues spreadsheets is merged into a master issues
spreadsheet by the review leader (Table 22.3). The spreadsheet can then be sorted by location, by
checklist item, by fault severity, or some combination of these. This enables the review leader to
prioritize the issues, which then becomes the skeleton of the review meting agenda. This overview
of the full set of identified issues can also be used to estimate the length of the review meeting
time. In extreme cases, the faults might constitute a “showstopper”—faults so severe that the work
product is not yet ready for a review and is returned to the producer. The producer can then use
the combined issues list to guide revision work.

22.4.5 Review Reporting Forms
Once reviewers complete their examination of the work product, they submit an individual review
report form to the review leader. This form should contain the following information:

 ◾ Reviewer name
 ◾ Work product reviewed
 ◾ Preparation hours spent
 ◾ Summary of the review issues spreadsheet showing the number of issues of each severity level

table 22.3 review report Spreadsheet

<Work Product Information>

Review Team Members Preparation
Time

Leader

Recorder

Reviewer

Reviewer

Reviewer

Reviewer

Total prep
time

Meeting
date

<Review Recommendation>

Location Checklist

Issue # Reviewer Page Line Item Severity Description

1 1 18 Typo 1 Change “accound” to
“account”

Software Technical Reviews  ◾  425

© 2010 Taylor & Francis Group, LLC

 ◾ Description of any “showstopper” issue(s)
 ◾ The reviewers recommendation (OK as is, minor rework needed, or major rework with new

review needed)

This information can be used to analyze the effectiveness of the review process. During my
industrial career, the software quality assurance group made a study of the severity of found
defects as a function of preparation hours. They proved the obvious, but the results are interesting:
out of four severity levels, the only reviewers who found the really severe faults were those who
spent six to eight hours of preparation time. At the other end of the severity spectrum, those who
only found the lowest severity faults only spent one to two preparation hours.

There are other possible analyses, and they relate to the whole idea of openness and account-
ability. The underlying assumption is that all review documents are open, in the sense that they are
available to everyone in the organization. Accountability is the desired consequence of this open-
ness. Consider reviewers who report significant preparation time yet do not report the severe faults
that other reviewers find. If there is a pattern of this, some supervisory intervention is appropriate.
Conversely, reviewers who consistently find the severe faults can be recognized as effective review
team members, and this can be a consideration in an annual performance review.

22.4.6 Fault Severity Levels
It is helpful if items in an inspection checklist are given severity levels. The Appendix contains a sample
definition of severity levels for use cases. More recently, the IEEE Standard Classification for Software
Anomalies Working Group has published (and sells) 1044-2009 IEEE Standard Classification for
Software Anomalies (IEEE, 2009). While examples are nice, detailed fault severity levels are awkward
in practice. Rather than have a debate about whether a discovered fault is severity level 7 or 8, it is more
productive to have a simple three- or four-level severity classification (such as the one in the Appendix).

The order of severity levels is less interesting: usually the simplest faults are of severity 1 and
the most complex are the high end of the scale (3 or 4). This avoids the confusion that sometimes
occurs with priority levels. (Consider priority = 4 and priority = 1: does the 4 mean high priority,
or does the 1 mean first priority?)

22.4.7 Review Report Outline
The review report is the point where technical responsibility ends and administrative responsibility
begins, so the review report must serve the needs of both groups of people. It also becomes the basis for
accountability because the management relies on the technical judgment of the review team.

Here is a sample outline of a review report:

 1. Introduction
 a. Work product identification
 b. Review team members and roles
 2. Preliminary issue list
 a. Potential fault
 b. Severity
 3. Prioritized action item list
 a. Identified fault
 b. Severity

426  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

 4. Summary of individual reports
 5. Review statistics
 a. Total hours spent
 b. Faults sorted by severity
 c. Faults sorted by location
 6. Review recommendation
 7. Appendix with the full review packet

22.5 an Industrial-Strength Inspection process
This section describes a process for technical reviews that gradually evolved over a period of
12 years in a research and development laboratory that developed telephone switching system
hardware and software. Since the commercial lifetime of these systems could reach 30 years, the
developing organization had to produce nearly fault-free systems as a matter of economic neces-
sity. As they say, necessity is the mother of invention—certainly true in what is termed here an
“industrial-strength inspection process.” Some of the checks and balances will be highlighted, as
well as some of the resolutions to hard questions.

