
Software Engineering & Systems Development

Although software development is one of the most complex activities carried out by
man, sound development processes and proper project management can help to ensure
your software projects are delivered on time and under budget. Providing the know-
how to manage software projects effectively, Introduction to Software Project
Management supplies an accessible introduction to software project management.

The book begins with an overview of the fundamental techniques of project
management and the technical aspects of software development. This section supplies
the understanding of the techniques required to mitigate uncertainty in projects and
better control the complexity of software development projects. The second part
illustrates the technical activities of software development in a coherent process—
describing how to customize this process to fit a wide range of software development
scenarios.

•	 Examines project management frameworks and software development
standards, including ESA and NASA guidelines, PRINCE2

®, and PMBOK®

•	 Addresses open source development practices and tools so readers can adopt
best practices and get started with tools that are available for free

•	 Explains how to tailor the development process to different kinds of products
and formalities, including the development of web applications

•	 Includes access to additional material for both practitioners and teachers at
www.spmbook.com

Supplying an analysis of existing development and management frameworks, the
book describes how to set up an open-source tool infrastructure to manage projects.
Since practitioners must be able to mix traditional and agile techniques effectively,
the book covers both and explains how to use traditional techniques for planning
and developing software components alongside agile methodologies. It does so in a
manner that will help you to foster freedom and creativity in assembling the processes
that will best serve your needs.

Introduction to
Software
Project
Management

 Adolfo Villafiorita

www.auerbach-publications.com

ISBN: 978-1-4665-5953-0

9 781466 559530

90000

K15541

 Villafiorita
Introduction to S

oftw
are P

roject M
anagem

ent6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

K15541 cvr mech.indd 1 1/10/14 9:28 AM

Introduction to
Software
Project

Management

Introduction to
Software
Project

Management

 Adolfo Villafiorita

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140108

International Standard Book Number-13: 978-1-4665-5954-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To Barbara

Contents

Preface ... xv
Acknowledgments ... xvii
Author ... xix

1 Introduction ... 1
1.1 What is a Project .. 1

1.1.1 Projects and Operational Work 1
1.1.2 Programs, Subprojects, and Portfolios 3

1.1.2.1 Programs .. 4
1.1.2.2 Subprojects ... 4
1.1.2.3 Portfolios.. 4

1.2 What is a Software Project .. 5
1.2.1 Application Development ... 5
1.2.2 Process and Systems Reengineering Services................... 6
1.2.3 System Integration Services 6
1.2.4 Other Types of Projects .. 7

1.3 Managing Projects .. 7
1.3.1 The Project Manager and the Project Stakeholder 7
1.3.2 Project Stakeholders .. 8
1.3.3 Code of Conducts and Ethical Aspects 9

1.4 Software Project Management .. 10
1.5 Goals and Organization of the Book 13
1.6 Further References .. 14
1.7 Questions and Topics for Discussion 16
References .. 16

vii

viii � Contents

2 The Basics: Software Development Activities
and Their Organization ... 19
2.1 Software Requirements Definition .. 20

2.1.1 Requirements Elicitation .. 21
2.1.2 Requirements Structuring ... 21
2.1.3 User Experience Design.. 22
2.1.4 Requirements Validation .. 23

2.2 Business Modeling .. 23
2.2.1 Mapping the Organizational Structure 24
2.2.2 Modeling the Business Processes 25
2.2.3 Mapping the Existing IT Infrastructure 25
2.2.4 Mapping Business Entities .. 25

2.3 Design and Implementation .. 26
2.3.1 System Design ... 26
2.3.2 Implementation ... 28

2.4 Verification and Validation .. 29
2.4.1 Testing... 29
2.4.2 Organizing Testing Activities 30

2.4.2.1 Test Plan Definition 30
2.4.2.2 Test Execution and Reporting 30

2.5 Deployment .. 31
2.6 Operations and Maintenance ... 34

2.6.1 Supporting and Monitoring Operations 34
2.6.2 Maintenance ... 34
2.6.3 Organizing Support and Maintenance Activities 35

2.7 Questions and Topics for Discussion 36
References .. 37

3 Making IT Right: Managing Goals, Time, and Costs 39
3.1 Before You Start: Assessing Value and Risks 39

3.1.1 Project Value: Aspects to Consider 40
3.1.2 Project Risks: Aspects to Consider............................... 40
3.1.3 Techniques to Assess Value and Risks 41

3.1.3.1 Financial Methods 41
3.1.3.2 Score Matrices ... 43
3.1.3.3 SWOT Analysis 44
3.1.3.4 Stakeholder Analysis 45
3.1.3.5 Assessing Sustainability 46
3.1.3.6 A Recap of Project Selection Techniques 46

3.1.4 The Project Feasibility Document 47
3.2 Formalizing the Project Goals .. 48

3.2.1 Project Goals and Requirements 49
3.2.2 Project Assumptions and Constraints 50

Contents � ix

3.2.3 Project Outputs and Control Points 51
3.2.4 Project Roster .. 53

3.3 Deciding the Work ... 53
3.3.1 Building a WBS ... 54
3.3.2 WBS Decomposition Styles....................................... 56
3.3.3 WBS Dictionary .. 58
3.3.4 WBS Construction Methodologies.............................. 58

3.4 Estimating .. 58
3.4.1 Effort, Duration, and Resources 59
3.4.2 The “Quick” Approach to Estimation 60
3.4.3 The Uncertainty of Estimations.................................. 61
3.4.4 PERT .. 63
3.4.5 Algorithmic Techniques ... 64

3.4.5.1 Function Points.. 65
3.4.5.2 COCOMO .. 67
3.4.5.3 Web Objects ... 71
3.4.5.4 Effort and Project Phases 72

3.5 Scheduling a Plan ... 72
3.5.1 Identify Dependencies among Activities 73

3.5.1.1 Type of Dependencies 73
3.5.1.2 Lead and Lag Time 75
3.5.1.3 Network Graphs....................................... 75

3.5.2 Identify the Critical Path .. 76
3.5.3 Allocate and Level Resources 80

3.5.3.1 Qualifying the Resources Needed
for a Task ... 81

3.5.3.2 Specifying Resource Availability.................... 81
3.5.3.3 Allocating Resources to a Plan...................... 83

3.5.4 The Gantt Chart .. 84
3.6 Optimizing a Plan .. 86

3.6.1 Renegotiating Goals and Deadlines 86
3.6.2 Phase the Project .. 87
3.6.3 Project Crashing... 87
3.6.4 Fast Tracking ... 88
3.6.5 Critical Chain Management 90

3.7 Budgeting and Accounting .. 92
3.7.1 Project Costs ... 92
3.7.2 Cost Element Structures ... 93
3.7.3 Determining the Project Costs 95
3.7.4 Managing Project Costs.. 95

3.8 Project Execution ... 97
3.8.1 Kicking Activities Off .. 98
3.8.2 Collect the Output of Activities.................................. 98

x � Contents

3.8.3 Collect Information about the Project Status 98
3.8.4 The Project Routine in Agile Methods 99

3.9 Project Monitoring and Control ... 99
3.9.1 Bookkeeping Your Plan: Actual Start and End Dates 100
3.9.2 Monitoring Time and Work 102
3.9.3 Monitoring Costs ... 103
3.9.4 An Integrated Approach: Earned Value Analysis.............. 104

3.9.4.1 Planned Value.. 105
3.9.4.2 Actual Costs .. 106
3.9.4.3 Earned Value ... 107
3.9.4.4 Assessing a Plan Health Using Earned Value

Analysis.. 107
3.9.4.5 Some Considerations about Earned Value

Analysis.. 109
3.9.5 Monitoring Progress, the Agile Way............................. 110
3.9.6 Agile-Earned Value Analysis 112

3.10 Project Closing .. 114
3.10.1 Getting Client Acceptance .. 115
3.10.2 Installing Project Deliverables 115
3.10.3 Archiving Old Deliverables 116
3.10.4 Documenting the Project.. 116
3.10.5 Performing a Financial Closure 116
3.10.6 Postimplementation Audit .. 116
3.10.7 Staff-Releasing ... 118

3.11 An Example .. 118
3.11.1 Initiating .. 119
3.11.2 Building a Plan .. 120
3.11.3 Creating a Budget for the Project 122
3.11.4 Changing the Plan to Meet External Deadlines............... 123

3.11.4.1 Changing the Project Approach 124
3.11.4.2 Reducing or Changing the Project Scope 124
3.11.4.3 Allocating Resources More Efficiently 125
3.11.4.4 Fast Tracking the Plan................................ 125

3.12 Questions and Topics for Discussion 125
References .. 126

4 Making IT Better: Managing Changes, Risks, and Quality 131
4.1 Managing Changes ... 131

4.1.1 Managing Changes in the Traditional Approach 134
4.1.2 Managing Changes in the Agile Methods 136
4.1.3 Configuration Management 136

4.1.3.1 Configuration Management Goals
and Practices ... 137

Contents � xi

4.1.3.2 Versioning Systems and Software Evolution
Models... 139

4.2 Risk Management ... 141
4.2.1 Define Standards .. 142
4.2.2 Identify Risks .. 143
4.2.3 Some Common Risks in Software Development 144
4.2.4 Classify Risks... 145
4.2.5 Risk Management Strategies 147
4.2.6 Budgeting for Risks ... 149
4.2.7 Risk Monitoring and Control 150

4.2.7.1 Review and Share 150
4.2.7.2 Apply Contingency Plans............................ 151
4.2.7.3 Revise and Iterate 151

4.3 Quality Management ... 151
4.3.1 Quality Planning .. 152
4.3.2 Quality Assurance... 153
4.3.3 Quality Control ... 153
4.3.4 Establishing a Metrics Program 156

4.3.4.1 Size Metrics... 157
4.3.4.2 Complexity Metrics................................... 157
4.3.4.3 Quality Metrics .. 157

4.4 Questions and Topics for Discussion 158
References .. 158

5 Making IT Perfect: Managing People and Organizing
Communication .. 161
5.1 Managing People .. 162

5.1.1 Define Staff Requirements .. 162
5.1.2 Selecting Internal Staff ... 163
5.1.3 Selecting External Staff... 164
5.1.4 Managing Staff .. 165
5.1.5 Management Styles ... 168

5.2 Project Organization Structures .. 170
5.2.1 Hierarchical .. 170
5.2.2 Matricial Organizations.. 172
5.2.3 RACI Matrix ... 173
5.2.4 Agile Teams .. 173

5.3 Managing Communication ... 175
5.3.1 Planning a Communication Strategy 176
5.3.2 Communication Styles ... 177
5.3.3 Meetings .. 178

5.3.3.1 Managing Meetings................................... 178
5.3.3.2 Types of Meetings 179

xii � Contents

5.3.3.3 Delphi ... 182
5.3.3.4 Planning Poker .. 182

5.4 Questions and Topics for Discussion 183
References .. 183

6 Software Project Pricing .. 187
6.1 From Cost to Pricing ... 187
6.2 Software Pricing ... 189

6.2.1 Software Pricing Models ... 189
6.2.2 Selling and Licensing Software 190
6.2.3 Open Source Software ... 190

6.3 Project Pricing Strategies ... 192
6.3.1 Determining the Project Price 193
6.3.2 Contractual Agreements ... 193
6.3.3 Contractual Agreements and Project Budget 195

6.4 Procurement and Outsourcing ... 197
6.4.1 Vendor Solicitation ... 198
6.4.2 Procurement Timing Activities 199

6.5 An Example .. 201
6.6 Questions and Topics for Discussion 203
References .. 203

7 Managing Software Development Projects 205
7.1 Project Life Cycles .. 205
7.2 From Traditional to Agile ... 207

7.2.1 The Waterfall .. 207
7.2.2 The V-Model .. 209
7.2.3 The Rational Unified Process 211
7.2.4 The Spiral... 213
7.2.5 Prototyping/Evolutionary ... 214
7.2.6 Cleanroom Software Engineering................................ 215

7.3 Agile Methodologies .. 217
7.3.1 Extreme Programming ... 218
7.3.2 Dynamic System Development Method 220
7.3.3 Scrum ... 221
7.3.4 Kanban .. 225

7.4 Open Source Development Practices 227
7.4.1 Open Source Development Challenges......................... 227
7.4.2 An Open Source Development Process 228

7.4.2.1 Open Source Project Steering....................... 229
7.4.2.2 Open Source Development 230
7.4.2.3 Open Source Releases 231

Contents � xiii

7.5 Questions and Topics for Discussion 233
References .. 233

8 Development and Management Standards.................................... 237
8.1 Microsoft Solutions Framework .. 237

8.1.1 Foundational Principles .. 238
8.1.2 Team Model.. 238
8.1.3 Process Model.. 239
8.1.4 Disciplines .. 240

8.2 PMBOK� Guide ... 241
8.2.1 Knowledge Areas .. 241
8.2.2 Process Groups .. 242
8.2.3 Processes .. 242
8.2.4 PMBOK� Guide for Software Development................. 242

8.3 NASA Practices .. 245
8.3.1 NASA System Engineering Practices 245
8.3.2 NASA Software Management Process

Requirements .. 247
8.3.3 NASA Software Development Practices 248

8.4 PRINCE2� .. 251
8.4.1 PRINCE2� Process Model 251

8.4.1.1 Starting a Project 252
8.4.1.2 Initiating a Project 252
8.4.1.3 Directing a Project 252
8.4.1.4 Controlling a Stage 252
8.4.1.5 Managing Product Delivery......................... 253
8.4.1.6 Managing Stage Boundaries......................... 253
8.4.1.7 Closing a Project 253
8.4.1.8 Planning .. 253

8.4.2 PRINCE2� Components .. 254
8.4.2.1 Business Case .. 254
8.4.2.2 Organization ... 255
8.4.2.3 Plans ... 255
8.4.2.4 Control .. 255
8.4.2.5 Change Control 256

8.5 Capability Maturity Model Integration 256
8.6 Questions and Topics for Discussion 259
References .. 259

9 Open Source Tools for Managing Projects 261
9.1 Project Information Flow .. 262
9.2 Basic Infrastructure ... 264
9.3 Basic+ Infrastructure .. 265

xiv � Contents

9.4 Collaborative Document Writing .. 266
9.5 Management Infrastructure ... 266
References .. 268

Index ... 269

Preface

Software development is considered among the most complex activities carried out
by man. The steady growth of software systems’ size, the increasing role software
is playing in safety critical applications, and the speed at which technology and
software change are some of the causes frequently mentioned to support the above
claim. Although techniques and tools to build software have improved considerably
in the last 60 years, a proper development process and a sound project management
are and will remain the top reasons software projects fail or succeed.

Software project managers share many of the goals of project managers in other
domains, namely, ensuring an appropriate quality of the end product, while, at the
same time, keeping under control all the other project variables, like time and costs.
Different from other domains, however, software has specific characteristics, such
as invisibility, complexity, and flexibility (in its application and production means),
that call for specific management techniques.

This book is an introduction to the area of software project management. After
a presentation of the main definitions and concepts, the book is organized in two
main parts.

The first part overviews the technical activities for developing software (Chapter
2) and techniques for managing projects (Chapters 3 through 6). The goal is pro-
viding the basic building blocks and the techniques to mitigate the complexity of
software development and control the uncertainty of projects.

The second part of the book organizes the technical activities in a coher-
ent process and shows how this process is customized in practice to fit common
software-development scenarios (Chapter 7). An analysis of existing development
and management frameworks (Chapter 8) and a discussion about how to setup a
tool infrastructure to manage projects (Chapter 9) close the book.

xv

xvi � Preface

In recent years, I have found myself mixing traditional and agile techniques
more often, using traditional techniques for planning and developing some of the
software components with agile methodologies and iterative processes. This book,
thus, presents both techniques. It tries to do so in a manner to favor some freedom
and creativity in assembling the process which best fits one’s needs.

Accompanying this text is a web site (http://www.spmbook.com) that provides
teaching material for instructors and additional reference material for students.

I hope you enjoy the textbook and web site!

Acknowledgments

Writing a book requires many resources, and this book would have not been possible
without the support, help, and encouragement of family, friends, and colleagues.

A special thank you goes to Ali Al-Shammari, Aaron Ciaghi, Andrea Nodari,
and Pietro Molini and the other colleagues of the ICT4G group for the comments
they gave me on preliminary versions of this book. If you enjoy reading this book,
that is because of the feedback they gave me on earlier versions. My sincere gratitude
also goes to my editor John Wyzalek, who believed in this project and to all the team
who made the book possible, among which Kate Gallo, Robert Sims, and Karthick
Parthasarathy.

I wish also to thank my family and friends. A first big thank you goes to my
wife Barbara, for her patience and support. Another goes to my nephew Marco,
who told me once I have a sweet tooth and thus gave me the inspiration for the
millefoglie example. My dad Enzo, Andrea, Ombretta, and Rienzo also provided a
lot encouragement.

Least but not last, I wish to thank the friends of the Argentario Squash club,
Max, Rudy, Maurizio, Paolo, Michele, Piero and all the others who made sure I
would not get too fat while writing this book!

xvii

Author

Adolfo Villafiorita, PhD, is a senior researcher at Fondazione Bruno Kessler where
he leads the ICT4G unit, whose mission is the use of ICT to foster social and
economic development.

With long experience in the area of formal verification, he has led various
technology transfer and development projects in the national and international
context.

He is a contract professor at the University of Trento, where he teaches software
project management.

xix

Chapter 1

Introduction

1.1 What is a Project
1.1.1 Projects and Operational Work
Project Management Institute (2004) defines a project as a temporary endeavor
undertaken to create a unique product or service. The definition entails five impor-
tant characteristics of a project, some explicitly mentioned and some following as a
consequence. These characteristics also define some of the requirements of a good
project manager, as we will see later.

The first characteristic is that a project is temporary, that is, it has a
beginning and an end. In many cases, determining the start and the end is
easy. Consider the following examples: a contract sign-off, a formal autho-
rization to proceed from senior management, a system going in production.
In practice, however, many projects begin by slowly building up resources
and interest, while the official start happens sometime after the resources and
work have been invested. Others have residual work and activities going on
after the official end, for instance to follow up on defects and problems
found in project outputs. In all cases, however, projects have a start and a
conclusion.

The fact that a project is temporary has a natural consequence. Every project
will, in fact, have

1. An initiating phase, during which the project infrastructure and the project’s
goals are drafted.

2. A planning phase, during which project goals are refined, activities identified
and scheduled, and many other support activities are properly planned.

1

2 � Introduction to Software Project Management

3. An executing phase, during which the actual work takes place. Running in
parallel, amonitoring phase measures the progress and raises flags when plans
and reality disagree.

4. A final closing phase, where the project outputs are handed out and the
project is closed.

The amount and intensity of work in a project change according to the project
phase. The initiating and planning phases will require a relatively small amount of
work. Work will accumulate fast during the execution phase, as the project activities,
many of which are running in parallel, unfold. As the project gets near to its con-
clusion, work will reduce and stop, of course, when the project delivers its outputs.
If we plot the cumulative work produced in a project, we get an s-shaped curve.
Both the phases of a project and the typical trend of cumulative work are shown in
Figure 1.1.

As a side remark, Figure 1.1 also introduces the notation we will use for pro-
cess diagrams, which was inspired by the activity diagram notation of the Unified
Modeling Language (UML). In particular, rounded rectangles represent activities, a
black dot represents the initial state, and a bull’s eye represents the final state. The
arrow shows the order in which activities run. Although not shown here, we will
also use rectangles to denote artifacts and diamond for choices.

The second characteristic is that a project delivers an output in the form of a
product, a service, or a capability. The outputs are tangible, and often their proper-
ties are also measurable. Thus, a project can be set up and organized, starting from
the description and the characteristics of the outputs it delivers. Such description,
in fact, entails the work that has to be done to build the outputs. The descrip-
tion of the project outputs also defines the project completion criteria: the project

Initiate Plan Execute

Monitor

Close

Cumulative
work

Time

Figure 1.1 Project phases and cumulative work.

Introduction � 3

ends when the outputs are delivered as specified. Things are not always so sim-
ple, however. Many projects have a clear output, but the way in which this is
achieved might not be clear. Consider, for instance, a situation in which we want
to improve the performances of a software system. The goal is clear, but the means
to achieve it might not. In other situations, the outputs might not be completely
clear or well spelled out. This is quite common in software development, where
coming out with a complete and unambiguous description of a system is not always
easy.

The third characteristic is that projects are resource constrained. A limited time
is available to build the project outputs. Also limited will be other project resources,
such as the budget and the team. An important consequence is that the project man-
ager and the team have to find an achievable solution, while respecting all project
constraints. Thus, the output of a project is seldom the best possible solution but
rather the best solution given the constraints.

The fourth characteristic is that a project requires a progressive elaboration to
build the project outputs. At the beginning, different ways are possible to achieve
the project goals. As we move along, many project activities require to take choices,
which reduce the degrees of freedom, till we get to the end of the project with
the only possible implementation of the project goals. Thus, the cost of changes
increases as a project progresses, since the amount of rework necessary to implement
a change increases as we reduce our degrees of freedom.

The fifth and final characteristic is that a project delivers a unique output. Thus,
what a project delivers has some novelty, one way or the other. This allows us to
introduce the last important characteristic, namely, that a project always has some
risk coming in the form of menaces or opportunities. Risks come from the unique
characteristics of the project outputs, which sometimes are not fully understood
or not clear when a project starts. Other risks derive from additional constraints
that are set in a project; consider, for instance a situation in which a customer
pushes for a schedule that is too tight or for quality requirements that are set
too high.

Having seen the main qualities of a project, we need to mention that not all
work is a project. Work that is not a project is called operational, even though one
might still call it a project. The techniques for managing a project, however, can also
be useful for operational work.

1.1.2 Programs, Subprojects, and Portfolios
Projects come in different sizes. Small projects might require the work of a few
people for a few weeks or a few months. Larger projects might involve the work
of thousands of people for years. Consider, for instance, the development of the
F22 fighter aircraft. The development started in 1986 with a first phase to build
two prototypes, which lasted 50 months. After the demonstration of the prototypes
and the selection of the best model, the actual development started in 1991, with

4 � Introduction to Software Project Management

the first production aircraft delivered in 2003. The total costs of the project are
estimated at 67.3 USD billion, in then-year dollars, that is, without any adjustment
for inflation (Gertler, 2012).

Although in principle the development of the F22 could be organized as a sin-
gle project, a more practical approach organizes its construction at different levels
of abstraction and granularity. Projects are thus often organized and combined to
achieve objectives larger than those of any single initiative. A common classification
distinguishes among portfolios, subprojects, and programs.

1.1.2.1 Programs

A program is a set of related projects managed in a coordinated way. The underlying
motivation is that coordination allows one to achieve additional benefits.

The most famous program is probably the U.S. manned space program, which
culminated with men landing on the moon.

Program management uses many project management techniques, but it has a
different focus and goal. The higher abstraction level at which programmanagement
takes place, in fact, requires a manager to reason in terms of vision, rather than goals,
and roadmaps, rather than detailed plans.

1.1.2.2 Subprojects

Complex projects for which program management is an overkill can be organized
and broken down into subprojects.

A subproject is thus the way in which one can organize the implementation
of some specific objectives of a larger project. We will see in Chapter 3 how
the organization of project activities can naturally lead one to identify a set of
subprojects, with the definition of the contract work breakdown structure.

The distinction between a subproject and a project is often just a matter of ter-
minology, since the approach and techniques are identical. A similar consideration
applies to the boundaries between a project organized in subprojects and a program
with different projects.

1.1.2.3 Portfolios

Organizations often use projects to develop similar systems. The term portfolio
management thus identifies a situation in which a set of independent projects are
coordinated to achieve better results.

A common situation is one in which a portfolio includes projects with simi-
lar functional aspects or technical challenges. Different groupings are possible. For
instance, Project Management Institute (2004) highlights that a portfolio could
include projects with the same class of risks, since they might benefit from the
application of similar techniques.

Introduction � 5

1.2 What is a Software Project
When we think about software projects, probably the first thing that comes to mind
is developing applications. While this is true in many cases, software-related projects
take different forms. Even when the main goal is developing a system, coding is just
one of the required activities, as we will see in Chapter 2.

In this section, we look at the main types of software-related projects.

1.2.1 Application Development
Application development might not be the only type of software-related project, but
it is probably one that is great fun. The goal in this kind of project is building an
application and providing the additional services and outputs to support it.

From the project management point of view, we can distinguish the following
types of applications:

� One-offs or bespoke systems that are software systems specifically created
for a customer. A bespoke system often implements a specific need of a cus-
tomer, although in some cases the customer base of the final product could be
large. Some examples of bespoke systems include a luggage tracking software,
a compiler for a specific hardware platform, and a system to monitor a fleet
of trucks. For bespoke systems, the specification of the application to develop
(more in general of the project goals) will be driven and have to be agreed
with the customer. The ownership and the source code of the final product
might also be handed over to the customer. This kind of projects offers an
opportunity for the supplier to enter a new market or establish a long-term
relationship with a new customer. Consider, for instance, activities related to
the long-termmaintenance of a complex software system. The uniqueness and
novelty of the product also constitute the main risk both for the customer and
the supplier.

� Off-the-shelf applications are software systems implementing a function
which is useful to many different users. It is the software we buy from mar-
ketplaces or stores and it is the equivalent of the Ford Model-T: one size fits
all.∗ The goals and functions of the applications, in this case, come from the
company developing the system, which sometimes conducts user surveys, to
better understand needs and features that are most useful. Larger organizations
might involve different departments in the specification of the software, mak-
ing the activity similar to the previous case. A marketing department might
play the role of the customer, defining the requirements, while an engineer-
ing department plays the role of the supplier and delivers the solution. The
main characteristic is that the system is the same for each user and that the

∗ This is not completely true as many applications come in different versions, for instance, a base
and a pro, or with a plugin system that allows some customization.

6 � Introduction to Software Project Management

company developing the system sets the roadmap, choosing when to upgrade,
what functions to add, and when to do maintenance.

� Finally, a customized off-the-shelf application sits somewhere between the
two other types of applications. They are systems that are developed similar
to off-the-shelf applications. However, they need to (or can) be customized
to fit the customer needs. An example of a customized off-the-shelf applica-
tion is an enterprise resource planning (ERP) system. An ERP system helps
plan the resources of an organization and automate information management.
While the engine of many ERPs is generic (and developed as an off-the-shelf
application), many other characteristics (modules to use, what data has to be
stored, how information flows) need to be customized for each client.

1.2.2 Process and Systems Reengineering Services
Process and Systems Reengineering Services are projects related to improving the
efficiency of an organization, by changing the way in which they conduct their
operational work. These projects often accompany the introduction of one or more
systems. In many cases, the system being introduced is an ERP. According to the
project goals and size of the client, these projects might be significant and complex.

Consider the example of a multinational company revising its customer help-
desk to improve quality and responsiveness. This project requires to understand how
the organization currently works, what are the bottlenecks, and thus the possible
interventions. These could include modifications to the current practices, training,
and perhaps the introduction of a customer relationship management system to
support the new processes.

See also Section 2.2 for a discussion on the topic.

1.2.3 System Integration Services
System integration services are projects and services related to automating the
information flow among the different and independent systems used by an organiza-
tion. The goals are to improve the efficiency of work and to reduce data duplication
and errors. The approach is chosen when migrating to a new system is impractical
or too costly.

Two types of integration are possible, vertical or horizontal. The first refers
to the integration of different systems performing similar functions (e.g., putting
together data about customers kept by different departments of a multinational
company). The latter refers to automating or improving business functions (e.g.,
automating the flow of orders from marketing to production).

System integration services are more common in large organizations, which have
a long history of system automation, or organizations in which departments have
large autonomy. In these cases, in fact, different departments might automate similar
functions without paying too much attention to data integration. Over time, the

Introduction � 7

portfolio of applications grows and data coherence problems start to pop up. For
instance, the IT systems of a company might still grant access to its premises to a
person whose contract has expired, if the contracts and accesses are managed by two
independent systems and someone forgot to manually update the data.

According to the project scope, these kinds of projects might be large, like in
the case of reengineering services, or very focused, like it could be the case of a
project to interface two systems. In the first case, the project requires an analysis of
the business procedures and of the IT infrastructure. Compare the previous section
and Section 2.2. In the second case, they are organized similar to an application
development project.

1.2.4 Other Types of Projects
Consulting services might be asked to gain know-how, which is outside a com-
pany’s core competence. An example of consulting services is the evaluation of
the reliability of a software system conducted using very specific techniques, which
could not be part of the core business of a company. Another very common request
is the assessment of the state of the art in a particular sector.

Installation and training services are services related to the installation of spe-
cific software systems (also in the open source domain) and/or training in the use of
specific technologies or systems.

1.3 Managing Projects
1.3.1 The Project Manager and the Project Stakeholder
In my career, I have met project managers with different characters, qualities, and
capacities, and I believe there is no such thing as the ideal project manager. Simi-
lar to a sport, talent, studying the techniques, practicing a lot, and learning from
experience determine the kind of manager one becomes.

We have hinted above, however, that the characteristics of a project determine
some of the features of a good project manager. Let us elaborate a bit on the
concept.

As we have seen, projects are characterized by constraints and uncertainty. A
bit of inventiveness and some predisposition to risk and flexibility can thus be
of help in integrating the techniques we will present in the rest of this book.
Notice that project management is about taming and mitigating risks, rather than
passively accepting them. However, even when one tries and plans for the unex-
pected, unplanned unknowns will happen and a good project manager deals with
them.

Another important distinctive feature is that projects are time limited. Thus,
a sense of urgency can help set up a project fast and deliver according to the

8 � Introduction to Software Project Management

time constraints. The project manager, however, is also responsible for setting a
sustainable pace in a project, so that the right rhythm is set and the team can work
more effectively.

Some projects are also characterized by enormous complexity and require dif-
ficult choices to be taken. Cox and Murray (2004), a very nice reading about the
Apollo program, describes many situations in which the project team had to take
difficult decisions. One example that I found particularly striking is when George
Low, manager of the Apollo program, faced with the possibility of the program
slipping after the deadline set by President Kennedy, decided to change the sched-
ule of flights, reducing the number of unmanned test flights, since these would
not have provided any significant information to the program. History and system
engineering proved him right.

I have not yet mentioned technical proficiency, namely, mastering the tools and
techniques, which will be used in a project. I did it on purpose. Technical compe-
tence is certainly an important asset for a project manager, since it simplifies various
tasks, such as forming a vision on the product, choosing a sound approach to project
development, and identifying the main project criticalities and risks. Management
is also about delegation, and technical proficiency can backfire, if, for instance,
it comes with stubbornness or an incapacity to listen or second the choices of
experienced teams.

People are a key contributor to the success or failure of projects. It is the work
of people that makes the project outputs possible, mitigating the impact of tech-
nologies that do not work as expected and finding creative solutions when the
unexpected occurs. They can also contribute to the failure of a project, with their
sloppiness or disinterest. A good project manager thus deals with and manages
people effectively. This is so important that Project Management Institute (2004)
dedicates to these activities three of the 10 areas it defines to manage a project:
stakeholder management, human resource management, and communications
management.

1.3.2 Project Stakeholders
Project Management Institute (2004) defines a project stakeholder as any individ-
ual or an organization that is actively involved in a project, or whose interest might be
affected as a result of project execution or completion.

Some stakeholders are simple to identify. Since the definition includes all people
working in a project, the project manager and the project team, namely, the people
responsible for carrying out the work in a project, are stakeholders.

Other stakeholders are those who benefit from the project execution or the
project outputs. Among these are the client, the performing organization, and
the project sponsor. The first, in fact, benefits from the project outputs, the second
from the know-how and the revenues made in the project, and the third because of
the peculiar interest he or she has in the project.

Introduction � 9

The remaining stakeholders might be directly or indirectly affected by the
project. For instance, a company producing a software system might be negatively
affected by a project of another organization developing a competing product.

Understanding who are the project stakeholders and effectively managing them
is an important activity of a project manager. We will see in Chapter 3 some tech-
niques to identify and manage stakeholders. Here, it is sufficient to mention that
stakeholders have different interests and influence. Some might be interested to see
the project that fails, while others might support it strongly. The influence a stake-
holder can exert is usually a combination of how close the stakeholder is to a project
and how much power he or she has.

1.3.3 Code of Conducts and Ethical Aspects
I do not want to go here into a philosophical discussion about what is good and evil
and why one should behave good rather than bad. So I will take a rather practical
approach and say that sticking to a code of conduct and behaving ethically is often
also the most efficient and best choice both for the manager and for the project.

In an informal survey conducted among the members of the Project Man-
agement Institute (PMI�), about 80% of the managers interviewed faced ethical
dilemmas (Cabanis, 1996). This is not surprising as many decisions taken by project
managers are in the gray area, in which distinguishing what is good from what is
wrong can be difficult. Consider, for instance, a situation in which a “buy in” bid
is made to get a contract.∗ Surely it does not sound right. Consider the same situa-
tion, however, when getting the contract makes the difference to some employees of
a company, who will get fired if the contract is not awarded. The situation becomes
a bit more blurry.†

Organizations provide different codes of conduct.We will stick to that promoted
by the PMI�, one of the reference organizations for project management, which we
will briefly present here.

The code of conduct of the PMI� has been written by practitioners and is
organized in four areas:

1. Responsibility: the duty of taking ownership of decisions made or failed to
make and their consequences

2. Respect: the duty of treating with respect the resources assigned to us, such
as people, money, reputation, environment, and so on

3. Fairness: the duty of taking decisions impartially and objectively
4. Honesty: the duty of acting in a truthful manner.

∗ A “buy in bid” underestimates project costs to make it more appealing. The costs are then raised
as the project develops to match the actual expenditure.

† It is still wrong should you have had any doubt.

10 � Introduction to Software Project Management

For each area, two types of requirements are listed. Mandatory requirements
have to be met in any situation. Aspirational requirements are nice to have (Project
Management Institute, 2013).

Thus, for instance, while a mandatory requirement is that of getting informed
and sticking to regulations and laws governing one’s work (Requirement 2.3.1),
listening to and understanding other people’s point of view is an aspirational require-
ment (Requirement 3.2.2). (As a side remark, the fact that the requirement of
listening to and understanding other people’s point of view is only aspirational tells
a lot about how daunting the task is and how patient project managers are.)

Other codes of conducts are available and applicable to the profession of project
managers. For instance, the IEEE Board of Directors (2006), the code of ethics of
the Association of Electrical and Electronics Engineers, similar to another famous
code of conduct, lists in 10 items the rules one should stick to.

Although one’s values are often sufficient to take sound and ethical decisions,
reading one or more codes of conduct is a good idea to help individuate those sit-
uations that might pose ethical choices in the profession and give project managers
and professionals a reference framework when needed.

1.4 Software Project Management
Software project management is the integration of management techniques into
software development. The need for such integration has its root in the 1960s,
in the days of the “software crisis,” when practitioners recognized the increasing
complexity of delivering software products meeting the specifications. A number
of works started then to improve the software development practices, detailing and
structuring technical activities more rationally.

In parallel with this, some big engineering projects started by the U.S. Govern-
ment in the 1960s contributed to the consolidation and introduction of important
project management techniques. The two areas, however, were too young or grow-
ing too fast to look at each other, and for a while they grew independent of each
other.

Similar to system engineering, software engineering shares many concerns that
can be dealt with by sound management practices. As software engineering matured
as a discipline, more interest grew in the systematic integration of management
activities in the software production process. Software development and project
management thus started to be integrated more tightly. This is exactly what we
start doing in this section.

People in operating systems often compare the architecture of an operating sys-
tem to that of an onion. Similar to an onion, operating system architectures define
different layers of functions, each layer building on top of the lower level ones.
Taking inspiration from this analogy, we try and build our own tastier comparison
between software project management and the millefoglie pastry, which is made up

Introduction � 11

of layers of pastry and custard cream.∗ It requires quite a bit of fantasy, and maybe
it does not work as well as the onion analogy, but it is certainly tastier!

Similar to the pastry, in fact, we organize software project management activities
in two groups. The pastry gives structure and helps deliver. The custard binds the
pastry together and ensures a harmonious result.

Our millefoglie is composed of four layers of pastry. The bottom layer includes
all the activities that are essential to develop software. The other layers are made
of management flour and butter. The second layer is scope management, which
includes all the activities to ensure that a project delivers according to the goals
it sets. The third layer is time management, which defines a schedule for a project
and delivers according to the schedule. The fourth layer is cost management, which
defines a budget and controls spending during a project.

With four layers of pastry, we need three layers of custard. These come in the
form of technical and managerial activities to help ensure a coherent development
of a project and of its results. Their common characteristics are that they run along
the whole process and interact with the other activities, guaranteeing order and
coherence.

The first layer of the custard is composed of change and configuration manage-
ment, which help manage changes in a project, while maintaining a coherent view
on its outputs. These processes interact with all software development activities and
also influence goals, schedules, and costs.

The second layer of the custard is risk management, the set of activities to
effectively manage menaces and opportunities. Similar to the previous case, risk
management runs throughout a project, reducing the influence of unexpected
events.

Finally, the third layer of the custard is made of quality management, the set of
activities to ensure that a project defines quality goals and delivers accordingly the
goals.

Finally, human resource management and stakeholder management are the
powdered sugar sprinkled at the top. Try it without it, and it does not taste as good.

To continue the analogy, we can split our millefoglie into four slices, correspond-
ing to the four phases we have introduced in Section 1.1.1. Each slice will still have
all the layers. As a matter of fact, all the management concerns we have introduced
in our analogy have an initiating, a planning, a monitoring, and a closing phase.
(Software development is a bit of an exception, since it is mainly concentrated in
the execution phase.)

This is shown in Figure 1.2, where we present our millefoglie. The horizontal
axis represents the various project phases, while the vertical axis presents the pastry

∗ Good food seems to be particularly relevant for people working in the area. A report about the
meeting where the “software crisis” term was coined includes the following quote: “The con-
ference had been held outside Rome in a rather charmless American-style hotel whose facilities
and cuisine I’m sure did little to engender a harmonious atmosphere” (Randell, 1996).

12 � Introduction to Software Project Management

Initiate Plan Execute and
monitor Close

Develop

M
on

ito
r g

oa
ls,

 co
st

, a
nd

sc
he

du
le

 Release

Change control and configuration management

Quality management

Human resource management

Kick off
activities

Formalize
goals

Define
schedule

Define costs

Assess
feasibility CloseCollect

outputs

(Obtain
approval)

Risk management

Figure 1.2 The software project management millefoglie.

and custard, one per row. In Figure 1.2, we have deconstructed the millefoglie a bit,
so that we can present more elementary activities and suggest one ordering in which
the activities can be executed.

The first row contains the management of the project goals. The process spans
all the four phases, including an assessment of the feasibility, the formalization of
the project goals, the collection of the outputs, and closing the project.

The second row shows the software development activities, in which we have
highlighted only two of the phases, namely, development and release.

The third row contains time management. We distinguish three activities,
namely, the definition of a schedule, kickoff of activities and, in the dotted box,
monitoring and control.

The fourth row contains cost control, including the definition of the budget and
its monitoring (dotted box).

The remaining four layers contain the activities to manage changes, control
software configurations, assess quality, tame risks, and manage human resources.

Introduction � 13

The arrows show a possible ordering of the activities. As we will see, it is one of
different possible ways to organize work.

Notice that not all layers are always necessary to have a good project. Practi-
tioners distinguish between traditional and agile management. The first favors
structure, while the second prefers more lightweight approaches. Thus, some
projects are better managed by reducing the fat and the infrastructure, while others
can succeed only if you have the full deal. This also holds true for the millefoglie:
more is not always better.

To conclude, I hope that you enjoyed the analogy with gusto. In the next
chapters, we will have a look at the techniques in each area.

1.5 Goals and Organization of the Book
This book is organized in two parts. The first part introduces the building blocks
and techniques to develop and manage software projects, while the second puts
them together in an organized process.

To go back to Figure 1.2, the first part describes the boxes, while the second part
shows how these boxes can be organized in different ways. The goal of this approach
is to achieve flexibility and to allow readers to be creative by selecting and mixing
the techniques they find more effective for their projects. For this reason, traditional
and agile techniques are presented side by side.

The first part of the book develops in the next four chapters. In more detail,
Chapter 2, introduces the main activities characterizing software development
projects. It covers the execution phase of a project and also helps understand why a
sound management structure is also necessary for software development.

Chapter 3 covers the essentials, namely, how to manage goals, time, and costs.
Starting from project selection, which describes some of the factors to consider
before starting a project, the chapter develops by introducing techniques to define
project goals, making them into a specification and a schedule of the work to be
performed. A discussion on algorithmic techniques helps us understand how we
can come out with reliable estimations and, consequently, with a budget for the
project. The chapter covers the different project phases, including monitoring and
control. Thus, it introduces the basic management techniques from end to end.

Chapter 4 introduces the variability and uncertainty that characterize any
project and describes the techniques that can be used to ensure that these do not
affect a project and its outputs. We will look, in particular, at techniques to deal with
change requests and changes and demonstrate why a sound configuration manage-
ment is essential. We will continue by analyzing the main techniques to deal with
risks. A discussion on quality and on the techniques to ensure that quality goals are
met concludes the chapter. Some might argue that quality management is an essen-
tial process deserving to be presented alongside goals, time, and costs management.
I understand the point of view. Quality and quality management, however, not only

14 � Introduction to Software Project Management

set the baseline characteristics of the project outputs but also ensure that they are
met in spite of the unexpected. I prefer to emphasize this second aspect.

Chapters 5 and 6 close the first part of the book. Chapter 5 introduces some
theories about what motivates people and the techniques to manage team and stake-
holders, establishing appropriate project structures and communication channels.
Chapter 6 introduces some concepts related to software pricing and procurement
activities.

The second part of the books puts the techniques together in a coherent process.
Over the years, the way in which software projects are organized has changed con-
siderably. Chapter 7 thus describes how to organize software development projects,
introducing traditional and agile processes. Thus, the technical and managerial
activities presented in the first part of the book are put together in different ways to
try and tame the complexity of software development.

Chapter 8 concludes the description of processes by presenting standards and
frameworks for software project management.

Automation has always been important to present and track information in a
project. Today, it has become an essential infrastructure to also organize and allocate
work. Chapter 9 thus closes this book by presenting some open source tools to
support planning, management, and the organization of work.

The simplest way to read the book is, of course, from end to end. Each chapter,
however, should be sufficiently self-contained to be readable and understandable by
itself. The chapters in the second part of the book (Chapters 7 through 9) make
more sense after reading the first part of the book.

1.6 Further References
The literature on project management, software engineering, and software project
management is huge. There are some references that I have found myself resort-
ing to over and over again during my career as a teacher and as a professional.
So, while you will find specific references in the chapters, if you are building your
software project management bookshelf or if you want to complement this book
with some additional readings in the area, the following references are some starting
points.