Figure 22.2 shows the stages in the industrial-strength inspection process. Even these stages
were carefully devised. As presented, it happens to resemble common depictions of the waterfall
life cycle mode, but there are several important differences. The sequence of stages is important,
and deviations from the sequence simply do not work. The activities of each stage, and some of the
reasons for them, are described in the next subsections.

22.5.1 Commitment Planning
The technical inspection process begins with a meeting between the producer of the work product
and his/her supervisor. Working together, they identify an appropriate review team and the review
leader. In a degenerate case, this can be mildly adversarial—the producer may wish to “stack the

Commitment
planning

Reviewer
introduction

Preparation

Review
and

report

Disposition

Figure 22.2 Stages in industrial-strength inspection process.

Software Technical Reviews  ◾  427

© 2010 Taylor & Francis Group, LLC

deck” with close friends while the supervisor may wish to “send a message” to the producer. Both
possibilities are clearly regrettable, but they can happen. On the positive side, if the producer and
the supervisor both agree on the value of inspections, they will both see it as a way to promote their
own self-interests. After some negotiation, both the producer and the supervisor need to accept
and approve the identified review team. In a truly formal process, both parties might even sign off
on this agreement.

Once the review team is identified, the supervisor completes any necessary administrative
approval. One curious question can arise at this point. What if a review team member is from
another supervisory group? Even worse, what if the other supervisor feels that the requested
reviewer is on a critical path and cannot be spared? This becomes a question of corporate culture.
A good answer is that, if the organization is truly committed to technical inspections, everyone
understands that such conflicts can occur. This should be discussed and agreed upon at the project
initiation, thereby preventing future conflicts.

The supervisor should have a commitment meeting, with other supervisors if necessary, to
obtain commitments for all review team members. Any task approvals are communicated at this
meeting. Once all this is done, the results are given to the review leader. This is the point where
administrative authority is handed over to the technical people. It is also the point at which man-
agement separates from the inspection process.

22.5.2 Reviewer Introduction
Once the review process is turned over to the review team, the review leader assembles the team for
a brief meeting. In preparation for this meeting, the producer prepares the full review packet and
freezes the work product to be examined. At the preliminary meeting, the review leader delivers
the review packet and gives a brief overview of the work product. There may be a discussion of the
work product, including any special concerns. Since the review team is accountable for the technical
recommendation, the team should decide whether or not the review packet is complete. One item of
business is to select the review recorder and to schedule the review meeting time. The meeting ends
with all team members either committing to the process or possibly disqualifying themselves. In the
latter case, the process may go back to the commitment planning stage (this is, or should be, rare).

22.5.3 Preparation
The review team members have approved preparation time—this is important. It is simply not
realistic to rely on a team member’s good will to spend personal time (i.e., unpaid) on review
preparation. The preparation interval for a review of normal duration (60–90 minutes) should
be five full working days, in which up to 8 hours of preparation time can be used by each review
team member. Allowing a 5-day interval should be enough for reviewers to meet most of their
other commitments.

As part of the preparation, reviewers examine the work product with respect to the review
checklist and their own expertise. As issues are recognized, they are recorded into the individual
reviewer issues spreadsheet (see Table 22.2). Reviewers should describe the issue, provide a short
explanation or description, and then make a severity assessment. At least one full day before the
review meeting, the reviewers send their individual spreadsheets to the review leader, along with
their ballots showing actual time spent, and their preliminary recommendations.

Once all the individual reports are in, the review leader merges them into a single spreadsheet,
and prioritizes the issues. This involves some insight, because often two reviewers may provide

428  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

slightly different descriptions of the same underlying issue. The location information usually is
enough to recognize this problem. Given a final issues list, the review leader makes a Go/No Go
decision based on the number and severity of the issues. (Review cancellation should be rare, but
it is wise to allow for the possibility.) Assuming the review will occur, the review leader prepares
the final agenda by prioritizing the merged issues—a form of triage.

22.5.4 Review Meeting
The actual review meeting should be conducted as an effective business meeting. In Section 22.2.2,
there is a list of characteristics of a poorly run business meeting. Some steps in the review process have
already been taken to assure an effective review meeting:

 ◾ The review team was carefully selected, so the right people will be in the meeting.
 ◾ The agenda is based on the prioritized list of issues, so there should not be a sense that the

meeting is a waste of time.
 ◾ The process calls for budgeted preparation time in which issues are identified before the

meeting.

Normally, the first order of business is to decide if the meeting should be postponed. The
main reasons are most likely absent or unprepared team members. Assuming that the review will
proceed, the main job of the review leader is to follow the agenda, and make sure that issues are
identified, and agreed upon, but not resolved. Once the agenda has been completed, the review
leader asks for a consensus of the review recommendation. Recall that the options are Accept as is,
Accept with minor rework but no additional review is needed, or Reject. The review meeting ends
with a short wrap-up conducted by the recorder in which the issues list is finalized, the individual
ballots are collected, and the team checks that nothing was forgotten.

22.5.5 Report Preparation
The review leader is primarily responsible for writing the review report, but assistance from
the recorder is certainly in order. The report is a technical recommendation to management,
and it ends the technical responsibility (but not the accountability). If there are any issues,
they are noted as action items that require additional work from the producer. The review
report, and all other materials, should be open to the entire organization, as this enhances
accountability.

22.5.6 Disposition
Once the producer’s supervisor receives the report, it becomes the basis of a management decision.
There may be pressing reasons to ignore the technical findings, but if this happens, it is clearly a
management choice. Assuming the recommendation is to accept the work product, it becomes
subject to the configuration management function, and the work product is no longer a design
object; it is a configuration item. As such, it can be used in the remainder of the project as a reliable
component, not subject to change. If the review recommendation lists action items, the producer’s
supervisor and the producer make an estimate of the effort required to resolve the action items,
and the work is done by the producer. Once all action items are resolved, the supervisor either
closes the review or starts a re-review process.

Software Technical Reviews  ◾  429

© 2010 Taylor & Francis Group, LLC

22.6 Effective review Culture
All forms of reviews are social processes; hence, they become corporate culture considerations. In
addition, reviews can be quite stressful, and this also requires social considerations. Reviews are
a group activity, so group size becomes a question. In general, technical inspection teams should
have from four to six members. Fewer members might be necessary in small development organi-
zations. More than six team members is usually counterproductive.

Part of an effective corporate culture is that reviews must be seen as valuable activities
by both management and technical people. Reviews must have formally budgeted time for
all the activities described in Section 22.5. Human factors are important. Long reviews are
seldom effective—psychologists claim that the attention span of most adults is about 12 min-
utes. Consider what effect this can have on a 2-hour meeting. Most review meetings should
be in the 60- to 90-minute range, with shorter meetings preferred. Furthermore, review meet-
ings should be viewed as important, and interruptions should not be tolerated. (This includes
cell phones!)

The best time to have a review meeting? About an hour after the normal start of the work-
ing day. This allows review team members to take care of little things that otherwise might
be distractions. The worst time? Just after lunch, or maybe beginning at 3:00 on a Friday
afternoon.

22.6.1 Etiquette
To reduce the stress that can accompany a review, the following points of review etiquette should
be observed:

 1. Be prepared. Otherwise, the review effectiveness will be diminished. In a sense, an unpre-
pared team member is disrespecting the rest of the review team.

 2. Be respectful. Review the product, not the producer.
 3. Avoid discussions of style.
 4. Provide minor comments (e.g., spelling corrections) to the producer at the end of the

meeting.
 5. Be constructive. Reviews are not the place for personal criticism, nor for praise.
 6. Remain focused. Identify issues; do not try to resolve them.
 7. Participate, but do not dominate the discussion. Careful thought went into selection of the

review team.
 8. Be open. All review information should be widely available to the full organization.