Project management books:

� Burke (2006) is a very well-written introduction to project management.With
its many diagrams and techniques, it clearly explain many topics of project
management. I have found particularly interesting the discussion on project
selection and budgeting techniques. All in all, the book is clear and fun to
read.

� Wysocki (2011) is another very readable book on project management. With
its 734 pages, it is also a considerable challenge to reading, but worth the effort
or worth consulting, if you prefer to pick topics here and there. I found the

Introduction � 15

description of traditional, agile, and extreme project types particularly inter-
esting. Critical chain management and project closing are two other topics to
look at.

� Maylor (2010) provides many insights from case studies while presenting
techniques to manage projects. The presentation is based on the 4-D model:
define it, design it, do it, and develop it.

� Project Management Institute (2004) is the definitive reference guide on
project management. Sponsored by the PMI�, it illustrates the techniques
that are most appropriate at each phase of project development. Given the
breadth, the book only hints at the techniques and is a starting point to
look for further references. The organization in process groups and knowledge
areas, which we will see in Section 8.2, is very effective.

There are also various books explicitly focused on software project management.
Among them

� Brooks (1995) is a seminal book on the topic, covering and introducing var-
ious important concepts that distinguish software project management from
other management areas. Worth reading.

� Henry (2003) is the first book on software project management that I came
across. It also raised my interest to the function points estimation techniques,
which are clearly introduced there. We will cover function points estimation
in Section 3.4.5.1.

� Hughes and Cotterell (2009) is a nice introduction to the topic. With a nice
discussion on software quality and procurement, it introduces many of the
concepts related to software project management.

A huge number of books cover software development and the management of
software projects. I will mention only a few:

� McConnell (1996) presents critical aspects of software development, suggest-
ing how becoming more agile can help tame wild software schedules. Rich
in examples, the description of how stakeholders can make the project goals
impossible to achieve is very interesting.

� Rothman (2007) provides a very practical approach to managing a project,
with many insights and techniques to cope with the difficulties of software
development projects.

� Ruby et al. (2013) provides the clearest and most readable example of agile
development that I came across recently. So, while the book presents Ruby on
Rails, a web development framework, its presentation is organized as a Scrum
sprint. We will cover Scrum in Section 7.3.3.

Finally, I need to mention the many reports and books on the topic made avail-
able by NASA. While only partially overlapping with project management, NASA
(2007) is very interesting to read. So are various other reports, including NASA
(1990).

16 � Introduction to Software Project Management

1.7 Questions and Topics for Discussion
1. Recap the main characteristics of a project.
2. Try and see which of the activities you commonly do could be organized

as projects and which are operational work. Consider the following exam-
ples: writing an essay; studying at the university; preparing a meal; preparing
dinner every evening; painting a house; exercising; training for the Olympic
games.

3. Consider the construction of a web application that allows people to donate
food. Who could be the stakeholders of the project?

4. Many software development processes are iterative. Each iteration delivers
a software system that gets refined as development progresses. Go back to
Figure 1.2 and think about how you could modify the process to make it
iterative. How many possible loops can you envisage?

References
Brooks, F. P. J., 1995. The Mythical Man Month (Anniversary ed.). Addison-Wesley, Boston,

MA, USA.
Burke, R., 2006. Project Management, Planning and Control Techniques (4th ed.). John

Wiley & Sons, New York, NY, USA.
Cabanis, J., 1996, December. A question of ethics: The issues project manager face and how

they resolve them. PM Network, 19–24.
Cox, C. B. and C. Murray, 2004, September. Apollo. South Mountain Books, Burkittsville,

MD.
Gertler, J., 2012, October. Air force. Technical Report RL31673, Con-

gressional Research Service. Last retrieved July 11, 2013. Available at
http://www.fas.org/sgp/crs/weapons/RL31673.pdf

Henry, J., 2003. Software Project Management: A Real-World Guide To Success. Pearson
Education, Addison-Wesley, Boston, MA, USA.

Hughes, B. and M. Cotterell, 2009. Software Project Management. McGraw-Hill Higher
Education.

IEEE Board of Directors, 2006, February. IEEE code of ethics. Available at
http://dusk.geo.orst.edu/ethics/codes/IEEE_code.pdf. Last retrieved May 31, 2013.

Maylor, H., 2010. Project Management (4th ed.). Pearson, Harlow, England.
McConnell, S., 1996. Rapid Development—Taming Wild Software Schedules. O’Reilly,

Sebastopol, CA, USA.
NASA, 1990. Manager’s handbook for software development. Software Engineering Labo-

ratory Series SEL-84-101, NASA Goddard Flight Center.
NASA, 2007, December. Systems engineering handbook. Technical Report NASA/SP-2007-

6105 Rev1, NASA.
Project Management Institute, 2004. A Guide to the Project Management Body of Knowl-

edge (PMBOK Guides) (4th ed.). Project Management Institute, Newtown Square,
Pennsylvania 19073-3299 USA.

Introduction � 17

Project Management Institute, 2013. Project Management Institute—code of
ethics and professional conduct. Available at http://www.pmi.org/en/About-
Us/Ethics/∼/media/PDF/Ethics/ap_pmicodeofethics.ashx. Last retrieved May 31,
2013.

Randell, B., 1996. The 1968/69 NATO software engineering reports. Last retrieved July 11,
2013.

Rothman, J., 2007.Manage IT! Your Guide to Pragmatic Project Management. The Pragmatic
Bookshelf, Raleigh, NC.

Ruby, S., D. Thomas, and D. H. Hansson, 2013. Agile Web Development with Rails. The
Pragmatic Bookshelf, Raleigh, NC.

Wysocki, R. K., 2011, October. Effective Project Management: Traditional, Agile, Extreme (6,
illustrated ed.). John Wiley & Sons, New York, NY, USA.

Chapter 2

The Basics: Software
Development Activities
and Their Organization

Software development projects range from the very small to the very large and
encompass a wide range of complexity, starting from software developed by a small
team in their spare time and ending with projects lasting several years and involving
the work of many people.

Similarly, the concept of what it means for a software development project to
succeed also varies according to the context. For the small team developing an open
source solution, it could be the intellectual challenge of solving a complex problem
or the satisfaction of contributing to a community. Time is not critical, nor are costs:
having fun in the process probably is.

For people developing safety-critical systems, the challenge is different. They
need to ensure that the system will perform as expected in a wide array of opera-
tional conditions, including those in which there are malfunctions. Quality and a
controlled process are paramount in this context.

Finally, for people developing a web application or another desktop system, the
most important aspect could be the the price that can be set for the product or
making sure that the product is released before the competition. In this context,
time and costs might be the main drivers.

Thus, the activities that are required or beneficial to develop successful software
vary from project to project. Some projects might allow a more informal approach,
while others are better served by a very structured and controlled process. Going

19

20 � Introduction to Software Project Management

back to themillefoglie example, the goal of this chapter is to present the “pastry,” that
is, the activities that are needed to develop software. These are the technical building
blocks for constructing software, that is, what we do in the “execute” phase of a
software development project. These building blocks will be selected, composed,
and organized in different ways, according to the project size and formality, the
process adopted, and other management choices in Chapter 4.

2.1 Software Requirements Definition
The first step of any nontrivial software development project is to form an idea
about the system that has to be developed.

Software requirements definition includes the methods to identify and
describe the features of the system to be built. The main output of this activity is
one or more artifacts describing the (software) requirements of a system, namely,
the functions it has to implement and the other properties it has to have.

Software requirements are strongly related to the scope document, which
defines the goals of a project and which we will see in Chapter 3.

There are two main output formats for these artifacts, textual or diagrammatic.
When the textual format is used, the requirements are written in English, in

some cases using a restricted set of language or predefined linguistic patterns. For
instance, special words, such as “shall,” might be required to indicate an essential
requirement—see, for example, Brader (1997).

Concerning the structure, the requirements are often presented as lists of items,
one per requirement. Another very common representation writes requirements in
the form of user stories, using the following pattern:

As a [user] I want to do [this] because of [that].

The advantage of this approach is that each requirement clearly identifies the
user, the function that has to be performed, and the motivation for the function
to be implemented, something that helps identify the priority or importance of a
requirement.

The diagrammatic notation describes requirements with a mix of diagrams and
textual descriptions. Diagrams depict the interaction between the user and the sys-
tem and the textual description explains the interaction using a sequence of steps.
The most common graphical notation is that of the use case diagrams of UML
and the corresponding textual descriptions are called use cases (Booch et al., 1999;
Fowler and Scott, 2000).

The requirement engineering discipline includes the activities necessary to
define and maintain requirements over time. Simplifying a bit, requirements engi-
neering entails a cyclical refinement process in which the following steps are repeated
at increasing levels of detail till a satisfactory level of know-how about a system is
achieved.

The Basics � 21

In more detail, the process is composed of four steps:

1. Requirements elicitation
2. Requirements structuring
3. User experience design
4. Requirements validation.

2.1.1 Requirements Elicitation
Requirements elicitation is the activity during which the list of features of a sys-
tem are elicited from the customer. This activity can be performed with interviews,
workshops, or the analysis of existing documents.

2.1.2 Requirements Structuring
Requirements structuring is the phase during which the requirements are anno-
tated to make their management and maintenance simpler.

During the process, requirements are

� Isolated and made identifiable. Each requirement is clearly isolated and dis-
tinguished from the others and is also assigned a unique identifier. This allows
one to reason and manipulate each requirement more easily. Concerning
identification, a commonly used practice is that of assigning each require-
ment a number or a combination of some characters (describing the type of
requirements) and a number.

� Organized and classified. A simple classification distinguishes between
functional and nonfunctional requirements. The former are requirements
describing what the system has to do. The latter are requirements describ-
ing what other properties the system should exhibit (e.g., “the system will
have to run on Windows devices”). Functional requirements are usually orga-
nized in functional areas. Each functional area groups requirements describing
a homogeneous set of functions. For instance, a requirement document might
have an “accounting functions” section describing all requirements pertaining
to accounting functions. Nonfunctional requirements are often organized in
four groups: usability, reliability, performance, and supportability.

� Annotated. Requirements are annotated to simplify their management and
to support planning activities, like, for instance, which requirements should
be implemented first. It is a good practice to assign each requirement at least
two properties, namely, the importance for the customer and the difficulty
to develop, for instance, using values from 1 to 5. We will see other types of
classifications in Section 3.2.1.

Requirements evolve over time and a sound approach to requirement man-
agement also necessitates defining a proper strategy to control the evolution of

22 � Introduction to Software Project Management

Description
[ID] As a [user] I want to do [this] because of [that]

Attributes
Importance: [IMPORTANCE]
Priority: [PRIORITY]
Traceability: [THIS REQUIREMENT RELATES TO ...]

Revision History
- [DATE] [AUTHOR] [DESCRIPTION]

Figure 2.1 A template for a requirement.

requirements. We will see some of the issues in Section 4.1. Here, it is sufficient
to mention that requirements are often annotated with

� Traceability information, which has the goal of highlighting where a require-
ment originates from. Traceability shows the relationships among require-
ments and the relationships among requirements and other artifacts of
software development. This allows one to understand the impact of changes.
See Gotel and Finkelstein (1994) for a formal definition and more details.

� History log, which records the changes each requirement has undergone. The
history log traces how requirements have changed over time.

Figure 2.1 shows an example of a template of an annotated requirement.

2.1.3 User Experience Design
User experience design has the goal of providing a coherent and satisfying experi-
ence on the different artifacts that constitute a software system, including its design,
interface, interaction, and manuals. It is defined in International Organization for
Standardization (2010) as the extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context
of use.

The typical user experience design activities include

� User-centered analysis, which has the goal of understanding how users will
interact with the system. It runs in parallel with the requirements definition
and requires the organization of workshops and other activities (e.g., surveys)
to profile the users, analyze which tasks they will perform, and define which
style guides will be followed in designing the system.

� User-centered design, which has the goal of specifying how users will actually
interact with the system. It runs in parallel with the requirements definition
and system design (see the next section). The outputs include storyboards

The Basics � 23

describing the interaction, mock-ups, and prototypes. (A mock-up is a full-
size model of something that has not yet been built, showing how it will look
or operate (Cambridge University Press, 2013).)

2.1.4 Requirements Validation
Requirements validation is the phase during which the requirements are analyzed
to find

� Inconsistencies, for example, two requirements require a system to behave in
contradictory ways. In a common situation, a requirement document includes
two requirements, the first prescribing a general behavior (e.g., “the system
should always abort in case of error”) and the other suggesting the opposite
one in a specific situation comprised also in the general requirement (e.g., “the
system should recover from a sensor-reading error”).

� Incompleteness, when no information is given about a specific situation.
� Duplicates, when one requirement describes a function already described by

another requirement.

Different techniques can be used to validate requirements. We mention inspec-
tions and formal analyses. Document inspections are based on the work of a team
that analyzes the content of documents and highlights any issue. The technique
relies on the ability and experience of the team. Formal analyses use mathematical
notations (such as first-order logic) to represent requirements and automated tools
(such as theorem provers and model checkers) to prove properties about the require-
ments. Several notations and approaches are available; see, for instance, Clarke et al.
(2000), Bozzano and Villafiorita (2010), and Spivey (1989) for more details.

Notice that the goals of this phase overlap with those of quality management.
We will see more about verification and validation techniques in Section 4.3.

2.2 Business Modeling
In the 1990s, the university where I teach—a complex organization in which differ-
ent offices have considerable organizational autonomy—kept personnel records in
different databases: one for contracts, another for teaching assignments, another for
granting entrance to laboratories, to name some. The database was not connected;
any change had to be propagated manually to all databases, causing inconsistencies,
omissions, and a lot of extra work to try and keep data in sync.

Enterprise resource systems (ERP) are systems that can automate and simplify
the processes of an organization, integrating the data and the procedures of different
business units. These systems are usually composed of standardized components,
which implement the main procedures of an organization in a particular business
sector (e.g., government, logistics, services). Their introduction in an organization

24 � Introduction to Software Project Management

typically requires them to act not only on the system, personalizing data, procedures,
and functions, but also on the organization, by changing the existing procedures to
take full advantage of the system being introduced.

In this kind of project, understanding how work is carried out in an organization
is often more relevant than eliciting the requirements of the system to be built, since
an important part of the project work will focus on mapping the current procedures
and changing them to accommodate those that supported by the ERP.

The activity to understand how an organization is structured and works is called
business process modeling or business modeling in short. Those to modify the
current procedures go under the name of business process re-engineering.

Business modeling and business re-engineering are usually organized in two
main steps. An initial “as is” analysis describes the organization before the intro-
duction of a new system. The “as is” analysis helps one understand the current
infrastructure and needs. A complete analysis will include

� A description of the organizational structure, highlighting the chain of
responsibility and accountability.

� A description of the business processes, describing how the organization
carries out the different procedures.

� A map of the existing IT infrastructure, highlighting hardware, systems, and
databases.

� A list of the business entities, highlighting the data produced and processed
by the organization.

Following the “is” analysis, a “to be” phase defines how the organization will
change with the introduction of the new system. The “to be” analysis produces the
same set of information required by the “as is” analysis, but it describes the processes,
the systems, and the business data that will be introduced to make operations more
efficient.

Let us see in more detail the information produced with the “as is” and the “to
be” analyses.

2.2.1 Mapping the Organizational Structure
Mapping the organizational structure has the goal of understanding how an
organization is structured.

The information to collect includes the list of the different business units and
the lines of responsibility. More detailed analyses also include the roles or the staff
employed by each business unit and the functions assigned to each role or person.

The output is a text document or an organizational chart describing the
units and their functions. It is used to identify the changes that will have to be
implemented in the organization to support the new processes.

The Basics � 25

2.2.2 Modeling the Business Processes
Modeling the business processes has the goal of documenting how an organization
carries out its procedures.

These are typically represented with flow diagrams sketched, for instance, using
the business process modeling notation—BPMN (OMG, 2011). Business pro-
cesses highlight, for each process, which steps need to be performed, by whom, and
what outputs are produced and consumed. The specification should model both
nominal and exceptional situations. For instance, if the target of the analysis is a
paper-based procedure to authorize a trip, a good process description will docu-
ment what happens when everything flows as expected and how the organization
recovers if some error occurs—for example, a paper form is lost in the middle of a
procedure.

A difficult aspect of this analysis is capturing not only the formal procedures but
also the current practices, namely, how people actually carry out the procedures.
The ethnography software engineering field focuses on methods to simplify this
activity. See, for instance, Rönkköa (2010) for an introduction on the matter.

The output is a document containing the processes, possibly organized by area
or by business unit. It is the basis to specify the new business processes or the
requirements of the systems that will have to implement them.

2.2.3 Mapping the Existing IT Infrastructure
Mapping the IT infrastructure has the goal of understanding what IT systems are
currently used in an organization, with what purpose, which data they store, and
what lines of communications exist, if any.

Various notations can be used; the most formal ones are based on UML and
could include component and deployment diagrams. Textual descriptions often
complement the diagrams.

The output is a document. It is the basis to plan data migration and data inte-
gration activities. The former occurs when an existing system will be dismissed and
the data it manages have to be migrated to a new system. The latter occurs when
the system will remain in use and will have to communicate with the new system
being introduced.

2.2.4 Mapping Business Entities
Mapping the business entities has the goal of documenting which data are
processed by an organization, by whom, and with what purpose.

During this activity, analysts typically produce data models and CRUDmatri-
ces. The former list the data processed by the business processes. They are presented
with class diagrams or textual descriptions.

26 � Introduction to Software Project Management

The latter define the access rights to the data. It is presented as a matrix, whose
rows list the data and whose columns list the business units. Each cell contains any
combination of the CRUD letters to indicate which unit creates (“C”) specific data,
which unit reads (“R”) it, which unit can update (“U”) the data, and which units
delete (“D”) the data.

2.3 Design and Implementation
The goals of design (also system design or architectural design in the rest of the
book) and implementation are, respectively, to draw the blueprint of the system to
be implemented and actually implement it.

2.3.1 System Design
System design defines the structure of the software to build or system architecture.
The output of this activity is one or more documents which describe, with diagrams
and text, the structure of the system to build, namely: what software components
constitute the system, which function each component implements, and how the
components are interconnected. The activity is particularly relevant for technical
and managerial reasons.

In fact, design allows one to break the complexity of building a system by sep-
arating concerns, that is, by allocating functions to components, and by specifying
functions in terms of more elementary and simpler to implement components.

The system architecture can also be used as an input to plan development. In
fact, given the list and structure of components that have to be developed, there is
a natural organization of work that follows the structure of the system. We will see
this in more detail in Section 3.3.

The definition of a system architecture can be based on a pattern or pre-
defined blueprints. Many different architectural blueprints have been proposed in
the literature. Among these, some of the most commonly used include:

� Pipe and filter, that is, a paradigm according to which the application is
structured as a chain of processing elements. Each element of the pipe takes
an input from the previous element, processes it, and passes it onto the
next element. In a pipe and filter architecture, once the boundaries among
the elements of the pipe are clearly defined, the development of each ele-
ment can proceed in parallel with that of the others. In this architecture, the
input/output specification is a critical piece of information to ensure that all
components integrate as expected. See the discussion about integration testing
in Section 2.4 for more details.

� Layered/hierarchical, by contrast, is an architectural style in which the dif-
ferent elements of a system are organized hierarchically. Lower levels of the
architecture perform simpler functions, while higher levels are responsible for

The Basics � 27

the implementation of more complex functions. Lower layers pass informa-
tion about the environment or their status to the higher levels, which in turn
send commands to the lower levels. An example of layered architecture is
that of an embedded system in which we can distinguish two levels. At the
lower level, sensors are responsible for reading data from the environment and
processing inputs. At the higher level, a controller takes the input of the sen-
sors and decides the action to perform, sending appropriate commands to the
actuators. These, in turn, are responsible for interacting with the environment
executing the commands of the controller.

� Data-centric is an architecture used when data storage and elaboration are
central. Many data-centric architectures rely on a database to store data and
are often based on the model view controller (MVC) pattern, according to
which, for each data to be processed by the application:
– The model defines how data are to be stored and manipulated.
– The view defines how data are to be presented to the user or other systems
interacting with the one we are developing. Multiple views can be associ-
ated with a single model or, vice versa, some views can display the data of
different models.

– The controller defines the logic of the operations, that is, what sequences
of transformations make sense of the data and what actions the users can
perform.

Many web applications and many desktop applications use the data-centric
architectural style.

� Client-server is an architecture in which the functions of a system are split
between a server, which performs the main functions, and various clients,
which interact with the server, requesting services.

Figure 2.2 provides a pictorial representation of the different architectural styles
we have just presented. Notice how the data-centric architecture is composed of two
MVCs.

A popular way of presenting the architecture of a software system is the one
proposed in Kruchten (1995), which is based on the UML, and according to which
the architecture of a software system is described by “4+1” diagrams.

Four diagrams describe the structure of the system. In particular

1. The logical view identifies the main elements and data structures of the
system to build. It is best described with class and sequence diagrams.

2. The component view provides a programmer-oriented view of the system.
It is mainly concerned with the components to be developed and is best
described in UML with class and component and package diagrams.

3. The process view provides a specification of the behavior of the system: inter-
actions among components and the sequence of actions that are required
to implement the user functions. It is best described with sequence and
communication diagrams.

28 � Introduction to Software Project Management

C1 C2 C3

A pipeline architecture C1

C2

C3 C2

C2

C2

A layered architecture

M

C

V Updates

Modifies

A data-centric application with two MVCs

M

V2

V1
Updates

Database

Client 1

Client 2

Client 3

Server

Response Request

Response Request

Request
Response

A client-server architecture

Figure 2.2 Some examples of architectural styles.

4. The physical view provides a specification of the physical deployment of a
system, that is, on what computer or process each element of the architecture
will run. It is best described by a deployment diagram.

The last view is the use case diagram view, which we have briefly described in
Section 2.1.

2.3.2 Implementation
The goal of the implementation phase is writing the code implementing the
components individuated in the architecture.

Some of the aspects of this activity that are more closely related to project
management include

� Collection of productivity and size metrics, which allow one to measure the
speed at which code is delivered and the amount of work that has been per-
formed. This is covered in more detail in Section 3.4.5, where we introduce
estimation techniques based on software size, and in Section 3.9, where we
present monitoring techniques.

� Collection of quality metrics, which allow one to measure the quality of the
system to be developed and trends in the development process. This is covered
in more detail in Section 4.3.

� The use of coding standards, which are guidelines describing best practices
and the preferred styles to write code. Coding standards are adopted to ensure

The Basics � 29

that the work of different programmers is similarly structured. Different stan-
dards are available. One which is adopted by the open source community
is described in (Free Software Foundation, 2013). See Section 4.3 for more
details.

2.4 Verification and Validation
Verification is the set of activities performed on a system to ensure that the system
implements the requirements correctly. The definition is taken from SAE (1996)
and distinguishes verification from validation, which is instead performed to ensure
that the requirements describe the intended system. Thus, validation ensures that
we are building the right system, while verification ensures that we built the system
right.

Verification and validation are collectively known by the acronym V&V. The
main way of performing V&V of software systems is testing. However, also see
Sections 2.1.4 and 4.3 for a more complete discussion.

2.4.1 Testing
Testing is one way of performing verification and validation. Other methodologies
include simulation, formal validation, and inspections.

Testing activities can be classified according to their scope. In this case, we
distinguish between the following:

� Unit testing, when the goal is to verify the behavior of a piece of code, such
as a class. Unit testing verifies that the code under investigation behaves as
specified by the system architecture. The execution of unit tests can be easily
automated, since they can be written as pieces of code. Some development
paradigms, in fact, suggest writing unit tests before the code, as a way to
encourage testing and to define executable and unambiguous specifications of
the expected behavior of a piece of code.

� Integration testing, when the goal of the testing activity is to ensure that the
components of a system behave as expected when they are assembled. Integra-
tion testing looks for inconsistencies in the way data are exchanged between
components. These errors are relatively simple to introduce and their effect
can be catastrophic. Consider a situation in which one component returns an
array of characters, while the one connected to it expects a string.

� System testing, when the goal of the testing activity is to ensure that the
system behaves as expected and correctly implements all the requirements.
System testing uses the requirements document as input and defines a set
of test cases that verify whether a system implements the requirements. See
Section 2.4.2.1 for more details.

30 � Introduction to Software Project Management

� Usability testing, running in parallel with the other testing activities, has the
goal of verifying whether the user experience and interaction are intuitive,
effective, and satisfying. Usability testing is particularly relevant in designing
user interfaces for safety-critical systems to reduce the probability of human
errors.

2.4.2 Organizing Testing Activities
While unit tests are written and executed by the developer writing the code being
tested, integration and system test are typically performed by an independent team
and are organized in the following two steps:

1. Test plan definition
2. Test execution and reporting.

Many software engineering books also include a test planning activity, which
has the goal of identifying the resources, the schedule, and the order in which the
tests will be executed. This emphasizes the fact that testing can be organized as a
subproject and have its own plans and schedule.

2.4.2.1 Test Plan Definition

Starting from the requirements of a system, the goal of the test plan definition is
to write the tests that will be performed on the system.

The output of this activity is a document listing a set of test cases, each of which
describes how to perform a test on the system. Test cases are structured natural
language descriptions that specify all the information needed to carry out a test,
such as the initial state of the system, the inputs to be provided, the steps to be
performed, the expected outputs, and the expected final state of the system.

Different test cases need to be defined for each requirement. Each test case,
in fact, verifies either a particular condition specified by the requirement or the
implementation of the requirement in different operational conditions.

Traceability information, which links a test case to the requirement it tests, helps
manage changes and the overall maintenance process.

2.4.2.2 Test Execution and Reporting

Starting from the test plan definition, test execution and reporting is the activity
during which the team or automated procedures execute tests and report on the
outputs, that is, which tests succeeded and which failed.

Manual test execution is time consuming and demands motivation and com-
mitment from the people performing it. There are various reasons for this.

The first is that it is repetitive: some operations have to be repeated over and over
again to put the system in a known state before starting a test. Attention, however,
has to remain high to ensure that all glitches are properly recognized and reported.

The Basics � 31

Test plan
definition

Requirements

Test cases

Test plan

Test plan

Test
execution

Fixing

Test report

System

[Errors]

[No errors]

Figure 2.3 The testing workflow.

The second is that testing is the last activity before releasing a system. It requires
quite some commitment to work hard at this stage of development to demonstrate
that a system does not work and needs one to go back to the design room.

The third is that when an error is found, the process stops till a fix is found.
When the fix is ready, it is necessary to start the testing activities all over again,
possibly including the definition of new test cases, to verify that the bug has actually
been fixed. This is to ensure that there are no regressions, that is, working functions
have not been unintentionally broken by the fix. The corresponding workflow is
shown in Figure 2.3.

Different strategies have been proposed to write effective test cases. It has to be
remarked, however, that testing is rarely complete and it can only demonstrate that
a system does not work, rather than proving that a system is correct.

2.5 Deployment
The final step of the development process is releasing and installing a system so that
it can be used by the customer and operations start. The transition to operations
can be very simple for the project team. Consider, for instance, a case in which a
software is handed to the client as a self-installing application in a CD, or made
available on a website for customers to download.

In other situations, deployment needs to be carefully planned. This happens
when a new software system replaces an obsolete system performing business-
or mission-critical functions. In this situation, the goal is to move to the new
technology without interrupting the service.

Consider a case in which a system controlling the routing of luggage in an air-
port needs to be upgraded. The development and installation of the new version

32 � Introduction to Software Project Management

of the system has to be organized so that no interruptions occur and no luggage is
mismanaged.

A standard practice for projects of this kind makes sure that any change or soft-
ware evolution does not interfere with production. To achieve this goal, the project
team sets up three exact and independent replicas of the same operating environ-
ment, as shown in Figure 2.4. In particular, we distinguish between the following:

� A development environment, where the actual development of the soft-
ware takes place. The development environment is completely isolated from
production, and therefore there is no concern of blocking any critical
activity. If data are needed to verify the behavior of the software being
developed, a replica of the data in production is used. If there are pri-
vacy concerns, like in the case of medical or banking systems, the data on
which developers operate are fake or an anonymized version of the data in
production.

� A testing environment, where the team tests a system that is ready for deploy-
ment. The testing environment is isolated from the development and the
production environment, so that, on the one hand, no changes made by
developers interfere with testing and, on the other, that testing activities can
proceed without any risk of interrupting production. Similar to the produc-
tion environment, testing activities use replicas of the production data or fake
versions.

� A production environment, where the system is actually used. Any change
to the production environment interferes (positively or negatively) with the
operations for which a system is used.

Development
environment

System ready
for testing

Testing environment Production
environment

Fake data Fake data Data

Project development team Project testing team Employees

System, project, and
organization ready

for production

System System System

Figure 2.4 Development environments.

The Basics � 33

Even if we separate development and testing from production, alas, it is still
necessary to ensure a smooth transition of operations when the new system is ready.
In general, three factors need to be taken into account when deploying a new system.

They are

1. The human factor: are the people ready to use the system?
2. The data factor: are all the data that are needed for the system to run available

to the new software?
3. The hardware factor: are all interfaces ready and functional?

The deployment process thus typically requires to perform an assessment of
readiness and evaluation of the gaps, which has the goals of understanding the
main criticalities and risks. An analysis of documents and interviews with project
stakeholders highlights all the critical issues related to the deployment of the new
technology.

This is followed by the selection of a migration strategy, which defines an
approach to the introduction of the new system. According to Wysocki (2011),
the following approaches are possible:

� Cut-over, when the old system is replaced by the new one.
� Parallel approach, when the old and the new systems operate simultaneously

for a period. This allows the new system to be tested and evaluated before the
actual switch takes place.

� Piloting, when the system is installed for a limited number of users or for a
specific business unit. This approach reduces the burden to users (who do not
have to live with two systems), but it maintains the complexity of having two
environments—the old and the new systems—both alive.

� Phased approach, when functions are rolled out incrementally.

Notice that, in all the approaches mentioned above, with the exclusion of the
cut-over approach, appropriate measures have to be taken to maintain or transfer
data from the old system to the new system. For instance, in the piloting approach,
adequate procedural or technical interfaces need to be defined, so that the data
produced by the business unit operating the new system can be used by the units
using the old system.

When the strategy is agreed upon, the final step is the implementation of the
release process, which in turn consists of the following steps:

1. Deliver training, to ensure that the users acquire the necessary skills to use
the new system.

2. Perform data migration, which includes updating the data used in the pro-
duction environment so that it can be used by the new system. This is a
delicate step, which requires a thorough testing of the migration scripts and a
backup of the existing data structures.

34 � Introduction to Software Project Management

3. Install the new system, which puts the new system in production.
4. Set up the support infrastructure, namely, set up an infrastructure to

support operations. More on this in the next section.

Notice that data migration and the installation of the new system need to be
performed contextually. They are typically performed in a period and time where
a service can be interrupted and system can be taken off-line to reduce pressure on
the team and risks, should something not go as expected.

2.6 Operations and Maintenance
Operations andmaintenance include the activities to ensure that a product remains
functional after its release.

2.6.1 Supporting and Monitoring Operations
In general, operations are outside the scope of a project. However, many one-off
development projects plan a support activity after a system is released to ensure that
the project outputs meet the quality goals and the transition to operations is as
smooth as possible.

The goals of this activity typically include

� Providing technical support. The support is meant to help users get
acquainted with the system and it can be organized as a help-desk collect-
ing tickets from users. Some of these tickets are requests for clarifications on
the use of the system. Others will signal malfunctions, glitches, and requests
for improvement, triggering maintenance activities. See the next section for
more details.

� System monitoring. A set of metrics might be collected on the system after
its initial release to monitor performances, issues, and other system features.

2.6.2 Maintenance
Maintenance occurs throughout the lifecycle of a system, before it is retired. It can
be framed either as a project or operational work and, as such, it often poses a
dilemma to the project manager.

ISO/IEC (2006) identifies four categories of maintenance for software:

1. Corrective, if relative to fixing an issue discovered after the release of the
system.

2. Preventive, if relative to fixing an issue that was discovered but has not
occurred (or at least signaled by users).

The Basics � 35

3. Adaptive, if relative to adapting a system to changed external conditions.
Adaptive maintenance includes, for instance, activities related to updating a
software to work with a new release of an operating system.

4. Perfective, if relative to improving some characteristics of a system, like, for
instance, performances.

Of these, perfective and corrective maintenance are triggered by suggestions and
bug reports sent by users. Suggestions and bug reports are also called issues or
tickets.

When maintenance is the last activity of a project, two points have to be con-
sidered. The first is how much work has to be allocated, since we do not know in
advance how many defects will be signaled. A general strategy is considering the
complexity of the system, looking at the outputs of the testing phase, and allocating
a percentage of the overall development effort. The second point is distinguish-
ing between tickets that are in the scope of the project (called “nonconformance
reports”) and tickets that are outside the scope of a project (called “concessions”). In
fact, as users start using the system, they might come out with new ideas and pro-
posals. However, the implementation of these new features is often better framed
within the scope of a new project.

When the planned maintenance period ends, tickets might still arrive. In these
situations, organizations and managers are faced with the dilemma of whether the
activities should be framed in the context of a new project or not. In some cases,
in fact, the amount of work required for the fixes does not justify setting up the
machinery of a project. The choice, of course, can boomerang if a continuous
stream of small change requests keeps coming in or if the fixes turn out to be more
complex than initially envisaged. While there is no silver bullet to decide on the
matter, one good practice is to have the team always monitor the time they spend
on maintenance activities.

Agile methodologies, by contrast, blur the distinction between development and
maintenance by organizing the development of a system in iterations. Each iteration
includes the development of new planned features and selected tickets identified
since the last release. This will be explained in more detail in Chapter 7.

2.6.3 Organizing Support and Maintenance Activities
One important aspect of support and maintenance activities is keeping formal track
of the tickets.

This is usually achieved by

� Defining a workflow for tickets, which describes how bug reports are
formally tracked and managed. Workflows can be very simple or more artic-
ulated, if a formal quality control or configuration management process is in
place.

36 � Introduction to Software Project Management

Unconfirmed

[A user reports a bug]

Confirmed In progress Resolved Closed

[Solution is not
satisfactory]

[Bug is not present,
e.g., reported by mistake]

Figure 2.5 The lifecycle of a bug.

� Automating the collection and management of tickets. This is usually
achieved by introducing a bug tracking system. A bug tracking system allows
one to maintain a list of tickets and trace their workflow states. Many of these
tools also allow one to produce reports and statistics, which can be used by
managers to infer information about a system’s quality and about the efficacy
of testing activities.

Figure 2.5 shows an example workflow, adapted from the Bugzilla Development
Team (2013). A bug starts in the state unconfirmed after it is reported by a user.
If the quality assurance team confirms its presence, the bug goes in the state con-
firmed, where it can be taken in charge by a developer. The state of the bug thus
moves to the state in progress. When the developers consider the fix to be ade-
quate, he or she sets the state to resolved. V&V by the quality assurance team,
finally, determines whether the solution is satisfactory, in which case the bug is
closed. Alas, if V&V determines the fix is not adequate, the bug returns in the state
confirmed and another solution has to be found.

2.7 Questions and Topics for Discussion
1. We have seen many artifacts and document produced by the software devel-

opment activities. A documentation plan is a specification of the documents
that will be produced in a project. Define a documentation plan for the
technical documents of a one-off development project.

2. Software development is a progressive refinement and many of the documents
defined in the early stages are used to guide the development of subsequent
activities. This generates a series of dependencies among the artifacts. For
instance, the design document depends on the requirement document, since
any change to the requirement document might cause a change to the design
document. Highlight the dependencies among the documents produced in a
business re-engineering project.

3. On which technical documents does the “test plan definition document”
depend? (Refer to the previous question for the definition of dependency.)

The Basics � 37

4. Define a template for a test case. Many templates are available on the Internet.
Try and see how your template differs from the ones you can find on the
Internet.

5. Suppose a company is about to switch to a new system for managing the reim-
bursements of travel expenses. Discuss the merits and risks of the different
approaches we have presented, namely, cut-over, parallel approach, piloting,
and phased approach for the case at hand.

6. On many occasions, the implementation of tickets is a planned activity.
Define a workflow for tickets that involves an authorization from the project
manager and an acceptance of the fix from the customer.

References
Booch, G., J. Rumbaugh, and I. Jacobson, 1999. The Unified Modeling Language. Addison-

Wesley, Boston, MA, USA.
Bozzano, M. and A. Villafiorita, 2010. Design and Safety Assessment of Critical Systems.

Boston, MA: CRC Press (Taylor & Francis), an Auerbach Book.
Brader, S., 1997. Key words for use in rfcs to indicate requirement levels. Request

for Comments 2119, Network Working Group. Available at http://www.ietf.org/
rfc/rfc2119.txt. Last accessed May 1, 2013.

Bugzilla Development Team, 2013, March. The Bugzilla Guide—4.2.5 Release. Bugzilla.
http://www.bugzilla.org/docs/4.2/en/html/index.html. Last retrieved November 15,
2013.

Cambridge University Press, 2013. Cambridge Advanced Learner’s Dictionary &
Thesaurus. Cambridge University Press, Cambridge, England. Available at
http://dictionary.cambridge.org/dictionary. Last retrieved May 1, 2013.

Clarke, E. M., O. Grumberg, and D. A. Peled, 2000. Model Checking. MIT Press,
Cambridge, MA, USA.

Fowler, M. and K. Scott, 2000. UMLDistilled (2nd Ed.): A Brief Guide to the Standard Object
Modeling Language. Boston, MA: Addison-Wesley.

Free Software Foundation, 2013, April. Gnu coding standards. Available at http://www.
gnu.org/prep/standards/. Last retrieved May 1, 2013.

Gotel, O. C. and A. C. W. Finkelstein, 1994. An analysis of the requirements traceabil-
ity problem. In Proceedings of ICRE94, 1st International Conference on Requirements
Engineering, Colorado Springs, CO: IEEE CS Press.

International Organization for Standardization, 2010. Ergonomics of human-system inter-
action. Technical Report 9241-210:2010, ISO.

ISO/IEC, 2006, September. Software engineering—software life cycle processes—
maintenance. Technical Report IEEE Std 14764-2006, ISO/IEC.

Kruchten, P., 1995. Architectural blueprints—The “4+1” view model of software architec-
ture. IEEE Software 12(6), 44–50.

OMG, 2011, January. Business process model and notation (bpmn). Technical Report
formal/2011-01-03, OMG. Available at http://www.omg.org/spec/BPMN/2.0/. Last
retrieved June 10, 2013.

Rönkköa, K., 2010, November. Ethnography. Encyclopedia of Software Engineering .

38 � Introduction to Software Project Management

SAE, 1996. Certification considerations for highly-integrated or complex aircraft systems.
Technical Report ARP4754, Society of Automotive Engineers.

Spivey, J. M., 1989. The Z Notation: A Reference Manual. Upper Saddle River, NJ: Prentice-
Hall, Inc.

Wysocki, R. K., 2011, October. Effective Project Management: Traditional, Agile, Extreme
(6, illustrated ed.). John Wiley & Sons, New York, NY, USA.

Chapter 3

Making IT Right:
Managing Goals, Time,
and Costs

3.1 Before You Start: Assessing Value and Risks
Projects create new products, new services, or new capabilities. The first step of a
sound management process is to understand whether the new products, services,
or capabilities are worth our effort. The relevance of a project depends, in general,
upon two main factors:

1. The value generated by the project
2. The risks associated with the project.

The meaning of value and risk, however, is not absolute and depends on the cir-
cumstances and on the project environment. For instance, a project developed for
humanitarian reasons measures value in a different way from a project to launch a
commercial product. Similar is the concept of risk. As mentioned byMaylor (2010),
the first projects related to the Apollo mission, although they were considerably high
risk, were critical to gain the know-how necessary to send a man to the moon. A
typical scenario in the software industry is represented by a make or buy decision,
namely, choosing between developing a new system or acquiring an existing one
with features similar to those needed.

In the rest of this section, we look at factors and techniques to assess the value
of a project. These can be used with different purposes:

39

40 � Introduction to Software Project Management

1. To decide whether a project is worth pursuing
2. To select which project to start out of a portfolio of possible proposals
3. To choose the best project plan, given a project with different plans.

3.1.1 Project Value: Aspects to Consider
Three main factors determine the value generated by a project:

1. Direct and indirect value. As mentioned earlier, the value of a project does
not refer necessarily and only to the revenues it generates directly and through
its outputs. Considerations relative to the social and environmental impact,
image and publicity, entering a newmarket, and know-how acquired are some
of the considerations that could add or subtract value from a project.

2. Sustainability. Many IT projects start without an idea or a strategy to sus-
tain their outputs. Thus, the outputs of a project might not live long after a
project and its resources end. Taking into account the operational costs of a
project’s outputs and the way in which the project outputs will survive after a
project ends is an important consideration to understand whether a project is
worth doing.

3. Alignment with the strategic objectives of the organization. Ensuring that
the project aligns with the goals of an organization is an essential point to con-
sider before a project is worth starting. Alignment with the strategic objectives
can determine the priority of a project. As pointed out in Maylor (2010),
Toyota is a leader in defining priorities: projects are started only if they directly
contribute to one of the strategic objectives of the company, namely, quality,
cost, or delivery performance.

3.1.2 Project Risks: Aspects to Consider
Various factors determine the risk profile of a project. Among them are

� Resource availability. Projects require the availability of resources—human,
financial, and technical—in specific time frames. Although it might be dif-
ficult to preempt the required resources in advance, a check on the project’s
needs is a good sanity check to verify whether a project is worth pursuing.

� Timing. Many projects have specific time windows for the delivery of their
outputs. Deliver too early or too late and the outputs of the project might
be useless. Consider, for instance, a project to build a rocket to reach another
planet. The actual launch can occur only on a specific time frame, to take
advantage of the relative position of planets. Deliver the rocket too early, and
docking and maintenance might become an issue. Deliver too late and you
might lose the opportunity to launch.

� Technical difficulty or uncertainty. The success of many projects relies on
the actual capability of solving various technical challenges. Pointing out what

Making IT Right � 41

these challenges are, understanding the level of risk associated with such chal-
lenges, and possible corrective or alternative courses of action are important
in determining the values and risks of a project.

� Project environment and constraints. Projects are influenced by various
constraints, both internal and external. Various internal and external stake-
holders will have an interest in positively or negatively influencing a project.
Regulations and standards can severely limit what can be done on a project.

3.1.3 Techniques to Assess Value and Risks
Different techniques are available to assess the value and risk generated by a project.
Some are based on financial considerations, while others are more qualitative. In the
following, we present some of the most used techniques.

3.1.3.1 Financial Methods

3.1.3.1.1 Payback

The simplest financial evaluation is the paybackmethod, which measures how long
it will take to return a project’s investment. When using the payback method, an
estimation of the project expenses and incomes determines the profits and losses at
the end of each project year. The payback is the year at which the project covers all
expenses and starts earning. The shorter the payback, the better.

The payback favors projects that minimize financial exposure. One of the issues
with payback is that it does not take into account total profit. This second issue is
that it does not measure the efficiency with which the money invested in the project
is paid back.

3.1.3.1.2 Return of Investment

To overcome some of the limitations of the payback method, another technique that
is often employed is the return of investment (ROI), which measures howmuch we
get back for each dollar invested. ROI is calculated from the annual profit, defined
as the average profit per year and computed by dividing the profit by the duration of
a project:

Annual profit = incomes − expenses
project duration

(3.1)

The ROI is then computed by dividing the annual profit by the total project
expenses:

ROI = annual profit
expenses

(3.2)

42 � Introduction to Software Project Management

3.1.3.1.3 Net Present Value and Internal Rate of Return

Payback and ROI do not take into account the effects of inflation, namely, the fact
that an amount of money in the future has a lower value than the same amount
available now. (In a sense, “better an egg today than a hen tomorrow”). Thus, for
longer projects, payback and ROI tend to overestimate profits, which are usually
gotten toward the end of a project.

The net present value technique (or NPR for short) overcomes this issue by
taking into account the inflation rate. Thus, if a reliable estimation of the inflation
rate can be provided, the value of future expenses and incomes for a project can be
recomputed in terms of their actual value.

In particular, when using NPR, profit and losses are computed using the
following formula:

Value = 1
(1 + r)i

∗ amount (3.3)

where r is the inflation rate, amount is the net profit at year i, and value is the current
value of amount. Note that the first project year is year 0.

An even more complex method is the internal rate of return (IRR for short),
which determines the inflation rate which zeroes profits. The interested reader can
consult Burke (2006), which contains a nice discussion about financial methods.

3.1.3.1.4 Applying Financial Methods: An Example

Consider two projects, called “Project A” and “Project B,” for which we have esti-
mated expenses and incomes as described in Table 3.1. In particular, the table shows
that project A is not profitable in the first 2 years and then starts earning. Project B
has a similar behavior, but both expenses and incomes are higher.

Suppose we have the resources to start only one of the two projects and we use
a financial method to choose which project to activate.

If we use the payback method, we select Project A, since it has a shorter
payback period. In fact, year 0 is forecast to end with losses, for Project A. So will
year 1. At the end of year 2, however, the financial statement will show earnings of
e10, 000.

Table 3.1 Assessing Two Projects Using
Financial Methods

Project A Project A

Year 0 −e20,000.00 −e30,000.00
Year 1 −e10,000.00 −e30,000.00
Year 2 e40,000.00 e50,000.00
Year 3 e100,000.00

Making IT Right � 43

Project B’s payback is 4 years. Years 0 and 1 end with losses. In year 2, project
B earns profits of e50,000, but these are not yet sufficient to cover the expenses of
the first 2 years. In year 3, however, the project pays back the initial investment.

If we use the ROI method, we select Project B, since it has the highest ROI.
Project A, in fact, has an ROI of 11%, computed as follows:

Annual profit = e40,000 − (e20,000 + e10,000)
3

= e3333 (3.4)

ROI = e3333
e300,000 = 11% (3.5)

The ROI of Project B, whose calculation we leave to the reader, is 38%.

3.1.3.2 Score Matrices

Financial methods help determine the financial viability of a project, but tell noth-
ing about the project characteristics that are not measurable with profits and losses.
Therefore, other methods have been proposed to assess a project. One of the sim-
plest is the score matrix, which allows one to measure a project along several
dimensions and assign it a value.

A score matrix is a list of project criteria, each of which is assigned a weight,
which measures the importance the criteria have for us or for the organization we
work for. The criteria highlight the desirable and undesirable aspects of a project;
the weights of desirable features are positive numbers (e.g., from 1 to 5) and the
weights of undesirable features are negative numbers (e.g., from −1 to −5).

When we evaluate a project using a score matrix, we measure how well the
project satisfies each criterion we have identified, for instance, by assigning a number
from 1 (very low) to 5 (very high). We then multiply the scores with the weights
and sum all values. Projects scoring a higher value are more desirable than projects
with a lower score. Projects can also be compared side by side; hence, the use of the
term “matrix” in the name of the technique.

EXAMPLE 3.1
Table 3.2 shows an example of a score matrix used to evaluate three different
projects.

The starting point is a list of criteria and weights, which we imagine have been
selected by an evaluation committee. Note that the last criterion is negative and it
has been assigned a high relevance. Thus, the selection process will tend to favor
projects in which stakeholders are not difficult to manage.

The second step is the evaluation of how well each criterion is met by a project.
Table 3.2, for instance, shows the value assigned to each project.

The third and final step is computing the scores, which are shown in the last
row of the table. According to the data, “Project 1,” the one with the highest score,
is preferred over the others.

44 � Introduction to Software Project Management

Table 3.2 A Score Matrix Example
Project 1 Project 2 Project 3

Factor Description Weight Value Total Value Total Value Total

Profit >30% The project will
yield a profit
>30% if no
exceptional
events occur

3 4 12 4 12 4 12

Low-risk profile The project does
not present
particular risks.
That is, there is
no risk with a
very high impact

2 2 4 3 6 3 6

Schedule is not
tight

Project delivery
does not require
activities to be
performed in a
very tight
schedule

3 3 9 2 6 2 6

Manageable
complexity

The complexity is
manageable

2 1 2 1 2 1 2

Consistent with
current
business

The project is
mainstream with
the activities of
the organization

1 1 1 1 1 1 1

Stakeholders Stakeholders are
difficult to
manage

−4 2 −8 4 −16 3 −12

3.1.3.3 SWOT Analysis

The strengths, weaknesses, opportunities, and threats analysis technique is cred-
ited to Albert Humphrey, who used it to determine the competitive advantages of
the Fortune 500 companies in the 1970s (Friesner, 2013). The technique can also
be used to evaluate the feasibility of a project.

The SWOT analysis is usually performed on a two-by-two matrix, like
that shown in Figure 3.1. The analysis proceeds by identifying the strengths,
weaknesses, opportunities, and threats related to the project under analysis,
and by listing them in the matrix shown in Figure 3.1. (Other formats, of
course, are possible.) Once the elements of the SWOT analysis are identi-
fied, decision makers use the information to evaluate whether the opportu-
nities are worth the effort and how strengths can overcome weaknesses and
threats.

Making IT Right � 45

Strengths Weaknesses

Opportunities Threats

In
te

rn
al

Ex
te

rn
al

Positive Negative

Figure 3.1 A SWOT matrix.

3.1.3.4 Stakeholder Analysis

Stakeholders can exert quite a lot of influence on a project and determine the success
or failure of a project. Understanding how stakeholders can influence, positively or
negatively, a project is good practice to assess the project’s chances of success and to
define a stakeholder management policy.

The stakeholder identification process is informal as it usually proceeds with a
mental swipe of the project environment and the actors who might be directly or
indirectly involved or affected by the project and its outputs. Once the stakeholders
have been identified, the next step consists in understanding what kind of influence
each stakeholder can exert in a project. This allows one to cluster the stakeholders
and define specific policies for each cluster.

Various ways have been proposed to classify stakeholders. In Maylor (2010),
stakeholders are classified in two dimensions:

1. The power they can exert in the project
2. The interest they have in the project.

This classification allows one to define different policies according to the
positioning of the stakeholders in this two-dimensional space.

The extreme case is the one with high-influence and high-power stakeholders.
In this case, careful analysis and specific treatment are necessary.

Other situations can use more generic strategies. For instance, it is good practice
to keep high-influence and low-power stakeholders informed, while it is safer to
keep low-influence and high-power stakeholders satisfied.

Finally, low-influence and low-power stakeholders require minimum effort.

46 � Introduction to Software Project Management

For more complex stakeholder analyses, Yu et al. (2011) propose the i* model,
which was developed for requirements engineering. The model is based on two con-
cepts, actors and goals, and models dependencies between these entities. Using the
notation, it is thus possible to identify, for each project goal, the stakeholders who
have the most influence, whether this influence is positive or negative, and their
motivations. The information can then be used to define adequate management
strategies.

3.1.3.5 Assessing Sustainability

Evaluating the operational cost of the project outputs helps assess the long-term
benefits of a project and what additional actions a project should include to ensure
that its results will live after the project ends. This analysis is relevant in several high-
risk or highly constrained projects, such as projects to start new companies, research
projects, and projects to foster economic development. Often, in fact, these projects
deliver benefits as long as steady financing is available; little or nothing survives
when the project ends.

For products and services, the two important pieces of information that con-
stitute the basis for a sustainability analysis are (1) the definition of the business
model, a specification of how the operating costs will be paid for, and (2) when
applicable, how profit will be generated. At a minimum, a good business model
includes a value proposition, which clearly identifies the offering, that is, the prod-
uct or service being offered and its value for the customers. Additionally, an analysis
of the key partners, the key activities, and the key resources allows one to understand
which resources are needed. Finally, a financial analysis of costs and revenues helps
understand the profitability. This is composed of an analysis of the cost structure,
which identifies costs and the most costly resources, and of a revenue stream anal-
ysis, which lists the sources of incomes, highlighting the most important sources.

The financial analysis might also include a break-even analysis, which identifies
the break-even point, that is, the point at which a product generates neither losses
nor gains. If the break-even point is not reached, a product will cause losses; any
number of items sold above the break-even point will yield a gain.

The break-even point is computed by looking at three pieces information: the
operational costs, the price of each item, and the number of items. The first deter-
mines the minimum profit that has to be reached. The second determines the profit
in terms of items sold. The break-even point is the number of items in which profit
equals the operational costs.

See The Business Model Generation (2013) for a freely available and very com-
pact template, which also includes the identification of distribution channels and
customer segments.

3.1.3.6 A Recap of Project Selection Techniques

Table 3.3 recaps the project selection techniques presented so far, highlighting the
type of support each technique offers to evaluate the value and risk generating factors
of a project.

Making IT Right � 47

Table 3.3 Recap of Project Selection Techniques
Payback ROI NPR Goal Score SWOT Stakeholder

Analysis Matrix Analysis

Direct value Fully Fully Fully Partially Partially Partially

Indirect
value

Partially Partially Partially Partially

Sustainability Partially Partially Partially Partially

Alignment
with
strategic
objectives

Fully Partially Fully

Resource
availability

Partially Fully

Timing Partially Fully

Technical
difficulty or
uncertainty

Partially Fully

Environment
and
constraints

Fully Partially Fully Partially

Some techniques provide better coverage than others to specific characteristics.
This is qualitatively captured in the table using the terms “Fully,” “Partially,” or
leaving a cell blank, when the technique does not offer support. Thus, for instance,
the stakeholder analysis helps one to get a better understanding of the project envi-
ronment. The technique, however, is very specific and does not offer support to
measure other criteria.

3.1.4 The Project Feasibility Document
The project feasibility document closes the assessment phase by describing the
main characteristics of a project and by analyzing, using the techniques presented
above, the value and risks of a project. The document can be used to formally
authorize the start of a project.

Thus, a feasibility document contains at least the following information:

� A statement of work, which describes what the project will accomplish
� The business objectives of the project and its outputs (value) and information

about the business model, if relevant
� A summary of the project budget, which forecasts expenses and incomes
� A summary of the projectmilestones, which is a rough schedule of the project

identifying the most important events
� An analysis of the stakeholders
� The project risks

48 � Introduction to Software Project Management

� Possible alternatives to the project, such as a make-or-buy decision
� An evaluation of the project and alternatives, using the techniques described

above.

3.2 Formalizing the Project Goals
If the analyses performed with the feasibility study are convincing enough, one of
the first activities is fixing and having stakeholders agree on the project scope. This,
in fact, constitutes the basis for any further management activity, namely, the defi-
nition of the work to be performed, schedule and budget, and the skills required by
the team that will perform the work. Project goals, together with the schedule and
the budget, are also the basis for contractual agreements with the clients.

Defining project scope is one of the most delicate activities in setting up a
project, since

1. It ensures that the project includes all and only the work necessary to achieve
the project goals.

2. It establishes a baseline of the work to be performed.
3. It defines a reference document for project acceptance.

The first point is obvious. Adding unnecessary work, in fact, would cause a burden
that needs to be sustained either by the project team, which will work on features
that are not really necessary, or by the client, who pays for unnecessary work, which,
in any case, would negatively affect the project, adding risks and increasing costs.

Ensuring that a project will not include any useless work, however, can be more
difficult than it looks. Among the reasons, we mention uncertainties about the
product to be built. A customer, for instance, might be uncertain about whether
a particular feature is needed or not and, in doubt, add it among the ones to be
developed, just to play on the safe side.

In a more difficult scenario, an ambiguous description of the project goals causes
the stakeholders to form slightly different opinions about the objectives to achieve.
This lack of integrity in a project’s vision will most likely cause additional work,
glitches, and anomalies.

A clear project scope mitigates the risks illustrated above by ensuring that all
project stakeholders form a clear view of the project.

The second and third items on the list should also be quite clear. The specifi-
cation of the project goals determines the characteristics of the products to build.
These, in turn, define the work to build the project outputs and the criteria to verify
whether the goals have been met.

An additional consideration is that sometimes tight timing constraints tend to
compress this activity, shortening the time the manager has to precisely define the
goals. The assumption is that the goals are clear and agreed among the stakeholders,
even if there is no document describing them in details. Therefore, the limited time

Making IT Right � 49

available in the project is better used in more productive activities. The risks of this
approach, however, typically become clear too late.

The project scope is fixed in a project scope document. In particular, it is a good
idea to include at least the following information in a project scope document:

� Project goals and requirements, which describe what we intend to achieve
with the project and the main characteristics of the project and its outputs

� Assumptions and constraints, which describe the conditions which have to
be met for the project to succeed

� Project outputs and control points, which describe the outputs of the project
and, in some cases, a rough timing of their delivery

� Project Roster, which describes the who.

The first two items should be written in a way that also defines the project accep-
tance criteria, namely, the minimum conditions for the client to accept a project.
Although my experience (together with that of many other project managers) is that
client and stakeholders satisfaction is more important than the syntactic compliance
with the acceptance criteria, making these explicit beforehand can contribute signif-
icantly to establishing a good relationship with the stakeholders and simplify project
closing.

Another important piece of information that might be included in a scope doc-
ument is the procedure to manage changes, namely, how request for changes will be
dealt with. This is described in more detail in Chapter 4.

In the rest of the section, we look in more detail at the main content of the scope
document.

3.2.1 Project Goals and Requirements
The project goals and requirements define what is inside and what is outside the
scope of a project and the characteristics of the project outputs.

To elaborate a bit, two good practices help make the goals SMART and assign
them priorities using theMoSCoW classification.

SMART stands for simple, measurable, agreed upon, realistic, and time
bound. A goal is SMART when it has the qualities specified by the acrynom. Thus,
a SMART goal is simple in its formulation, so that there are no ambiguities in its
interpretation; it has measurable criteria to understand whether it has been achieved
or not; it is agreed to by all the stakeholders; it can be reached with the resources
available in the project; and finally, it has a date by which it has to be reached.

MoSCoW allows the project manager to assign a priority to the goals. The
acronym stands for must have (features that are essential), should have (features
that are important but not essential), could have (features that would be nice to
have), and won’t have (features that will not be included in the product).

Note that a classification with MoSCoW allows the manager to distinguish
between base scope, which is the scope required to meet the business requirement

50 � Introduction to Software Project Management

and value-added scope, which is discretionary but improves the economics of the
overall project. This is similar to what Cameron (2005) and Tomczyk (2005) suggest
with the identification of the critical success factors.

In many cases, it is also worthwhile to point out goals and work products that
will not be delivered by the project, because they fall outside the scope of the work.
The list, of course, should focus on elements typically included in similar projects
or items some stakeholders might assume as included in the project scope. The goal
is to reduce ambiguities and false expectations.

Consider, for instance, a project related to the development of a one-off software
for a specific client. Although not explicitly mentioned in the project scope, some
stakeholders might take for granted that user documentation and training will be
part of the deal. The work necessary for such items, however, might be beyond the
resources available to the team. Making clear that such items will not be included
can be a way to better align expectations with actual delivery.

Note that, in general, project requirements differ in two ways from the software
requirements we have introduced in Chapter 2. The first is that the project require-
ments are a superset of the software requirements. Many software development
projects, in fact, will include activities that are indirectly related to the software being
built, such as, for instance, training of resources, production of user manuals, hard-
ware procurement, setup of an infrastructure to provide user support, and setup of
the infrastructure to distribute the system. The second is that project requirements
are often at a higher level of abstraction than the software requirements.

A final test that should be performed on the requirements is double checking
that the project goals are under the power and control of the project team. If
they are not under the control of the project team, in fact, they are, in the best sce-
nario, under the control of some other project stakeholder or, in the worst scenario,
completely out of the control of the project. In the first case, it is better to list the
constraints and assumptions that make the goals achievable (see Section 3.2.2). In
the second case, their achievement will depend on the good luck of the manager.

Once again, things are not so simple. Consider, for instance, a project related
to the experimentation of a new technology. One could set the following measur-
able criteria as a project goal: “the system will be used by 20,000 people during
the experimentation.” However, unless people are coerced to use the system, there
is no way for the project manager to ensure that the system will be used by
20,000 users. A more realistic wording could highlight that the “experimentation
will be set so that at least 20,000 people will be offered the chance to try the
system.”

3.2.2 Project Assumptions and Constraints
Project assumptions and constraints define important hypotheses on which the
manager bases the achievement of the project goals.

Making IT Right � 51

Assumptions are those conditions that are considered to be true, but might
not in fact be. Assumptions are not under the control of the project manager, but
they might be under the control of some project stakeholders. When this is the case,
assumptions can be used to define the duties and obligations of project stakeholders.

Consider a case in which the installation of a new system requires the client to
stop operating his or her business for a given period. Stopping operations is clearly
not in the power of the project manager, who will list this operation as an essential
assumption for project success.

Whether they are under the control of project stakeholders or not, assump-
tions should be properly addressed in the risk management plan, finding appropriate
management strategies in case they cannot be satisfied or turn out to be false (see
Section 4.2).

Constraints, by contrast, are known limitations, which shape and define the
work we can do. They are used to explain why we set some goals and not others and
why we structure the work in some way rather than another.

3.2.3 Project Outputs and Control Points
A deliverable is defined in Project Management Institute (2004) as a unique,
measurable, and verifiable work product. Deliverables are the result of work per-
formed in the project and, in many cases, they are also the prerequisites of project
activities. For software development projects, examples of deliverables include a
software system, a requirements document, and a user manual.

A very common classification distinguishes between internal and external deliv-
erables. The former are functional to the implementation of the plan and are used
only by the project team. As such, they can maintain a level of informality, which
often simplifies their production and management. The latter are delivered to the
customers. They often require additional work to ensure proper quality and formal
procedures and, in some cases, a bit of ceremony, like, for example, delivery in hard
copy through courier.

Deliverables might contain sensitive information. It is thus good practice to
define the dissemination level of each deliverable. In common scenarios, circula-
tion can be public, limited to selected stakeholders, to the project team, or only
to selected project members. Such classification is an integral part of the project
communication plan and is described in further detail in Section 5.3.

Milestones are defined by the Project Management Institute (2004) as a signif-
icant event in the project. Milestones are identified, at a minimum, by a label and
a date, and they are typically used to highlight, significant control points, in the
plan. Examples of milestones include a mid-term project review, or phase transition
milestones, to identify the transition from one project phase to the next.

Deliverables and milestones can be presented as textual lists (like we do in the
example below). They are also very often inserted in the graphical representation of

52 � Introduction to Software Project Management

plans (e.g., AON or Gantt chart), with the advantage of showing which activity or
activities are responsible for the production of any specific deliverable.

According to the formality of the project development process that is being
adopted, milestones can be used in different ways:

� To form (and present) a high-level roadmap of the project: milestones
represent how the project unfolds in a series of significant events.

� As a verification point in the project: milestones identify control points in the
project, which serve as a general “orientation” mechanism to steer the project
in one direction or another.

� As a gate in the project: milestones clearly separate different phases of the
project; if the goals of the milestone are not achieved, the transition to the
next phase is blocked.

There is no mechanical technique to identify the milestones and deliverables of
a project. They depend on the project type and their identification can be supported
by adopting a development standard, by personal experience, or by discussing and
negotiating them with the project stakeholders.

EXAMPLE 3.2
Table 3.4 shows the standards the European Union enforces for the specification
of deliverables produced by the research projects it sponsors. In particular, the
following information is associated with each deliverable:

� A unique identifier, typically an integer number
� The name of the deliverable
� The nature of the deliverable, which can be one of the following: a report (R), a

prototype (P), a demonstrator (D), or other (O)
� The dissemination level, which, simplifying a bit on the EU rules, can be public (PU),

restricted to the project team (RE), or restricted to the project stakeholders (CO)
� The delivery date, expressed in the number of months after the start of the project
� The partner (team member) responsible for the delivery of the project.

Similarly, Table 3.5 shows (a subset of) the milestones of a European Research
project. Milestones have the following information:

Table 3.4 An Example of Deliverables
Delivery

Date
Del. Deliverable Dissemination (Project Responsible
ID Name Nature Level Month) Parter

1 Requirements R CO 0 FBK
2 Architecture UML

diagram
R CO 1 FBK

3 Software P PU 6 FBK
4 User manual R PU 12 FBK

Making IT Right � 53

Table 3.5 An Example of Milestones
Milestone Milestone Date (Month
Number Name from Start) Means of Verification

M0.1 Kick-off 1 Kick-off meeting done, meeting
minutes available, project collab-
oration tools available.

M0.2 Experimental sites
1&2 up and running

12 Experimental sites 1 & 2 up and
running.

M0.3 Midterm review 18 At least 80% of activities starting
before M18 have started; at least
80% of activities ending before
M18 have ended.

M0.4 Experimental sites
2&4 up and running

24 Experimental sites 3 & 4 up and
running.

� A unique identifier
� A name
� A date, for instance, expressed in months from the start of the project
� A description of the purpose of the milestone
� Means of verification, which specify how it is possible to verify the achievement of the

work associated with the milestone.

3.2.4 Project Roster
The project roster is the list of people participating in the project, together with
their role and other information, such as the contact point. The project roster is a
simple practice that allows the project manager to identify the project stakeholders
and, in the process, simplify the definition of a project communication plan and
favor team interaction.

3.3 Deciding the Work
Now that we have properly described the main goals and the boundaries of our
project; we can start identifying the activities that we need to carry out in the
project. This is very often accomplished with a work breakdown structure or WBS
from now on. The notation, developed in the 1960s alongside the program evalu-
ation and review technique (PERT), is defined in Project Management Institute
(2004) as “a (deliverable-oriented) hierarchical decomposition of the work to be exe-
cuted by the project team to accomplish projects objectives and create the required
deliverable.”

Today, the technique is widely adopted and many project management and pro-
cess standards make its use compulsory. For instance, NASA (1994) and NASA

54 � Introduction to Software Project Management

(2007) require a WBS to be built for each major program or project and suggest its
use in any project, big or small, when it can be practically done so.

A WBS establishes the basis for

� Defining the work to be performed in a project
� Showing how various activities are related to the project objectives
� Establishing a framework for defining, assigning, and monitoring work and

costs
� Identifying the organizational elements responsible for accomplishing the

work.

See PERT Coordinating Group (1963) for a more detailed description.
In the rest of this section, we are going to describe the main construction tech-

niques for WBSs and some rules of thumb to build and evaluate their quality and
soundness.

3.3.1 Building a WBS
A WBS is a tree in which the root node represents a project or its main output.
Each level of decomposition shows how a node of the tree can be structured and
organized in more elementary work components.

WBSs come in two different notations. The first is graphical: the WBS is shown
as a tree unfolding from top to bottom. The second is textual and similar to the
table of contents of a book. The nodes of a WBS can be labeled according to their
position in the tree: the top level is numbered “1,” its children “1.1,” . . ., “1.n,” and
so on for all the nodes.

EXAMPLE 3.3
Figure 3.2 shows a graphical representation of a WBS for the development of a
software application for mobile phones.

The WBS is structured in four levels.
The first level of decomposition contains the main activities, including the pro-

curement of tools we need for development (1.5) and writing the user manual (1.6).
Tests (1.3.4) are organized in three different types of activities: unit tests (1.3.4.1),
system tests (1.3.4.2), and integration tests (1.3.4.3).

From the example above, we can infer various important characteristics of a
WBS:

1. The WBS does not specify the order in which the activities have to be exe-
cuted, nor does it specify any dependency among activities. For instance, the
procurement of development tools has to be completed before coding can
start; the WBS, however, does not show this dependency.

2. The decomposition follows the 100% and themutual exclusion rules. That
is, each level of decomposition includes all and only the items that are nec-

Making IT Right � 55

Software
system

Configuration
management

Main
requirements

Mobile client
development

Detailed
requirements Architecture Code Tests

Unit
tests

System
tests

Integration
tests

Appstore
deployment

Dev. tools
procurement

User manual

1.21.1 1.3 1.4 1.5 1.6

1.3.1 1.3.2 1.3.3 1.3.4

1

1.3.4.1 1.3.4.2 1.3.4.3

Figure 3.2 WBS example.

essary to develop the parent node. Moreover, there are no overlaps between
nodes. Each node specifies work different from that of any other node. In this
way, the WBS becomes a powerful tool to define what is in the scope of the
project and to allocate responsibility for the development of each activity.

3. The WBS tree does not need to be balanced. In the diagram, for instance,
some activities stop after the first level of decomposition, while others are
refined up to the fourth level.

4. The WBS can contain support activities, such as “management” and “devel-
opment tools procurement.”

The level of decomposition and detail of a WBS depends upon its use. For instance,
if the WBS is used as the basis for planning, its refinement process stops when we
reach a level for which we can reliably estimate duration and effort.

According to NASA (1994), the leaves of the WBS must be such that the “com-
pletion of an element is both measurable and verifiable by persons (i.e., quality
assurance persons) who are independent of those responsible for the element’s com-
pletion.” Thus, the advantage is that the WBS provides a solid basis for planning
and monitoring and “no other structure (e.g., code of account, functional organi-
zation, budget and reporting, cost element) satisfactorily provides an equally solid
basis for incremental project performance assessment.”

56 � Introduction to Software Project Management

3.3.2 WBS Decomposition Styles
Different decomposition styles allow one to build a WBS.

In a product-oriented WBS, the decomposition proceeds by identifying the
items that must be developed to build deliverables. A product WBS thus establishes
a one-to-one correspondence between project activities and project (sub)products.
This simplifies accountability, since the responsibility for a group of activities in a
project will correspond to the responsibility of delivering a specific system compo-
nent. When using a product-oriented WBS, a good rule is to ensure that tightly
connected components are not separated in the WBS, since such a decomposition
style does not allow one to allocate responsibility for integration.

In a process-orientedWBS, the decomposition proceeds by taking into account
the activities that are necessary to carry out the project. One advantage of the
process-oriented decomposition is that it can include activities, such as manage-
ment, which are not directly related to the development of a product, but which
are still necessary in a project. Another advantage is that it is simpler to build a
WBS by analogy, using a similar project as a reference. This can also be considered
a weakness, since the WBS could result in being too generic and uninformative.

To get the best of both worlds, one can use a hybrid WBS. A hybrid WBS
contains both process- and product-oriented nodes. This approach is the one sug-
gested, for instance, by NASA (2007), where a part of the WBS is a specification of
the components of a product and the remaining parts are the activities necessary to
manage the project, integrate the components, and perform quality control.

Other types of WBS highlight the organizational or geographical aspects of
work. For these WBSs, the first level of decomposition contains, respectively, the
organizational structure or the geographically distributed teams responsible for
the development of a group of activities. Starting with the second level, the WBS
contains the work to be performed. These decomposition styles can be effective for
highly cross-functional projects or for projects in which geographical distribution is
significant.

As a specific case of organizational WBS, we mention that defined in NASA
(1994) and the Department of Defense (2011), which distinguish between Project
Work Breakdown Structure (PWBs) and Contract Work Breakdown Structures
(CWBs). In this case, the top levels of the WBS contain a logical structuring of the
project or program, while the lower levels represent the WBSs of the contractors
responsible for the development of the project. Thus, for instance, NASA (1994)
and the Department of Defense (2011) suggest defining PWBs organized at three
levels:

1. Level 1 is the entire project or program.
2. Level 2 includes the projects or major elements to develop the project.
3. Level 3 includes the components necessary to develop the major elements.

Level 3 items constitute the statement of work for contractors and the first
level of decomposition of the CWBs, whose development proceeds according to
the standards of the different contractors, as shown in Figure 3.3.

Making IT Right � 57

Program

Project A Project B Project C

System A System B

Contract X

Subsystem 1 Subsystem 2 Subsystem 3

System C

PWBS—
Program WBS

CWBS—
Contract WBS

Figure 3.3 Example of PWBS and CWBS.

Remark

When defining the work to be performed, the term work package is often used.
There are different usages and slightly different definitions of the term, so it might
be worthwhile to have a look at them.

According to the Project Management Institute (2004), a work package is an
element of the WBS at which estimation for time and costs can be reliably pro-
vided. In bigger projects, this can correspond to the leaves of the WBS, rather than
the higher level of the WBS. Note, however, that the leaves of a WBS could be the
top level element of finer-grained work breakdown structures, like we have seen for
a contract WBS.

NASA (1994) adopts a different definition. A work package is the unit of work
required to complete a specific job, such as a report, a test, a drawing, a piece
of hardware, or a service, which is within the responsibility of one operating unit
within an organization.

Finally, in common practice, the term work package is often used to denote
the first level of decomposition of a WBS. This is, for instance, the notation
used for research projects sponsored by the European Union and other funding
agencies.

58 � Introduction to Software Project Management

3.3.3 WBS Dictionary
AWBS dictionary helps to annotate each element of the WBS with more detailed
and structured information, such as

� Title and item number, to connect the description to an element of the WBS
� Detailed description of the element, including, for instance, quantities,

relevant associated work, and contractual items, where applicable.

Additional information can help manage a WBS dictionary over time. Some
WBS dictionary templates thus require one to provide references and links to other
elements of the project, such as references to the scope document, budget and
reporting, contract reference, and information about the history of the element,
such as, for instance, revision number, author, and authorization.

See CDC (2013) for a template of a WBS dictionary and Space Division—
North American Rockwell (1971) for a good example of a WBS and a WBS
dictionary.

3.3.4 WBS Construction Methodologies
WBSs can be built top-down, bottom-up, or by analogy.

In the top-down approach, the construction of the WBS proceeds from the top
level down to the leaves. It is usually best suited for projects that are well known or
whose structure is clear. One risk is overlooking activities (e.g., achieving a “90%
decomposition”).

In the bottom-up approach, the process proceeds in the opposite way. First, the
leaves of the WBS are identified and then these are grouped in homogeneous items,
thus giving structure to the WBS. It is best suited for projects that are new for a
company or for the team responsible for their development and they work better
with brainstorming sessions in which the whole team is involved. One technique
that can be used for building the WBS elements is the so-called post-it on a wall.
As each element of the WBS is identified, it is written on a post-it and posted
on a wall. The post-it can then be physically grouped together to form the WBS
structure. The main risks with bottom-up constructions are building WBSs that are
too detailed and violate the mutual exclusion rule.

The third option, construction by analogy, starts from an existing WBS, which
is adapted and customized for the project at hand. It can be very effective when an
organization standardizes the structure of its projects.

3.4 Estimating
Yogi Berra is reported to have said that “it is difficult to make predictions, especially
about the future.” The sentence could not be more appropriate for estimations of
the work to be performed in a project. When we consider software projects, some

Making IT Right � 59

of the characteristics of software, such as intangibility, flexibility, and complexity,
make the estimation process even more complex.

In this section, we will look at some of the most common estimation techniques.
The starting point is a discussion about what characterizes a project task. We then
discuss the nature of estimations and continue with the presentation of the main
techniques to estimate.

3.4.1 Effort, Duration, and Resources
Estimation is the process that determines the requirements to carry out an activity.
These are expressed in terms of

� Duration, namely, how long an activity will last
� Effort, namely, the amount of work necessary to complete an activity
� Resources, necessary to complete an activity.

Duration is the amount of time an activity lasts. It is measured in calendar units,
such as days, weeks, months, and years. Sometimes the string “calendar-” is prefixed
to unambiguously specify the nature of the measure.

Effort is the amount of work required to perform a task, and is measured
using man-hours, man-days, man-months, or man-years meaning, respectively, the
amount of work expressed by one worker in an hour, a day, a month, or a year.
Thus, for instance, an activity requiring 40 man-hours can be completed by a person
working for 40 h.

The main resource needed for software development projects is manpower,
which is expressed in terms of units of work, that is, the effort that can be produced
per calendar period.

Manpower is further qualified by identifying the type of resource required to
carry out the work, namely, by identifying which kind of competences and what
kind of personnel is needed. For instance, the development of a simulator for a
rocket system might require the work of an expert in aerodynamics.

Finally, manpower is determined by the work calendar and the percentage of
availability.

The first determines the maximum number of units of work that can be
expressed during a calendar unit. For the service industry, typical values for one
resource (one person) are 8 man-hours per calendar-day and 40 man-hours per
calendar-week, considering 2 days of rest per week. Other calendars are used. For
instance, industries working in shifts have a one-to-one relationship between units
of work and calendar time; this is achieved by having three people working 8 h each
throughout the day.

The percentage of availability reduces the maximum presence of a resource and
it is used when a resource is not available full-time. For instance, if a resource is
working part-time for an organization or for a project, the percentage of availability
might be 50%.

60 � Introduction to Software Project Management

For many tasks, a simple relationship links effort, duration, and manpower:

D = E
M

(3.6)

where D is the duration of an activity, E is the effort required by the activity, and
M is the manpower required to carry out an activity. Of the three variables, one is
usually estimated, another chosen, and the third computed.

The equation holds for reasonable values ofD, E , andM . In fact, asM increases,
so does the burden of coordinating the work and exchanging information (Brooks,
1995). So, please, never plan to use 1000 people so that you can finish in half a day
an activity that requires an effort of 500 man-days, like a famous Dilbert cartoon
suggested.

Most activities are estimated either in duration or in effort, according to the
nature of the work. For instance, the activity “writing a document” is best estimated
by looking at the effort. In this case, for instance, we can estimate the effort, choose
the manpower to allocate to the task, and use the equation above to compute the
duration of the task.

The equation does not hold for any type of task, though. For instance, the
activity “waiting for the foundations of a home to solidify” requires a fixed duration
and is independent of manpower and effort.

Finally, note that some activities might also require one to specify other types of
resources, namely, materials and equipment:

� Material is necessary for certain activities and is consumed while work pro-
gresses. The measurement unit for material depends on the kind of material
used. For instance, in building a house, a given amount of concrete will be
used to carry out the construction activities.

� Equipment includes the tools required for carrying out work. In an oil explo-
ration project, for instance, certain activities will require drilling equipment.
Equipment is measured by the number of units that are necessary to carry out
a given activity. Equipment is not consumed by the execution of the activ-
ity; that is, after the activity has been completed, the equipment can be used
for another purpose. The availability of equipment introduces constraints in
a plan. Thus, the equipment typically specified in a plan includes tools that
are available in limited quantities or that are costly to use (and might impact
the project’s budget). Consider, for instance, the development of a software
system to control a robotic surgeon. Certain project activities might require
access to a robotic arm. If this requirement is made explicit in the plan, it
becomes possible to schedule activities so that no overlaps or conflicts arise in
the usage of this limited resource.

3.4.2 The “Quick” Approach to Estimation
The simplest and probably most commonly used approaches to estima-
tion are expert judgment and analogy. The project manager, possibly in

Making IT Right � 61

collaboration with the team or other experts, provides estimations using his/her
experience or by looking at similar projects. The approach has the advantage of
being very fast and simple. See the next section, however, for a discussion about
some of the limitations.

These estimations can either proceed bottom-up or top-down.
In the bottom-up approach, the manager provides an estimation for each leaf of

the WBS. If the estimations are effort-based, these can be easily propagated upward,
thus determining the effort required for each node of the WBS. For instance, the
effort required by a node A of the WBS whose children are A1, . . . ,An is the sum of
the efforts of its children, namely, effort(A1) + · · · + effort(An).

In the top-down approach, the process is reversed. The manager provides an
estimation for the overall project. If the estimations are effort-driven, the effort of
each activity of the WBS is then determined by distributing it to the lower levels.
The propagation to the lower levels, however, is constrained by a relationship that
is weaker than the one we defined above. If a node A of the WBS, for which we
have estimated an effort of Ea, has children A1, . . . ,An, then we can only say that
effort(A1) + · · · + effort(An) = EA, but we cannot tell exactly how much effort has
to be allocated to each of A1, . . . ,An, using the structure of the WBS only. Rules of
thumb are often used: for instance, the total effort of a project is split into different
activities in percentages that are similar to those measured in previous projects.

Whether a top-down or bottom-up approach is more appropriate depends on
the project at hand. The rule of thumb is that top-down estimations will tend to
underestimate the duration or effort (since they might abstract away details), while
bottom-up estimations tend to overestimate the effort or the duration, because too
much importance is given to details. In my experience, bottom-up estimations are
simpler to come out with. It is, however, a subjective matter and your experience
might be different.

If more than a person is involved in the estimation process, various tech-
niques can be used to elicit information. We mention the Delphi method, which is
presented in more detail in Section 5.3.3.3.

3.4.3 The Uncertainty of Estimations
(Software) project managers make many implicit and explicit assumptions when
estimating the resources necessary for an activity and many estimations are based on
a number of “ifs.”

For instance, consider the problem of estimating how long it will take to com-
plete a “requirement definition” activity, which produces a software requirements
document. The reasoning could proceed as follows: if the final requirement docu-
ment will be about 100 pages and if analysts can produce about 2.5 pages per hour,
then the work will require about 40 man-hours. If one person will be able to dedi-
cate about 80% of her time, then the actual duration will be about 50 h. The final
estimation depends upon all these assumptions. For instance, if the estimation on

62 � Introduction to Software Project Management

the number of pages to write is increased by 10% and the productivity is reduced to
2 pages per hour, the duration of the tasks increases to 68.75 h.

On top of the “random” guess of the project manager, work has some implicit
variability, which depends on many factors. Weather, for instance, might interfere
with the construction of a house. The productivity of workers changes the speed at
which progress is achieved.

We can look at estimations as random variables characterized by a mean and
a variance. Thus, precise scheduling techniques should or could be based on the
rules of probabilistic reasoning. This is what certain techniques, like PERT and
critical chain management, do. However, the requirement of coming out with pre-
cise numbers (e.g., “When does the project end? How much does it cost?”) and
the need to keep plans simple (e.g., “The requirements document will be deliv-
ered on April 1, 2013” and not “between April 1 and April 13, with a probability
of 68%”) favors an approach in which we choose a value and use it like it was a
certain measure.

Thus, when we provide an estimation, we give our best guess of a task duration.
An important implication, however, comes from considering the error between our
estimation and the mean value of the actual duration (work) of a task. In fact,
estimations (and estimators) can be optimistic if they are below the mean value or
pessimistic, if they are above the mean value. In the first case, the actual plan is
more likely to run late; in the second case, the plan will more likely over allocate
resources (e.g., time and manpower). This is shown in Figure 3.4, where the area

TimeMost likely
duration
(work)

Pessimistic estimationsOptimistic estimator

Probability

Figure 3.4 Estimations as random variables.

Making IT Right � 63

left of the mean corresponds to an optimistic estimation, while the area right of the
mean includes the pessimistic estimations.

We tend to be optimistic in our estimations. For this reason, it is often the case
that estimators pad their estimations to make sure they end above the most likely
duration. If worst comes to worst, the reasoning goes, we will end earlier. Some
rules of thumb go up to doubling the value of the estimation. Thus, in the example
above, given our initial estimation of 40 h, we would schedule a plan in which the
task takes twice as much time, namely, 80 h. This would easily accommodate the
variations we mentioned above, but the consequence, in general, is that of building
plans that are equally unrealistic.

There is also a subtler risk. As we acknowledge our implicit or explicit padding,
we might be tempted to use estimations as a negotiation factor. If our estimations
do not satisfy upper management (which is responsible for allocating resources)
or our client, we might be tempted to just change the numbers so that they end
up as the ones our stakeholders expect. Consider the example above: if 40 h of
writing requirements are too long, why not reduce them to 30? After all, it is still
relatively close to what we believe to be the most likely duration. The risks of such
an attitude are clear, both in the short term and in the long term. In the short
term, our plan becomes unreliable, since it is based on numbers chosen to please
stakeholders, rather than to measure the work that has to be done. In the long term,
it becomes difficult not only to make sense of our past plans, but also to use past
experience and know-how to become more reliable in our estimations.

Various techniques have been proposed to tackle or mitigate the problems
described above. PERT considers the random nature of estimations. Algorithmic
techniques support the estimation process of the software system by relying on
mathematical models that take stock of data collected over the years. Agile method-
ologies, by contrast, take a more radical approach by iterating the estimation process
many times till convergence is reached or the project ends.

3.4.4 PERT
PERT was developed in the 1960s as a methodology to define and monitor projects
(PERT Coordinating Group, 1963; Hamilton, 1964). The goal of the technique is
to assess the probability of a plan to finish on a certain date, given the probabilistic
estimations of the activities of composing the plan.

To use PERT, three values have to be assigned to each activity: an optimistic
value, a most likely value, and a pessimistic value. (The values can be elicited
using the techniques described above.) The most likely duration of an activity is
then computed assuming a beta distribution. According to the distribution, the
median duration of an activity is

t = (a + 4m + b)
6

(3.7)

64 � Introduction to Software Project Management

where a is the optimistic value, b the pessimistic value, and m the most likely value.
The variance of t is given by the formula

σ 2 = (b − a)2

6
(3.8)

Standard statistical methods can then be used to sum all the activities of a plan
and determine, in such a way, the duration of the overall plan, together with the
confidence of the data.

3.4.5 Algorithmic Techniques
Algorithmic techniques determine the effort or the duration required for develop-
ing a software system, given some of its characteristics. In other words, given a set
of measurable features of a system x1, . . . , xn, an algorithmic technique defines a
function f (x1, . . . , xn), such that

f (x1, . . . , xn) (3.9)

returns the effort, duration, and team size required to develop a system described by
〈x1, . . . , xn〉. The function f is typically defined by analyzing and interpolating data
of sample projects for which both the input values (the measurable characteristics)
and the output characteristics (effort, duration, and manpower) are available.

The advantages of the algorithmic techniques are evident, since they potentially
provide a reliable, repeatable, and objective way to estimate fundamental parameters
of a software development plan. Delivery dates, project budget, and so on can be
derived from the measures computed by these algorithms.

Algorithmic techniques also have some limitations. The first is given by the
models themselves, since they are derived from a limited (although growing)
number of sample projects.