22.6.2 Management Participation in Review Meetings
Many organizations struggle with the question of management participation in reviews. Generally,
this is a bad idea. Management presence in a review easily creates additional stress on all team
members, but in particular, on the producer. If management participation is common, the whole
process can easily degenerate into unspoken agreements among the technical staff (I won’t make
you look bad if you don’t make me look bad). Another possible consequence is that management
might not want negative results to be public—clearly a conflict of interest. How credible might a
management person be as a reviewer? Willing to do the normal preparation? Capable of doing the

430  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

normal preparation? Failing either of these questions, a management person becomes a drag on
the review meeting. To be fair, there are managers who are technically competent, and they can be
disciplined enough to respect the process. The admission ticket would be to do the normal review
preparation and set aside any managerial objectives.

22.6.3 A Tale of Two Reviews
The “Dilbert” comic strip of Scott Adams usually contains poignant insights to software develop-
ment situations. What follows are two possible reviews that would fit into an extended “Dilbert”
scenario.

22.6.3.1 A Pointy-Haired Supervisor Review

 1. The producer picks friendly reviewers.
 2. There is little or no lead time.
 3. There is no approved preparation time.
 4. The work item is not frozen.
 5. The review meeting is postponed twice.
 6. Some reviewers are absent; others take cell phone calls.
 7. Some designers never participate because they cannot be spared.
 8. There is no checklist.
 9. No action items are identified and reported.
 10. The review leader proceeds in a page-by-page order (no triage).
 11. Faults are resolved “while they are fresh in mind.”
 12. Coffee and lunch breaks are needed.
 13. Reviewers float in and out of the meeting.
 14. The producer’s supervisor is the review leader.
 15. Several people are invited as spectators.

Just imagine this as a review!

22.6.3.2 An Ideal Review

Here are some characteristics of a review in a desirable review culture.

 1. Producers do not dread reviews.
 2. Reviewers have approved preparation time.
 3. A complete review packet is delivered with sufficient lead time.
 4. All participants have had formal review training.
 5. Technical people perceive reviews as productive.
 6. Management people perceive reviews as productive.
 7. Review meetings have high priority.
 8. Checklists are actively maintained.
 9. Top developers are frequent reviewers.
 10. Reviewer effectiveness is recognized as part of performance evaluation.
 11. Review materials are openly available and used.

Software Technical Reviews  ◾  431

© 2010 Taylor & Francis Group, LLC

22.7 Inspection Case Study
One of the few things that can be done in a university setting that cannot be done in industry
is repetition. Industrial development groups cannot justify doing the same thing multiple times.
This section reports results of a study done in a graduate course on software testing at Grand
Valley State University. Five groups of graduate students each performed a Use Case Technical
Inspection using the review packet of materials in the Appendix. (The use cases have been sim-
plified in the Appendix.) The team members in the class are fairly representative of development
groups in industry—a range of experience from new hires through people with two decades of
software development. Table 22.4 summarizes the experience profiles of the five review teams.

Table 22.5 clarifies the experience levels in terms of years of industrial experience.
The class had 3 hours of instruction based on materials that were precursors to this chap-

ter. The review teams were identified in a class meeting, and they used the review packet in the
Appendix. The teams had a full week for review preparation, and communicated via e-mail. The
following week, each team conducted a 50-minute technical inspection.

In Table 22.6, the last two columns need explanation. The total number of issues reported to
the review leader is typically reduced during the review to a shorter list of action items that require
additional work. In the case of group 3, for example, many of the low-severity issues were just
simple corrections. Also, there will be duplication among the reported issues—something that the
review leader must recognize and collapse into one agenda item.

It would be nice to have a Venn diagram showing the final action items of each review team.
This is topologically impossible with five circles. Instead, Table 22.7 describes the overlap among
groups. Of the 32 possible subsets of groups, only those with an overlap are listed. After the review
meetings, the five groups found a total of 116 action items.