The second is given by the inputs to the models, namely, the values character-
izing the system to build. These are not always easy to assess and might require
significant analysis work, often performed by people with specific training and
certifications.

It must be pointed out, however, that the analysis process required to come out
with estimations has a value in itself, if not in the values it produces. In fact, the
application of the algorithmic technique helps one to get a better understanding of
the system to build.

Two big families of algorithmic techniques exist:

1. Function-based estimations measure a system in terms of its functions. The
most well-known technique in this family is probably the function point
(FP) technique. A more recent addition includes the object point technique,
to mention one.

Making IT Right � 65

2. Size-based estimations measure a system in terms of its physical size, as well
as measures in lines of code. The most well-known technique is probably the
constructive cost modeling (COCOMO) family of models.

Finally, some techniques mix both function- and size-based approaches. This is the
case, for instance, of web-objects, a technique to estimate web applications.

Several studies have been published on software estimations. One famous histor-
ical reference is Boehm (1981). An analysis of the existing literature, based on 304
papers and pointing to many resources, can be found in Jørgensen and Shepperd
(2007).

3.4.5.1 Function Points

The FP technique was proposed by Albrecht in the 1970s (see, e.g., Albrecht
(1979)). It finds its original application in business systems, but it has since evolved
to embrace a wide range of systems and applications. Today, it has a large user base
and an organization, the International Function Points User Group, to support
its diffusion, application, and evolution (International function point user group,
2013c).

FP estimations are based on 19 different characteristics of a system, five of which
refer to the functional characteristics of a system and 14 of which refer to nonfunc-
tional aspects. These characteristics can typically be provided once the requirements
of a system have been defined. The technique can, thus, be applied only after a part
of the development process has started.

The five functional measures are

1. User inputs: the number of user inputs, or elements in the system which
require an input from the user.

2. User outputs: the number of user outputs, or elements in the system which
produce an output.

3. User inquiries: the number of user inputs that generate a software response,
such as word count, search result, or software status.

4. Internal logical files: the number of files created and used dynamically by
the system.

5. External interfaces: the number of external files that connect with the soft-
ware to an external system. For instance, if the software communicates with a
device, it is counted as one external interface.

The data above are collected and classified according to a three-step complexity
scale, which distinguishes among simple, average, and complex elements. Thus,
for each of the five characteristics described above, we need to produce a three-
dimensional vector: number of simple elements, number of average elements, and
number of complex elements.

66 � Introduction to Software Project Management

The technique defines a matrix of weights to take into account the impact that
different elements have in determining the complexity of a project. Each pair func-
tional characteristic, complexity has a weight. Thus, for instance, simple user inputs
have a weight of 3, average user inputs a weight of 4, and complex user inputs a
weight of 5.

The functional size of a system S, called by the method unadjusted function
points (UFP), is the weighted sum of the characteristics of the system.

It is computed as follows:

UFP =
5∑

i=1

[
kSi kAi kCi

] ·

⎡
⎢⎣
nSi
nAi
nCi

⎤
⎥⎦ (3.10)

where the index i runs over the five characteristics (user inputs, user outputs, . . .);
the vector [nSi , n

A
i , n

C
i] is the number of simple (S), average (A), and complex (C)

elements of type i that we forecast in S. Finally, [kSi , k
A
i , k

C
i] is the weight assigned

by the method to simple (S), average (A), and complex (C) elements of type i.
UFP provides an estimation of the functional size of the system. Systems

with a higher UFP are more complex to develop than systems with a lower
UFP. However, UFP does not take into account the complexity deriving from
nonfunctional characteristics of a system. For instance, high reliability systems
are difficult to implement, requiring more effort. The method therefore intro-
duces 14 questions that list various nonfunctional features of a system, which
can positively or negatively affect a project. The questions are summarized in
Table 3.6.

Similar to the functional evaluation, managers answer the 14 questions by pro-
viding, for each question, a qualitative answer ranging from 0 (irrelevant) to 5 (very
influential).

The answers are summed together and added to the magic number 65, thus
yielding a value in the range 65–135, where 135 is obtained when the answer to all
the questions is 5, since 65+ 5 ∗ 14 = 135. The value, divided by 100, is called the
value adjustment factor, or VAF, and measures the additional (or reduced) effort
that is necessary to take care of the implementation of nonfunctional requirements.

Formally,

VAF =
65 +

14∑

i=1
Ci

100
(3.11)

VAF is then multiplied by UFP to yield the function points (FP):

FP = VAF ∗ UFP (3.12)

FP measures the complexity of the system to be developed.

Making IT Right � 67

Table 3.6 Nonfunctional Characteristics of a System (FP Method)

1. Does the system
require reliable
backup and recov-
ery?

2. Are data communi-
cations required?

3. Are there
distributed process-
ing functions?

4. Is performance criti-
cal?

5. Will the system run
in an existing, heav-
ily utilized opera-
tional environment?

6. Does the system
require online data
entry?

7. Does the online
data entry require
the input transaction
to be built over mul-
tiple screens or oper-
ations?

8. Are the master files
updated online?

9. Are the inputs,
outputs, files, or
inquiries complex?

10. Is the internal pro-
cessing complex?

11. Is the code to be
designed reusable?

12. Are conversion and
installation included
in the design?

13. Is the system
designed for multiple
installations in differ-
ent organizations?

14. Is the application
designed to facilitate
change and ease of
use by the user?

Once we have the estimation in function points, we can use it to estimate
the effort required for the implementation of the system. There are two main
approaches to map function points into effort. The first transforms the function
points into a size measure (for which effort estimations can then be provided).

The second, which is preferred by the people advocating the use of function
points, uses productivity metrics, such as man-months per function point, to esti-
mate the effort required to develop a system. The actual values of productivity
metrics depend on many factors, among which are team experience, organization
maturity, and application fields.

Some example values can be found in Longstreet (2008), where work increases
exponentially with a system’s size. It starts at 1.3 h/FP for a system of 50 FP, contin-
uing with 12.1 h/FP for a system of about 7000 FP, and ending with 133.6 h/FP for
a system of about 15,000 FPs. See Longstreet (2008) for the complete set of data.

Organizations willing to use the technique, however, should establish their own
measurement programs to determine their productivity metrics.

3.4.5.2 COCOMO

Constructive cost model (COCOMO) is a family of estimation techniques first
introduced by Barry Boehm in the 1980s and steadily improved over the years. The
method was defined in the context of a broader analysis of software economics,
which focused on improving the capacity of reasoning about software development
costs and benefits, value delivered, and quality (Boehm, 1984; Boehm and Sul-
livan, 2000). The techniques are very detailed and make assumptions about the

68 � Introduction to Software Project Management

development process that is used to build a system. Moreover, different models are
used during the development process to increase the accuracy of the estimations.

In this book, we will present the basic model, called COCOMO81, abstracting
away many details and just hint about the more recent formulation of the model,
called COCOMO II and introduced in 2000.

The COCOMO models use a size measure as the starting point for estimations
and define a simple relationship between size and effort and duration of a project,
which is captured by the following formula:

OUTPUT = A · (SIZE)B · M (3.13)

that is, the OUTPUT of the estimation (effort and duration) depends on a system’s
SIZE and three other elements A,M , and B. In general, A and B are organizational-
dependent constants, whileM depends on the project at hand. Note that A and M
have a multiplicative effect, while B has an exponential effect over the size. Reference
values for A and B are given by the model.

3.4.5.2.1 COCOMO81

COCOMO81 is the first COCOMO model. It was defined by Barry Boehm and
his group using a carefully screened sample of 63 projects developed between 1964
and 1979 (Boehm, 1981). The model applies to the software development prac-
tices in use by then, among which the use of the waterfall development process is
probably the most relevant assumption.

The method defines three different variants, which can be applied at different
stages of the development process as the information about a project increases. The
basic model can be used when little information is available; the intermediate
model can be used when the requirements are defined, and the advanced model
can be used when the architecture is sketched.

In more detail, COCOMO81 computes effort and development time as follows:

PM = APM · (KSLOC)BPM · M (3.14)

TDEV = ATDEV · (PM)BTDEV (3.15)
TEAM = PM/TDEV (3.16)

where PM is the total effort, TDEV is the ideal duration of the project, TEAM is
the team size, and KSLOC is the estimated number of thousands of lines code. In
all three variants, A and B are constants, whileM (which is not required in the basic
model) is computed by looking at various project and product characteristics.

The actual values of A and B depend on the overall complexity of the project.
COCOMO81, in particular, distinguishes between three types of projects, organic,
semidetached, and embedded, according to the project characteristics listed in
Table 3.7. For each type of project, the model provides values for APM , ATDEV ,
BPM , and BTDEV , as shown in Table 3.8.

Making IT Right � 69

Table 3.7 COCOMO Development Modes
Project Type Main Characteristics

Organic Simple projects with clear requirements and about which the per-
forming organizations have a thorough understanding and experi-
ence. No or few technical and development risks.

Semidetac head More complex projects. The performing organization has consider-
able know-how in the application field and with tools to be used for
development. Some technical or development risks.

Embedded Complex system with high variability in requirements. The organi-
zation has moderate know-how in the area. Various technical and
development risks.

Table 3.8 COCOMO Base Model
APM BPM ATDEV BTDEV

Organic 2.40 1.05 2.50 0.38
Semidetached 3.00 1.12 2.50 0.35
Embedded 3.60 1.20 2.50 0.32

Finally, note that the formula to determine the team size is the same as in
Equation 3.6.

The intermediate model takes into account various project- and product-related
characteristics, which can contribute positively or negatively to the overall effort
and to the project schedule. This is reflected by computingM as the product of 15
different parameters obtained by answering 15 different questions with a value from
1 (very low impact) to 6 (extremely high impact). Different from the FP method,
each evaluation corresponds to a numerical constant, with values ranging from a
minimum of 0.75 to a maximum of 1.56.

Tables 3.9 and 3.10, for instance, show the values assigned to the parameter
RELY (required software reliability) and the corresponding assignment criteria. If
RELY is evaluated as very low, for instance, the corresponding value to be used for
the computation of M is 0.75, yielding a reduction in the effort of 25%.

The parameters considered for the M factor can be organized in four different
classes. Two of them describe the characteristics of the project outputs. They are

1. Product attributes, which model aspects related to the software to be devel-
oped and include aspects such as expected reliability, database size, and overall
product complexity

Table 3.9 COCOMO RELY Parameter
Very Low Low Nominal High Very High Extremely High

Required Software 0.75 0.88 1 1.15 1.4 –
Reliability (RELY)

70 � Introduction to Software Project Management

Table 3.10 Explanation of the COCOMO RELY Parameter
Very low The effect of a software failure is simply the inconvenience incumbent

on the developers to fix the fault.
Low The effect of a software failure is a low level, easily recoverable loss

to users.
Nominal The effect of a software failure is a moderate loss to users, but a

situation for which one can recover without extreme penalty.
High The effect of a software failure can be a major financial loss or a

massive human inconvenience.
Very high The effect of a software failure can be the loss of human life.
Extremely high No rating—defaults to very high.

2. Computer attributes, which take into account aspects related to the platform
that will be used to run the software and include aspects such as constraints
related to performance and stability.

The remaining two classes describe project attributes. They are

1. Personnel attributes, which model the influence of the personnel involved in
the project and include five parameters related to the capability and experience
of the personnel

2. Project attributes, which model some aspects related to the project organi-
zation and include three parameters describing tool support and automation
and schedule constraints.

3.4.5.2.2 COCOMO II

COCOMO II significantly revises and enhances COCOMO81 to take into account
several new factors that intervened after the first definition of the model. Among
them are new development processes, new development paradigms (e.g., object ori-
entation), and new development techniques (e.g., code reuse). The model also takes
advantage of an enlarged set of project data, which is based on 161 projects in place
of the 63 used in the definition of COCOMO81 and an improved definition of
the term “source lines of code.” Finally, COCOMO II uses the spiral development
process as its reference process.

COCOMO II introduces three main changes:

1. UFPs are used at an early stage of the development process to deter-
mine a system’s size. The UFP are then transformed into lines of
code using translation tables that map UFP into SLOCs. Some exam-
ple values can be found in Center for Software Engineering (2000) and
Quantitative Software Management (2013). This helps solve the “chicken–
egg” problem with the original definition of the model. In fact, the accuracy
of the model depends on the accuracy of the estimation of the system size,
which however is known only when development ends.

Making IT Right � 71

2. The computation of lines of code is adjusted to take into account reused code
and requirements volatility. The first is computed using a nonlinear model
derived by analyzing about 3000 projects from NASA. The latter simply
increases the count of SLOC by a percentage that represents the number of
requirements that will change. This allows one to use the method with more
modern programming practices.

3. The parameters are refined or updated. In detail, more the exponent is com-
puted as the sum of five scale factors. The scale factor includes aspects related
to the development process. They are assessed similar to the effort adjust-
ment factors; the result is always between 0.91 and 1.226. Finally, the other
parameters are updated to match analyses conducted on a larger set of data.

The Center for Software Engineering (2000) and Merlo-Schett et al. (2002)
give more information about the application, while the University of Southern
California (2013) and NPS (2013) make available an online calculator.

We conclude the section on COCOMO by mentioning that various extensions
have been proposed to the model, among which are COQUALMO, to estimate
software defects, COCOTS, to estimate integration of COTS component, and
COSYSMO for system engineering.

3.4.5.3 Web Objects

Web object is a technique that mixes FP analysis and COCOMO models to esti-
mate the effort and schedule of web application development. The mainmotivations
for the definition of (yet another) estimation technique are some fundamental
differences between desktop and web applications development.

In fact, the development of web applications tends to be driven by time, rather,
that costs; it prefers more informal (and speedy) processes; it uses smaller teams
(3–6 people), often composed by younger and less experienced personnel. Accord-
ing to Reifer, who defined and proposed the model, these motivations make the
application of other techniques less effective (see, e.g., Reifer (2000), Ruhe et al.
(2003)).

The method is organized in two phases, Web objects and web modeling. The
first, similar to the FP estimation, is used to estimate a web application size. The
application of the technique requires one to measure nine different characteristics
of a system, classifying them as simple, average, or complex. Five of these nine char-
acteristics are those we already saw in the FP estimation. Four new elements are
specific to the web application domain and they include multimedia files, scripts,
links, andweb building blocks. Using a weighted count of the characteristics yields
the number of web objects, that is, a measure of a system’s size.

The second part of the method, web modeling, is structured similarly to the
COCOMO method and it transforms the number of web objects into effort and
schedule. The relationship between web objects and effort is given by the following
formulas:

72 � Introduction to Software Project Management

Effort = A ·
9∏

i=1

cdi(Size)P1 (3.17)

Duration = B · (Effort)P2 (3.18)

where A, B, P1, and P2 are constants (similar to COCOMO81), Size is the
size in web objects, and cdi are nine cost drivers similar to those defined by the
COCOMOmodel.

3.4.5.4 Effort and Project Phases

FPs and COCOMO provide top-down estimations. As we have seen, to distribute
the total effort and duration to lower elements of the WBS, we need to select an
appropriate approach. COCOMO provides reference tables that break down effort
and schedule for different software development processes. The breakdown is given
in terms of percentages and ranges of percentages and can be found in Boehm
(1981).

Thus, for instance, for a small project, the effort computed using the
COCOMO81 model can be distributed as follows: 21% to plan and requirements
and product design; 26% to detailed design; 42% to coding and unit testing; 16% to
integration and testing.∗

See Boehm et al. (2000) and Boehm (1984) for more information and Yang
et al. (2008) for a critical study related to phase distribution in various projects.

3.5 Scheduling a Plan
WBS identifies the work that it is necessary to carry out, but it does not show any
constraints between activities, nor does it specify anything about scheduling, that is,
when each activity should start and how long it should last. This is exactly what we
are going to do in this section.

Scheduling the plan is composed of the following steps:

1. Identify dependencies among activities. During this step, we highlight the
dependencies in our project to understand the degrees of freedom we have in
scheduling our project. Some activities will have no dependencies and we will
be able to schedule themmore freely. Others will depend on tasks to finish (or
to start) before they can be started; for these, we will clearly have less options.

∗ Note that the sum of percentages is 106%; this is because the planning phase is outside of the
scope of the COCOMO81 computation; analysis of effort and schedule distribution, however,
allowed the planning phase to be estimated as an additional 6% on top of the values provided
by the model.

Making IT Right � 73

2. Identify the critical path of the plan. The goal of this activity is to identify
the most critical activities in the plan. These are the activities that, if delayed,
will delay the plan.

3. Allocate resources to tasks and level resources. The goal of this activity
is to allocate actual resources to the different activities. During this step,
various additional constraints emerge, due to the availability of resources
and the maximum amount of work that can be allocated to each resource.
The process of dealing with such constraints is called resource leveling.
The output is a plan that introduces additional constraints, called soft con-
straints, which ensure that the limitations related to resource availability are
actually met.

Note that the order in which we listed the activities above is merely for presentation
purposes. In practice, there is a lot of freedom in the way in which these steps
are executed. In many cases, schedules are constructed by looking at the different
concerns in parallel, trying different scenarios. In the current practice, the use of
a modern Gantt charting tool integrates the steps above, promoting a process in
which the schedule is built by looking at all these concerns in parallel.

3.5.1 Identify Dependencies among Activities
No one will start building a house from the roof. Thus, the first step to scheduling
our plan is to identify the order in which the activities can be executed. This is
done by identifying the dependencies among activities. In general, a dependency
between two activities A and B defines some kind of constraint in the executability
of A and B and imposes a partial ordering on the execution of the activities.

The dependencies can be characterized according to different dimensions, as
illustrated in the following paragraphs.

3.5.1.1 Type of Dependencies

Four types of dependencies can be set between two activities, according to whether
the constraints involve the start or the end of the two activities.

Two types of constraints are relatively common. These are

1. Finish to start (FS). An FS constraint between A and B expresses the fact
that B can start only after A is finished. This is probably the most common
constraint between activities. For instance, the activity “baking a cake” can
start only when all the ingredients have been poured into the baking pot.

2. Start to start (SS). An SS constraint between A and B expresses the fact that
B can start only when A starts. For instance, a “monitoring” activity can start
only when the activity that is being monitored starts.

Two types of constraints are used and found less often. These are

74 � Introduction to Software Project Management

1. Finish to finish (FF). An FF constraint between A and B describes a situation
in which B can finish only when A finishes.

2. Start to finish (SF). An SF constraint between A and B describes a situation
in which B can finish only when A starts.

Another classification distinguishes between hard and soft constraints. A hard con-
straint between two activities A and B models a dependency that is in the nature
of the work to be performed. A hard constraint cannot be broken without violating
the logic of the project. An exception is fast tracking, which optimizes a plan by
breaking hard constraints, at the cost of a riskier project execution—see Section 3.6
for more details.

Vice versa, a soft constraint between two activities A and B can be set as a
convenience to simplify project execution or to reduce risks in the project execution.
A soft constraint can be broken without violating the logic of the project.

An example can be of help. In the preparation of a meal, a hard constraint exists
between the preparation of the ingredients and cooking them. Cooking, in fact,
cannot start if the ingredients have not been prepared. The constraint is in the logic
of the activities and there is no way to break it, unless you decide to be extremely
creative in your cooking.

In the same scenario, we could decide to impose a soft constraint between
preparing the dessert and preparing the main course, that is, arbitrarily decide that
we will start preparing the dessert and then move on to prepare the main course.
No dependency between the two activities exists. In principle, we could even pre-
pare both dishes in parallel, if we wanted to. Soft constraints can be broken, if
required, by changing the hypotheses for which the links were introduced in the
first place.

Remark

When people start using Gantt charting tools, sometimes they introduce dependen-
cies between activities to schedule them in a specific order, even if there is no hard
constraint between the activities.

The introduction of these soft constraints in a plan is a questionable practice,
since it reduces the degrees of freedom one has in scheduling. Moreover, it can
make rescheduling and evaluating alternatives a lot more complex when it becomes
difficult to distinguish between the hard and the soft constraints.

The use of task priorities, resource leveling, and scheduling constraints are more
effective means to achieve the same goal. See Section 3.5.3 for more details.

Making IT Right � 75

3.5.1.2 Lead and Lag Time

When defining dependencies between two activities, sometimes it is convenient to
specify a time interval, positive or negative, that occurs between the activities. We
speak of lag time if the time interval is positive. We use the term lead time if
the interval is negative. Thus, for instance, if A and B are connected by an FS
dependency with a lag time of 3 days, it means that B can start three days after A
has finished. In the example above, if the FS dependency had a lead time of 3 days,
B could start 3 days before A ends.

A typical usage of lag time is with SS constraints, when some progress in the first
activity is necessary to start the second one. For instance, in a roadwork project, an
SS constraint with a lead time of one or two weeks could be set between digging and
laying pipes. The lag time, in fact, is to allow the digging to progress sufficiently to
actually make the laying pipes activity doable.

Similar to the identification of constraints, it is good practice to introduce lead
and lag times between activities only if strictly imposed by the logic of the plan.
Introducing arbitrary constraints reduces the degrees of freedom and it could make
scheduling a lot more complex than needed.

3.5.1.3 Network Graphs

The dependencies among activities in a project can be represented using a table.
Each row contains an activity, identified by a unique number. The dependencies are
shown as a list of identifiers, possibly followed by the type of dependency, if different
from FS, and the lead and lag times, if present.

Table 3.11 shows an example in which activity C depends on activity A with
an FS dependency; C also depends on activity B with an SS dependency. Similarly,
activity E depends on activity C with an FS dependency and on activity D with an
FS dependency with a lag of three days (+3d).

A far more intuitive notation uses a graph, called network diagram, in which
all the constraints between activities can be shown visually. Two kinds of network
diagrams exist. Network diagrams that represent activities on the nodes are called
activity on node (AON) diagrams. Network diagrams with activities on the edges
are called activity on arrow (AOA) diagrams. Both notations were introduced in the
1950s. Of the two, the AON notation usually yields a more natural representation

Table 3.11 A Plan Specification
ID Activity Dependency

1 A
2 B
3 C 1, 2SS
4 D
5 E 3FS + 3d, 4

76 � Introduction to Software Project Management

Start End

A

EB

D

C

1

2 3

4

5

Figure 3.5 AON representation of the plan of Table 3.11.

of a plan, while the AOA notation, initially developed for PERT, is less used, now.
Project Management Institute (2004) uses the term precedence diagram for AON
and arrow diagram for AOA.

Figure 3.5 shows the AON representation of the plan presented in Table 3.11.
Each activity is represented by a rectangle and arrows represent dependencies among
activities. Two special activities Start and End represent, respectively, the start and
the end of the project. A popular extension of the AON notation enriches the
description of the nodes with duration, start date, and end date, as shown in Fig-
ure 3.6. The notation will be used for the computation of the critical path of a plan.

Figure 3.7 shows the AOA representation of the same plan. As can be seen from
the figure, activities are shown on arrows and circles are used to represent dependen-
cies. AOA diagrams might require the introduction of dummy activities to represent
the dependencies correctly. Consider, for instance a plan with four activities, P, Q,
R, and S, in which Q depends upon P and S depends upon R and P. The depen-
dency between S and P requires the insertion of a dummy activity, represented with
a dotted line in Figure 3.8.

3.5.2 Identify the Critical Path
In complex plans, the start or the end date of certain activities can be chosen or
moved without affecting the overall schedule of the plan, that is, without affecting

Duration

Slack

Activity name

Earliest
start date

Earliest
end date

Latest
start date

Latest
end date

Figure 3.6 Adding information to a node.

Making IT Right � 77

Start End

A

B

D

C E

Figure 3.7 AOA representation of the plan of Table 3.11.

1P Q

R 2 S

Figure 3.8 AOA dummy activity example.

the end date of the project. Consider the example shown in Figure 3.9, where activ-
ities A and B run in parallel, but A lasts longer than B. Note that Figure 3.9 extends
the AON notation adding time and using the length of the boxes to represent the
duration of the activities. Clearly, B, the shorter activity, can start up to four time
units later than A (or, during project execution, even delay its finish date), without
affecting any subsequent activity in the plan, as long as the delayed start or the extra
duration does not move its end date after that of A. In fact, if it did, we would need
to move the start of C, to respect the FS dependency between the two activities.

We call free float or slack the amount of time an activity can be delayed without
affecting subsequent activities. In the example above, the slack of B is four time
units, since we can delay its start up to four units without delaying the start of any
of its successors (in the example, without delaying C). We call total float or total
slack the amount of time an activity can be delayed without affecting the end of a
project. In the example, A has a slack of 0 time units, but a total slack of 1 time unit,
since C has a slack that can absorb a delay of A of 1 time unit, without moving E.

S

A

B

Time1 2 3 40
E

10

C

P

Figure 3.9 Computing the critical path.

78 � Introduction to Software Project Management

The path in which all activities have zero total slack is called the critical path of
the plan. Any delay in any activity in the critical path will cause a delay to the end
date of the project, since the delay cannot be absorbed by any other activity in the
path. Understanding what is the critical path of the plan allows a project manager to
focus on those activities that are the most important to keep the project on schedule.
Note that all plans have a critical path.

The critical path method is a technique developed in the 1960s that computes
the critical path. It was developed to control the schedule of projects related to the
development of the Polaris missile system. Today, the critical path computation is a
basic feature of any decent Gantt charting tool. Understanding how the computa-
tion is performed, however, is interesting and useful. In particular, the method uses
the AON representation of a plan and is performed by determining the earliest and
the latest dates at which each activity can start (or end) without affecting the overall
schedule.

The computation of the earliest and latest dates is performed in two passes:

1. A forward pass determines the earliest start and earliest end of each activity
in the plan. The earliest start (end) date of an activity A is the earliest date
at which we can start (finish) an activity, without breaking any dependency
on the plan and without moving any other activity in the plan. Intuitively, it
measures how soon we can start an activity.

2. A backward pass determines the latest start and latest end dates of each
activity in the plan. The latest start (end) data of an activity A is the latest
date at which we can start (finish) an activity, without delaying or moving
any other activity in the plan. Intuitively, it measures how late we can start an
activity without affecting the overall schedule.

The earliest and latest starts determine how much an activity can slide back and
forth in a plan and are the basis for the computation of an activity’s slack. The
slack is in fact computed as the difference between the latest and earliest start of an
activity or, equivalently, between the latest and earliest end. An activity whose latest
start date (and, respectively, latest end date) is equal to its earliest start date (and,
respectively, earliest end date) has a slack of zero.

The forward pass starts from the start node of the project and proceeds
according to the following rules:

1. The start node of the plan is assigned the earliest start and earliest end date of
zero.

2. For any other activity in the plan, the earliest start date is set to the highest
earliest end date of its predecessors. The earliest end date is computed by adding
to the earliest start the duration of the activity.

The calculation is best performed by analyzing the plan from left to right or, more
precisely from the start node, then moving to its successors, till we reach the last

Making IT Right � 79

S A

B

EC

P

27

3

0

0

0

0

7 7 9 10

10

10

1010108

100

81

8

3

5

10

a

b

b

c

d
Duration

Slack

Activity name

Earliest
start date

Earliest
end date

Latest
start date

Latest
end date

Figure 3.10 An example of critical path computation.

activity of the project.∗ Hence the name. Note that the earliest end of the plan is the
earliest end of the last activity in the plan, that is, the earliest end of the end node.

When we finish the forward pass, we can start the backward pass. This starts
from the end node of the plan and proceeds as follows:

� The latest end date of the end node is set to its earliest end date; the latest start
date is set to the latest end.

� For any other activity in the plan, the latest end date is set to the lowest latest
start of its successors, while the latest start is computed by subtracting the
activity’s duration from the latest end.

The computation of the backward pass is performed analyzing the plan from
right to left or, more precisely, beginning from the end node, then moving to its
predecessors, till we reach the start node of the project.† Hence the name.

Once we have computed the earliest and latest values of all the activities in the
plan, we can determine the slack of each activity as explained before, namely, by
subtracting the earliest start from the earliest end. The critical path of the plan is
the one in which all activities have zero slack.

An example might help clarify the process. Consider the plan in Figure 3.9,
for which we present the AON notation and the computation of the critical path
in Figure 3.10. Note that each node uses the notation introduced in Figure 3.6,
according to which the top boxes contain, respectively, the earliest start date, the
duration, and the earliest end date; the bottom boxes contain, respectively, the latest
start date, the slack, and the latest end date.

The handwritten numbers are the results of the computations to find the critical
path, while the dotted lines show the process.

∗ Technically: breadth-first visit of the AON starting from the start node of the project.
† Technically: breadth-first visit of the AON, starting from the end node.

80 � Introduction to Software Project Management

We begin from the start node, S: we assign an earliest start date of 0 to each
activity depending exclusively on the start node. The earliest end dates are then
computed adding the duration to the earliest start date. See, for instance, the com-
putation for P—dotted line marked “a” in Figure 3.10. If an activity has more than
one predecessor, we take the highest earliest end date. Thus, in the example, the
earliest start date of the end node (marked E in the diagram) is 10. See the dotted
lines marked “b” in the diagram. We then repeat the process till we compute the
earliest start and end dates of each activity.

For the end node, the earliest end, latest start, and latest end are all set to the
earliest start.

We can now start the backward pass, propagating the latest dates from the end
nodes to the start. In our plan, for instance, the latest end date of activity C is 10,
namely, the latest start date of the only successor of C. See the dotted line marked “c”
in Figure 3.10. The latest start date of an activity is given by subtracting the duration
from its latest end date. This explains why the latest start date of C is 8, that is, the
result of subtracting 2, the duration of C, from its latest end date, which is 10.

Once we complete the backward pass, we are now ready to compute the slack
of the different activities. Thus, for instance, the slack of A is 1, while the slack of
B is 5. There is only one path having all activities with zero slack. This is the path
made by just one activity, namely, P. So the critical path of the plan is composed
by P. Note that this is a peculiar case; in general, more than one activity will be in
the critical path. We now know that any delay to P will cause the entire project to
deliver late. During the execution phase, particular attention has to be dedicated to
the activity.

3.5.3 Allocate and Level Resources
So far, we determined the logic of the plan in terms of the activities necessary to
achieve the project’s goals, their dependencies, and the resources needed to carry
out each activity. In Section 3.4, we have also seen the relationship between dura-
tion, effort, and resources. In many projects, the availability of resources is one of
the most critical constraints; activities, in fact, can be carried out only when the
required resources are available and at the speed determined by their availability. In
this section, therefore, we look in more detail at the process of allocating resources
to the plan. This will allow us to determine the duration of the project.

There are basically three constraints we need to satisfy:

1. The allocation has to comply with the estimation of the activities. If an activ-
ity requires an effort of 404man-hours, we need to allocate sufficient resources
or time to cover the effort.

2. The allocation needs to comply with the availability of resources. If a resource
is available 4 h per day, we cannot create a plan in which he or she is supposed
to work above that limit.

3. The constraints of the tasks must be satisfied.

Making IT Right � 81

This is taken care of by a three-step process composed of the following steps:

1. Qualify the resources needed for each task.
2. Verify the resources available.
3. Allocate the resources satisfying the constraints.

3.5.3.1 Qualifying the Resources Needed for a Task

As mentioned earlier, tasks require manpower, equipment, or material. Before a
resource allocation can start, of course, these needs require to be made explicit.

In more detail:

� Formanpower, we need to specify the effort necessary to carry out the activity,
possibly organized per type of resource, if this is necessary.

� For equipment, the number of units required by each activity. For instance,
the final testing activity of a software to control a robot could require the
availability of two robots for 10 days.

� For material, the quantity necessary to carry out an activity. Software
development plans rarely require the specification of material.

A simplifying assumption that is often made when planning is that the need for a
specific resource in a task is uniformly distributed. For example, if a task requires
40 h of a designer over a period of 2 weeks, we assume a constant need of 20 h per
week. Although strategies exist to deal with specific cases (e.g., a resource is available
every second week; an activity requires an effort that ramps up at the beginning of
the activities and slowly decreases at the end of the activity), the extra effort necessary
to model such cases is usually not worth the advantages we can get.

Remark

Most entry-level planning tools allow a project manager to specify resource needs in
terms of the total effort required in an activity, without distinguishing among the
competences or types of resources needed.

In such situations, it is the responsibility of the project manager to allocate
the actual resources in a way that is compatible with the requirements of the plan.

3.5.3.2 Specifying Resource Availability

For material and equipment, availability is expressed with quantities and units. For
instance, 100 km of optic fiber; four excavators.

For manpower, resource availability is expressed as the total units of work we can
allocate to our project. As we have seen, these data can be expressed, person by person,
in terms of the percentage of availability. Thus, for instance, if we have one resource
available at 80%, it means that he or she can allocate 32 work-hours per week.

82 � Introduction to Software Project Management

A complex plan might abstract away the availability of individual employees. In
this case, availability of resources is expressed in the form of a percentage greater
than 100%. Thus, an availability of 800% means that we have the equivalent of
eight people; it could be eight people full time or, maybe, six full time and four
at 50%. The term full-time equivalent (FTE) is used to specify the availability
of a person working full-time. Thus, for instance, three FTEs correspond to the
availability of three people full-time or 300%.

Another aspect, to consider for resource availability are holidays and other leaves.
A detailed plan will take into account such data, by specifying the nonworking days
person by person. Higher-level plans typically take into account leaves by lowering
the amount of work that can be performed by each resource. Thus, for instance,
the maximum effort which can be expressed in a calendar-week could be set to 4.8
man-days, to take holidays into account.

Finally, note that the maximum effort available for a project is often a theoretical
value. The actual effort a resource will be able to allocate to a task during a typical
working day is much lower. In fact, we need to consider all other activities (phone
calls, meetings, interruptions, breaks) occurring in a typical working day and taking
time from the total availability. According to Wysocki (2011), the actual availability
of resources is between 50% and 80% of the theoretical value.

EXAMPLE 3.4
In a project, we can count on the following resources:

� Dominique, a designer, who will work full-time.
� Rick, another designer, who is involved part-time, at 50%.
� Elva, an analyst, who works part-time on the project, at 50%.
� Giannetta, another analyst, who works part-time on the project, at 50%.

Given the data above, we can say that

� Dominique will be available 40 h per week.
� Rick will be available 20 h per week.

Concerning the availability of an analyst, we have two resources at 50% or,
equivalently, 1 FTE.

Remark

For small/medium projects, mentally transforming percentages in actual days at the
office is a good way to picture the actual involvement of a resource. For instance, a
resource at 20% of his time will be able to work on the project 1 day per week.

From the previous example, it should also become clear that different types of
involvements are not equally effective, due to considerations similar to those we
already considered in Section 3.4. In particular, the lower the percentage of involve-
ment, the higher the incidence of the time required to get into the task (for instance,
catching up with work performed by the rest of the team).

Making IT Right � 83

3.5.3.3 Allocating Resources to a Plan

The third step consists in assigning resources to tasks. For manpower, this is done
by allocating a percentage of a resource to the tasks.

Given an allocation of resources to a plan, a resource usage profile can be deter-
mined. The resource usage profile is a graph (or bar-chart) that depicts the number
of hours of a resource dedicated to a given project. This is determined by sum-
ming up the hours dedicated to each activity to which the resource is dedicated in a
given period.

Thus, for instance, if a resource full-time (40 h per week) in January works on
two tasks, the first at 50% and the second at 25%, the resource profile in January
will show 75% or 30 h per week; 20 h derive from the first task and another 10
come from the involvement in the second task.

The allocation of resources to a plan has two main effects: the first is that deter-
mines the duration of activities that have been estimated using effort. This results
from the application of Equation 3.6. The second is that it introduces soft con-
straints in the plan. These are due to the fact that we cannot overallocate resources,
that is, use resources over their maximum availability. Thus, activities that in prin-
ciple could run in parallel will be sequenced if constraints over the availability of
resources prevent us from doing so.

Resource leveling is the process of introducing soft constraints in a plan
to ensure that no resource is overallocated. Some tools have resource leveling
algorithms; others require the manager to do the job.

A resource leveling algorithm typically requires one to specify additional
information for each task in the plan.

This includes:

� The priority of tasks, typically expressed in the form of a number. The prior-
ity determines which activities have to be scheduled earlier in case of conflicts
with resource allocation. Typically, higher-priority activities are scheduled
earlier.

� The scheduling constraint of tasks, which imposes limitations on the
possible start and end dates. These are

– As soon as possible, if the task has to be started at the earliest possible
date, given the fact that any other constraint is satisfied. This is typically
the default for planning tools and corresponds to an aggressive approach,
in which we try and get done with the project as early as possible.

– As late as possible, if the task has to be started at the latest possible
date, given any other constraint is satisfied. This corresponds to a cau-
tious approach, in which activities, and more important expenditures, are
delayed till the very last moment.

– Must start on, if the task has to start on a specific date.
– Must finish on, if the task has to end on a specific date.

84 � Introduction to Software Project Management

– Start no earlier than, if the task cannot start earlier than a specific date,
but it is perfectly fine if it starts later than the set date.

– Start no later than, if the task has to start no later than a given date, but it
is perfectly fine if it starts earlier than the set date.

– End no earlier than, if the task cannot finish earlier than a specific date,
but it is perfectly fine if it ENDS later than the set date

– Finish no later than, if the task cannot finish later than a given date, but
it is perfectly fine if it ends before the set date.

A resource leveling algorithm schedules activities ensuring that all constraints
(dependencies among activities), the properties set by the project manager (priorities
and scheduling constraints), resource availability, and priorities are satisfied. If the
algorithm succeeds, all activities are laid out so that they satisfy the constraints.

A resource leveling algorithm can also fail. This is the case when the constraints
are too tight. Consider the case of a project that must finish on a date but does not
have enough resources to meet the deadline. In such cases, one or more constraints
have to be relaxed. The most common strategy is adding more resources to shorten
some activities. However, this does not necessarily make a project faster if coordina-
tion becomes too much of a problem, as was highlighted in Brooks (1995). Other
techniques include renegotiating the project scope or compressing the schedule, as
we will see in Section 3.6.

3.5.4 The Gantt Chart
The Gantt chart is a very popular notation that can be used to present sched-
ules. Henry Gantt first introduced the notation in 1917 to control shipbuilding
works.∗ The notation we use today is an extension of the original work, which also
allows one to represent the WBS, dependencies among activities, the critical path,
and various other information about tasks. Many Gantt charting tools exist, and
the activities we describe in this section are often carried out interactively using
these tools.

The (modern) Gantt chart notation (called a logical network in Burke (2006))
is shown in Figure 3.11. It is organized in two main parts. The left-hand side of the
figure contains the list of activities, together with the start and end dates of each
activity. The list can present the activities using an outline structure to highlight the
hierarchical nature of the plan. The right-hand side of the chart shows the calendar
time and the activities.

In particular, on the right-hand side

� Activities are laid on the calendar as rectangles. The positioning and size of
the rectangle shows the start date, duration, and end date of the activity: the

∗ The interested reader can find the description of the original work in Clark and Gantt (1923).

Making IT Right � 85

1 2 3 4 5 6 7 8 9 10 11 12 13

Fi
ni

sh
St

ar
t

Ta
sk

 N
am

e

Sy
st

em
 d

ev
el

op
m

en
t

21
/0

5/
20

12
19

/0
6/

20
12

Sp
rin

t 1
21

/0
5/

20
12

25
/0

5/
20

12
Pr

ot
o

1
(c

lie
nt

 +
 se

rv
er

)
25

/0
5/

20
12

25
/0

5/
20

12
Co

m
m

en
ts

28
/0

5/
20

12
01

/0
6/

20
12

Co
m

m
en

ts
 o

n
pr

ot
o

1
01

/0
6/

20
12

01
/0

6/
20

12
Sp

rin
t 2

28
/0

5/
20

12
04

/0
6/

20
12

Pr
ot

o
2

(c
lie

nt
 +

 se
rv

er
)

04
/0

6/
20

12
04

/0
6/

20
12

Co
m

m
en

ts
05

/0
6/

20
12

08
/0

6/
20

12
Co

m
m

en
ts

 o
n

pr
ot

o
2

08
/0

6/
20

12
08

/0
6/

20
12

Sp
rin

t 3
05

/0
6/

20
12

08
/0

6/
20

12
Pr

ot
o

3
08

/0
6/

20
12

08
/0

6/
20

12
Sp

rin
t 4

 an
d

de
pl

oy
m

en
t

11
/0

6/
20

12
19

/0
6/

20
12

Sy
st

em
19

/0
6/

20
12

19
/0

6/
20

12

Ju
ne

 2
01

2
21

 M
ay

28
 M

ay
04

 Ju
n

11
 Ju

n
18

 Ju
n

25
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M

A
C;

 B
E;

 P
M

25
/0

5/
20

12

D
B 01
/0

6/
20

12

A
C;

 B
E;

 P
M

04
/0

6/
20

12
 D
B 08
/0

6/
20

12

A
C;

 B
E;

 P
M

08
/0

6/
20

12

A
C;

 B
E;

 P
M

19
/0

6/
20

12

Fi
gu

re
3.

11
A

n
ex

am
pl

e
of

a
G

an
tt

ch
ar

t.

86 � Introduction to Software Project Management

left side of the activity corresponds to the start date; similarly for the right side
of the activity. Activities are labeled with the initials of the people allocated to
the activity.∗

� Deliverables are presented as diamonds. They have zero duration and are
labeled with the date before which they are to be produced.

� The dependencies among activities are marked with arrows starting from an
activity (deliverable) and ending at another activity (deliverable). The start-
ing and ending places of the arrow determine the constraint type. Thus, for
instance, an arrow starting from the end (finish) of an activity and pointing
to the start of another activity represents an FS constraint. Similarly for other
kind of constraints.

� The black lines with triangles at the ends represent work packages, grouping
sets of activities.

3.6 Optimizing a Plan
In many situations, the project schedule ends up by being too long to respect the
constraints set by the stakeholders, by the project goals, or by the environment.
This can cause a bit of frustration to the project manager, since, as soon as he or she
comes out with a realistic plan, this has to be revised and changed!

In the following, we analyze the most common techniques to compress the
schedule of a plan so that it meets the customer’s needs.

3.6.1 Renegotiating Goals and Deadlines
If all the project goals cannot be achieved in the required time frame, renegotiating
the project scope and other project constraints can yield a satisfactory solution.

The simplest renegotiation we can try is on the delivery date. If the customer
does not have a strong constraint on the delivery date, acknowledging the actual
work that has to be done and moving the project delivery date to a more reasonable
deadline is a simple and elegant solution. The actual feasibility varies. Sometimes
deadlines are set arbitrarily by the customer. In these situations, using the plan to
demonstrate that the deadline cannot be achieved can convince the customer to
come to more reasonable terms. In other situations, deadlines are set earlier than
necessary, as a padding to protect other projects that might depend on our results.
In these cases, understanding the actual margins and the real risks of delivering late
can help both sides decide on the most appropriate strategy. In the remaining cases,
the deadline cannot be moved. In this situation, we need to use another technique.

The second kind of renegotiation is on the project goals. Not all goals, in fact,
are equally important. We have seen in Section 3.2 how we can assign a priority to

∗ This is the default adopted by many tools, but it is by no means a standard.

Making IT Right � 87

different goals. Selecting with the client the most important goals reduces the work
we need to do, moving the delivery to an earlier date.

If both approaches are not feasible, we need to change the logic of the plan. This
is what we discuss in the next few sections.

3.6.2 Phase the Project
Organizing the project in phases allows one to organize work so that the most
important goals are achieved earlier. If only some of the project goals must be
achieved for a given deadline, phasing the project might help meet the requirement.

For software development projects, this can be an effective strategy, since soft-
ware development accommodates relatively easily an incremental construction.
Using this approach, the first phases will release an initial version of the system
with basic features. The system will then be refined in subsequent project iterations.
An additional advantage of this approach is that the user is given a working solution
to use: this allows both users and the development team to better understand what
functions are important and, consequently, how to prioritize project development.

3.6.3 Project Crashing
Project crashing is a technique that works on the project schedule trying to find an
optimal balance between time and costs. Project crashing works on the assumption
that shortening a project yields savings and that the duration of tasks can be reduced
by assigning more resources to them (labor, material, equipment). However, since an
increment in resources causes an increase in project costs, which could be nonlinear
with the decrease in duration, an optimal balance needs to be found between how
much a project is shortened and how much the costs are increased.

When using project crashing, the

� Crash costs indicate the savings obtained by crashing the project.
� Crash time indicates the time used to shorten the project.

Project crashing can be an effective method to optimize costs. The reader, how-
ever, should be aware that the technique might be difficult to apply effectively.
Consider, for instance, the additional risks introduced by crashing a project. They
could, in principle, cause additional rework and delays to a project that we tried to
shorten instead.

EXAMPLE 3.5
Consider a project that is late and scheduled to end 4 months later than the delivery
date agreed with the client. Each month of delay costs us e20K, as per the con-
tractual agreement with the client. Thus, with the current plan, we will lose e80K.
To try and recover the situation, Cathy, the project manager, has analyzed the costs
to shorten the project. According to her data, reducing the duration by 1 month is
relatively easy and cheap, since we can use internal personnel. However, any further

88 � Introduction to Software Project Management

Table 3.12 Crashing costs
Crashing Overrun Crashing Costs

4 months 0 month e120,000
3 months 1 month e90,000
2 months 2 months e60,000
1 month 3 months e10,000
0 month 4 months e0

shortening will require us to hire expensive consultants. The actual estimations of
the costs are shown in Table 3.12.

Project crashing can be used to decide what is the optimal crashing time. This
can be done by computing the crashing costs per month, which include the expenses
to crash the project (data of Table 3.12) and the penalty we pay for delivering late.
The data are shown in Table 3.13, where we report the costs we incur for delivering
late (column “Overrun Costs”), those we incur for crashing the project (“Crashing
Costs”), and the total costs, given by the sum of the previous two values.

We can now determine the optimal crashing cost, which is given by the mini-
mum value in the “Total Costs” column. This is shown in Figure 3.12, from which
we can easily see that the optimal crashing time is 1 month. In this situation, we
will lose e70K, saving e10K with respect to the situation in which we do not crash
the project. Any other arrangement will result in incurring higher costs.

If costs are the main or the only parameter for choosing how much the project
has to be crashed, then the answer is 1 month, that is, we reduce the duration of the
project by 1 month.

3.6.4 Fast Tracking
Fast tracking tries to minimize the project duration by breaking the logic of the
plan. That is, some of the hard constraints in the plan are removed so that activities
that would otherwise be sequential can partially overlap.

Figure 3.13 shows an example where some activities that depended on a deliver-
able are actually started earlier, by breaking the dependency. This allows one to end
the project earlier and achieve the project constraints.

Table 3.13 Crashing Example
Crashing Overrun Crashing Costs Overrun Costs Total Costs

4 months 0 month e120,000 e0 e120,000
3 months 1 month e90,000 e20,000 e110,000
2 months 2 months e60,000 e40,000 e100,000
1 month 3 months e10,000 e60,000 e70,000
0 month 4 months e0 e60,000 e80,000

Making IT Right � 89

0 month 1 month 2 months 3 months 4 months
€0

€20,000

€40,000

€60,000

€80,000

€100,000

€120,000

€140,000
€120,000

€110,000
€100,000

€70,000
€80,000

Figure 3.12 Crashing the project: Total costs over time.

Fast tracking is not odd as it might seem at first glance, if we think about the
incremental nature of the work performed on this task. Work progresses in a nonlin-
ear fashion. Thus, in many practical situations, little work and progress will remain
close to the end of an activity.∗ Dependent activities, can thus, start on the par-
tial results that are achieved as predecessor activity progresses, resulting in a more
compact schedule.

The main risk with fast tracking is that rework might be necessary. Consider the
case of writing the specification of a function and the subsequent activities related

A1
A2

B1
B2

D1

Overlap

saving

Before fast tracking Before fast tracking

Time0 1 2 3 4

A1
A2

B1
B2

D1

Time0 1 2 3 4

Figure 3.13 An example of fast tracking.

∗ See Section 3.6.5 for another way of looking at this issue.

90 � Introduction to Software Project Management

to implement it. If we fast track, we start design and implementation before the
specification is fully described. If important information is added after we start the
implementation, we might end up implementing the wrong functions and having
to redo implementation work.

Deciding what chains of activities are best suited for fast tracking is a tricky issue
that depends on the tasks at hand and the project manager and team judgment.
Some rules of thumb include looking at activities that will produce (stable) inter-
mediate results and activities whose deliverables can be broken into independent
pieces of work. For instance, a requirements writing activity could be fast tracked
if the requirements can be organized in different and independent sections and the
implementation of software can be started as each section is produced. If there are
functional interdependencies, a little rework might be necessary.

Another item to consider is how rework could affect other components of the
plan. One risk is propagating delays; another is producing outputs of low quality; a
third is increasing the project costs.

3.6.5 Critical Chain Management
Critical chain project management is a technique developed at the end of the
1990s that has been successfully applied in many real projects. The technique is
fairly complex and the presentation we give here is a rather significant simplifica-
tion of the overall process. See Wysocki (2011) for a very nice introduction to the
technique and Goldratt (1997) and Stratton (2009) for additional references.

Critical chain management starts from the assumption that estimations are ran-
dom variables, as we have discussed in Section 3.4.3. Thus, if our best guess for the
duration of an activity is n days, what we are really saying is that we expect the activ-
ity will take n days to complete. However, the activity might take longer or finish
earlier. If we assume the probability distribution of the duration to be symmetric,
half of the time the actual duration will be shorter than expected and half of the
time will be longer.

If we take a cautious estimation, that is, an estimation that is above our best
guess, most of the time the actual duration will be equal to or less than our cautious
estimation. For instance, if we estimate the duration to be n + σn, where σn is the
variance of n, the probability of the duration being lower than n+ σn is about 84%
for normal distributions.

If we consider a sequence of activities, the guesses add up. If we consider the
estimation of each activity to be independent, however, probability theory tells us
that the variance of the sum of the durations is lower than the sum of the variances.
In other words, the cautious estimation of the chain of activities is lower than the
sum of the cautious estimations of each activity in the chain.

This is shown in Figure 3.14, where we have a sequence of two activities, A and
B, for which we have provided two cautious estimations. That is, the duration we
have chosen is above the mean value, as shown in the upmost diagram, by having

Making IT Right � 91

chosen a duration right of the mean, resulting in some “padding.” We can also
separate, for each activity, the best guesses from cautious estimations, moving them
to the end of the chain, as shown in the center part of Figure 3.14. However, if we
consider the estimation of the sum of the activities, its probability distribution will
have a lower variance. Even with a cautious estimation, therefore, the duration of
A+B will be lower than the sum of the cautious estimations of A and B.

This is what critical chain management does: it uses best guesses to estimate each
activity (rather cautious estimations) and adds cautious estimations at the ends of
the chains, rather than at the end of each activity. This results in two savings. First
of all, for long chains, we can expect some activities to last more and some to last
less than expected: delay might be compensated for by early deliveries. The second
is that the padding added at the ends of the chains is lower than that computed for
each activity. When using critical chain management (CCM), therefore, we consider
the chain of activities, which are estimated at their best guesses, and contingency
buffers, which contain the padding (cautious estimation), as shown in the third
diagram of Figure 3.14.

There are other principles that make CCM effective; one of them is that
resources are allocated greedily, so that we can exploit any saving deriving from an
activity finishing earlier than expected.

A B

Cautious
estimation

Pa
dd

in
g

Pa
dd

in
g

A B Ap Bp
Padding

A+B

Pa
dd

in
g

Cautious
estimation

Figure 3.14 Critical chain management.

92 � Introduction to Software Project Management

Concerning plan monitoring and management of delays, CCM assesses the exe-
cution of chains at one-third, two-thirds, and three-thirds (at the end) of their
execution. In more detail, if delays were distributed uniformly during the execu-
tion of the chain, we should expect each third of the chain to delay the chain, at
most, by one-third of the contingency buffer. Any worse and the chain might end
late; any better and we can exploit early deliveries. Another essential element of crit-
ical chain management, therefore, is to place the contingency buffers so that they
can absorb delays without compromising the plan. For this reason, the technique
uses three types of buffers, namely, project buffers that protect the plan, feeding
buffers that protect the chain of activities, and resource buffers that protect the
plan from delays in resource availability. See Wysocki (2011) and Goldratt (1997)
for more details.

3.7 Budgeting and Accounting
As pointed out in the introduction, the project manager is tasked with keeping
under control three of the main aspects of a project: quality, time, and cost. This
section is an introduction to the main techniques to determine the cost and price of
a project and managing a project’s cost over the duration of the project. Whenever
possible, we instantiate the concepts to the software development domain.

3.7.1 Project Costs
Project costs are the expenses that an organization will incur into carrying out a
project.

The items contributing to the expenses can be divided into in direct costs and
indirect costs.

Direct costs are the expenses directly related to carrying out a project. These
include

� Personnel costs, that is, the costs of the personnel involved in the project.
This is computed from the effort and rates. Daily (or hourly) rates, for profiles
or individuals, are typically determined by the performing organization and
are computed by considering all the items that contribute to the cost of a
resource (e.g., salary, tax, retirement funds, and fringe benefits). In some cases
and countries, this can result in the cost being twice the gross salary.

� Materials and supply, that is, the costs of the material necessary to produce
the project outputs, such as, for instance, the construction material necessary
to build a house. For software development, this cost is usually very low.

� Hardware and software, that is, the costs of specific hardware and software
necessary to carry out a project.

� Travel, meeting, and events, that is, the costs necessary to meet with
customers and other stakeholders.

Making IT Right � 93

� Consultants and subcontracting, that is, the costs related to work that is
subcontracted.

� Other costs, that is, all those expenses that do not fit nicely in the other
categories, such as, for instance, books, training, and renting equipment.

Indirect costs include the expenses necessary to run the facility and make work
actually doable. Indirect costs are also called overhead and include

� General overheads, that is, the costs necessary to run the infrastructure sup-
porting the production team (e.g., office space rents, heating, administrative
staff, consumables, and networking).

� Project overheads, that is, the costs necessary to run the project-specific
infrastructure. Project overheads apply to large projects or to specific situa-
tions in which the accounting is performed at this level of detail. In general, all
indirect costs are accounted for as general overheads and distributed uniformly
among all projects that an organization is involved in.

There are three main aspects related to the management of indirect costs. The
first is to determine what expenses contribute to their computation. This is usu-
ally done once and for all by analyzing the recurring expenses due to supporting
operations and work.

The second is to forecast the indirect costs. This is done on a yearly basis and
requires an organization to assess the fixed and variable costs, such as, for instance,
costs of heating, rent, and electricity. Historical data are the basis for these kinds of
estimations.

The third is to define a policy to distribute indirect costs to the different projects
of an organization. A fair approach allocates indirect costs proportionally to a
project’s size since, in principle, larger projects will use more services and cause
higher indirect costs. This can be done in different ways. One adds a flat rate to the
personnel costs to take care of overhead; in this case, the overheads are computed
as a percentage of the project effort. Another adds a rate proportional to the cost
of each resource; the computation is like in the previous case, but resources with
higher salaries will contribute with a higher overhead. A third technique computes
a percentage of the overall budget of the project.

Finally, it has to be remarked that overheads can be a significant cost item of
a project, in some situations even doubling the rates to be used for the personnel
involved in a project.

3.7.2 Cost Element Structures
Budget should count each expense only once and no double accounting of the same
costs should take place. For this reason, organizations use a cost element structure
(CES), that is, a hierarchical structure that defines precisely what are the cost items
to take into account in each project.

94 � Introduction to Software Project Management

Table 3.14 Budget Example
Unit Cost Overhead Effort/Units Total Comment

Personnel
Resource A e50 e30 100 e8000
Resource B e40 e30 100 e7000

Total personnel costs e15,000

Hardware and software
Hardware e300 2 e600 Two tablets for

testing the Appli-
cation

Software e80 1 e80 Library for graphs

Total hardware and software e680

Other costs
Travel e1000 5 e5000
Meetings e200 3 e600
Training e0

Total other costs e5000

Total e12,280

CES

Work

Personnel Consultants

Subcontracting Hardware
and software

Other
costs

Meetings Events TravelHardware Software

Figure 3.15 CES example.

Similar to a WBS, a CES can be presented as a tree. The advantages of a CES
include no double accounting taking place. Moreover, it helps to present the budget
in a standardized way and allows to aggregate and present financial data at different
levels of detail.

For instance, the costs we presented in Table 3.14 could be organized as shown
in the CES of Figure 3.15.

Making IT Right � 95

3.7.3 Determining the Project Costs
Given a CES, the rates of personnel, overhead costs, and a project plan (with the
estimation of effort and other information, such as travels, etc.), the determination
of the project costs can proceed by adding all the expenses foreseen in the project.

For the mathematically inclined, on the hypothesis that overheads are computed
as a percentage on personnel costs

Project budget =
m∑

j=1
Hoursj ∗ (Costj + Overheadj) +

n∑

i=1
Ci (3.19)

The first part of the formula determines the personnel costs. For each of the m
resources involved in the project, in fact, we determine the cost by multiplying the
effort by the costs and overhead associated with the resource.

The second part of the formula includes the other foreseen expenditures.
This computation is typically performed with a spreadsheet or using a Gantt

charting tool, in which case it is also possible to compute a detailed cash flow.
Table 3.14 shows an example of project costs computed and presented with a spread-
sheet. Whether the computation is performed on hourly costs rather than daily or
monthly tariffs depends on the project size, with larger projects privileging longer
periods, also to take into account the higher variability of the estimations.

For a large project, work packages are a good starting point to compute the
budget. That is, the manager computes the budget for each work package and then
aggregates the data. This process allows one to allocate each project expenditure in
a two-dimensional matrix, made of the CES and of the WBS, as shown in Fig-
ure 3.16.∗ As pointed out in the Department of Defense (2011), the intersections
of elements of the CES and of the WBS are the cost elements that need to be traced
during project execution.

3.7.4 Managing Project Costs
A project budget is a view of the predicted cash flow (incomes and expenditures)
of a project.

Its main goals are

1. To ensure that the money is available when it needs to be spent.
2. To monitor project expenditures so that the project remains within the

budget, or appropriate actions can be taken when this is not the case.

The cash flow is built by determining, for each reporting period, the fore-
seen incomes and expenses. The reporting period depends on the project size and

∗ Note that we could include a third dimension, made of the organizational structure of the
company involved, if the project costs have to be allocated to different departments.

96 � Introduction to Software Project Management

CES

CES1

CES2

CES3

CES3.1

CES3.2

CES3.3

CES2.1

CES2.2

WBS

A1 A2

A2.1 A2.2 A2.3A1.1 A1.2

Cost

Cost

Cost

Figure 3.16 Cost accounting elements (CES and WBS).

on company policies. The allocation of incomes and expenses over time depends
instead on the project plan and on contractual agreements with subcontractors,
which might require an advance payment or might happily be paid after deliv-
ery. This information allows the project manager to determine the amount brought
forward and the financial needs of a project, as illustrated in Table 3.15.

In the table:

� The first group collects the expenses over time, organized according to the
CES.

� The second group records the expected incomes, as determined by the
contractual agreement.

Table 3.15 Budget Structure
Q1 Q2 Q3 Q4 Total

Expenses
Expense 1 e10,000 e30,000 e50,000 e10,000 e100,000
Expense 2 e20,000 e40,000 e60,000 e120,000
Total expenses e30,000 e70,000 e110,000 e10,000 e220,000
Incomes
Payment e50,000 e200,000 e250,000
Total incomes e50,000 e0 e0 e200,000 e250,000
Balance e20,000 −e70,000 −e110,000 e190,000 e30,000
Financial need −e50,000 −e180,000

Making IT Right � 97

Time

Total costs

Time

Total costs

Early start

Late start

Figure 3.17 Expenditure profiles for a project.

� The third group determines the financial needs. In particular, the row “bal-
ance” is the net balance at the end of the period, computed as the difference
between incomes and expenses. The row “financial need” indicates how much
money the project needs to borrow to carry out activities. It is the result of
adding the balance of the current period to the credits and debits accumulated.

Note that if we plot the accumulated expenses of a project over time, we typically
get an “S”-shaped curve, with the expenditures rapidly rising when the project is in
full swing and being relatively small at the beginning and end of a project. This is
shown in the left part of Figure 3.17.

Since the expenditures are related to the project activities, and various activities
in a plan have a slack, we can determine, for each project, two different cost profiles,
one in which all activities have an early start and the other in which all activities
have a late start. This individuates a banana-shaped region in the graph, as shown
in the right part of Figure 3.17. If the project is not delayed, the actual expenditure
profile will be in the “banana” region. See Burke (2006) for more details.

Determining financial needs over time establishes a simple reference framework
to monitor and control project expenditures. We will see in Section 3.9 a more
sophisticated technique that allows progress and costs to be controlled in an inte-
grated way. Here, it is sufficient to remark that project and organizational constraints
determine what item of the CES the project manager should monitor, what detail of
accounting is necessary, and what margins of maneuver the project manager has in
authorizing expenditures. For instance, personnel costs are often directly managed
by the administrative offices of the performing organization. Although they con-
cur in determining the costs of a project, it is not the responsibility of the project
manager to monitor the expenditure and ensure that salaries are paid.

3.8 Project Execution
Project execution is where work takes place and deliverables are actually produced.
That is, during this phase, all the activities described in Chapter 2 are actually
performed.

98 � Introduction to Software Project Management

There are three main management activities to be taken care of during this
phase. These are

1. Kicking activities off
2. Collecting the output of activities
3. Collecting information about the project health.

3.8.1 Kicking Activities Off
The goal of this activity is to formalize the start of one or more project tasks with a
meeting or some other communication. There are three good reasons for doing so.
The first is to ensure that there is shared vision on the work that has to be performed.
The second is to ensure that the project team has the necessary resources to carry
out the work. The third is to make official an actual start date. This has a symbolic
value, which helps everyone to get into the right mindset and actually get started
with the work.

The number and type of tasks for which a kick-off is necessary, the amount of
time required to prepare a kick-off, and the formality of the kick-off activity depend
on the project at hand. At a minimum a kick-off meeting should be held to start
a project. Large projects might also foresee a kick-off meeting to start each work
package. Holding a kick-off meeting to start some risky or critical activity in the
project is also a good idea.

Formal meetings are not always good. Small projects or projects with experi-
enced and well-oiled teams require less formality. In these situations, a stand-up
meeting or just a chat at the coffee machine could be sufficient.

See Section 5.3.3.2.1 for more information on how to structure a kick-off
meeting.

3.8.2 Collect the Output of Activities
Closing activities is the second important management practice during project exe-
cution. A proper closure, in fact, ensures that activities are promptly ended when
the work is completed, rather than dragging around. Moreover, it becomes possible
to assess the lessons learned and to understand how to improve in the next phase.
Finally, a proper closure ensures that the project outputs are properly collected.

Concerning the means and tools, we can apply considerations similar to the ones
we made for kick-offs. The main tool is a meeting, in which the team presents the
results, the lessons learned are discussed, and the project outputs are stored.

3.8.3 Collect Information about the Project Status
The goal of this activity is to assess the project status. It can be performed on a
regular basis or on a need basis, like, for instance, when a critical event occurs.

Making IT Right � 99

Systematic collection of quantitative data about the status of activities and work
can be used to monitor progress, costs, and time and thus to evaluate whether the
project is running late or costing more than budgeted. This is covered in Section 3.9.

Similar to the previous case, quantitative data about the number of defects,
change requests, and risks that occurred can provide information about the status
of the project and that of its outputs. This is covered in more detail in Section 4.3.

Discussions and status meetings with stakeholders can provide qualitative
information about team morale, progress, and other information about the project.

3.8.4 The Project Routine in Agile Methods
The agile routine is a good example of a systematic application of the practices we
have described above.

Agile methodologies are based on a strict sequence of fixed-length development
activities. Each development frame is called a sprint. The project routine for agile
teams is the following:

� At the beginning of the sprint, hold a meeting highlighting the sprint goals.
� During the sprint, on a daily basis, hold a 15 min stand-up meeting to

highlight the main achievements, main obstacles, and commitments for the
day.

� At the end of the sprint, release a potentially shippable product and demo
it to the team and the customer.

3.9 Project Monitoring and Control
If we were perfect planners in a completely predictable world, being a project man-
ager would probably be rather boring. Our plans would be a perfect representation
of the future and the goal of monitoring and control would be that of observing how
our project develops and progresses according to the plans we set. In a completely
predictable world, in fact, many other activities would be rather boring.

In practice and, maybe, also fortunately, we are not perfect planners and the
world is unpredictable. We need to plan not only to tame uncertainty but also to
monitor and replan to take the appropriate corrective actions when the gap between
our plans and reality becomes too wide.

Monitoring and control is a structured process that helps us

1. Understand whether our projections have been confirmed by the actual exe-
cution of the plan. This is achieved by comparing our plan (called baseline
plan) with that derived by mapping how work is actually progressing.

2. Understand whether any deviation has occurred and their impact in deter-
mining the future trajectory of the project.

3. Understand what actions we can or need to take to bring the project back to
the nominal situation, if a deviation has occurred.

100 � Introduction to Software Project Management
Pl

an
M

on
ito

rin
g

A
ct

ua
l w

or
ld

Work

Describes

A1
(actual plan)

Captured by

Compare Deviations and
assessment Replan P2

(new baseline)

Monitoring and controlling cycle

… and the cycle
repeats ...

P1
(baseline)

Figure 3.18 Monitoring and control cycle.

Thus, an effective monitoring and control process requires to periodically collect
data, which we can compare with our plans. This generates a sequence of plans, as
illustrated in Figure 3.18. The first baseline plan, P1, is generated before the start
of the project. As the project progresses, data are collected in order to understand
the actual progress; this can be done by building a Gantt chart, called actual plan,
representing how the actual work has progressed (A1 in Figure 3.18). The baseline
plan and actual progress are compared, deviations analyzed and taken care of and,
if necessary, a new plan set (P2 in Figure 3.18). The new plan finally becomes the
baseline for the next monitoring cycle.

The rest of this section is dedicated to defining what data are usually collected
and what techniques are used to assess current status and make the new projections.
We start by describing some simple techniques to monitor progress and time; we
then continue with some basics about monitoring costs. Section 3.9 is dedicated
to presenting earned value analysis (EVA), a technique that allows one to take
an integrated view at the project progress, by measuring progress, time, and costs
together.

We conclude the section describing the approach adopted by agile method-
ologies and with some information about software metrics and their role in
measuring progress.

3.9.1 Bookkeeping Your Plan: Actual Start and End Dates
The simplest form of monitoring that can be performed on a plan consists in keep-
ing track of the actual start and actual end dates of each activity in the plan. Note

Making IT Right � 101

that variations in the start or end date of a task can propagate to other activities in
the plan, if the delay (in the start or end date) is bigger than the total slack of the
activity.

Many Gantt charting tools allow project managers to compare a given baseline
of a plan with the actual data. Each activity is represented by two bars; the lower
bar is laid down using the planned data (i.e., the data of the baseline plan), while
the upper bar shows the actual data (i.e., the data derived from the last monitoring
performed). An optional bar is used to show the progress performed in an activity,
in terms of the effort actually spent.

An example is shown in Figure 3.19, taken from an actual project. In the upper
part, we can observe two activities, A1 and A2, connected together through a deliv-
erable. Activity A1 has been delayed. This is shown in Figure 3.19 by the upper
bar, which is longer than the lower bar. The delay in the end date of A1 propagates
to A2, since the plan had no slack to accommodate for any delay in A1. Thus,
activity A2 starts later than planned (upper bar shifted to the right with respect to
the lower bar). Activity A2, however, ends earlier than expected, compensating the
delay caused by A1. This is shown in Figure 3.19 by the upper bar of A2, which
ends before the lower bar.

In A3, the second case, the activity starts as planned and lasts less than expected:
both bars start on the same date and the upper bar is shorter than the lower bar.

Activity A4 is only partially completed: this is shown by the fact that the upper
bar is only partially filled. Many tools show the percentage of completion to the
right of the bar. Thus, for instance, we can see from the diagram that A4 is 40%
complete. An aspect that is less obvious is that A4 was not in the original plan when
the baseline was set. A4, in fact, has only one bar and no baseline bar is shown.

100%
100%A1

A2

A3

A4

A5

01/06/2012
100%
12/06/2012

76%
100%
25/05/2012
40%
25/05/2012

100%
01/06/2012

0%

Figure 3.19 Gantt’s monitoring.

102 � Introduction to Software Project Management

3.9.2 Monitoring Time and Work
A slightly more complex form of monitoring measures the progress to understand
whether a project is on time, early, or late. The process is bottom-up, with data
collected from each activity that determines the general project status.

A simple estimation process is based on the collection of data about the actual
work performed for each task. On the hypotheses that the estimations are accurate,
the actual progress depends on the work, and that work is evenly distributed on a
task, in fact, simple computations of percentages allow us to determine the progress
we expected at the date, the current progress, and the estimation to the end.

In more detail, if we have a task A for which we have estimated an effort of
wplanned to complete the task and we currently have spent an effort of wactual on the
task, we can compute the percentage of work completed, pactual as

pactual =
wactual

wplanned
(3.20)

For instance, if we estimated task A to require an effort of 40 h and we have
already worked 20 h on A, we can estimate the task to be 50% complete, since
20/40 = 50%.

Note that if we determine the amount of work we should have produced at the
monitoring date on a task, we can compare it with the actual progress and determine
whether we are early or late. In fact, if the actual progress is greater than the expected
progress at the monitoring date, we are early; we are late otherwise. This can be done
by looking at a task’s duration and planned start date.

In fact, if work is evenly distributed, we can determine how much progress we
expect per calendar unit and, consequently, how much progress we should have
produced at the monitoring date. For instance, if activity A is scheduled to last 5
days, we can expect to produce 20% of the work per calendar day. If 3 days have
elapsed from its planned start, the progress we expect to have produced is 60%.
More formally, the expected percentage of work pplanned is

pplanned = tnow − tstart
tend − tstart

(3.21)

where tnow is the monitoring date, tstart is the start date of the task, and the
denominator contains the duration of the activity, namely, tend − tstart .

The data computed above can be used to determine whether each activity is
early or late. We can do a bit more and also compute the new estimations to the
end. The ratio pactual/pplanned gives us the efficiency with which we are producing
effort in a task. Thus, for instance, if the ratio is less than 1, we are inefficient in the
project execution, while if the ratio is greater than 1 we are producing more effort
than we planned.

Given the efficiency and the hypotheses above, we can thus revise our plan and
determine the new estimated duration of the activity and the new estimated end date

Making IT Right � 103

of each task. The estimated duration, in particular, is the planned duration of the task
divided by the efficiency. The estimated end date is given by adding the estimated
duration of the activity to the actual start date of the task.

In formulas

testimated end = tend − tstart
pactual/pplanned

+ tactual start (3.22)

where tend −tstart is the planned duration, pactual/pplanned is the efficiency with which
we are producing work, and tactual start is the actual start date of the task.

The computation above allows one to assess the project status. Many Gantt
charting tools perform the computations above, sometimes by having the user spec-
ify directly the “percentage of work complete” or “percentage of duration complete.”
For instance, Aksel (2008) discusses the implementation of these computation in
MS Project.

It has to be remarked, however, that the hypotheses made at the beginning of
the section do not always hold. In particular, it could be the case that our initial
estimation of the work necessary to complete an activity is wrong. In this case,
we first need to revise our estimation and then proceed with the computations
described above.

The problem in the second hypothesis, namely, that progress corresponds to
the work spent, is dealt with similarly to the previous case: we either revise our
estimations of work to more accurately reflect the work needed or, if we have it,
we find a way to measure the percentage of technical progress we expected at the
monitoring date.

If the third hypothesis is false, we need to revise the computations to take into
account the actual workload we expected in each activity. This, however, makes
computations a lot more complex and one should evaluate whether it really makes
sense to still apply the method.

Finally, before applying this method, it is always a good idea to assess the benefits
and costs. For instance, in some cases, a less accurate and more informal monitoring
could be equally good in terms of information and a lot more efficient in terms of
the work required.

3.9.3 Monitoring Costs
Budget and expenditure monitoring can be performed using the same approach
we defined above. The percentage of time elapsed determines a projection on the
expense we should have performed. This is compared with the money actually spent
on each item of the project’s CES, in order to determine whether we are on budget,
overspending, or underspending.

The process requires one to maintain an updated ledger of the project expen-
ditures that we can use to assess the money actually spent. Since accurate financial

104 � Introduction to Software Project Management

bookkeeping is required by law, the data collection process should be simpler than
in the previous case.

Similar to the previous case, however, there can be some noise in the estimations
we produce and in interpreting the financial data. These can be more or less evi-
dent, according to a project’s size and duration and the magnitude of expenses to be
performed in the project.

The first source of noise is due to the fact that many payments happen in lump
sums at specific points in time during the project. Thus, expenditure does not
progress linearly with time but rather with discontinuities. As mentioned above,
the relevance and importance of such discontinuities vary with a project’s size and,
of course, with the size of payments budgeted in the project. Consider, for instance,
a project that budgets hardware for deploying a solution to the client. Any moni-
toring on the corresponding CES item will either show 0% or 100%, according to
whether the hardware has been bought or not. (Certain planning tools allow one to
specify the spending profile, in order to more closely define expenditure over time
and thus simplify budget monitoring.)

The second source of noise is due to delays in payments. Subcontractors often
receive delayed payment (in Italy up to 3 months) after the actual delivery of tasks.
In such cases, the amount shown in the ledger containing the actual expenses will
be different from the money actually available. Simple accounting practices, such as
the usage of a “liability” account, address the issue.

A third (and minor) cause is the way in which various expenses get classified in
the CES. Although, in principle, errors or choice in the way in which some expenses
are classified should never occur, it happens sometimes in practice.

3.9.4 An Integrated Approach: Earned Value Analysis
The techniques we have seen above provide a partial view on the status of the
project. If we monitor progress like we describe in Section 3.9.2, we can tell little
about the costs we are incurring to achieve the technical progress. Conversely, the
technique for monitoring the budget described in the previous section tells us noth-
ing about the technical progress we achieved. Even more complex is understanding
the efficiency with which we are achieving progress.

EVA is a technique that addresses the problems mentioned above by repre-
senting progress, costs, and schedule in the same measurement unit. This allows
one to compare them and thus understand a project’s status and derive trends and
projections.

The technique was defined in the 1960s and developed subsequently over a
period of 20 years. Today, it is an important methodology that is widely adopted.
See Christensen (2013) for a comprehensive bibliography, which includes various
historical references. Over time, technique and terminology have been standard-
ized. In this section, we use both the historical definitions and the new standard
terminology.

Making IT Right � 105

The concept behind EVA is relatively simple: progress and schedule are mapped
in terms of money and compared with the actual expenditure measured in a project.
The analysis of the absolute values, that is, where progress, schedule, and costs stand
at the monitoring date, informs us about the current status of a project. The ratios
among the values tell us about the efficiency of our project, which we can use to
make projections to the end.

The brilliant idea of EVA is how technical progress can be measured in terms of
money. This becomes obvious, however, as we measure (technical) progress in terms
of the work to produce it, to which we can assign a cost. We will refine and make
the definition more precise in a couple of paragraphs.

The concepts we need to introduce are

� Planned value, that is, an analysis of the planned progress over time. It is also
known as budgeted costs of work scheduled (BCWS).

� Actual costs, that is, the actual expenditure we incurred in the project. It is
also known as actual costs of work performed (ACWP).

� Earned value, that is, an assessment of the value (technical progress) we
produced so far. It is also known as budgeted costs of work performed
(BCWP).

Let us see how we compute each of these values and then how these are put
into use.

3.9.4.1 Planned Value

According to the Project Management Institute (2004), “planned value (PV) is the
authorized budget assigned to work to be accomplished for an activity or WBS com-
ponent. Total planned value for the project is also known as budget at completion
(BAC).”

PV can be tabulated or plotted over time as shown in Figure 3.20, defining the
expenditure profile we expect from a project. The computation of PV proceeds as
follows:

� We choose a reporting period (e.g., monthly and quarterly).
� We draw the Gantt chart of the project.
� We compute the costs of each activity in our project. This is the PV of the

activity.
� We divide the costs of each activity according to the reporting period. That

is, if an activity A has a duration of 3 months, starting from month 4 of the
project and at a cost of 3000 USD, we will allocate 1000 USD at month 4,
1000 USD at month 5, and 1000 USD at month 6.

� We sum all the amounts per reporting period.

Since the PV shows the values of the costs of our plan, it provides a cost baseline
of our project. If the project behaves exactly as we planned, the expenses we incur
will follow exactly the profile defined by the PV.

106 � Introduction to Software Project Management

0

1000

2000

3000

4000

M1 M2 M3 M4 M5 M6

500

2000

3100 3200 3300 3400

A
B
C

1000
2000
400

500 500
1000 1000

100 100 100 100

500 1500 1100 100 100 100Total
500 2000 3100 3200 3300 3400Cumulative

Planned
costName Time

A
B

C

A
B
C

1000
2000
400

Figure 3.20 Computation of planned value.

3.9.4.2 Actual Costs

The actual costs (ACs) record the actual expenditures we incurred as the plan
develops. ACs differ from PV for two reasons:

1. Some activities might have actual start or end dates different from those
scheduled.

2. The actual effort and costs necessary to carry out an activity might be different
from what was planned.

ACs are plotted similar to the PV, using, as input, the actual plan.
Comparing the PV and the ACs allows the project manager to understand how

the actual plan is doing with respect to the plan defined at the project start. For
instance, at any given time, we can tell whether we spent less or more than initially
planned.

However, this information by itself is not sufficient, since we have no idea about
the actual progress we achieved. That is, having spent more than planned could be
a very good sign if the technical progress is also above the expectations, since the
excessive expenditure could be a sign that our project is ahead of schedule.

Making IT Right � 107

In other words, in order to draw conclusions on the project status, we need to
evaluate the technical progress. This is achieved with the computation of the earned
value.

3.9.4.3 Earned Value

Earned value (EV) is the way in which we measure the technical progress of a
project. There are two key concepts behind its definition.

The first is that we measure technical progress in terms of money. This allows
one to plot EV using the same measurement unit of PV and ACs.

The second is that the value we assign to technical progress in an activity is
exactly the money we budgeted for the activity, namely, its PV. Thus, if an activity
has a PV of e3000, its EV will be e3000 when the activity is completed.

The EV of a plan is the sum of the EVs of its activities. Thus, when we complete
a project, its EV will be the same as its PV. Similar to what happens with the ACs,
in the ideal plan, the EV is an exact replica of the PV. However, during the actual
execution of plans, we will have to take into account deviations from the ideal case.

In computing the EV, we are left with determining two other aspects: the first is
when we accumulate EV and the second is how much we accumulate it over time.

The answer to the first question is easy: EV is accounted as the actual work to
produce it. Thus, the EV of an activity that has not yet started is 0, while the EV of
a completed activity is equal to its PV.

The problem is what happens in between, namely, activities that are started
but not yet finished. We could have EV progress linearly with the duration of an
activity. Thus, an activity at 40% of its duration could have earned 40% of its PV.
The method, however, takes a simpler approach. A percentage of the planned value
is accounted when an activity starts; the remaining part is accounted for when the
activity ends. One simple allocation rule assigns 50% of the EV when an activity is
started and the remaining 50% when the activity is completed. Another rule used
very often assigns 20% when the activity starts and the remaining 80% when the
activity is completed.

There are two advantages. The first is that the computation is a lot simpler. The
second is that the computation is robust with respect to changes in the duration of
activities started but not ended at the time of monitoring. Thus, the EV we compute
at a given date does not have to be revised when we perform a second monitoring
at a later date.

3.9.4.4 Assessing a Plan Health Using Earned Value Analysis

Now that we have these three values, we can assess easily the project status, since we
have a way to instantly compare actual costs and actual progress (EV) with respect
to our plan.

Figure 3.21 shows some of the values that allow a project manager to assess the
health status of a project. Consider the following items:

108 � Introduction to Software Project Management

BAC = Project budget

Planned endMonitoring
date

PV
(Planned value)

AC
(Actual costs)

EV
(Earned value)

Schedule
variance

Cost
variance

Money

Time

Figure 3.21 Earned value analysis.

� Comparing PV and EV: The difference between PV and the EV at the mon-
itoring date tells us whether we are late or early: if EV is above PV, then we are
early (we realized more technical progress than expected); the opposite will
be true if EV is less than PV. The difference between PV and EV is called
schedule variance.

� Comparing EV and ACs: The difference between ACs and EV tells us
whether we are underbudget and overbudget. This concept might be slightly
less intuitive than the previous example and deserves a bit more explanation.
Consider the case of an ideal plan: PV, EV, and ACs will overlap perfectly.
Now, if we are spending a bit more than expected to achieve the planned
technical progress, ACs will be a bit higher than EV and PV. Similarly, if we
are underachieving, EV will be less than PV and ACs. The difference between
EV and ACs is called cost variance.

Two other measures are often taken into account to compute the efficiency. In
particular, the following two measures are often used.

The cost performance index (or CPI) measures the efficiency with which we
are earning value. It is computed as follows:

CPIt = EVt

ACt
(3.23)

where CPIt is the cost performance index at time t, and EVt and ACt are,
respectively, the EV and ACs at the same instance of time t.

Making IT Right � 109

CPI

SPI

1

1

Late and
overbudget

Early, but
overbudget

Late, but
underbudget

Early and
underbudget

Exactly like scheduled
and budgeted

Ea
rly

La
te

Overbudget Underbudget

Figure 3.22 CPI and SPI tracking.

Note that CPI > 1 if we are achieving technical progress more efficiently than
we are spending (we are earning more than one unit of EV for every unit of money
we spend). If the trend is maintained, the project will be underbudget. Conversely,
if CPI < 1, we are inefficient and the project will run overbudget if no corrective
action is taken.

The schedule performance index (or SPI) measures the speed at which we are
achieving technical progress. It is defined as follows:

SPIt = EVt

PVt
(3.24)

where SPIt is the schedule performance index at time t, EVt and PVt are,
respectively, the EV and PV at the same instance of time t.

Note that SPI > 1 if we are achieving technical progress more efficiently than
we planned (we are earning more than one unit of EV for every unit of money we
planned to spend).

CPI and SPI can be plotted over time on a two-dimensional space, which allows
one to understand whether the project is over- or underbudget and behind or ahead
of schedule. This is shown in Figure 3.22.

3.9.4.5 Some Considerations about Earned Value Analysis

EVA is an effective approach to provide an integrated view on some measurements
that characterize project progress. It also has some limitations. The first is that EVA
does not consider the quality of outputs as it focuses only on two of the three main
dimensions characterizing a project, namely, cost and schedule. The second is that

110 � Introduction to Software Project Management

the technique is best suited for larger projects, where the effort of the computation
is paid back by the synthesis it produces.

The technique has been standardized (Eletronics and Department, 1998) and
many resources are available. We mention the ubiquitous PMBOK, NASA, and
Office-of-Management-U.S.-Department-of-Energy, from which various tutorial,
publications, resources and guidelines can be downloaded.

3.9.5 Monitoring Progress, the Agile Way
All the planning techniques we have seen so far start from an estimation of the
effort. During project monitoring, they measure the effort currently spent in an
attempt to understand the schedule performance. As we have seen in the previous
section, however, the connection between planned effort, actual effort, and tech-
nical progress is feeble. Given an actual effort, in fact, it is difficult to understand
the technical progress achieved and the work necessary to finish the project. More
precise approaches like EVA require a structured data collection approach and quite
some work.

For these and other reasons, the agile methodologies take a different approach to
measuring progress. The two fundamental differences are that the method focuses
on the work left (which is always known) and on an estimation of the velocity
required to finish the activity. Let us see the method in more detail by taking, as
reference, the Scrum development methodology.

One of the fundamental differences of agile methodologies is that all project
activities are organized in sprints that have a fixed time frame, that is, a project is a
sequence of sprints of the same length.

During planning, rather than an estimation of the effort, the agile team produces
an estimation of the size of the work to be done. This is measured in an abstract unit,
called points. Thus, a given sprint could have allocated 45 points to develop. The
value is determined by allocating points to each user story being developed and then
by adding all the user stories whose implementation is allocated to the sprint. (See
Section 2.1 for the definition of user story.)

Given the fact that a sprint has a predetermined fixed length, the estimation of
the points to be developed (or burned, using the Scrum terminology) can be used
to compute the velocity at which the points have to be burned during the sprint,
that is, how many points we need to burn in order to deliver on time. These two
dimensions define an ideal burndown.

At the start of the sprint, the theoretical burndown curve is set, summing all the
points that need to be burned down. During the sprint, work progresses and the
actual burndown curve is updated by subtracting the points of the user stories com-
pleted and adding those required by any rework needed. At any point in time now,
by comparing the ideal and actual burndown, we can get the following information:

Making IT Right � 111

� Remaining points, that is, how many points we have still to burn down.
This is shown by the current value of the actual burndown. Since the time
slot is fixed, this value can be used to determine the (new) velocity needed to
complete the burndown or, more realistically, what user stories the team will
not be able to deliver in the time slot of the sprint.

� Comparison with the ideal burndown. By comparing the actual and the
ideal burndown, we have a very fast way to understand whether we are early
or late. If the actual burndown is below the ideal burndown, we are proceeding
at a speed higher than planned; conversely, if the actual burndown is higher
than the ideal burndown, we are late.