When all of these are aligned (by eliminating separate appearances of the same underlying
fault), Table 22.7 is alarming. Consider the first few rows, in which 50 faults are found only by one

table 22.4 Experience Levels of review teams

Group Experience

1 1 very experienced, 3 with some experience

2 4 with significant experience

3 2 with significant experience, 2 with little experience

4 2 with significant experience, 2 with little experience

5 2 with little experience

table 22.5 Experience Levels of review teams

Experience Level Years

Little 0–2

Some 3–6

Significant 7–15

Very >15

432  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

group. Even worse, look at the last four entries, where only one fault was found by all five groups,
and only four faults were found by four of the five groups.

The implications of this are enormous—companies simply cannot afford to have duplicate
inspections of the same work product, so it behooves companies to provide review training, and
inspection teams need to use their limited time as effectively as possible.

references
Boehm, B., Software Engineering Economics, Englewood Cliffs, NJ: Prentice-Hall, 1981.
Pressman, R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill, 1982.
Wiegers, K., Improving quality through software inspections, Software Development, Vol. 3, No. 4, April

1995, available at http://www.processimpact.com/articles/inspects.html.

table 22.6 preparation time and Fault Severity of Each team

Group
Total Preparation

Time (Hours)
Low

Severity
Medium
Severity

High
Severity

Total
Issues
Found

Review
Action
Items

1 7 33 33 18

2 6 32 27 59 26

3 36 66 27 93 12

4 21 24 20 9 53 46

5 22 13 4 10 27 10

table 22.7 Demographics of Faults Found by Inspection teams

Groups Issues Groups Issues

1 only 4 2 and 4 only 6

2 only 9 3 and 4 only 1

3 only 6 1, 2, and 4 3

4 only 27 1, 2, and 5 1

5 only 4 2, 4, and 5 1

1 and 2 only 2 1, 2, 4, and 5 1

1 and 3 only 1 1, 3, 4, and 5 1

1 and 4 only 3 2, 3, 4, and 5 1

2 and 3 only 1 All groups 1

433

Chapter 23

Epilogue: Software
testing Excellence

Finishing a book is almost as hard as beginning one. The ubiquitous temptation is to return to “fin-
ished” chapters and add a new idea, change something, or maybe delete a part. This is a pattern that
writing shares with software development, and both activities endure small anxieties as deadlines near.

This book started as a response to Myers’ The Art of Software Testing; in fact, the original work-
ing title was The Craft of Software Testing, but Brian Marrick’s book with that title appeared first.
In the years between 1978 (Myers’ book) and 1995 (the first edition of this book), software testing
tools and techniques had matured sufficiently to support the craft motif.

Imagine a continuum with Art at one end, leading to Craft, then to Science, and ending with
Engineering. Where does software testing belong on this continuum? Tool vendors would put it
all the way at the engineering end, claiming that their products remove the need for the kinds of
thinking needed elsewhere on the continuum. The process community would consider it to be a
science, arguing that it is sufficient to follow a well-defined testing process. The context-driven
school would probably leave software testing as an art, owing to the need for creativity and indi-
vidual talent. Personally, I still consider software testing to be a craft. Wherever it is placed on the
continuum, software testing can also be understood in terms of excellence.

23.1 Craftsmanship
First, a disclaimer. The more politically correct craftspersonship word is too cumbersome. Here,
craftsman uses the gender-neutral sense of the -man suffix. What makes someone a craftsman? One
of my grandfathers was a Danish cabinet maker, and that level of woodworking is clearly a craft.
My father was a tool and die maker—another craft with extremely stringent standards. What did
they, and others recognized as craftsmen, have in common? Here is a pretty good list:

 ◾ Mastery of the subject matter
 ◾ Mastery of the associated tools

434  ◾  Software Testing

 ◾ Mastery of the associated techniques
 ◾ The ability to make appropriate choices about tools and techniques
 ◾ Extensive experience with the subject matter
 ◾ A significant history of high-quality work with the subject matter