Figure 3.23 shows an example of a burndown chart. The diagram shows the
ideal (line with circles) and the actual (line with triangles) burndown of a sprint
lasting 10 days. As can be seen from the graph, the sprint started late and then
proceeded at a higher speed than planned, bringing the sprint ahead of schedule.

This approach has two advantages over the approaches we have presented so
far. The first is its simplicity. The second, subtler, is focus: the method focuses on
the work left to be done, rather than on the work actually performed, and on the
technical progress still to be achieved.

Some critiques have also been moved to the technique. The main problem is
probably related to the abstract nature of the points, which makes estimation, espe-
cially for teams with little experience with agile methodologies, rather difficult. (One
could argue that the same problem might arise with providing reliable estimations
of the effort needed to complete a user story.) There is also a problem of consistency
in the way in which points are interpreted by the different members of a team: four
points for a person could be “equivalent” to nine points of another.

0
20
40
60
80

100
120
140
160

Estim. 1 2 3 4 5 6 7 8 9

Burndown

Figure 3.23 An example of a Scrum burndown chart.

112 � Introduction to Software Project Management

3.9.6 Agile-Earned Value Analysis
The burndown chart is very simple to use and to assess the progress toward a goal.
However, there are some situations in which it is important to understand how
progress relates to the other dimensions that characterize a project, namely, costs
and planned work. This is relevant, for instance, when Scrum is applied in contexts
where people do not work full-time and with a fixed number of hours on a project,
as might be the case in many situations. Moreover, the application of earned value
management is suggested or compulsory for certain kind of projects. In these situa-
tions, adapting earned value management to an agile context provides a way to get
the best of both worlds.

Different approaches have been suggested to apply earned value management to
agile projects. Here we follow the one proposed in Rusk (2009), which works on
the assumption that the product backlog (that is, the list of all the user stories to
develop) must be known and estimated in advance and that the number of sprints
has been decided. The hypotheses are not too strong and, as we will see, they can be
further relaxed. The reader can look at Sulaiman (2007) and Rawsthorne (2010) to
manage more complex scenarios.

The technique proposed in Rusk (2009) plots all data as percentages with respect
to completion. The first line that can be plotted is PV, which is called the gray line
by the method, which also emphasizes the usage of nontechnical terms to simplify
the use of the technique. On the assumption of constant production speed, which
is quite natural, when we use an agile methodology, the gray line is a straight line
passing from the origin (no story developed) to the point having as x-value the date
of delivery and as y-value 100% (everything delivered by the planned release date of
the last sprint).

It is now possible to draw the other two lines, namely, ACs or red line and EV
or green line, using the terminology of Rusk (2009). The first is the amount of the
budget spent at the time of computation with respect to the total project budget. In a
situation inwhichefficiency is asplanned,ACswillmatchPV.The second is computed
as the percentage of the story points actually deliveredwith respect to the total number
of story points to develop. Similar to ACs, if the production is efficient as planned,
the green curve (EV) will closely match the gray line (PV). An important aspect to
highlight is the fact that value is earned when delivered and the points of a story are
accrued when the functions implementing the story are actually released. In other
words, a rule 0–100% is applied. The analysis will thus be accurate if the production
is constant or the reporting period has a granularity that is low enough to abstract
the time required for releasing a user story. If a user story requires 5 days to release,
analyzing the status with EV on a daily basis will not yield any useful information till
the last day: the EV, in fact, will stay the same till the function is released.

The analysis then proceeds as explained in Section 3.9.4.4. An additional advan-
tage of agile EV over the standard analysis is that the projections are simpler, since
PV is linear rather than S-shaped.

Making IT Right � 113

120%
Planned
value
Earned
value
Actual costs

100%

80%

60%

40%

20%

0%
1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3.24 An example of agile-earned value analysis.

Figure 3.24 shows an example of an analysis, where the project is behind
schedule, since the EV line is below PV, and over costs, since ACs are above PV
and EV.

The initial hypothesis of an immutable backlog is quite limiting in an agile
context, which embraces change. The technique, however, can be extended to
accommodate changing requirements by creating a family of plots. Rusk, in par-
ticular, distinguishes between two types of changes. The first type of changes derives
from an improved comprehension of the product to develop. Thus, the product
backlog will increase in size as we get a better know-how on the work required to

Scope increases
by 20%

100% 100%

Old scope

New scope

New project
end

Time Time

Figure 3.25 Accounting for changes in scope.

114 � Introduction to Software Project Management

fully implement a user story. These changes, however, are residual and can be treated
similarly to a systematic error in the estimations.

Different is the case of changes in scope, that is, situations in which the user
changes the user stories to be implemented. Changes in scope might also trigger
changes in the delivery dates. In this situation, we need to replot our gray line. The
process is as follows. A new version of the backlog is the new baseline used to plot
the current PV; the old PV, the ACs, and the EV can be recomputed and plotted
against the new baseline. This is illustrated in Figure 3.25, where the left-hand side
shows the initial status and the right-hand side the status after an increase in scope:
both the new and the old PVs are shown. The new PV reaches 100%, while the old
PV is at 83% (equivalent to 100%/120%).

3.10 Project Closing
All projects come to an end. According to Meredith and Mantel (2002) and
Richman (2012), there are four ways in which a project comes to an end:

� Termination by integration and termination by addition. These are two
successful cases in which the project outputs are integrated in an existing
organization or generate a new business or a new business line.

� Termination by starvation. This is a case in which a project ends because
resources run out.

� Termination by extinction. This is a case in which a project is terminated by
management because it fails to meet user objectives, it has been superseded by
technical advances, or it is not profitable anymore.

Project closing is the last phase of a project, when the project outputs are
handed over to the stakeholders, contractual agreements properly taken care of, and
project records elicited and stored for future reference. Project closing is also prob-
ably one of the most neglected phases of a project with many projects ending up
spending 90% of their time with the remaining 10% of work.

There are various motivations for projects not being closed properly. Projects
terminating unsuccessfully certainly do not motivate teams or project managers to
invest further resources (technical, financial, and, why not, also emotional) on a
proper closure. Many successful projects, however, are also not properly terminated.
This is due to the following causes:

� Decreasing interest by the project team, as they might be concerned with their
next assignment.

� The cost of performing closing activities, which are routine and often require
little or no creativity. Consider the case of writing the installation instructions
of a software system.

� Underestimation of how much implicit knowledge there is and how fast
know-how of this implicit knowledge can get lost. Again, consider the case

Making IT Right � 115

of the installation procedure of a complex software: at the end of the project,
all information is available and very clear in the project team. As time moves
away, it might become more complex to recall by heart all the steps that were
required.

� Reluctance, by the project sponsor, to release resources for various reasons,
among which is the fear of losing the competences needed to fully exploit the
project deliverables, and so on.

For this reason, a proper management process should be enforced to ensure
that a proper project closure takes places (or, if not, that the decision is an explicit
management decision, rather than the result of inaction).

Project closing can be organized in the following steps (Wysocki, 2011;
Richman, 2012; NASA, 2007):

� Getting client acceptance
� Installing project deliverables
� Archiving old deliverables
� Documenting the project
� Performing a financial closure
� Performing postimplementation audit
� Releasing staff.

3.10.1 Getting Client Acceptance
The project is successfully completed when the customer and the project manager
agree that the work performed is satisfactory. In software development projects, get-
ting client acceptance might require some effort on the part of the project manager,
since the client might be interested in keeping the project team allocated to the
project.

According to Wysocki (2011), there are two ways in which acceptance is
achieved. The first is a ceremonial acceptance, when there is no formal procedure
or formal record for accepting project deliverables. Various scenarios are possible,
such as a gentleman’s agreement between the customer and the project manager or,
simply, just reaching project deadlines.

The second is a formal acceptance, where there is a formal procedure for accept-
ing project deliverables. In software development, such a procedure nearly always
includes a system testing phase, in which tests are executed on the software system
being handed over.

3.10.2 Installing Project Deliverables
During this phase, the outputs of the projects are installed. See Section 2.5 for the
detailed list of activities to be performed here, in the case of software projects.

116 � Introduction to Software Project Management

3.10.3 Archiving Old Deliverables
If applicable, any deliverable made obsolete by the project needs to be properly
disposed of.

In software development projects, decommissioning typically requires one to
archive a version of the old deliverables. It is in fact a relatively cheap operation that
can bring a lot of advantages, should the new deliverables not work as expected.

3.10.4 Documenting the Project
The goal of this activity is to ensure that the documentation of the project is up
to date.

It is a time-consuming activity, which is done on deliverables that might soon
be archived. Still, maintaining a proper document record is not only essential in
certain domains (like for the development of safety-critical applications), but also
essential should a request about a project or its outputs come some time after the
project closes. Consider, for instance, a request to fix a bug discovered months after
the project end.

Maintaining a proper document record allows us to learn and improve, since
we can use the project data and experience as a basis for our next projects. See also
Section 3.10.6.

3.10.5 Performing a Financial Closure
The goal of this activity is to ensure that all expenses are paid, all credits cashed, and
any remaining budget properly released.

Financial reports are generated during this phase.

3.10.6 Postimplementation Audit
The goal of a postimplementation audit, also called postmortem, is a critical anal-
ysis of the project in order to learn and improve and to avoid repeating the same
mistakes.

According to Collier et al. (1996), a sound postmortem process requires the
following steps:

1. Conduct a project survey, with the goal of eliciting from the project team
the main issues and strengths of the project. This allows one to focus the rest
of the process on the important items.

2. Collect objective information, with the goal of taking quantitative measures
about the project. The metrics suggested by Collier et al. (1996) are shown in
Table 3.16.

3. Hold a debriefing meeting, during which team members are given the
opportunity to provide frank feedback on the project. While potentially

Making IT Right � 117

Table 3.16 An Example of Postmortem Quantitative Metrics for Software
Development

Cost Metrics Schedule Metrics Quality Metrics

Planned effort and estimated
SLOC

Original schedule

Actual effort and actual SLOC Final schedule
History of changes to require-
ments and code

History of schedule slippage
events

Errors at each stage

being very useful, to be effective they require an open and construc-
tive attitude both from the management and the team members. If
management shows a defensive attitude, in fact, the meeting will most
likely yield no useful output, since the team members will not be encour-
aged to provide frank feedback. Conversely, if the team does not main-
tain a constructive attitude, the meeting risks become a dumping ses-
sion in which resentful team members will monopolize time with no
useful information. For this reason, it is often better to have a modera-
tor/facilitator.

4. Conduct a project history day, which has the goal of understanding the root
causes of problems identified at the previous steps. Each meeting is held with
a selected number of participants and focuses on one specific problem among
those identified at the previous steps. The meeting starts from a review of the
project history, which allows participants to identify when the event under
investigation started and, subsequently, what caused it.

5. Publish the results, during which the management team summarizes the
findings of the postmortem and makes them available to the project team
and relevant stakeholders in the organization. The content is structured with
the following information:

a. Project description: information about the project, to give context
b. The good: what worked well
c. The bad: the three worst factors that impeded the team’s meeting its goals
d. The ugly: a prescription for improvement.

A proper recording of the postmortem activities can ensure that the work
carried out will also find usage in the medium/long term and become an organi-
zational asset.

For small projects, a simpler procedure can be adopted, such as that described
in Dingsøyr et al. (2005), where postmortem activities take place in a half-a-day
meeting, organized with

� A brainstorming session, during which issues are elicited using the KJ method,
which is based on post-it on a wall method that we saw while building WBS.

� A structuring session, during which the issues are clustered.

118 � Introduction to Software Project Management

� An analysis session, during which the root causes are analyzed.
� A reporting session, where a report, containing main problems, main

successes, and root causes, and the post-it used in the meetings are put
together.

See Dingsøyr et al. (2005) for more practical information on structuring a
postmortem and Birk et al. (2002) for a discussion of the advantages of conducting
a postmortem.

3.10.7 Staff-Releasing
The transition from a closing project to new activities can be a disruptive experience
from the project staff. It is an important management activity to ensure that this
transition is the smoothest possible.

Two important aspects are:

1. Ensuring that proper recognition is assigned to the experience and the results
obtained in the project. This is to ensure that working on a project does not
turn out to be a disadvantage to the career of individuals.

2. Ensuring that proper tasks are assigned to the teammembers (e.g., by warning
in advance the functional or unit managers about the availability of staff).

A final important aspect pointed out by Wysocki (2011) is celebrating success.
Successful projects require teamwork and are a bonding experience. Showing grat-
itude for the work and effort your team put in a project is a good practice. In the
words of Wysocki (2011), “my loud and continual message to senior management
is this: Don’t pass up an opportunity to show the team your appreciation.”

3.11 An Example
In this section, we put into practice various notions illustrated in this chapter, by
simulating the process that starts with a customer request and ends with a first plan
of the activities to be performed. To do so, we imagine having been contacted by
the marketing director of a group of theaters, who wants to be able to sell tickets
through the Internet.

The system has to be operational at least one month before the season begins
and should have the following functions:

1. View the list of shows of the upcoming season.
2. Register to the platform as owner of a seasonal ticket.
3. Register to the platform as an occasional viewer (one with no seasonal ticket).
4. Renew one’s seasonal ticket, possibly choosing a new seat.

Making IT Right � 119

5. Buy tickets for a specific show, between one and three weeks before the show
begins.

6. Access and use the system through the Internet or via smartphones.

We are asked to set up a project so that we can get started with development.

3.11.1 Initiating
The very first step is to give the project a name. We decide to name ours Theater
3001, as a homage to Arthur C. Clarke’s 2001: A Space Odyssey.

The first steps to get started include

1. Writing a scope document, which outlines the stakeholders, goals, budget,
timing, deliverables, constraints, and risks. The scope document can be used
as a basis for a contractual agreement and to ask for authorization to proceed
from the management.

2. Identifying the requirements of the team that will be responsible for the
development. The request could also comprehend the selection of a project
manager, if this is going to be different from the person tasked with writing
the scope document (unusual, but not impossible).

3. Obtaining an authorization to proceed from the client and from the perform-
ing organization.

As it is often the case in practice, the example starts with rough and incomplete
information. One of the tasks in the initiating phase, in fact, is that of progressively
refining and improving, so that we can come out with reliable estimations.

Some of the information we are missing from the specification given above, for
instance, includes

1. The goals of the project, namely, what is in scope and what is not. For instance,
are we being asked to deliver a product (a software system) or a service
(develop a software system and operate it for our client)? This has an impact
on different areas, such as

a. Project timing, since additional work might be necessary for identifying
a suitable hosting platform (a relatively simple task), setting the platform
up (slightly more difficult), and preparing our organization to manage the
service (definitely a more complex task).

b. Project pricing. Although operations are outside the scope of the project
(i.e., outside the scope of any project, for the definition of project), they
might influence the project pricing. In fact, if we offer the solution as
a service, subscriptions will be a source of revenue when we deliver the
system. This could change the pricing schema we are willing to apply;
for instance, we might be willing to charge a bit less for the project and
return on investment by offering the service to different clients.

120 � Introduction to Software Project Management

2. Technical details about the required solution. Various details about the require-
ments need to be refined. Consider, for instance, aspects related to the
complexity of data the application will manage: the number of theaters we
need to support, how many types of seasonal tickets there are, whether
we need to integrate our solution with other existing systems, such as, for
instance, an accounting system.

3. Priorities. Different functions have different priorities for the client. Mak-
ing them explicit could help us understand what development process is best
suited for the project at hand, what functions will have to be developed first,
what goals are necessary to succeed. Remember the MoSCoW and SMART
acronyms!

3.11.2 Building a Plan
On the hypothesis that we have collected from the client all the information
required to have a clear picture of the project goals, we are now ready to build a
plan. The plan could be organized as shown in Figure 3.26.

The plan is structured in four work packages:

1. WP1. Inception, where the system is specified
2. WP2. Construction, where the system is built

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Task name

Project
Inception

Requirements definition
Design (API)
Concept preparation
Design validation
System specifications

Construction
Server development
Web interface design
Web client development
Mobile adaptation
Deployment in testing env
System ready for testing
Test case definition
Test cases
System testing
System fixing
System ready for deployment

Deployment
Server preparation
System installation
Data about season is ready
Data population
System ready for experimentation

Experimentation
Candidates for test
Experimentation
Data usage collection
Corrective maintenance

Project management

June 2013 July 2013 August 2013 September 2013 October 2013 November 2013
W22 W23 W24 W25 W26 W27 W28 W29 W30 W31 W32 W33 W34 W35 W36 W37 W38 W39 W40 W41 W42 W43 W44 W45 W46 W47

R1. Requirements specialist

R2. System architect

R7. Designer

R1. Requirements specialist; R2. system architect

02/07/2013

R3. Developer

R7. Designer

R4. Developer

R5. Developer

R3. Developer

14/08/2013

R6. Tester

16/07/2013

R6. Tester

R3. Developer

28/08/2013

R5. Developer

R5. Developer

05/08/2013

R3. Developer

11/09/2013

03/06/2013

Heroku services

R5. Developer(25%)

PM. Project manager(10%)

Figure 3.26 The Grantt chart of the Theater 3001 Project metrics for software
development.

Making IT Right � 121

3. WP3. Deployment, which prepares the environment for a first experimenta-
tion of the system

4. WP4. Experimentation, where we test the system with a small group of
selected users to verify the usability and interest in the application.

As can be seen, the plan is roughly scheduled as a waterfall, with work packages
performed in sequence, with the exception of WP2 and WP3, which run mostly in
parallel.

Two deliverables (ID 23 and 27) are required from the client. The first is the
data that we need to populate the system (e.g., the shows that will be shown in
the next season; the ticket prices). The second is the list of candidates for WP4, the
experimentation. Note that both have a considerable slack, without providing any
significant advantage to the project. A better allocation uses an “as late as possible”
scheduling; this ensures that the information is collected when needed. Moreover, it
minimizes the risks related to selecting candidates for the experimentation too early
and then redoing part of the work to replace people who have changed their minds
in between.

Another consideration is related to the effort and calendar time we have esti-
mated for each activity. With an algorithmic technique, for instance, we could come
out with an estimation of the whole plan, which we could then break down and allo-
cate to the different activities, using the approach presented in Section 3.4.5.4. A
different strategy uses reasoning by analogy or expert judgment; in this situation, we
either resort to previous analogous projects or to the experience we (or our peers)
have accumulated over the years.

Three milestones could be set in the project, corresponding to the main project
events. The first could be set at the end of June (specifications ready), the second in
the first week of September (system ready for experimentation), and the third at the
end of September (system experimented). (Note that the milestones are not shown
in the diagram above.)

A first analysis of the plan allows us to understand which activities are more crit-
ical. Various activities have some slack. All activities related to system development,
however, are on the critical path of our plan: any delay in activities related to the
development will delay our project. Thus, system development activities are those
that will require more attention on our side, to ensure that the plan is not delayed.

In the plan, we have been a bit optimistic about the experimentation, for
which we have not foreseen any support activity, such as, for instance, corrective
maintenance that might be necessary if problems are found in the application.

Another activity that does not appear in the Gantt chart is a project management
task. We decided to allocate to project management about 5% of the total project
effort, since the project is not too complex. Note that the percentage for more com-
plex projects is higher and sometimes estimated between 10% and 20% of the total
effort. Whether a specific project management activity has to be added to the Gantt
chart is a matter of personal choice. One advantage is that the management needs

122 � Introduction to Software Project Management

of a project are made explicit. Another is that the computation of the project costs
can be performed using the tool.

Also note that at this stage of planning, the timing indicated by the Gantt chart
is indicative as the actual availability of resources has not yet been specified. Planning
tools make the assumption that the duration is equal to the effort before any resource
is assigned. The actual plan could thus stretch or squeeze, according to the number
of resources we will actually be able to allocate.

3.11.3 Creating a Budget for the Project
The first step to compute the budget is to define the type of expenses we will be
incurring. More precisely, we need to select a CES and estimate each element of our
CES. Since each organization typically has a standardized CES, the difficult part of
budgeting is really that of coming out with reliable estimations of our expenditures.

In our project, the following costs will have to be sustained:

� Personnel costs. Cost of the personnel responsible for the development of
the solution. We imagine having access to a pool of six resources, namely,
R1,. . .,R6. Table 3.17 shows their costs.

� Costs related to hiring a designer for the Graphical User Interface (GUI)
(R7). Note that the cost of the designer is per use and paid for upfront. This
is shown by the last column of Table 3.17 that reports Start.

� Costs related to hosting the application for the experimentation, marked
as WS in Table 3.17.

We do not envisage any other cost for this project: no people will travel, and
no cost is necessary for meetings, no costs are foreseen for consumables or special
equipment.

The budget can be computed using the estimations of the effort and on the cost
of the resources, yielding a total budget of e41,000 (of which e37,000 related to
producing the system and e4000 to managing the project; the management has

Table 3.17 Cost of Resources We Can Use for the Theater 3001 Project
Maximum Cost Overtime Cost

Name Type Availability (%) (e/h) (e/h) per Use Accrue

R1. Requirements Work 100.00 40 60 Prorated
R2. System Architect Work 100.00 40 60 Prorated
R3. Developer Work 100.00 30 60 Prorated
R4. Developer Work 100.00 30 60 Prorated
R5. Developer Work 100.00 30 60 Prorated
R6. Tester Work 100.00 50 100 Prorated
R7. Designer Work 100.00 e500.00 Start
PM. Project Manager Work 100.00 60 100 Prorated
WS. Web Services 2 Prorated

Making IT Right � 123

Table 3.18 Budget for the Theater 3001 Project
Work

Task Name Resource Name (Man-Days) Cost

Theater Project 167 e41,000.00
Project 158 e37,000.00
Inception 27 e7540.00
Requirements Definition R1. Requirements Specialist 10 e3200.00
Design (API) R2. System Architect 10 e3200.00
Concept Preparation R7. Designer 5 e500.00
Design Validation R1. Requirements Specialist 2 e640.00

R2. System Architect
System Specifications 0
Construction 81 e21,940.00
Server Development R3. Developer 20 e4800.00
Web Interface Design R7. Designer 5 e500.00
Web Client Development R4. Developer 15 e3600.00
Mobile Adaptation R5. Developer 10 e2400.00
Deployment in Testing Env R3. Developer 1 e240.00
System Ready for Testing 0
Test Case Definition R6. Tester 10 e4000.00
Test Cases 0
System Testing R6. Tester 10 e4000.00
System Fixing R3. Developer 10 e2400.00
System Ready for Deployment 0
Deployment 25 e6000.00
Server Preparation R5. Developer 10 e2400.00
System Installation R5. Developer 5 e1200.00
Data about Season Is Ready 0
Data population R3. Developer 10 e2400.00
System Ready for Experimentation 0
Experimentation 25 e1520.00
Candidates for Test 0
Experimentation Heroku Services 20 e320.00
Data Usage Collection 0
Corrective Maintenance R5. Developer[25%] 5 e1200.00
Project Management PM. Project Manager 9 e4000.00

been estimated at about 5% of the overall project effort). The analytical data are
shown in Table 3.18.

3.11.4 Changing the Plan to Meet External Deadlines
A common situation is one in which the plan we have built is too long, when
compared with the client’s constraints. That is, the project is four calendar
months, but the client needs the system in 3 months. So we need to shorten the
plan somehow.

124 � Introduction to Software Project Management

As we have seen, the options we can use include

1. Changing the project approach
2. Reducing or changing the project scope
3. Allocating resources more efficiently
4. Fast tracking.

Let us see each option in more detail, after reminding that shortening a plan
typically increases the risk profile of a project. Thus, a full analysis always needs to
consider the possibility that the project is not feasible, given the constraints.

3.11.4.1 Changing the Project Approach

It might be the case that not all functions are equally useful for the client and that
the waterfall is not the best process for the project at hand.

For instance, on the hypothesis that “buying a seasonal ticket” is more impor-
tant than the other functions, we could revise the project and adopt an incremental
approach, splitting the project into two cycles. The first cycle could be dedicated
to implementing the most important functions; the implementation of the other
functions could be postponed to the second stage. This option might reduce the
estimated effort and duration by the amount necessary to achieve the project dead-
line. As an additional bonus, the contract (or payments) could be broken into two
distinct parts (one for each cycle), with the option for the client (or supplier) to
abandon the project, if the results achieved at the end of the first iteration are not
satisfactory.

An alternative is to replan the project using critical chain management. In this
scenario, a revision of the project durations and the allocation of feeding and project
buffers might end up in a project that can meet the client’s deadline.

3.11.4.2 Reducing or Changing the Project Scope

Changes in scope are also possible. For instance, eliminating the experimentation
from the plan would spare us one calendar month, moving the delivery date to
September 9, which might be good enough for the client, although not as good as
the desired deadline. In addition to canceling the experimentation, giving up the
implementation of the web client would allow us to squeeze the plan by another 10
days, thus meeting the client deadline, on the hypothesis that the web client is not
important for the client. Note, however, that the resulting plan has significant risks,
among which:

� The project has no buffer and many important activities are on the critical
path. Any small delay could end up being catastrophic for the client, since it
would most likely move the delivery date after the expected deadline.

� Canceling the experimentation might lower the quality of the end-product,
which we will not be able to test on the field.

Making IT Right � 125

3.11.4.3 Allocating Resources More Efficiently

A quick analysis of the plan will show that developers are underutilized and that
allocating more developers to the activities might shorten the plan a bit.

Consider, for instance, activities 9, 10, and 11, two of which are on the critical
path and, therefore, if shortened, will cause the plan to shorten (till a new critical
path kicks in). If we allocated all developers to these activities, activity 9 would be
shortened to about 7 days, and activities 10 and 11 to about 8 days, together. This
could shorten the plan a bit.

Trying the same approach for other activities has less effect: for instance, allocat-
ing more developers to activity 18 does not yield any saving, since it is not on the
critical path; the overall duration of that portion of the plan depends on activity 17,
which cannot be shortened.

3.11.4.4 Fast Tracking the Plan

Another possibility is to break some dependencies from the plan. We need to analyze
the plan in detail, understanding what dependencies are “weaker” than others.

Some opportunities in the plan include the following:

� The “data population” activity, which requires one to populate a database with
the data about the upcoming theater season, does not require a fully functional
system. As long as the database structure is stable, the work can be performed
with little or no risk of rework. Thus, we could break the SF dependency
between activity 19 and activity 24 and save 1 week.

� Activity 12, “Mobile adaptation,” consists in adapting the web interface for
mobile clients. Also, in this case, we could break the dependency and run
the activity in parallel with activity 11, either by developing a completely
independent interface for the two worlds, or by using an approach in which
activity 11 feeds activity 12 as soon as any portion of the web interface is
ready (rather than waiting for the whole interface to be ready). This allows us
to squeeze the plan by another 10 days, by introducing some risks related to
rework.

� Similar to the previous case, we could interleave development and testing.
The possibility of rework in this case, however, is rather high. An excel-
lent synchronization is also required between the development and testing
teams, increasing the complexity of the activities, stress, and the probability
of delivering late.

3.12 Questions and Topics for Discussion
1. Consider the introduction of a market information system in a developing

country. A market information system collects and sends information to sub-
scribers about prices of vegetables in local markets, so that farmers can decide

126 � Introduction to Software Project Management

when and where to sell their produce. The information is sent through SMSs.
Farmers in developing countries, however, live on a tight budget. What could
be the sustainability model of such a solution?

2. Perform the stakeholder analysis of a project to build a motorway connecting
two cities.

3. Imagine we want to pilot a software system to track personal finances with a
restricted set of users. Try and imagine some SMART goals for the project.

4. Build a WBS for a business reengineering project to automate the enrollment
of students in courses. Define also the WBS dictionary.

5. What are the main advantages and disadvantages of algorithmic estimation
techniques?

6. What could be the value of mixing different techniques when evaluating the
effort required for the development of a software system?

7. What is the impact on the schedule of doubling the effort, according to the
COCOMO model?

8. Define a CES for a software development project. Do the same for a house
construction project. Look for CES on the Internet, if necessary, and compare
the differences.

9. What are the main advantages of earned value analysis? What are the
limitations?

10. What are the possible ways in which a project terminates?
11. Consider a ticket reservation system for Greyhound buses. Try and replay the

Theater 3001 example, outlining the goals, a plan, and a budget of this new
project.

References
Aksel, J. E., 2008. Defining White paper, Celeris Systems. Last retrieved June 21, 2013.
Albrecht, A. J., 1979. Measuring application development productivity. In Proc. IBM

Application Development Symposium, pp. 83–92. IBM Press.
Birk, A., T. Dingsoyr, and T. Stalhane, 2002, May/June. Postmortem: Never leave a project

without it. Software, IEEE 19(3), 43–45.
Boehm, B. W., 1981. Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall.
Boehm, B. W., 1984, January. Software engineering economics. IEEE Transactions on

Software Engineering SE-10(1), 4–21.
Boehm, B. W., C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R. Madachy,

D. J. Reifer, and B. Steece, 2000. Software Cost Estimation with COCOMO II. Prentice
Hall, Englewood Cliffs, NJ, USA.

Boehm, B. W. and K. J. Sullivan, 2000, June. Software economics: A roadmap. In
Conference on the Future of Software Engineering at the International Conference on
Software Engineering, Limerick, Ireland, pp. 319–343. Technical report available
at http://www.cs.virginia.edu/people/faculty/pdfs/p319-boehm.pdf. Last retrieved
November 15, 2013.

Brooks, F. P. J., 1995. The Mythical Man Month (Anniversary ed.). Addison-Wesley: Boston,
MA, USA.

Making IT Right � 127

Burke, R., 2006. Project Management, Planning and Control Techniques (4th ed.). John Wiley
& Sons, New York, NY, USA.

The Business Model Generation, 2013. The business model canvas. Available at http://
www.businessmodelgeneration.com/downloads/business_model_canvas_poster.pdf.
Last retrieved June 14, 2013.

Cameron, W. S., 2005, March. Lessons learned again and again and again. Ask
Magazine (Issue 12). Available at http://askmagazine.nasa.gov/issues/12/features/
ask12_features_lessonslearned.html. Last retrieved April 3, 2013.

CDC, 2013. Work breakdown structure dictionary. Available at http://www2.cdc.gov/
cdcup/library/templates/CDC_UP_WBS_Dictionary_Template.doc. Last retrieved
June 15, 2013.

Center for Software Engineering, 2000. Cocomo II model definition manual. Available
at http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.
0.pdf.

Christensen, D. S., 2013. Earned value bibliography. Available at http://www.suu.edu/
faculty/christensend/ev-bib.html. Last retrieved April 2, 2013.

Clark, W. and H. L. Gantt, 1923. The Gantt Chart—AWorking Tool of Management (Second
printing ed.). The Ronald Press Company, New York, USA.

COCOMO 81, 2013e, April. Available at http://csse.usc.edu/csse/research/
COCOMOII/cocomo81.htm.

Collier, B., T. DeMarco, and P. Fearey, 1996, July. A defined process for project post mortem
review. Software, IEEE 13(4), 65–72.

Department of Defense, 2011. Work breakdown structure for defense materiel
items. Technical Report MIL-HDBK-881C, Department of Defense Standard.
Available at http://www.everyspec.com/MIL-STD/MIL-STD-0800-0899/MIL-STD-
881C_32553/. Last retrieved November 15, 2013.

Dingsøyr, T., T. Stålhane, and N. B.Moe, 2005, August. A practical guide to lightweight post
mortem reviews. Available at http://www.uio.no/studier/emner/matnat/ifi/INF3120/
h05/studentarbeider/Prosjektoppgave/PMA_practical_guide.pdf. Last retrieved Jan-
uary 5, 2013.

Government Eletronics and Information Technology Association Engineering Department,
1998, May. Earned value management systems. Technical Report ANSI/EIA-748-
1998, Electronic Industries Alliance.

Friesner, T., 2013. History of SWOT analysis. Available at http://www.marketingteacher.
com/swot/history-of-swot.html#. Last retrieved January 5, 2013.

Goldratt, E. M., 1997. Critical Chain. The North River Press, Great Barrington, MA, USA.
Hamilton, L. R., 1964, June. Study of methods for evaluation of the pert/cost management

system. Technical Report ED-TDR-64-92, MITRE Corporation.
International function point user group, 2013c, Available at http://www.ifpug.org. Last

retrieved April 9, 2013.
Jørgensen, M. andM. Shepperd, 2007, January. A systematic review of software development

cost estimation studies. IEEE Transactions on Software Engineering 33(1) p. 33–53.
Longstreet, D., 2008. Estimating data. Available at http://www.softwaremetrics.com/

Articles/estimatingdata.htm. Last retrieved April 9, 2013.
Maylor, H., 2010. Project Management (4th ed.). Harlow, England: Pearson.
Meredith, J. R. and S. J. Mantel, 2002. Project Management: A Managerial Approach. New

York, NY: John Wiley & Sons, Inc.

128 � Introduction to Software Project Management

Merlo-Schett, N., M. Glinz, and A. Mukhija, 2002. COCOMO (constructive cost
model). Working notes of Seminars in Software Engineering, Available at
https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf.

NASA, 1994, May.Work Breakdown Structure Reference Guide. Program/Project management
series. NASA.

NASA, 2004. Software assurance standard. NASA TECHNICAL STANDARD NASA-
STD-8739.8 w/Change 1, NASA.

NASA, 2007, December. Systems engineering handbook. Technical Report NASA/SP-2007-
6105 Rev1, NASA.

NASA, 2012. Earned value management (EVM). Available at http://evm.nasa.gov/
tutorial.html. Last retrieved October 13, 2012.

NPS, 2013. COCOMO II calculator. Available at http://csse.usc.edu/tools/
COCOMOII.php. Last retrieved April 20, 2013.

Office of Management, U.S. Department of Energy, 2012. Earned value manage-
ment. Available at http://energy.gov/management/office-management/operational-
management/project-management/earned-value-management. Last retrieved October
13, 2012.

PERT Coordinating Group, 1963. PERT Guide for Management Use/PERT Coordinating
Group. Number NASA-TM-101864. U.S. Government Printers, Washington, D.C.

Project Management Institute, 2004. A Guide to the Project Management Body of Knowl-
edge (PMBOK Guides) (4th ed.). Project Management Institute, Newtown Square,
Pennsylvania 19073-3299 USA.

Quantitative Software Management, 2013. Function point language table. Available at
http://www.qsm.com/resources/function-point-languages-table. Last retrieved April
20, 2013.

Rawsthorne, D., 2010. Monitoring scrum projects with agileevm and earned business
value (EBV) metrics. Available at http://danube.com/system/files/CollabNet_WP_
AgileEVM_and_Earned_Business_Value_Metrics_032510.pdf. Last retrieved June 3,
2013.

Reifer, D., 2000. Web development: Estimating quick-to-market software. Software, IEEE
17(6), 57–64.

Richman, L., 2012. Improving Your Project Management Skills. American Management
Association (AMACOM).

Ruhe, M., R. Jeffery, and I. Wieczorek, 2003. Using web objects for estimating soft-
ware development effort for web applications. In Software Metrics Symposium, 2003.
Proceedings. Ninth International, pp. 30–37, Sydney, Australia.

Rusk, J., 2009. Earned value for agile development. Available at http://www.
agilekiwi.com/EarnedValueForAgileProjects.pdf. Last retrieved June 3, 2013.

Space Division—North American Rockwell, 1971, June. Space shuttle program—space
shuttle phase c/d baseline volume 3: Work breakdown structure dictionary. Technical
Report N76-71555, Space Division—North American Rockwell. Last retrieved June
15, 2013.

Stratton, R., 2009. Critical chain project management theory and practice. In POMS 20th
Annual Conference. Last retrieved June 16, 2013.

Sulaiman, T., 2007, October. Agileevm: Measuring cost efficiency across the product life-
cycle. Available at http://www.infoq.com/articles/agile-evm. Last retrieved June 3,
2013.

Tomczyk, C. A., 2005. Project Manager’s Spotlight on Planning. Harbor Light Press, San
Francisco, CA, USA.

Making IT Right � 129

University of Southern California, 2013. COCOMO� 81 intermediate model implemen-
tation. Available at http://sunset.usc.edu/research/COCOMOII/cocomo81_pgm/
cocomo81.html.

Wysocki, R. K., 2011, October. Effective Project Management: Traditional, Agile, Extreme
(6, illustrated ed.). John Wiley & Sons, New York, NY, USA.

Yang, Y., M. He, M. Li, Q. Wang, and B. Boehm, 2008. Phase distribution of software
development effort. In Proceedings of the Second ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, ESEM ’08, New York, NY,
pp. 61–69. ACM.

Yu, E., P. Giorgini, N. Maiden, and J. Mylopoulos, 2011. Social Modeling for Requirements
Engineering. The MIT Press, Cambridge, MA, USA.

Chapter 4

Making IT Better:
Managing Changes,
Risks, and Quality

In the previous chapter, we have introduced the basics for managing a project. In
fact, goals, time, and costs establish the characteristics of the products to build, the
work to be performed, its timing, and its costs.

In the scenario, we set in the previous chapter, we followed the process end-to-
end, but little space was dedicated to the unpredictability of projects. We discussed
uncertainties of estimations and hinted about variations in Section 3.9, where we
saw how to evaluate progress in a project.

It is time to start all over! In this chapter, we introduce two main sources of per-
turbations in the plans we defined in the previous chapter. The first main source of
perturbation is a request for changes; the second is project risks. Both are necessary
and unavoidable. Fortunately, we also have techniques to control and tame these
sources of entropy. They are change control and configuration management, risk
management, and quality management.

4.1 Managing Changes
During a project, requests to change the work to be performed or some of the
characteristics of the deliverables to produce will originate from internal and external
stakeholders, for the most diverse reasons, such as

131

132 � Introduction to Software Project Management

� Incompleteness or incoherencies in the project requirements or in the
description of work, which were not apparent when the project started

� A better comprehension of the system to be developed, which provides an
opportunity for a smarter construction of a project deliverable

� A technical opportunity, which could yield a more efficient or a more
feature-rich deliverable

� A technical challenge, which makes the construction of the deliverable
impossible with the approach chosen when the activity started

� A change in the external environment, including an influent stakeholder
changing his/her opinion or a change in the business landscape, such as the
launch of a new competing product∗

� Noncompliance, if a deliverable does not conform to its specifications.

A request for changes and changes in a project have a cost, provide an opportu-
nity, and constitute a perturbation and a risk.

That a request for changes has a cost should be relatively intuitive, although
not obvious at first. After all, software is extremely flexible: change a function here,
modify something else there, and you are done. This is, however, a simplification.
Work is needed to follow up on the change request and ensure that all changes
are propagated to the relevant artifacts. As we pointed out in the introduction, the
cost of changes in a project, in fact, increases as the project develops. For instance,
Figure 4.1 shows the increasing cost of fixing a bug during different phases of
software development.

Requirements Design Implementation Operations

Relative cost
of a bugfix

Figure 4.1 The cost of change.

∗ Notice that important and influential stakeholders, similar to politicians, never change their
opinion: it is our perception of their thoughts that changes.

Making IT Better � 133

With costs also come opportunities. There are many situations in which a
change to the planned course of action gives an opportunity to improve the quality
of deliverables at little or no cost or improve other project metrics, such as cost and
schedule.

The medium- and long-term effects of changes, however, need to be care-
fully analyzed and constitute a risk. Introducing a modification in agreed work
and taking a new route introduces uncertainties. Under the pressure of project
execution, forgetting some initial hypotheses on which a specific choice is based
or underestimating the impact of a change can be a significant source of
trouble.

Another important consideration is that changing a course of action while the
work is not complete requires a lot of discipline and attention to make sure we do
not get stuck in the middle of the road, failing to fully implement the new route,
and having difficulties going back to the initial situation.

For the reasons mentioned above, it is a good idea to have a controlled process to
manage changes. This should be done in the early phases of a project, by adopting
or defining a standard to manage changes that are agreed on by all stakeholders.

The process should achieve the following goals:

1. Ensuring that all stakeholders agree on the fact that a request for change
has occurred. This is to avoid what is called scope creeps, namely, a steady
flow of small changes that causes a project to drift out of control. A typical
example is a flow of clarifications on the work statement occurring directly
between the developers and the customer, which slowly changes the initial
formulation of the work to be performed.

2. Ensuring that changes are beneficial and agreed on by all stakeholders.
Different stakeholders might have contrasting views on the system. If changes
are incorporated as soon as they are elicited from one stakeholder, they might
disagree with the vision of other stakeholders. We might thus end up building
a system that is different from the one some stakeholders expected. This can
potentially lead to significant rework, adding and removing features.

3. Protecting the coherency of a project and of its outputs. Projects produce
many deliverables whose content is interrelated. Every time we introduce a
change, we need to ensure that changes propagate to all relevant artifacts. If
this is not done, the quality of artifacts will degrade over time causing failures
or making a system more difficult to maintain.

Many processes have been proposed to manage changes. They all share four
characteristics.

The first is that they formally record and document that a request for
a change has occurred. This requires one to document requests, possibly with
additional information, such as the originator and motivation. Note that the doc-
umentation of request for changes simplifies project acceptance. In fact, even if
there is complete agreement between the client and the project team, it might as

134 � Introduction to Software Project Management

well be that the reference people change during the project and that the person
(or people) in charge of accepting project outputs are different from the ones with
whom the changes to the project scope have been agreed with. If such changes are
not documented, the situation might be difficult to handle.

The second is that they define how to decide whether a request for a change
will be accepted or not. The decision process typically includes an evaluation of
the request (e.g., importance and relevance), an evaluation of the ways in which the
request can be incorporated, an evaluation of the impact of the request (namely,
what has to be changed to accommodate the change), and the approval or rejection
process (namely, who decides).

The third is that they all record the life cycle of change requests, so that it can
be established whether a change request has been approved and, if so, when it has
taken place. The process also ensures that there is accountability for the decisions
that are taken in a project.

Finally, all processes specify who has to be involved or informed about the
change. This is to ensure that everyone is informed about the current status of a
system. When information does not flow as expected, in fact, difficult situations
might occur. A very nice example comes again from Cox and Murray (2004). In an
early launch of one vector of the Mercury program, a vector failed to lift off from
the launchpad. A series of subsequent events, such as the automatic deployment of
Mercury’s parachute (which could work as a sail and cause the vector to crashland)
and the fact that the vector was fueled and in an unknown status contributed to rais-
ing various concerns, till the situation was recovered with no incident. The cause of
the failure was traced back to a small change to one of the prongs of one plug con-
necting the missile to the umbilical tower. One technician had removed a quarter of
an inch from one of the prongs of a plug, to ensure that it would fit more easily into
the plug; he did not tell anyone. During the launch, however, the shortened prong
detached a bit earlier than the longer one, determining a nonnominal situation and
causing the onboard computer to decide that it was safer to shut off the engine.

In the following two subsections, we look at two different approaches to change
management in software development projects.

4.1.1 Managing Changes in the Traditional Approach
Figure 4.2 shows an example of change management process. It is a simplified
version of the one defined (NASA, 2007).

The first step is the creation of a request for a change. Requests are filed by the
stakeholders (including the project team) when the need arises. Special templates
can be used to file requests, to ensure that a minimal set of information is entered.

Change requests are then assigned a priority and organized as

� Nonconformance reports, in case a released item is not compliant with some
of its specifications. They can be further classified according to their severity,
for instance, by using a three-level classification (critical, major, minor).

Making IT Better � 135

Request Check and
formally record Evaluate impact Approve

reject

Change request
(formally tracked)

Change request Impact assessment Directive
Action items

Execute
changes

Record and
distribute

Artifacts

(updated)

Figure 4.2 A typical configuration control workflow.

� Concessions, in case an item is compliant with its specifications, but a change
of the specification offers an opportunity to meet some needs better.

� Waivers, in case an item is intentionally released without meeting its specifi-
cations (because, for instance, the specifications were wrong or irrelevant).

The possible impacts of the change request are then analyzed and the infor-
mation used to decide whether the change has to be considered further or not.
The actual decision procedure varies. In many cases, it is based on a consensus by
the members of a control board, which authorizes or rejects a change. In formal
environments, an aspect to consider for the operations of the control board is the
management of conflicts and situations in which a consensus cannot be reached.
A simple solution is based on majority voting. Other solutions include more artic-
ulated processes, in which the motivations for a choice are further refined and
discussed till an agreement is reached.

Once the decision is taken, a formal record of the decision is kept and the appro-
priate actions taken. These include doing the technical work to incorporate the
changes, properly supervising activities to ensure that all changes take place, and
informing all stakeholders. Failing to inform the relevant stakeholders might cause
significant trouble, since unaware stakeholders might do work based on obsolete
information, compromising the integrity of the system.

As mentioned earlier, other processes have been defined and used. See, for
instance, Northwestern University Information Technology (2011) and Fermi
National Accelerator Lab (2010).

Change requests are very common in software development. Issue and bug track-
ing systems are used to keep a record of the change requests and to support the

136 � Introduction to Software Project Management

change management process. See Section 6.4 of the Bugzilla Development Team
(2006) for a change management process related to software products.

4.1.2 Managing Changes in the Agile Methods
The change management process in agile methodologies is a simplified version of
the process described in the previous section.

It is a three-step process composed of the following steps:

1. Solicit potential change requests from any project stakeholder, including the
project team, clients, and sponsors. If the request originates from the project
sponsor or customer, also elicit the potential payoff (how much the change is
important for the customer).

2. Document the change request, using the most appropriate mean, given the
project size and level of formality. Anything from an email to a signed scope
request change document can do. Assign the change the status “open” and
put it in the product backlog, together with the other feature requests that are
planned for the system.

3. When the sprint ends, the change request is treated like any other system
feature in the backlog.

4.1.3 Configuration Management
Software systems are composed of many different items and artifacts: documents
describing requirements and architectures, test plans, test outputs, source code files,
manuals, and support scripts (for instance, for managing packaging and deploy-
ment), to mention the main ones. These artifacts are the building blocks that need to
be assembled together to build an application. Unfortunately, they are also extremely
simple to change. These two facts pose two challenges.

The first challenge is that changes to an element of a software system typically
impact various other artifacts of the system. Consider, for instance, a modification
to a requirement performed after the release of a system, that is, when the source
code and other project artifacts are already available. The change to the require-
ment might cause a modification to the architecture and it will most likely require
some portions of the source code to be changed, namely, those that implement the
requirement that has changed. This is not all, however: test plans might need to be
updated, so that the new test cases test the new version of the requirement (rather
than the old version); the user manual might also need to be updated. If the change
has a major impact, other system artifacts such as conversion and installation scripts
might also need a revision.

The second challenge is that applications live in different configurations and
states. For instance, we could have a base version and a pro version, sharing vari-
ous artifacts or releasing different versions of our product over time. As our system

Making IT Better � 137

evolves, we will have different versions in use. Our development and support plans
will thus have to take into account all the different versions in use.

For instance, as of May 1, 2013, at least four versions of Internet Explorer are in
use. The newest and the oldest version, namely, IE10 and IE6, have roughly 6% of
the total users, while IE9 and IE8 have, respectively, 18% and 23% of the market
share. Other browsers account for the remaining 53% (NetMarketShare, 2013).
When Microsoft releases a fix of a critical security bug, it has to do so for all the
different versions currently in use.

This is where change and configuration management (CM) come into play.
CM is, in fact, a set of activities running in parallel with the development process,
whose goal is to establish and maintain the system’s coherency over time. Accord-
ing to NASA (2007), “The impact of not doing CM may result in a project being
plagued by confusion, inaccuracies, low productivity, and unmanageable configura-
tion data.” CM clearly interacts with the change management workflow, ensuring
that approved changes are dealt with. To support CM activities, versioning systems
are used often.

In the rest of this section, we will look at these activities in more detail, starting
from some considerations about evolutionary models for software.

4.1.3.1 Configuration Management Goals and Practices

According to the ESA Board for Software (1995), a CM process needs to achieve
eight different goals, which are meant to ensure that we have control over our
system, its evolution, and that we can properly manage changes that have been
approved.

The first four goals focus on ensuring that we can identify the components
of our system, that we can build a system from a consistent set of components,
that the software components are available and accessible, and that the software
never gets lost. These four requirements are not as trivial as they sound. Let us look
at some scenarios in which the requirements are not met.

Consider, for instance, a case in which a software system uses a database to store
data. The database needs to be populated with an initial set of data that is essential
for the system to run. The team uses a setup script to perform this task. As the
system evolves, however, most of the development work focuses on other areas. The
script is not needed anymore and the team forgets about it. Various releases later,
a new fresh installation of the system is required. However, the setup script is not
available anymore and needs to be rewritten.

Another very common situation occurs when a system depends upon external
libraries and components. If we do not keep them under control, we fail to satisfy
the second requirement, namely, that the system is built from a consistent set of
components. Think of a situation, for instance, in which we fail to realize that a
developer has introduced some incompatible changes to a library that we use to
build our system and we do not pay much attention about what version of the
library we use.

138 � Introduction to Software Project Management

Finally, ensuring that the software components and the software itself are always
available and accessible is sometimes difficult to achieve. Some readers might recog-
nize a situation occurring during software development, in which certain artifacts
might reside only on the computer of a developer. Equal attention has to be taken
after a system release. Think of a case in which the sources of a system developed
years before have to be retrieved to fix a bug. Good data archival procedures and
keeping the storage media functional can make the difference.

The points mentioned above are taken care of by a configuration identification
activity, which has the goal of defining what artifacts constitute a system. Its outputs
include

1. The list of items that constitute a product. In the case of software devel-
opment, the items that typically need to be put under configuration control
include the source code, support documents (e.g., requirements and architec-
ture documents), support scripts (e.g., testing and data migration scripts), and
manuals. In case of software that requires special components or compilers to
be built, it is also a good practice to include the tools necessary to build the
software.

2. The characteristics of the items, including the relationships among these
items, performance, interfaces, and other attributes.

3. An appropriate identification and numbering scheme, to uniquely iden-
tify an item. The numbering scheme and the list of items are used to define
a product baseline, where the baseline is a set of configuration items, that
has been formally approved and that can be used as a basis for further
development.

The second set of goals of ESA Board for Software (1995) deals with changes.
In particular, it states that in a good CM process, every change to the software is
approved and documented, changes do not get lost, it is always possible to go
back to a previous version, and a history of changes is kept, so that it is always
possible to discover who did what and when.

To satisfy this second set of requirements, we need to establish proper proce-
dures for configuration status accounting. In fact, they define how to formally
record the item characteristics, history of changes, status of proposed changes, and
baseline records, where a baseline record lists, for each baseline, the corresponding
version of each configuration item composing the product identified by the baseline.
(Baseline records are automatically stored by version control systems.) Configura-
tion status accounting is the responsibility of a designated member of the project
team. For software projects, the configuration status accountant is also called the
software librarian.

An important operation to keep track of is the release process. Release occurs
when a product is released externally to the project. For software systems, the opera-
tion occurs when a system is put in production or made available to the public. The
artifacts typically associated with a release are the product itself and release notes,

Making IT Better � 139

that is, a document that lists the most notable (or all the) changes that occurred
since the previous release. See Section 2.5 for more details about the release process.

4.1.3.2 Versioning Systems and Software Evolution Models

A versioning system is a tool to support part of the CM process. To present how they
work, we start from the discussion about the different versions of Internet Explorer
and look at the way in which software evolves. Software, in fact, evolves according
to a linear or a branching model.

When we have only a single running version of our application, a system can
evolve linearly. Each new version of the artifacts to build an application replaces the
previous ones. We can maintain copies of the older version of the artifacts—and this
is usually a very good practice—or simply forget about them: the only important
version is the last one.∗ This is shown in Figure 4.3. The linear development model
works for many different types of applications, including all those web applications
offered whose owners retain the code (think, e.g., Google Documents); another
example are one-offs.

Things become more complex if our system lives in different configurations
(e.g., a base version and a pro version; a version for Linux and one for Mac) or
different versions of the same application (like in the case of the Internet Explorer,
above). In this situation, we need to keep track of all versions in use and support the
parallel evolution of the different versions of our system.

This changes the evolution model from a linear model to a branching model,
in which the relationships between different versions of a system can be represented
by a tree or, as we will see shortly, a graph. This is shown in Figure 4.4, where
the evolution of a system takes into account the fact that each release can evolve

Source code
version 1

Application
version 1

Source code
version 3

Application
version 3

Produces

Source code
version 2

Application
version 2

Produces Produces

Replaces Replaces

Figure 4.3 The linear development model.

∗ Things are slightly more complex. Sometimes, it is necessary to retrace our steps and restore an
old version. This happens, for instance, if we introduce a critical bug. A simple solution is to
revert and start all over again.

140 � Introduction to Software Project Management

Source
code

version 1

Application
version 1

Source
code

version 3

Application
version 3

Produces

Source
code

version 2

Application
version 2

Produces

Replaces Replaces

Source
code

version 1.1

Application
version 1.1

Source
code

version 2.1

Source
code

version 2.1

Application
version 2.1

ProducesProduces Produces

Figure 4.4 The branching evolution model.

independently. Each different version of our system lives in a branch of our tree of
configurations.

When using a branching model, new versions of a system generate new branches.
In some cases, it is possible or necessary to merge branches, that is, build a new
system that includes all the features of two different versions of our software. Various
tools automatically manage branch merging, if the branches being merged have a
common ancestor. This is shown in Figure 4.5.

A versioning system is a tool that allows one to manage software evolution both
in the linear and the branching models. Versioning systems are typically based on
two concepts: a repository, where all the versions of a system reside, and a working

Version 1

Version 1 +
feature A

Version 1 +
feature B

Version 1 +
feature A

and feature
B

Branching Merging

Figure 4.5 A merge of software branches.

Making IT Better � 141

copy, which is the copy currently used for development. Commands allow one
to commit (i.e., store) artifacts in the repository and retrieve branch, and merge
old versions. Versioning systems can be distributed, if there are many repositories
that can be branched and merged, or centralized, if there is only one repository.
Distributed versioning systems are very popular in open source development.

In modern software development practices, versioning and branching are used
extensively: in some development models, a branch is created for every new feature
being developed. Merging commands then allow one to put together the differ-
ent functions being developed in parallel. This development model allows one to
separate concerns, since each branch focuses on one set of changes to the code.

A standard way to identify a specific version of a system is to use a numbering
system. A popular approach uses three numbers, N .M .P, where P is incremented
every time we make a small change to the system,M is changed if we modify a more
significant part of the system, and N is changed when the system undergoes major
modifications. The version number can be labeled by strings identifying special sys-
tem states. For instance, “alpha” and “beta” can be used to denote early releases
of a system, and “RCX” (where “X” is a number) to denote a “release candidate,”
that is, software nearly ready for a public release. Werner (2013) provides clear and
simple conventions for version numbering.

4.2 Risk Management
Various definitions of risk exist, according to the domain and the standard adopted.
Similar to many other definitions given in this book, we use that of Project Manage-
ment Institute (2004), where a risk is defined as “an uncertain event or condition
that, if it occurs, has a positive or a negative effect on a project objective. A risk has
a cause and, if it occurs, a consequence.”

Thus, a risk in project management might either have a positive or a negative
effect. We speak of menaces to identify risks that might negatively affect a project
and opportunities to identify those risks that might positively affect a project.

Many of us are bad at perceiving risks and uncertainty. Unexpected events exert
pressure and cause stress and, under stress, we distort reality and take the wrong
decisions—the phenomenon is known to psychologists under the term of cognitive
distortion; see, for instance, Forensic Psychology Practice Ltd. (1999).

Defining a project that considers risks from the early phases of a project and
manages them throughout the project life cycle is therefore a very good idea. There
are, in fact, two good uses. First, it gives the project manager and the other stake-
holders more tools to understand whether a project is worth undertaking and what
factors have to be taken into account and monitored. Second, it gives the project
manager the possibility of defining a strategy to manage risks when there is neither
the pressure nor the stress coming from a project in full swing.

142 � Introduction to Software Project Management

Define risk
management

standards
Identify risks Classify risks

Define
management

strategies

Risk management
standards

Monitor risks

Risk log

(updated)

Risk register
Risk register

(updated) and risk
matrix

Risk plan

[new risk
identified]

Figure 4.6 Risk management process.

With little variations, the process generally agreed for managing risks is shown
in Figure 4.6 and is composed of the following five steps:

1. Define standards for managing risks. During this phase, the project man-
ager defines the process according to which risks will be identified along with
the procedures for managing risks where they occur.

2. Identify risks. During this phase, the project risks are identified.
3. Classify risks. During this phase, the project risks are classified by assigning

a probability and an impact. This is the basis for understanding the most
important risks to track in the project. Different techniques exist to classify
risks, some of them qualitative and others based on a quantitative approach.

4. Define a management strategy. Given the classification of risks in the previ-
ous step, a management strategy is defined for each risk or, better, for classes
of risks. This allows the project manager and the stakeholders to agree on the
policies to apply should a risk occur.

5. Monitor risks. During project execution, the risks are monitored and the
appropriate strategies applied should a risk occur.

In the rest of this section, we look at the main techniques and methodologies to
implement the different steps.

4.2.1 Define Standards
The first step in this process is the definition of the standards that will be applied
during the other phases. The main output of this activity is the definition of a risk

Making IT Better � 143

management plan, which identifies what are the procedures to monitor and update
risks and who is in charge of what operations.

As we will see in the next sections, the management of a risk involves the
activation of a contingency plan, defined to properly deal with the risk. The risk
management plan defines who is responsible for raising a warning and who is
to be warned; who is responsible for approving the activation of the contingency
plan; and what are the formal steps to record the activation of the plan.

Note that projects differ greatly in the level of formality and, consequently, on
the procedure to activate the contingency plans. For small teams and small projects
(or low-risk projects), the procedure might be as simple as a democratic decision.
Similar considerations apply to the contingency plans, which could be additional
actions that are taken in parallel to the main plan or, in more complex situation,
alternative paths of actions that replace the nominal plan.

Another aspect that is often considered by the risk management plan involves
the procedures to revise risks and contingency plans. These include both the
frequency with which the process will be conducted and, similar to the previous
step, the roles and responsibilities.

A good example of a risk management plan can be found in Jones (1998).

4.2.2 Identify Risks
The goal of this activity is to identify all the risks pertaining to a specific project. One
of the criticalities related to this activity is to come out with a list that is specific and
complete where by complete we mean that all the project risks have been identified,
and by specific we mean that the risks apply to the project at hand (rather than
applying to any project in general).

Risk identification can be organized in two steps. A collection step allows the
project manager to collect all the potential risks of a project. The most common
ways of collecting risks include meetings, which can be structured in different ways
(see Section 5.3.3.1), analysis of project documents, and the use of checklists, which
list common risks for a category of projects.

An analysis steps is then performed to structure the information gathered at the
previous point and identify, among all potential critical items, the risks that have to
be monitored. The main goal is to avoid common mistakes, such as misinterpreting
effects as causes. For instance, the loss of 10,000 euros for a late delivery in a project
could be wrongly evaluated as a cause, rather than as the effect of another more fun-
damental project event, such as poor team performance, which is the actual menace
to monitor. There are several analysis techniques and Project Management Institute
(2004) provides a rather complete reference on the matter. Here we mention root
cause analysis, which progressively identifies the elementary events contributing to
a potential risk.

The output of this activity is a risk register, namely, a list of the risks that are
applicable to the project at hand. The risk register comes in the form of a table, with

144 � Introduction to Software Project Management

one risk per row, and in which the risks are at least annotated with

� A description, which describes and qualifies the risk
� A risk category, to classify the risk as an opportunity or a menace
� A time frame, which corresponds to the period in which the risk can occur
� A root cause, which identifies the root cause of a risk.

Other information, such as probability and impact, is attached to the risk as
the analysis progresses (see the next sections).

4.2.3 Some Common Risks in Software Development
Many software development projects have similar features. Starting from gen-
eral considerations about the risks most often occurring in software development
projects can thus be used as an inspiration to determine what are the actual risks
that apply to the project we have at hand.

Barry Boehm developed the first and probably most famous list of risks for
software systems (Boehm, 1988). His analysis includes the following main reasons
why projects fail:

1. Personnel shortfalls, due, for instance, to difficulty in getting personnel with
adequate skills and maturity.

2. Unrealistic schedules and budgets, due to the difficulties we have discussed
in the previous chapter.

3. Developing the wrong software functions and developing the wrong
user interface, due to the difficulties related to understanding correctly the
requirements.

4. Gold-plating, namely, developing nonimportant functions. This risk orig-
inates both from the client, who might ask for features that are not really
needed, and from the team, which might engage in lower priority activities
that are more fun to develop.

5. Continuing stream of requirement changes, as we have discussed in
Section 4.1 with the scope creep.

6. Shortfalls in externally performed tasks, that is, the quality of the work of
subcontractors is lower than that expected and required.

7. Performance shortfalls and straining computer science capabilities, when
the technical difficulty of the system to be built is considerable.

Various other lists are available on the Internet. Many highlight risks very similar
to those identified by Boehm. However, it is also worth mentioning the lack of
involvement of stakeholders, the inadequate management of changes, and the
lack of an adequate project management methodology. See, for example,Wallace
and Keil (2004), Schmidt et al. (2001), and Arnuphaptrairong (2011) for a survey
on the matter.

Sommerville (2007) provides a different and higher-level starting point. Risks, in
fact, are organized in three main areas: project-related risks, which include all risks

Making IT Better � 145

related to the development process of a software system, such as schedule and costs;
product-related risks, which include all risks inherent in the solution being devel-
oped, such as performance and quality; and business-related risks, which include
all risks related to the environment in which a project develops, such as the mar-
ketability of a solution. Risk identification can thus proceed by analyzing what risks
we could have in each area.

4.2.4 Classify Risks
Once we have identified the risks of our project, the next step is to understand what
risks are worth monitoring. Risks are usually classified along two dimensions:

1. The probability that the risk will occur
2. The impact that the risk will have

The combination of probability and impact determines if a risk is worth further
attention or not. There are two main approaches to determining probability and
impact: qualitative and quantitative.

In the qualitative approach, the project manager (or the person/team responsible
for evaluating the risk) gives a rough evaluation of the probability and impact of each
risk. The evaluation is given in terms of values chosen out of a predefined scale. A
very common classification is given in Table 4.1, where both probability and impact
are classified with one out of five values. Different representations can be adopted,
such as, for example, text, integers, or real numbers. Their meaning, however, is the
same: it is a qualitative measure of the perceived likelihood and impact of a risk.

Remark

A mistake that is often made is to believe that representing impact and probability
with numbers makes the method quantitative. That is, using 4, rather than severe,
moves the assessment from qualitative to quantitative.

Different from what we are doing in this section, however, quantitative meth-
ods provide a (mathematically) precise way of determining probability and impact,
something that we do not do with the methods we described above.

Probability and impact define the relevance of a risk for a project. Such relevance
can be highlighted in two different ways.

In the first approach, the risks can be shown on a two-dimensional space, in
which one axis represents the probability and the other axis represents the impact.
Given the fact that we are dealing with finite values, we can present the risks using
a risk matrix, in which rows represent the probability and columns the impact.

This is shown in Figure 4.7, where we show six different risks with a different
probability and impact. “Risk 1” and “Risk 3,” for instance, have low probability
and very low impact.

146 � Introduction to Software Project Management

Table 4.1 Common Probability and Impact Ranges
Probability Impact

As a Real As an As a Real As an
As Text Number Integer As Text Number Integer

Very low 0.2 1 Negligible 0.2 1
Low 0.4 2 Small 0.4 2
Normal 0.6 3 Significant 0.6 3
High 0.8 4 Severe 0.8 4
Very high 1 5 Catastrophic 1 5

In the second approach, the risks are assigned a weight, computed as a func-
tion of the probability and impact. The main requirement of the function is that
it is monotonic with respect to both probability and impact (e.g., it gives higher
values when probability or impact increase). A very simple function to compute
the weight is

Weight = probability × impact (4.1)

Different from what happens with the risk matrix, probability and impact con-
tribute equally to determining a risk’s weight. That is, a risk with probability 3 and
impact 5 has the same weight and importance of a risk with probability 5 and impact
3. Whether this is true for the risks of a project is a decision for the project manager
to make. The advantage, however, is that it is faster and simpler to manage.

This is shown, for instance, in Table 4.2, where we list the same risks of
Figure 4.7. Notice how “Risk 4” and “Risk 5” have the same weight, in spite of
belonging to two different cells in the risk matrix of Figure 4.7.

Impact

Pr
ob

ab
ili

ty

Risk 1
Risk 3

Risk 2

Risk 4

Risk 5

Risk 6

Negligible Small Significant Severe Catastrophic

Ve
ry

lo
w

Lo
w

N
or

m
al

H
ig

h
Ve

ry
hi

gh

Figure 4.7 A risk matrix highlighting menaces.

Making IT Better � 147

Table 4.2 Classification of Menaces Using
a Risk Register
Risk Description Probability Impact Weight

Risk 1 2 1 2
Risk 2 1 2 2
Risk 3 2 1 2
Risk 4 4 3 12
Risk 5 3 4 12
Risk 6 2 3 6

4.2.5 Risk Management Strategies
The strategies to deal with menaces aim at reducing probability or impact. More
formally, we talk of

1. Avoidance, if the project plan or other project conditions are changed in such
a way that the risk will not occur. This is thus the most cautious approach,
but often it is impossible to use for all risks.

2. Mitigation, if the project plan or other project conditions are changed in
such a way that the probability or the impact of the risk is reduced. Notice that
avoidance is a special case of mitigation in which the probability of occurrence
is set to zero.

3. Transferral, if the risk is transferred onto another party, who is willing to
deal with the menace if it occurs. An example of transferral is preparing an
insurance. It can be thought of as a way to reduce the impact of a menace to
zero, at the cost required for the transferral.

In the case of opportunities, the approach is similar and we talk of

� Exploitation, if the project plan or other project conditions are changed in
such a way that the risk will certainly occur.

� Enhancement, if the probability or the impact of the risk is increased.
� Sharing, if the risk is shared with other stakeholders so as to increase the

probability (or the impact) if it occurs.

Finally, a strategy that works with both menaces and opportunities is to accept,
namely, just deal with the problem (or favorable chance) if it occurs.

From the discussion in the previous section, it should be clear that not all strate-
gies apply equally well to all risks. For instance, accepting a high probability and
high impact menace is calling for trouble. A widely used approach, therefore, is that
of organizing risks in three different areas, according to their weight. This is shown
in Figure 4.8, where we have organized the risk matrix in three zones. A green zone
includes all those risks that are considered acceptable, a yellow zone includes all
those risks that require special treatment and special monitoring, and the red zone
includes risks that are not acceptable. Projects with risks in the red zone will not be

148 � Introduction to Software Project Management

Impact

Pr
ob

ab
ili

ty

Green
zone

Yellow
zone

Red
zone

Figure 4.8 Risk management strategies.

started. Note that the actual boundaries are arbitrary and depend on the inclination
to risk of the performing organization.

We can now define how to deal with different classes of menaces. In particular

1. Menaces in the green area are simply accepted. Some variability and uncer-
tainty is inherent in any project and the burden of defining a management
strategy to deal with the risk could not be worth the time it takes to deal with
the risk if it occurs.

2. Menaces in the red area need to be removed from the red zone.We need to
apply one of the three strategies we have introduced above, namely, avoidance,
transferral, or mitigation. Independent of the strategy adopted, the output of
the activity is moving the risk to the yellow zone, to the green zone, or to
remove it altogether from the table.

3. Risks in the yellow area need to be dealt with. Here we need to reason case
by case to find an appropriate strategy for each risk. Avoidance, mitigation,
and transferral are all viable options. Acceptance might also be a proper strat-
egy, as long as it is not a passive acceptance, but, rather, adequate measures
are foreseen if the risk occurs.

A similar discussion can be made for opportunities; we leave it to the reader.
Defining a strategy, however, is not enough, since we also need to ensure that

risk occurrences are properly recognized and dealt with. Together with the strat-
egy chosen for a given risk, it is a good practice to define the person responsible
for monitoring the risk. This is the person who has the ultimate responsibility of
notifying the project manager that a given risk has occurred. Risk recognition could
happen through indicators that could, for instance, measure certain aspects of the
project.

Making IT Better � 149

4.2.6 Budgeting for Risks
Projects should allocate a specific budget to deal with risks and to effectively imple-
ment the contingency plans. The budget for risks is added on top of a project
budget; when this is not done, costs associated with risks reduce the profit.

There are three approaches to define a budget to deal with risks, which greatly
differ depending on the level of complexity and accuracy they provide. These can
be chosen according to the information available and according to the other project
constraints.

The simplest approach is the allocation of a lump sum, which is computed as a
percentage of the project budget. The percentage is calculated according to historical
data and, in some cases, it can be up to 30% of a project’s budget.

A slightly more complex approach is illustrated in Figure 4.9, where the bud-
get is allocated according to the probability and impact of a project’s menaces. In
particular, if each risk can be assigned a monetary value (for instance, the costs of
additional resources to deal with the risk), the following strategies can be identified:

1. High-probability and low-impact risks require the whole amount of the risk to
be budgeted, since the risk is more likely to occur than not and not having
enough money would result in not being able to properly manage the risk.

2. Low-probability and low-impact risks: If our project has several risks in this
area, the expectedmonetary value can be used. The expected monetary value
of a set of risks is defined as the sum of the impact of each risk multiplied by
the probability of occurrence. See below for an example.

3. Low-probability and high-impact risks have to be dealt with by special agree-
ments, like, for instance, an insurance or other special funds. Adding them to
a project budget, in fact, would not make sense.

See also Northumbria University (2004) for a more thorough discussion on the
matter.

Impact

Pr
ob

ab
ili

ty

Expected
monetary

value

Cover all
costs

Special deal

Figure 4.9 Budgeting for risks.

150 � Introduction to Software Project Management

Table 4.3 An Example of Risks in the Green Zone
Risk Probability Impact

R1 0.10 e500.00
R2 0.10 e1000.00
R3 0.20 e400.00
R4 0.15 e1000.00
R5 0.10 e200.00

EXAMPLE 4.1
Suppose we have a project with five risks in the green zone, for which we have
managed to quantify probability and impact as described in Table 4.3.

The expected monetary value of the risks is computed as follows:

EMV =
n∑

i=1
pi ∗ ci (4.2)

Substituting the data in Table 4.3, we get

EMV = 0.10 ∗ 500 + 0.10 ∗ 1000 + 0.20 ∗ 400 + 0.15 ∗ 1000
+ 0.10 ∗ 200 = 400 (4.3)

which is the amount we can allocate to manage risks in the green area. Note that
the amount allows us to cover R3 and R5 and most of the costs of R1. If R1, R2, or
R3 will occur in the project, we will need to find the money from another source.

A more cautious approach in the example we have made could allocate e1000,
enough to cover R2 or R4 and any other risk. However, given the probabilities, all
the risks in the table are far more likely not to occur than to occur and the money
reserved for these risks is more likely not to be used than to be used. Thus, like in
many similar situations, the techniques provide a good reference framework, but
the project manager always has the responsibility of understanding situation and
context and take the appropriate choice based on all these information.

4.2.7 Risk Monitoring and Control
During project execution, the risk management machinery we have set-up in the
previous sections is put into practice. The process is composed of three main
activities: reviewing, sharing, and applying contingency plans.

4.2.7.1 Review and Share

With the frequency required, the risk registered is assessed and the risk status
is reviewed and updated. For instance, risks can be assigned a status, such as
“occurred,” “closed,” “active,” “inactive,” to indicate, respectively, that a risk has
occurred (and we are currently dealing with), a risk has been dealt with, a risk is
active (and it could occur), and a risk is inactive (and cannot occur anymore). The

Making IT Better � 151

status is typically shared with the project stakeholders. One way of doing this is, for
instance, defining different alert levels (“green,” “amber,” “red”), which encode the
level of criticality of the project at a given time in space.

4.2.7.2 Apply Contingency Plans

The procedures for activating the contingency plans and related actions are then
started for all those risks that occurred. According to the project size, risk, and
formality, the procedures could be very easy and agile or require formal approvals
from management. The appropriate resources (including budgetary resources) are
then released and allocated to deal with the risk.

An important remark is that the contingency plans should be applied as defined
during the risk planning phase. Any run-time change, in fact, poses various critical-
ities, such as taking the wrong decision under pressure and not activating the proper
communication channels to ensure that all the relevant stakeholders are warned.

4.2.7.3 Revise and Iterate

It is important to observe that the project stakeholders might become aware of new
risks as the project progresses.

During project monitoring and control, therefore, on top of managing the
existing risks, the overall process has to be repeated for each new menace and
opportunities identified as the project progresses.

4.3 Quality Management
Intangible as it is, software can fail in many spectacular ways, causing inconveniences
significant economic damages, and, in some cases, the loss of human lives. Garfinkel,
for instance, in Garfinkel (2005), presents his top ten list of the worst software bugs
in history. Among them there is the Ariane 5 software failure, which caused the loss
of the rocket and its payload, valued at 500 USD millions.∗

Compliance with requirements in software development is often considered a
synonym of software testing. Software testing, however, covers only some aspects
that determine the overall quality of a software project and its products. For this
reason, a sound software quality assurance (SQA) process should be part of any
software development project. Thus, SQA process is the planned and systematic
set of activities that ensures the conformance of software life cycle processes and
products to requirements, standards, and procedures (NASA, 2004).

∗ To be more precise, the failure is due to a combination of a software glitch and a management
error, which led ESA to reuse the Ariane 4 software for the new Ariane 5 rocket. Unfortunately,
the software did not correctly handle the higher input values provided by the more powerful
Ariane 5.

152 � Introduction to Software Project Management

Following Project Management Institute (2004), a good SQA process is com-
posed of three steps:

1. Quality planning, which identifies the relevant standard and practices and
the way to implement them

2. Quality assurance, which focuses on ensuring that the project applies and
follows the quality standards identified at the previous step

3. Quality control, which ensures that the products respect the quality stan-
dards identified during the planning phase.

Quality control for software can be particularly complex.
Indeed, various nonfunctional characteristics might be part of a software’s spec-

ification, and their quality assessment might be particularly tricky. For instance,
Rosenberg (2002) mentions nine different nonfunctional characteristics of a soft-
ware system that might be difficult to assess. Three of them, efficiency, integrity,
and usability, refer to product characteristics related to the use of a system. Four
others, namely, flexibility (can I change it?),maintainability, portability (will I be
able to use it on another machine?), and reusability (think of the Ariane example
above) highlight qualities related to how easy it is to change and adapt the sys-
tem to new environments. The remaining two, namely, testability and reliability,
highlight features that are important for safety-critical applications.

Another important aspect is that the input and number of different behaviors of
a software system is huge and always outside the range of exhaustive testing (includ-
ing automated exhaustive testing): defining which test cases and what techniques
are necessary and sufficient to get reasonable confidence in a system is difficult.

The third motivation involves safety-critical applications, a domain in which
quality control is particularly important and software is required to be fail-safe or
fail-operational. Specifically, in case of malfunctions, the software has to maintain
the functions or degrade gracefully, without compromising any other component or
the general system safety.

4.3.1 Quality Planning
A good quality management plan ensures that the goals of quality management are
met in a project.

Goals defined in the scope document and any constraint related to regulations
and standards that have to be met are the starting point of a quality plan. All the
information thus collected defines the quality assurance and control requirements
of a (software development) project. For instance, a project might require software
to be developed according to DO-178B, a standard that regulates the development
of safety-critical software. A good project needs to find the right balance between
quality, costs, and time. Thus requirements have to be analyzed to understand their

Making IT Better � 153

impact and their importance. To this purpose, for instance, NASA (2009) identi-
fies eight different classes of software systems with different criticality and therefore
different quality assurance requirements.

The requirements defined at the previous step allow the project manager or
the quality team appointed to ensure that the quality goals are met to define the
quality assurance and control activities that will be performed in the project. An
important aspect is to ensure that sufficient time is allocated to these activities.

For software systems, quality assurance activities include inspections, reviews,
walkthroughs, testing, and formal verification. Together with the activities, it is
always a good practice to define the actors and responsibilities. See the rest of this
section for more details about the activities that are most commonly used. In certain
cases, quality assurance activities can be conducted by the project team (V&V); in
other cases, they might require an independent validation (IV&V).

Quality controlf is equally important, since it helps measure the progress we are
achieving and whether we are meeting the goals we set. The simplest way to per-
form quality control is through a quality measuring program, which quantitatively
monitors progress and infers information about the effects of quality assurance and
control on improving quality. Thus, the quality plan should specify what metrics
are collected, with what means, and with what frequency.

Table 4.4, inspired from the NASA Software Assurance Guidebook, recaps the
main project deliverables that should be verified with SQA activities, together with
some minimum quality criteria.

4.3.2 Quality Assurance
Themain tools to perform quality assurance are quality audits, that is, independent
reviews to determine whether project activities are being performed in compliance
with the standards set in the quality plan. Quality audits are conducted analyzing
the documentation, by conducting interviews, and by conducting audit and review
meetings, which are described in Section 5.3.3.2.3. The output of a quality audit
is a report that describes the main findings and, if specific issues have been found,
indicates the need for corrective actions.

More information about how to conduct a review can be found in NASA
(1990). Some of the warning signs of troublesome projects, according to NASA
(1990), include frequent changes in milestones, unexplained fluctuations in person-
nel, continued delays in software delivery, unreasonable number of nonconformance
reports, or change requests.

4.3.3 Quality Control
Techniques for quality control can be organized in three main classes: inspections,
analyses, and tests.

154 � Introduction to Software Project Management

Ta
bl

e
4.

4
SQ

A
A

ct
iv

it
ie

s
Ph

as
e

D
el

iv
er

ab
le

G
oa

l

So
ftw

ar
e

co
nc

ep
ta

nd
in

iti
at

io
n

ph
as

e
M

an
ag

em
en

tp
la

n
En

su
re

th
at

pr
oc

es
se

s,
pr

oc
ed

ur
es

,a
nd

st
an

da
rd

s
id

en
tifi

ed
in

th
e

pl
an

ar
e

ap
pr

op
ri

at
e,

cl
ea

r,
sp

ec
ifi

c,
an

d
au

di
ta

bl
e.

En
su

re
th

at
th

er
e

is
a

Q
A

se
ct

io
n.

So
ftw

ar
e

re
qu

ir
em

en
ts

ph
as

e
So

ftw
ar

e
re

qu
ir

em
en

ts
SQ

A
as

su
re

s
th

at
so

ftw
ar

e
re

qu
ir

em
en

ts
ar

e
co

m
pl

et
e,

te
st

ab
le

,
an

d
pr

op
er

ly
ex

pr
es

se
d

as
fu

nc
tio

na
l,

pe
rf

or
m

an
ce

,a
nd

in
te

rf
ac

e
re

qu
ir

em
en

ts
.

So
ftw

ar
e

pr
el

im
in

ar
y

de
si

gn
ph

as
e

A
rc

hi
te

ct
ur

al
(p

re
lim

in
ar

y)
de

si
gn

A
ss

ur
in

g
ad

he
re

nc
e

to
ap

pr
ov

ed
de

si
gn

st
an

da
rd

si
n

th
e

m
an

ag
em

en
t

pl
an

.
A

ss
ur

in
g

th
at

al
ls

of
tw

ar
e

re
qu

ir
em

en
ts

ar
e

al
lo

ca
te

d
to

so
ftw

ar
e

co
m

po
ne

nt
s.

A
ss

ur
in

g
th

at
a

te
st

in
g

ve
ri

fic
at

io
n

m
at

ri
x

ex
is

ts
an

d
is

ke
pt

up
to

da
te

.
A

ss
ur

in
g

th
at

th
e

in
te

rf
ac

e
co

nt
ro

ld
oc

um
en

ts
ar

e
in

ag
re

em
en

tw
ith

th
e

st
an

da
rd

in
fo

rm
an

d
co

nt
en

t.
R

ev
ie

w
in

g
pr

el
im

in
ar

y
de

si
gn

re
vi

ew
do

cu
m

en
ta

tio
n

an
d

as
su

ri
ng

th
at

al
lt

he
ac

tio
n

ite
m

s
ar

e
re

so
lv

ed
.

A
ss

ur
in

g
th

at
th

e
ap

pr
ov

ed
de

si
gn

is
pl

ac
ed

un
de

rc
on

fig
ur

at
io

n
m

an
ag

em
en

t.

Making IT Better � 155
So

ftw
ar

e
de

ta
ile

d
de

si
gn

ph
as

e
A

rc
hi

te
ct

ur
al

(d
et

ai
le

d)
de

si
gn

A
ss

ur
in

g
th

at
th

e
ap

pr
ov

ed
de

si
gn

st
an

da
rd

s
ar

e
fo

llo
w

ed
.

A
ss

ur
in

g
th

at
th

e
al

lo
ca

te
d

m
od

ul
es

ar
e

in
cl

ud
ed

in
th

e
de

ta
ile

d
de

si
gn

.
A

ss
ur

in
g

th
at

th
e

re
su

lts
of

de
si

gn
in

sp
ec

tio
ns

ar
e

in
cl

ud
ed

in
th

e
de

si
gn

.
R

ev
ie

w
in

g
cr

iti
ca

ld
es

ig
n

re
vi

ew
do

cu
m

en
ta

tio
n

an
d

as
su

ri
ng

th
at

al
l

th
e

ac
tio

n
ite

m
s

ar
e

re
so

lv
ed

.
So

ftw
ar

e
im

pl
em

en
ta

tio
n

ph
as

e
Im

pl
em

en
ta

tio
n

R
es

ul
ts

of
co

di
ng

an
d

de
si

gn
ac

tiv
iti

es
in

cl
ud

in
g

th
e

sc
he

du
le

co
nt

ai
ne

d
in

th
e

so
ftw

ar
e

de
ve

lo
pm

en
tp

la
n.

St
at

us
of

al
ld

el
iv

er
ab

le
ite

m
s.

C
on

fig
ur

at
io

n
m

an
ag

em
en

ta
ct

iv
iti

es
an

d
th

e
so

ftw
ar

e
de

ve
lo

pm
en

t
lib

ra
ry

.
N

on
co

nf
or

m
an

ce
re

po
rt

in
g

an
d

co
rr

ec
tiv

e
ac

tio
n

sy
st

em
.

So
ftw

ar
e

in
te

gr
at

io
n

an
d

te
st

ph
as

e
Sy

st
em

A
ss

ur
in

g
re

ad
in

es
s

fo
r

te
st

in
g

of
al

ld
el

iv
er

ab
le

ite
m

s.
A

ss
ur

in
g

th
at

al
lt

he
te

st
s

ar
e

ru
n

ac
co

rd
in

g
to

te
st

an
d

pr
oc

ed
ur

es
an

d
th

at
an

y
no

nc
on

fo
rm

an
ce

s
ar

e
re

po
rt

ed
an

d
re

so
lv

ed
.

A
ss

ur
in

g
th

at
th

e
te

st
re

po
rt

s
ar

e
co

m
pl

et
e

an
d

co
rr

ec
t.

C
er

tif
yi

ng
th

at
te

st
in

g
is

co
m

pl
et

e
an

d
so

ftw
ar

e
an

d
do

cu
m

en
ta

tio
n

ar
e

re
ad

y
fo

r
de

liv
er

y.
Pa

rt
ic

ip
at

in
g

in
th

e
te

st
re

ad
in

es
s

re
vi

ew
an

d
as

su
ri

ng
th

at
al

la
ct

io
n

ite
m

s
ar

e
co

m
pl

et
ed

.
So

ftw
ar

e
ac

ce
pt

an
ce

an
d

de
liv

er
y

ph
as

e
Sy

st
em

A
ss

ur
in

g
th

e
pe

rf
or

m
an

ce
of

a
fin

al
co

nfi
gu

ra
tio

n
au

di
tt

o
de

m
on

st
ra

te
th

at
al

ld
el

iv
er

ab
le

ite
m

s
ar

e
re

ad
y

fo
r

de
liv

er
y.

156 � Introduction to Software Project Management

Inspections include all those activities to analyze a particular project product
and verify whether the product has the required characteristics or not. Checklists
are often used to proceed systematically in the review process. For a requirement
document, an inspection checklist might prescribe to verify various syntactic and
semantic qualities of the requirements. For instance, it could require to verify that
each requirement has a unique identifier and a priority, as well as being easily
comprehensible and testable.

For source code, walkthroughs—peer reviews performed by analyzing the
source code—are a common type of inspection. Some automation can also be
achieved using static checkers, which allow one to verify the compliance of
source code with predefined (or custom) coding conventions, such as, for instance,
the fact that the assignments are not used as test conditions in condition-
als.

Analyses include all those activities that are meant to probe and demonstrate
that a system has the required quality characteristics. Analyses include, for instance,
analysis of control flow, formal verification of the properties of a system, and
simulation. See Bozzano and Villafiorita (2010) for more details.

Testing includes all those activities that are meant to verify the behavior of a
system under specific conditions. See Section 2.4 for more details.

Figure 4.4, inspired from the NASA Software Assurance Guidebook, recaps the
main SQA activities and outputs to verify in a software development project.

4.3.4 Establishing a Metrics Program
Establishing a measurement program allows one to collect quantitative data, which
can be used to understand how well a specific quality assurance and control program
is working.

Many different measures can be taken and tools exist to automate the collection
process. Metrics can be collected about various aspects of a project. In particular,
we can collect process metrics, which are meant to measure different significant
events in our project, and product metrics, which are meant to measure differ-
ent characteristics of our system. For software systems, the product metrics can be
further organized in size metrics, which are meant to measure the size of a sys-
tem, and complexity metrics, which are meant to measure the complexity of a
system.