Since the days of Juran and Deming, portions of the software development community have
been focused on quality. Software quality is clearly desirable; however, it is hard to define, and
harder still to measure. Simply listing quality attributes, such as simplicity, extensibility, reli-
ability, testability, maintainability, etc., begs the question. The -ability attributes are all similarly
hard to define and measure. The process community claims that a good process results in quality
software, but this will be hard to prove. Can quality software be developed in an ad hoc process?
Probably, and the agile community certainly believes this. Do standards guarantee software qual-
ity? This, too, seems problematic. I can imagine a program that conforms to some set of defined
standards, yet is of poor quality. So where does this leave the person who seeks software quality? I
believe craftsmanship is a pretty good answer, and this is where excellence comes in. A true crafts-
man takes pride in his work—he knows when he has done his best work, and this results in a
sense of pride. Pride in one’s work also defies definition, but everyone who is honest with himself
knows when he has done a really good job. So we have craftsmanship, pride, and excellence tightly
coupled, recognizable, yet difficult to define, and hence to measure, but all are associated with the
concept of best practices.

23.2 Best practices of Software testing
Any list of claimed best practices is subjective and always open to criticism. Here is a reasonable
list of characteristics of a best practice:

 ◾ They are usually defined by practitioners.
 ◾ They are “tried and true.”
 ◾ They are very dependent on the subject matter.
 ◾ They have a significant history of success.

The software development community has a long history of proposed “solutions” to the dif-
ficulties of software development. In his famous 1986 paper, “No Silver Bullet,” Fred Brooks sug-
gested that the software community will never find a single technology that will kill the werewolf
of software development difficulties (Brooks, 1986). Here is a partial list of “best practices,” each
of which was intended as a silver bullet. The list is in approximate chronological order.

 ◾ High-level programming languages (FORTRAN and COBOL)
 ◾ Structured programming
 ◾ Third-generation programming languages
 ◾ Software reviews and inspections
 ◾ The waterfall model of the software development life cycle
 ◾ Fourth-generation programming languages (domain specific)
 ◾ The object-oriented paradigm
 ◾ Various replacements for the waterfall model
 ◾ Rapid prototyping

Epilogue: Software Testing Excellence  ◾  435

 ◾ Software metrics
 ◾ CASE (computer-aided software engineering) tools
 ◾ Commercial tools for project, change, and configuration management
 ◾ Integrated development environments
 ◾ Software process maturity (and assessment)
 ◾ Software process improvement
 ◾ Executable specifications
 ◾ Automatic code generation
 ◾ UML (and its variants)
 ◾ Model-driven development
 ◾ Extreme Programming (with its odd acronym, XP)
 ◾ Agile programming
 ◾ Test-driven development
 ◾ Automated testing frameworks

Quite a list, isn’t it? There are probably some missing entries, but the point is, software devel-
opment remains a difficult activity, and dedicated practitioners will always seek new or improved
best practices.

23.3 My top 10 Best practices for Software testing Excellence
The underlying assumption about best testing practices is that software testing is performed by
software testing craftsmen. Per the earlier discussion, this implies that the tester is very knowl-
edgeable in the craft, and has both the tools and the time to perform the task with excellence.
There is a perennial debate as to whether or not a tester should be a talented programmer. To me,
the answer is an emphatic yes. As a craftsman, programming is clearly part of the subject matter.
Other attributes include creativity, ingenuity, curiosity, discipline, and, somewhat cynically, a can-
I-break-it mentality. My personal “top 10” best practices are only briefly described here; most of
them are treated more completely in the indicated chapters.

23.3.1 Model-Driven Agile Development
Model-driven agile development (see Chapter 11) has emerged as a powerful blend of traditional
model-driven development (MDD) and the bottom–up increments of the agile world. One of the
main advantages of MDD is that models, if used well, can provoke recognition of details that
otherwise might be ignored. Also, the models themselves will be extremely useful for maintenance
changes during the applications useful lifetime. The agile part brings the recognized advantages of
test-driven development (TDD) to an agile MDD project.

23.3.2 Careful Definition and Identification of Levels of Testing
Any application (unless it is quite small) should have at least two levels of testing—unit and
system. Larger applications generally do well to add integration testing. Controlling the testing
at these levels is critical. Each level has clearly defined objectives, and these should be observed.
System-level test cases that exercise unit-level considerations are both absurd and a waste of pre-
cious test time.

436  ◾  Software Testing

23.3.3 System-Level Model-Based Testing
If an executable specification is used, a large number of system-level test cases can be automatically
generated. This in itself greatly offsets the extra effort of creating an executable model. In addition,
this enables direct tracing of system testing against a requirements model. Because executable
specifications are provocative, the automatically generated system test cases include many pos-
sibilities that otherwise might not be created.

23.3.4 System Testing Extensions
For complex, mission-critical applications, simple thread testing is necessary but not sufficient. At
a minimum, thread interaction testing is needed. Particularly in complex systems, thread interac-
tions are both serious and difficult to identify. Stress testing is a brute force way of identifying
thread interaction. Many times, just the sheer magnitude on interactions forced by stress testing
reveals the presence of previously undiscovered faults (Hill, 2006). Hill notes that stress testing is
focused on known (or suspected) weak spots in the software, and that pass/fail judgments are typi-
cally more subjective than those for conventional testing. Risk-based testing is a shortcut that may
be necessary. Risk-based testing is an extension of the operational profiles approach discussed in
Chapter 14. Rather than just test the most frequent (high probability) threads, risk-based testing
multiplies the probability of a thread by the cost (or penalty) of failure. When test time is severely
limited, threads are tested in terms of risk rather than simple probability.

23.3.5 Incidence Matrices to Guide Regression Testing
Both traditional and object-oriented software projects benefit from an incidence matrix. For pro-
cedural software, the incidence between mainline functions (sometimes called features) and the
implementing procedures is recorded in the matrix. Thus, for a particular function, the set of
procedures needed to support that function is readily identified. Similarly for object-oriented soft-
ware, the incidence between use cases and classes is recorded. In either paradigm, this information
can be used to

 ◾ Determine the order and contents of builds (or increments)
 ◾ Facilitate fault isolation when faults are revealed (or reported)
 ◾ Guide regression testing

23.3.6 Use of MM-Paths for Integration Testing
Given the three fundamental approaches to integration testing discussed in Chapter 13, MM-paths
are demonstrably superior. They can also be used with incidence matrices in a way that parallels
that for system-level testing.

23.3.7 Intelligent Combination of Specification-Based
and Code-Based Unit-Level Testing

Neither specification-based nor code-based unit testing is sufficient by itself, but the combination
is highly desirable. The best practice is to choose a specification-based technique based on the
nature of the unit (see Chapter 10), run the test cases with a tool to show test coverage, and then

Epilogue: Software Testing Excellence  ◾  437

use the coverage report to reduce redundant test cases and add additional test cases mandated by
coverage.

23.3.8 Code Coverage Metrics Based on the Nature of Individual Units
There is no “one size fits all” test coverage metric. The best practice is to choose a coverage metric
based on the properties of the source code.

23.3.9 Exploratory Testing during Maintenance
Exploratory testing is a powerful approach when testing code written by someone other than the
tester. This is particularly true for maintenance on legacy code.

23.3.10 Test-Driven Development
The agile programming community has demonstrated success in using TDD in applications
where an agile approach is appropriate. The main advantage of TDD is the excellent fault isolation
capability.

23.4 Mapping Best practices to Diverse projects
Best practices are necessarily project dependent. The software controlling a NASA space mis-
sion is clearly distinct from a quick-and-dirty program to develop some information requested by
someone’s supervisor. Here are three distinct project types. After their description, the top 10 best
practices are mapped to the projects in Table 23.1.

table 23.1 Best testing practices for Diverse projects

Best Practice
Mission
Critical

Time
Critical

Legacy
Code

Model-driven development ×

Careful definition and identification of levels of testing × × ×

System-level model-based testing ×

System testing extensions ×

Incidence matrices to guide regression testing × ×

Use of MM-paths for integration testing ×

Intelligent combination of specification-based and code-based
unit-level testing

× ×

Code coverage metrics based on the nature of individual units ×

Exploratory testing during maintenance ×

Test-driven development ×

438  ◾  Software Testing

23.4.1 A Mission-Critical Project
Mission-critical projects have severe reliability and performance constraints, and are often char-
acterized by highly complex software. They are usually large enough so that no single person can
comprehend the full system with all its potential interactions.

23.4.2 A Time-Critical Project
While mission-critical projects may also be time-critical, this section refers to those projects that
must be completed rapidly. Time-to-market and the associated loss of market share are the usual
drivers of this project type.

23.4.3 Corrective Maintenance of Legacy Code
Corrective maintenance is the most common form of software maintenance. It is in response to
a reported fault. Software maintenance typically represents three-fourths of the programming
activity in most organizations, and this is exacerbated by the pattern that maintenance changes
are usually done by someone who did not create the code being changed.

references
Brooks, F.P., No silver bullet—Essence and accident in software engineering, Proceedings of the IFIP Tenth

World Computing Conference, 1986, pp. 1069–1076, also found at No silver bullet—Essence and acci-
dents of software engineering, IEEE Computer, Vol. 20, No. 4, April 1987, pp. 10–19.

Hill, T.A., Importance of performing stress testing on embedded software applications, Proceedings of QA &
TEST Conference, Bilbao, Spain, October 2006.

Software Engineering & Systems Development

This updated and reorganized fourth edition of Software Testing: A Craftsman’s
Approach applies the strong mathematics content of previous editions to a coherent treat-
ment of Model-Based Testing for both code-based (structural) and specification-based
(functional) testing. These techniques are extended from the usual unit testing discussions
to full coverage of less understood levels integration and system testing.

The Fourth Edition:

•	Emphasizes technical inspections and is supplemented by an appendix
with a full package of documents required for a sample Use Case
technical inspection

•	 Introduces an innovative approach that merges the Event-Driven Petri Nets
from the earlier editions with the “Swim Lane” concept from the Unified
Modeling Language (UML) that permits model-based testing for four
levels of interaction among constituents in a System of Systems

•	 Introduces model-based development and provides an explanation of
how to conduct testing within model-based development environments

•	Presents a new section on methods for testing software in an Agile
programming environment

•	Explores test-driven development, reexamines all-pairs testing, and
explains the four contexts of software testing

Thoroughly revised and updated, Software Testing: A Craftsman’s Approach, Fourth
Edition is sure to become a standard reference for those who need to stay up to date
with evolving technologies in software testing. Carrying on the tradition of previous
editions, it will continue to serve as a valuable reference for software testers, developers,
and engineers.

ISBN: 978-1-4665-6068-0

9 781466 560680

90000
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

K15906

Software
Testing

Fourth Edition

S
oftw

are Testin
g

A Craftsman’s Approach

F
ourth

E
d
ition

Jorgensen

Paul C. Jorgensen

www.auerbach-publications.com

K15906 cvr mech.indd 1 9/19/13 10:04 AM

	Front Cover
	Contents
	Preface to the Fourth Edition
	Preface to the Third Edition
	Preface to the Second Edition
	Preface to the First Edition
	Author
	Abstract
	Chapter 1: A Perspective on Testing
	Chapter 2: Examples
	Chapter 3: Discrete Math for Testers
	Chapter 4: Graph Theory for Testers
	Chapter 5: Boundary Value Testing
	Chapter 6: Equivalence Class Testing
	Chapter 7: Decision Table–Based Testing
	Chapter 8: Path Testing
	Chapter 9: Data Flow Testing
	Chapter 10: Retrospective on Unit Testing
	Chapter 11: Life Cycle–Based Testing
	Chapter 12: Model-Based Testing
	Chapter 13: Integration Testing
	Chapter 14: System Testing
	Chapter 15: Object-Oriented Testing
	Chapter 16: Software Complexity
	Chapter 17: Model-Based Testing for Systems of Systems
	Chapter 18: Exploratory Testing
	Chapter 19: Test-Driven Development
	Chapter 20: A Closer Look at All Pairs Testing
	Chapter 21: Evaluating Test Cases
	Chapter 22: Software Technical Reviews
	Chapter 23: Epilogue: Software Testing Excellence
	Back Cover