An important aspect of a metrics collection program is that often trends are as
important as the absolute values. That is, for each measurement we decide to take,
we get a lot more information from analyzing its evolution over time, rather than by
looking at a specific value at a point in time. To make things a bit more concrete, it
is more useful to understand whether the number of bugs is increasing or decreasing
over time, rather than to say that our system has, let us say, 42 bugs.

A sound metrics collection program establishes, where possible, automated
means for the computation of metrics. For software systems and software-related

Making IT Better � 157

metrics, this can usually be achieved using source code repositories and specific
applications. See Chapter 9 for more details.

4.3.4.1 Size Metrics

Size metrics are meant to measure the size of a system. As we have seen in
Section 3.4.5, there are two different approaches to measuring a system’s size:
size-oriented metrics count the physical lines composing a software system, while
function-oriented metrics provide an indication about the size of a system using
an abstract measurement of the system’s functions.

Size metrics are commonly used for quality assessment. Simple measures that
are taken include source lines of code, delivered source lines of code (defined
in Boehm (1981) as the lines of code delivered to the client—i.e., excluding tests,
conversion procedures, etc.), blank lines, and comment lines, that is the number
of lines in the source code that are comments. The number of classes and the
weighted methods per class are two other metrics commonly collected when using
object-oriented languages.

4.3.4.2 Complexity Metrics

Complexity metrics are meant to measure the complexity of a system and how
difficult it might be to test and maintain a system.

Some metrics, like cyclomatic complexity, are meant to measure the com-
plexity of algorithms (e.g., how many tests and loops there are). They provide an
indication of the possibly different states a system can be in and, consequently, of
the difficulty of testing and grasping all the possible behaviors.

Other metrics, such as coupling between objects, depth of inheritance, fan-in
and fan-out, are meant to measure how coupled different components of a system
are; these metrics provide an indication of the difficulties people might encounter
in maintaining a system.

Complexity metrics are direct indicators of the quality of a system, since
they provide information about various nonfunctional characteristics (such as
maintainability) and about a system’s testability.

4.3.4.3 Quality Metrics

Various indicators can be derived from the previous metrics and other information
in order to get an idea of the quality of a system. They include

� The ratio between lines of comments and lines of codes. This is an indica-
tion of the maintainability of a system, on the hypothesis that the comments
in the code will help other developers get a better understanding of what a
specific portion of a system does.

158 � Introduction to Software Project Management

� Cumulative number of open issues. This is the total number of problems
that have been signaled and that have not yet been solved. This allows one
to measure whether our process is “converging”. If the number of open issues
continues to increase (in spite of our effort of closing them), for instance, this
could be a sign that our system is doomed to remain plagued by bugs.

� Error density. This is the number of errors found per source line of code. The
error density is computed by counting the ratio between the number of errors
found during testing and the system size, possibly organized by error severity.
Looking at the trend of error density—whether it is increasing, remaining sta-
ble or decreasing—can help one understand whether the development process
has some systematic faults.

4.4 Questions and Topics for Discussion
1. What are the advantages of a change management process? And those of a

quality management program?
2. What are the differences between change management and configuration

management?
3. Perform a risk assessment analysis on the Theater 3001 project.
4. What metrics could we use to highlight a scope creep?
5. Discuss the merits and difficulties of setting up a metrics program.

References
Arnuphaptrairong, T., 2011. Top ten lists of software project risks: Evidence from the liter-

ature survey. In Proceedings of IMECS 2011, pp. 732–737, Hong Kong, March 2011.
Newswood Limited. Last retrieved November 2, 2013.

Boehm, B. W., 1981. Software Engineering Economics. Prentice Hall, Englewood Cliffs, NJ.
Boehm, B. W., 1988. A spiral model of software development and enhancement. IEEE

Computer 21(5), 61–72.
Bozzano, M. and A. Villafiorita, 2010. Design and Safety Assessment of Critical Systems. CRC

Press (Taylor and Francis), an Auerbach Book, Boston, MA.
Bugzilla Development Team, 2006, October. The Bugzilla Guide—2.18.6 Release. Bugzilla.

Available at http://www.bugzilla.org/docs/2.18/html/lifecycle.html. Last retrieved
April 3, 2013.

Cox, C. B. and C. Murray, 2004, September. Apollo. South Mountain Books, Burkittsville,
MD.

ESA Board for Software, 1995, May. Guide to software configuration management.
Technical Report PSS-05-09, Issue 1, Revision 1, ESA.

Fermi National Accelerator Lab, 2010, December. Change management process and pro-
cedures. Technical report, Fermilab. Available at http://cd-docdb.fnal.gov/cgi-bin/
RetrieveFile?docid=3530;filename=ChangApril 3, 2013.

Making IT Better � 159

Forensic Psychology Practice Ltd., 1999. Cognitive distortion—A practitioner’s portfo-
lio. Available at http://www.forensicpsychology.co.uk/wp-content/uploads/2011/10/
WebCD.pdf. Last retrieved August 30, 2012.

Garfinkel, S., 2005, August. History’s worst software bugs. Available at
http://www.wired.com/software/coolapps/news/2005/11/69355. Last retrieved
November 15, 2013.

Jones, D., 1998. Project zeus—Risk management plan. Available at
http://sce.uhcl.edu/helm/ZEUS/rmpzeus.pdf. Last retrieved June 21, 2013.

NASA, 1990, November. Software quality assurance audits guidebook. Guide-
book NASA-GB-A301, NASA. Available at http://www.hq.nasa.gov/office/
codeq/doctree/nasa_gb_a301.pdf. Last retrieved June 8, 2013.

NASA, 2004. Software assurance standard. NASA Technical Standard NASA-STD-8739.8
w/Change 1, NASA.

NASA, 2007, December. Systems engineering handbook. Technical Report NASA/SP-2007-
6105 Rev1, NASA.

NASA, 2009. Nasa software engineering requirements. NASA Procedural Requirements
NPR 7150.2A, NASA. Available at http://nodis3.gsfc.nasa.gov/. Last retrieved June
1, 2013.

NetMarketShare, 2013. Desktop browser version market share. Available at
http://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=0.
Last retrieved May 1, 2013.

Northumbria University, 2004, November. Risk management. Available at
http://www.jiscinfonet.ac.uk/infokits/risk-management/. Last retrieved June 22,
2013.

Northwestern University Information Technology, 2011, June. Change management pro-
cess. Technical report, Northwestern University Information Technology. Available at
http://wiki.it.northwestern.edu/wiki/images/1/1b/Change_Management_Process.pdf.
Last retrieved April 3, 2013.

Project Management Institute, 2004. A Guide to the Project Management Body of Knowl-
edge (PMBOK Guides) (4th ed.). Project Management Institute, Newtown Square,
Pennsylvania 19073-3299, USA.

Rosenberg, L. H., 2002. Software quality assurance. Available at http://sstc-online.org/
2002/SpkrPDFS/MonTracs/p460.pdf. Last retrieved June 8, 2013.

Schmidt, R., M. K. Kalle Lyytinen, and P. Cule, 2001. Identifying software project risks: An
international Delphi study. Journal of Management Information Systems 17 (4), 5–36.

Sommerville, I., 2007. Software Engineering (8th ed.). Addison-Wesley, Redwood City, CA.
Wallace, L. and M. Keil, 2004, April. Software project risks and their effect on outcomes.

Communnication of the ACM 47 (4), 68–73.
Werner, T. P., 2013. Semantic Versioning. Available at http://semver.org/, 2013. Last retrieved

May 1, 2013.

Chapter 5

Making IT Perfect:
Managing People
and Organizing
Communication

Two main resources contribute greatly to making good software: people’s intellect
and people’s ability. The techniques we have seen in the previous chapters help to
control the software production environment, but people turn ideas into require-
ments and requirements into software. Thus, it is not surprising that managing
people and teams effectively is a big component of software development projects.
To be fair, managing people and teams is important in any kind of project. In no
other engineering domain, however, can people contribute so much to determining
the success or failure of a project.

In this chapter, therefore, we will have a look at the main activities related to
managing teams and organizing work. We will look at the topic from two points
of view. On the one hand, we will look at the activities that are necessary to man-
age people. On the other hand, we will hint at some of the theories and studies
behind the management of people, to understand what motivates people and what
a manager can do to create a favorable environment to carry out work. A look at
organizational structures for projects and at managing communication completes
the overview, by suggesting how work can be organized and how information flows.

161

162 � Introduction to Software Project Management

5.1 Managing People
There are four main steps related to human resource management in a project. They
are

1. Define staff requirements. This is the activity during which the project
requirements, in terms of human resources, are identified. It includes both
numbers and, more importantly, skills and competences.

2. Select staff. This is the activity during which the people who will work in
the project are selected. The selection process can include personnel already
working in the organization or it might require new resources to be hired.

3. Manage staff. During a project, the manager has three main goals. The first
is to make a team out of the individuals participating in the project. The
second is to provide resources and motivations to the team so that it can
perform well. The third is to ensure that people acquire skills and capa-
bilities, so that the time they invest in the project is spent not only in
achieving project results but also in creating new career opportunities and
self-growth.

4. Release staff. All projects come to an end. When a project nears comple-
tion, it becomes necessary to manage the transition of the team to their next
assignments. A management concern in this phase is to ensure that proper
recognition is given to the work performed in the project and, when possible,
that the know-how built in the project is not dispersed.

Actual scenarios in which projects live and teams form are most diverse. In some
organizations, teams consolidate and the same people will end up working in differ-
ent projects. In other structures, each new project requires the formation of a new
team.

Some of the activities described in this section are sometimes carried out with
the support of the human resources department, if the organization is big enough
to afford one. For instance, part of the staff selection process could be the respon-
sibility of human resources. On some occasions, human resources might support
a project manager in strengthening a team and improving teamwork. On others,
human resources set the organizational standards and limit the margins a manager
has, for instance, in granting bonuses.

Good project managers, however, have good people management skills.

5.1.1 Define Staff Requirements
As soon as the goals, assumptions, and boundaries of a project are clear (see
Section 3.2), it is necessary to start defining the requirements of the project team.
One approach identifies the hard and the soft skills that a project requires.

Hard skills are those that refer to specific technical abilities that can be taught
and are measurable; for instance, the ability to write software in C, knowledge about
statistical methods, and being able to read and write Portuguese.

Making IT Perfect � 163

Table 5.1 An Example of a Skill Matrix
Activity Skills

Requirements Good know-how of the automotive domain. Experience in
questionnaire management.

Design Experience in the use of the IBM Rational suite of modeling
tools.

Implementation Very good know-how of the C++ and WxWidget GUI
environment. Experience with test-driven development.

By contrast, soft skills (or emotional intelligence) are capacities that are diffi-
cult to teach and difficult, if not impossible, to quantify. Soft skills usually depend
on personality traits and include the capability of getting along with other people,
empathy, thoroughness, and creativity, to name a few. In general, all projects will
require both hard and soft skills.

To become systematic, one can use a skill requirements matrix, as suggested in
Tomczyk (2005). The matrix is a table that lists, for each project activity, the main
hard and soft skills that are required. Table 5.1 shows an example of a skill matrix:
each row corresponds to a project activity; for each project activity, the matrix high-
lights the main requirements. Focusing on specific skills, rather than generic ones,
of course, can make the definition of the skill matrix more effective.

Note that soft skills take time to develop. Hard skills, by contrast, can be taught.
Certain projects might have a time frame for which appropriate training activities
and specific skills might be acquired.

5.1.2 Selecting Internal Staff
The skill matrix defines our main personnel requirements to carry out the project.
Once we have the requirements, we can start individuating the personnel who fulfill
these requirements.

The first step is to look for personnel already available in the organization. There
are three elements that need to be taken into account.

The first consideration is that policies and practices might limit the actual pos-
sibility of selecting resources. For instance, some organizations do not favor moving
resources from one department to another, even on a temporary basis. Thus, the
internal resources that can be actually selected for a project do not necessarily
correspond to those potentially available.

The second is that experienced resources are limited. In many situations, if a
skilled resource is required, part-time involvement might be inevitable.

The third consideration is the timing and priority of our project. Both could
limit or enlarge, for different reasons, the pool of resources we can select from.

In all the situations mentioned above, good negotiation skills with peers and
bosses can help quite a bit in drafting the right people for your project.

164 � Introduction to Software Project Management

5.1.3 Selecting External Staff
When the internal selection process does not yield the people with the required
characteristics or availability, it might be necessary to hire personnel for the project.

The hiring process requires the following:

1. Defining a job description
2. Advertising the position
3. Waiting for an appropriate amount of time
4. Analyzing the received résumé
5. Interviewing the candidates
6. Selecting the personnel to hire.

A job description is a short document that describes the context for which
a position is sought, information about the company hiring and the project, the
skills and experience required, and the salary range. Sometimes, companies do not
want to make their recruitment needs public. In these cases, the job description lists
only the skills required and the salary range. The advertising and the pre-selection
processes are delegated to a recruitment company, which finds the most appropriate
candidates. An advantage is the speed with which personnel with the right skills are
found, since these companies manage a big network of potential candidates.

Job descriptions are advertised through specific and generic channels. Pro-
fessional associations, mailing lists, and websites are some starting points. One’s
professional network and friends are another source of support.

The goal is to collect a list of potential candidates. These will answer the call
providing a résumé, in some cases reference letters, and an accompanying letter,
motivating the reason for the application. The résumé will highlight the hard and
soft skills, together with the work experience and education; the accompanying
letter might explain where the interest for the position comes from.

Human resources and the project manager will then analyze the résumés
received, identifying the most promising candidates, who will then be interviewed.

The most diverse interview styles have been proposed and used. Some focus on
the technical skills. The interviewers, in this case, will test the proficiency and com-
petency of the candidate by posing a technical problem, like, for example, writing a
bubble-sort algorithm in C++, if programming in C++ is one of the skills required
for the position. Others prefer to test general problem-solving abilities, posing ques-
tions that probe the analysis and synthesis skills. Administering questionnaires or
adopting specific interviewing strategies can be used to assess personality traits and
verify the performance of people under stress.

In any case, an initial exchange with the candidate about the résumé, working
experience, and motivations helps provide basic information about the candidate
and sets the ground for more specific questions. Work experience, in fact, might pro-
vide details about technical skills and personality traits; education provides insights
on the fundamentals, but it becomes less important for people with long experience
on the field. Feedback from previous bosses (where this is feasible) or from people

Making IT Perfect � 165

providing references can also help in getting a frank and sincerer assessment of the
candidate.

The selection process can be very structured. Larger organizations, for instance,
use a multistage process in which a potential candidate is interviewed by different
people, each assessing different traits of the candidate.

Independent of the specific technique, the analysis of the résumé and the inter-
views should end up with the manager having a clearer picture about the hard and
soft skills of the candidate.

5.1.4 Managing Staff
A range of soft skills, such as the capacity to motivate, mediate, and solve conflicts,
clearly helps one be a good manager. Thus, we might be happy enough stating
that good managers have good soft skills and those who do not should be doing
something else.

Moving one step further and understanding what drives and motivates people
can have a huge impact on the science of management. In fact, it can make one
a better manager and, more importantly, it moves people management from art to
science, making it teachable in the process.

Researchers have tried to explain people drivers and, consequently, the man-
agement styles that make teams more productive and effective. These are shown in
Figure 5.1, which depicts a timeline of the main studies in the area.

Taylor formulated one of the first theories about management and workers’
motivations; it is known as scientific management (Taylor, 1911). Taylor does not
have a particularly positive view of workers. Some of his findings are that workers
perform at the slowest rate that goes unpunished and that workers cannot be relied
on for talent and intelligence. The solutions Taylor proposes to make work more
efficient are high control from the management and, maybe a bit surprisingly, better

1910 1920 1930 1940 1950 1960 1970 1980 1990

Taylor's
scientific management

Maslow's
hierarchy of needs

McGregor's
theory X and theory Y

Ouchi's
theory Z

Boehm's
theory W

Hawthorne’s
effect

Herzberg's
hygiene factors

Bass personality types

Hersey and Blanchard's
situational leadership

Figure 5.1 A timeline of management theories.

166 � Introduction to Software Project Management

pay and rest periods. However, the first is connected to outputs and the latter allows
workers to regain strength and make the work subsequent to the rest period more
efficient.

In the 1950s,∗ Maslow proposed a hierarchy of needs (Maslow, 1943, 1954).
According to his work, people are wanting animals and, as soon as they achieve
a need, they start craving for something else. Maslow thus organizes the needs in
a hierarchy, which represents the order in which these cravings materialize. At the
lowest level of the hierarchy, we find physiological needs, such as, for instance, the
need for safety. As we satisfy our basic needs, we start desiring higher level needs.
The top level of the hierarchy is constituted by self-actualization, in which workers
are free to fully express themselves. Thus, according to the theory, good managers
will create an environment that allows workers to be driven by higher levels of the
hierarchy.

McGregor conducted the next relevant studies that are summarized by the the-
ory X and theory Y work. According toMcGregor, there are two different theories
that explain how workers behave. The first, called theory X, describes workers as
little motivated, similar to Taylor. The second, called theory Y, recognizes work as a
natural activity, assumes people are very creative, and considers self-realization and
self-esteem as motivating drivers, similar to Maslow’s hierarchy of needs. The key
point is that two different management styles will have to be applied in the two con-
texts. If the manager thinks she is dealing with a “theory X” person, she will adopt
an autocratic management style. In contrast, if the manager believes she is working
with a “theory Y” person, she will prefer a style that entails a climate of delegation
and trust. See McGregor (1960, 1966), McGregor and Cutcher-Gershenfeld (2005)
for more information.

The situational leadership theory, proposed by Blanchard and Hersey, elab-
orates on McGregor’s work. According to the two researchers, in fact, the best
management style is a combination of direction and support. Four different styles
can be defined: low support and high direction; high support and high direction;
high support and low direction; and low support and low direction.

The management style a manager should adopt is one of the four and depends
on the person being managed. People with low skills and low motivation are best
managed with a highly directive and low support management style. This, in
fact, will be the only way to achieve results. As the motivation of an employee
grows, management will benefit from increasing support and decreasing the direc-
tive behavior. As skills improve, so can delegation. In fact, people with high skills
and high motivation are better managed with low direction and low support.

∗ There is a bit of discussion about the dates. Maslow published his first work in the 1940s, but
the book that made his work famous got published in the 1950s.

Making IT Perfect � 167

Choosing the wrong management style yields to friction and failure. For
instance, applying a highly directive management style to a skilled person under-
pins competency and undermines motivation. More to the point, modulating one’s
management style can help personnel move from a low skills/low motivation status
to a high skills/high motivation status. The theory, originally published in Hersey
and Blanchard (1969) is nicely described in Hersey et al. (2012).

Another good, effective, and simple characterization is that proposed by
Bass according to whom people are task-oriented, interaction-oriented, or self-
oriented (Bass and Dunteman,1963; Bass et al., 1963; Bass, 2008). Different
personalities prefer and work better on different types of tasks. Thus, assigning the
most appropriate task increases individual and team performances. Task-oriented
people will be more interested in tackling intellectual challenges, while interaction-
oriented people will thrive in collaborative environments; finally, self-oriented
people will have to find a return in what they do.

A more recent theory, proposed by Merrill and Reid, distinguishes personality
traits in two main dimensions: how much a person is task- rather than people-
oriented and whether a person is an introvert or an extrovert. The quadrants of this
two-dimensional space define four different personality traits: analytical (introvert
and task-oriented), driver (extrovert and task-oriented), expressive (extrovert and
people-oriented), and amiable (introvert and people-oriented). Different person-
ality traits have different needs and, consequently, different stimuli to which they
react better. Thus, for instance, the amiable type needs personal security and sin-
cere appreciation and performs better in situations in cooperative group work. See
Merrill and Reid (1981) for more information.

Other relevant works focus on the drivers.
Hawthorne Works, in the 1920s, commissioned one of the first studies to

improve workers’ efficiency. In particular, the study tried to evaluate the effect
of different lighting conditions on workers’ performances. To the surprise of the
researchers, it turned out that increasing or decreasing lighting conditions had the
same effect: workers increased their performances. One explanation is that being
observed and the motivation deriving it were the actual causes of the increased
performances. The studies had a significant impact in the field of organizational
behavior (Zhong and House, 2012). See, however, (Kolata, 1998, 2009), for some
recent critiques about the rigorousness of the study and its results.

Frederick Herzberg, in the 1960s, presented his theory of hygiene factors,
which was based on the consideration that the opposite of job dissatisfaction is not
job satisfaction. In more detail, Herzberg analyzes various factors contributing to
job satisfaction and job dissatisfaction, realizing that some of them systematically
contribute mainly to job dissatisfaction, while others contribute mainly to job
satisfaction. Factors in the first group are called hygiene factors, while factors in
the second group are called motivational factors. Hygiene factors are necessary
but not sufficient to create the conditions of a good working environment. If the
hygiene factors are not satisfied, a worker will be unsatisfied. However, if the hygiene

168 � Introduction to Software Project Management

Table 5.2 Herzberg’s Hygiene and Motivational Factors
Motivational Factors Hygiene Factors

Achievement Company policy and administration
Recognition Supervision
Work itself Relationship with supervisor
Responsibility Work conditions
Advancement Salary
Growth Relationship with peers

Personal life
Relationship with subordinates
Status
Security

factors are satisfied, the worker will not be satisfied unless one or more of the moti-
vational factors are present. Table 5.2 shows the motivational and hygiene factors
and (Herzberg, 2003; Herzberg et al., 1957, 1959) provide more information about
Herzberg’s work.

Finally, Boehm and Ouchi focus their work on motivations and win-win con-
ditions (Ouchi, 1981). In slightly more detail, Ouchi’s Theory Z, close to the
lean manufacturing theories, focuses on keeping workers motivated and creating
an environment in which people report mistakes.

Boehm proposes theoryW, according to which it is necessary to create win-win
conditions for all stakeholders. Thus, a good manager will focus on understanding
the winning conditions of his/her team, setting the right expectations, and assigning
achievable tasks, based on a person’s capabilities (Boehm and Ross, 1989).

5.1.5 Management Styles
If you are not at the top of your organization’s pyramid, you will have a boss. So, tak-
ing a different point of view, we can also have a look at the styles a manager has, in
order to better comprehend behaviors and drivers. We will focus on two main the-
ories. The first characterizes management styles on a one-dimensional continuum,
while the second uses a two-dimensional space.

The one-dimensional theory distinguishes five different management styles:

1. Autocratic, when the manager takes all the decisions. A subcase is the pater-
nalisticmanagement style, when the manager pays a bit more attention about
the opinions and feedback of subordinates, but the ultimate decision remains
with the manager. Autocratic managers can be further classified as permissive
or directive, according to the degrees of freedom they allow the subordinates
to carry out the work.

2. Persuasive, when managers tend to convince subordinates to do the work
and implement the decisions they have taken. While still autocratic in the

Making IT Perfect � 169

decision-taking process, persuasive managers tend to be more aware of the
needs of personnel and to motivate their decisions.

3. Consultative, when managers involve the personnel in the decision pro-
cess while retaining control over the decision process. Emphasis is given to
ensuring that the needs of personnel are taken into account.

4. Democratic, when managers allow personnel to take part in the decision pro-
cess. This management style requires extra effort on the part of the manager,
for example, to have the appropriate information flow, but might end up in
environments that are nicer to work in.

5. Laissez-faire and chaotic environment managers are those whose employees
are given complete freedom on the decisions they take. The style embraces
flexibility and creativity, with the managers playing the role of a mentor and
guide.

The two-dimensional theory, proposed by Blake and Mouton, uses concern
for production and concern for people to characterize five different management
styles (Blake and Mouton, 1964).

Four styles are suboptimal. They are

1. The impoverished style, when both concern for people and production are
low. The main goal of the manager is to avoid troubles, keep a low profile,
and try to preserve jobs and seniority.

2. The country club style, when there is a high concern for people, but a low
concern for production. The style is characterized by a friendly atmosphere,
but production might not derive as a consequence of the nice environment.

3. The produce or perish style, when concern for production is high, while
concern for people is low. This is a scientific management environment, where
money is the justification for the employee to work and the manager uses rules
and punishments to achieve the company goals.

4. The middle-of-the-road style, when concerns for people and production
are somewhere in between. Managers who use this style hope to achieve
acceptable performance.

With all due respect to the theory, the best management style is something we
could expect. It is, in fact, the team style, where both concern for people and pro-
duction are high. More interesting is the fact that this style is implemented using
McGregor’s theory Y and by making the employee feel as a constructive part of the
company.

We conclude this section by highlighting some common mistakes that a man-
ager can do to demotivate people (Amabile and Kramer, 2011). According to the
study, there are, in particular, two conditions that need to be avoided. The first is
one in which work is stripped of its meaning. The second is one in which managers
become micromanagers.

Signs that work is being stripped off its meaning include situations in which
managers dismiss the importance of employees’ work or destroy employees’ sense

170 � Introduction to Software Project Management

of ownership of their work. Other demotivating factors concern attitude on plan
and priorities. In particular, giving the message that the work one is performing will
never end, keeping on changing priorities, and neglecting to inform employees that
priorities have changed are three mistakes to avoid.

Micromanagement is the second way of demotivating people. Micromanage-
ment is a form of autocratic management, in which the manager closely directs
and monitors the work of employees. Lack of delegation and a zeal for monitoring
without providing any help are two signs that one is micromanaging. The other two
characteristics are withholding information and taking credit for results and shifting
blame onto subordinates.

5.2 Project Organization Structures
The level of influence a project manager and other project stakeholders can exert
depends on the organizational structure of a project. Choosing an adequate structure
for the project can thus simplify or hamper a project.

Various organizational structures have been experimented with. As usual, project
size and formality, together with external constraints, determine what organizational
structure can be adopted for a specific project.

A good organizational structure has to define, at a minimum, the following
information:

� Where responsibility and accountability are
� How information flows
� How conflicts are solved.

Some rules of thumb help make organizational structures more effective. We
mention, for instance, ensuring that the responsibility is set where influence can be
exerted and there is an interest in exerting it; keeping the decision process simple,
so that decisions are taken fast; and making sure information flows.

In the following section, we review some of the most common structures,
highlighting, for each one, the main positive and negative characteristics.

5.2.1 Hierarchical
Figure 5.2 shows different types of hierarchical structures.

In its simplest form, the project manager has control over technical and manage-
rial matters and organizing the work of the project team, which might be structured
in different groups. This is shown in Figure 5.2a.

The hierarchical structure works well in small projects. As the project size
increases, however, the project manager becomes a bottleneck. In larger projects,
therefore, the identification of a middle layer (e.g., work-package leaders) helps

Making IT Perfect � 171

Project
manager

Alice Bob Mary

Project
manager

WP1
leader

AliceBob

WP2
leader

WP3
leader

Karl Mary...

(a) (b)

(c) (d)

Project
manager

WP1
leader

AliceBob

WP2
leader

WP3
leader

Karl Mary...

Project
board Project

manager

WP1
leader

AliceBob

WP2
leader

WP3
leader

Karl Mary...

Project
board

Steering
committee

Figure 5.2 Hierarchical organizational structure. (a) The project manager man-
ages the team; (b) the project manager interacts with work package leaders, who
manage the team; (c) a project board supports the project manager; (d) a steering
committee provides strategic guidance.

ensure that activities proceed more autonomously, while, at the same time, an
effective coordination is kept. This is shown in Figure 5.2b.

When a project involves different functions or units of an organization, another
common structure is one in which the middle layer is made by the people respon-
sible for the organization’s division or units. In such cases, the organization of the
project structure is by function, rather than by task.

Another point of attention with the hierarchical structure is that it requires the
project manager to have both managerial and technical competencies to properly
deal with a project. In another common variation, therefore, technical and manage-
rial leadership is distinct. The technical leader supervises the technical work, while
the manager maintains control of the overall process. The level of autonomy can
vary greatly, from situations in which the technical leader works as a counselor to
situations in which the technical leader has large autonomy over the project.

172 � Introduction to Software Project Management

In large projects, technical or managerial advice can also be provided by a project
management board. The board can be composed by the work-package leader, pro-
viding a better integration among the work conducted in the different work-package
levels. This is shown in Figure 5.2c.

In projects involving various organizations or a large number of stakeholders,
often a steering committee is also appointed. The steering committee provides
strategic guidance about the project by defining the strategies to apply and
supporting the project manager in their implementation.

Advantages exist both for the project manager and the stakeholders. The first, in
fact, can share some of the project liability or obtain support that would otherwise
be difficult. The others have a chance to have their ideas and goals represented in
the project. This is shown in Figure 5.2d.

5.2.2 Matricial Organizations
The hierarchical structure assumes that the manager can freely organize the work
of the team. In many situations, however, projects borrow team members from the
existing functional structures of a company and project managers need to negotiate
assignments with the functional managers. Even if both managers work for the same
company, the goals and interests of the project manager often differ from those of
the functional managers. The first, in fact, focuses on taking the project home, while
the others are more concerned with continuing operations in the departments they
lead. They look at the project activities carried on by their personnel as a distraction.

In this case, allocating the responsibility of the team exclusively to the project
manager or to the functional managers leads to solutions that are equally unrealis-
tic. The matricial structure can mitigate this problem. In the matricial structure,
personnel are assigned both to the project manager and to the functional manager.
According to who has priority when conflicts on assignments arise, we can distin-
guish a weak matrix, a strong matrix, or a balanced matrix. In the first case, the
functional area manager has priority in solving conflicts; in the second case, the
project manager has such a privilege; in the third case, the situation is something in
between.

Figure 5.3, for instance, shows a matricial organizational structure.∗ We distin-
guish, in particular, between four functional units, namely, “design,” “engineering,”
“production,” and “administration” (shown in the columns of the matrix), and three
projects (shown in the rows of the matrix). At the intersection of a functional unit
and a project, we find the personnel of the functional unit who are working for a
project. Thus, for instance, “Project 1” has two people working from the “Design”
unit and three people of the “Production” unit. Similar is the case for the other
projects.

∗ The pictures of the people in this and other diagrams are taken from Morville and Callender
(2010) and distributed under a Creative Common License.

Making IT Perfect � 173

EngineeringDesign Production Administration

Project 1

Project 2

Project 3

Figure 5.3 Matricial organizational structure.

One of the strengths of the matricial structure is that it favors pooling of com-
petencies. For instance, it accommodates very well a project management office,
which pools the management competencies of an organization.

The main drawback is the so-called two bosses syndrome, in which personnel
report to two bosses.

Note that the matricial structure can also be used to organize the work within a
project, if this is large and complex enough to justify such structuring.

5.2.3 RACI Matrix
The RACI matrix is a useful tool to represent the role and responsibilities in
a project. RACI is an acronym, which stands for responsible (who carries out
the work), accountable (who liable for the work performed), consulted (who is
consulted), and informed (who is kept informed).

In a RACI matrix, rows include the list of work packages or tasks of a project
and the columns contain the team or the organizational structures involved in the
project. At the intersection of each row T and column P, the letters “R,” “A,” “C,”
and “I” indicate the role P has in task T . The only constraint is having exactly one
“A” per row. All other allocations depend on the project.

This is shown, for instance, in Table 5.3, where we show the RACI matrix of
a large project involving eight different partners (labeled P1, . . . , PN) and seven
different work packages. Cells define the role of each partner in the different work
packages. Thus, for instance, P3 is accountable (and responsible) for the work in
WP5. All other partners are consulted.

5.2.4 Agile Teams
Agile software development moves away from the structures we have just presented,
favoring smaller structures and a more democratic approach to decision taking.

174 � Introduction to Software Project Management

Table 5.3 An Example of an RACI Matrix
Work Package P1 P2 P3 P4 P5 P6 P7 P8

WP0. Project Management AR C C C C C C C
WP1. Case Study Requirements C C C AR R C C R
WP2. Network Architecture Definition AR C C C
WP3. Software Development AR R C R C
WP4. Assessment and Evaluation C C R AR R R R
WP5. Sustainability and Exploitation R R AR R R R R R
WP6. Dissemination R R R R R AR R R

Concerning the first point, for instance, Scrum teams are usually between five and
nine people. Concerning the second point, all members of the team are empowered
and participate in the decision-taking process. Thus, rather than focusing on the
chain of responsibilities, agile teams talk about roles, which can be interchanged
from one iteration to the next.

Scrum teams define the following three roles:

1. The Scrum master, who is the person responsible for measuring project
progress and solving issues.

2. The Customer, who is the person responsible for the overall implementation
of the Scrum process. Note that since teams are self-organizing, the Scrum
master ensures that activities and artifacts are produced, that no impediments
hinder work, and that the development can proceed. The Scrum master is
also the interface with the external world and shields the team from exter-
nal influences. By contrast with “traditional” project management, work is
(self)assigned by the team.

3. The Team, which is responsible for the work. The team is self-organizing,
with roles decided and fixed by the team at the beginning of each software
development project. Programming in agile teams is often conducted in pairs,
with one person writing code and the other advising and supervising the work.
The person writing the code is called the driver, while the other is called the
navigator.

A critique that is often made of agile teams is how they can be scaled up to
manage complex projects. The standard solution is to use teams of teams. A team
of teams is essentially a hierarchical structure with a twist. The lowest level of the
hierarchy is, in fact, composed of agile teams. Higher levels of the hierarchy are agile
teams composed by taking one person from each team at the lower level. In this way,
teams are kept small and all teams participate in the decision-taking process, through
the representatives appointed to participate in the teams of teams. This is shown in
Figure 5.4.

Making IT Perfect � 175

Team A Team B Team C

Team of teams

Figure 5.4 Teams of teams.

5.3 Managing Communication
A proper management of communications in a project ensures that information
flows in a timely manner and reaches the appropriate stakeholders.

The types of information that are exchanged in a project include

� Technical information, which is necessary to carry out the work in the
project. For software systems, one of the challenges in this area is to ensure
that all stakeholders form a shared view about the system being built. This
might require some attention to take into account the different skills and
competencies of the stakeholders involved.

� Project status information, which is necessary to understand whether activi-
ties are being carried out as planned. This information is essential to evaluate
and take action if any deviation occurs and to make sure that all stakeholders
are aware of such changes. One of the points of attention in this area is to
establish good and reliable data collection practices.

� Project decisions, which are necessary to ensure that the proper choices are
taken and the project moves in the right direction.

� Project action items, which include all the information necessary to ensure
that the plan is implemented, activities are actually started, and project
outputs are actually collected and stored.

� Project advertisement, which is necessary to ensure that stakeholders are
informed and engaged. Although not necessary in any projects, ensuring that
a project gets proper publicity and dissemination can help create a favor-
able environment. Internal meetings, updates to senior management, and
dissemination to the public, conferences, and workshops are some of the
means.

176 � Introduction to Software Project Management

5.3.1 Planning a Communication Strategy
Communication always happens through a noisy channel. That is, what we say is
not always what we intend and what our listeners perceive is not always what we
said. Simplifying a bit, we intend ABC and people perceive ACD. Various factors
can influence the amount of noise we have to deal with in a discussion, including
cultural differences (think, e.g., different etiquette in use by different cultures),
language barriers (think, e.g., teams for which the project official language is not
their mother tongue), personality traits (think, e.g., the different personality types
we discussed in Section 5.1.4), capacity to assert and listen (which might depend
on personality traits or the project environment, or circumstances), and communi-
cation means (think, e.g., the different impact a formal letter has with respect to
the same topic sent by email or discussed in person).

The second consideration is that a good communication plan delivers the
right information, to the right people, at the right time. The goal, in fact, is
to make certain that the information raises the correct level of attention in the right
stakeholders, when the moment arrives.

To make the point clearer, consider the opposite scenario, a situation in which
all project information is distributed to all stakeholders, regardless of type and role.
Sincemany pieces of information will turn out to be irrelevant to many stakeholders,
they will soon lower their attention and miss the important information. Similarly
for timing: send a communication about an internal meeting 4 months in advance
and few will remember it (or, more likely, so many things will happen in between
that the chosen time slot will have to be changed). Send it 1 h before the meeting
and no one will be able to attend.

Another important aspect to consider is the means. The same information,
in fact, can be delivered in different ways: meetings, workshops, emails, letters,
document repositories, chats, and phone calls, to mention a few.

An appropriate mean can be chosen by looking at the following factors:

� The recipients and, in particular, whether the recipient will be able to use the
information with the mean we have chosen.

� The logistics and, in particular, the cost, in terms of time and resources, of
delivering the information with the mean we have chosen.

� The formality and, in particular, the kind of impact the mean could have
on the recipient. In fact, some information is better exchanged with traceable
means and is better written than spoken. The opposite also holds, however,
and some communications are better spoken in person, rather than written.

Bigger projects, therefore, will benefit from writing a communication plan. At
a minimum, a communication plan defines

� Information to be exchanged. Starting from the project plan and the list
of deliverables, the project manager defines what information is exchanged.

Making IT Perfect � 177

Associating a level of confidentiality to each deliverable, as we have seen in
Chapter 3, helps to highlight the possible constraints.

� List of stakeholders to be involved and lines of communication. Starting
from the project roster, the stakeholder map, and the RACI matrix, the project
manager defines the line of communications, namely, who is made aware of
what.

� Communication means. According to the project constraints and available
infrastructure, the project manager will define how information flows and is
made available to stakeholders. Digital assets might be distributed through
websites/wikis, mailing lists, and document repositories, to mention a few.
Workshops and meetings are also commonly used. Note that some of the
means push the information to the stakeholders, while others require the
stakeholder to be more active and pull the information they need.

More detailed plans will also include a specification of the communication tim-
ings and triggers, which specify the strategy chosen to deliver information. The
simplest strategy is event driven: when a specific piece of information is available,
it is distributed to the relevant actors. Deliverables are best distributed on an event-
driven basis. Another possibility is to distribute the information periodically. On a
regular basis, all new pieces of information are distributed to the project participants.
Project status information is often made available periodically.

5.3.2 Communication Styles
Individuals have different communication styles. Understanding one’s communi-
cation style helps to establish a good communication channel.

A common characterization distinguishes among

� The aggressive communication style, in which opinions are expressed clearly
but without regard for other people’s feelings or opinions. It is a communi-
cation style that can cause resentment and stress; on certain occasions, for
instance, when a decision has to be taken quick, it can be an effective way to
take an action.

� The passive communicators, who tend to hide their opinions and feelings
or open up possibilities for others to disregard one’s rights. It is an ineffec-
tive form of communication because it does not help to convey opinions and
information.

� The assertive style—the most direct form of communication—in which
opinions are clearly expressed without disregarding other people’s feelings and
opinions. It is the most effective form of communication.

Another characterization distinguishes between open, reserved, indirect, and
direct communicators, according to whether one tends to express feelings openly or
not (open/reserved) and focuses more on data rather than ideas and opinions. See,
for instance, Rampur (2012).

178 � Introduction to Software Project Management

See also Newton (2013); Academic Help (2013); Blume (2013) for some more
resources on the topic.

5.3.3 Meetings
If you have ever worked in the IT industry, you probably know that meetings can
become a consistent part of your work. Unfortunately, many meetings end up being
useless or less efficient/effective than they could have been. Various books have
been written on how to try and make meetings more effective. A recent search for
“meeting management,” in fact, showed 26,302 hits in Amazon’s book section.∗

In this section, we look at some common meeting types and some techniques to
try and make them more effective.

5.3.3.1 Managing Meetings

Some general rules of thumb can help make your meeting a bit more effective.
The first and most important rule is to define themeeting goals, decide who has

to participate to make the meeting effective, and select a format of the meeting so
that the goals can be more easily achieved. (We will look at some common formats
in the next subsections.)

Participants at meetings might have goals different from yours; some may be
related to the project, like discussing a specific issue about a technical choice, and
some may be just related to other agendas. To prevent a meeting from being hijacked
and drifting, a second good rule is to ensure that the meeting remains on track.
Thus, a good idea, is to define an agenda of the items to be discussed, possibly
planning in advance a timing for each item, so that we fix both the start and the
end time of a meeting. To make sure that the agenda is followed, another good
practice is to appoint a moderator who takes responsibility for keeping the agenda
and ensuring a good interaction among the participants.

When the goals, participants, and agenda have been defined, a convocation is
sent out. The convocation should at least contain the goals of the meeting, partic-
ipants, agenda, time, and location. If relevant information is required during the
meeting, it is also a good practice to tell participants how to get prepared for the
meeting.

The second rule is to stick to the agenda and goals during the meeting. First
of all, ensure that each participant is provided sufficient context—in advance, if
possible, or during the meeting otherwise—to actively participate in the discussion.
Then, following the agenda, the participants discuss the different items. At the end
of the discussion, a brief recap of the main findings and of the decisions taken helps
share and agree on the findings and results.

∗ Search performed on April 28, 2013. This book might have increased the count by one.

Making IT Perfect � 179

The third rule is to maintain a track of meetings, outputs, and follow-up actions.
This can be done in different ways. In brainstorming sessions, where notes are
scribbled on a whiteboard, a picture of the whiteboard might be sufficient. Audio
recording is another option.

Writing meeting minutes that recap the meeting outputs and actions is a more
formal approach. Meeting minutes usually contain the following information:

� Coordinates of the meeting: time and location.
� Goal and agenda.
� Participants and, if required, whether the absentees are justified or not.
� When required, for each item, a recap of the discussion/main findings.
� Main outputs (findings) and actions decided during the meeting. These

should include a description of the action, a person responsible for the action,
a deadline.

Meeting minutes are an important record of a project, and sometimes drafting,
commenting, and approving the minutes can be a delicate and tricky matter. Thus,
in general, a good practice is to ask participants to approve the meeting minutes
or to propose changes. In some cases, the approval is a formal requirement of the
project.

Keeping a formal/written track of meetings and meeting outputs is also an
important step in tracking actions and establishing effective change and configura-
tion management practices. In fact, since meetings will be held to clarify or modify
project requirements, choices, and so on, meetingminutes become an essential input
to keep a consistent and clear vision of the project and project outputs.

5.3.3.2 Types of Meetings

5.3.3.2.1 Kick-Off Meetings

Kick-off meetings are held to get started with a project, a work package, or a sig-
nificant task of the project. The goal is to ensure that all relevant stakeholders are
provided the information necessary to carry out the activities about to start.

For this reason, the meeting can be structured in three parts:

1. An introduction of the participants and relevant stakeholders.
2. A presentation about the context and the specific goals that have to be

achieved with the activity about to start. The presentation includes all rel-
evant information, including constraints, standards to be followed, allocation
of responsibilities, and timing.

3. A final question and answers session allows one to clarify any doubt or
remaining issue.

180 � Introduction to Software Project Management

5.3.3.2.2 Decision-Taking Meetings

An essential task of project managers is to establish a good context for taking deci-
sions. We have already seen in Section 5.1.5 different management styles and how
they influence the decision-taking process. In this section, we recap some rules of
thumb for establishing an effective and participated decision-taking environment;
see Harvard Business School (2006) for more details.

According to the Harvard Business School (2006), good decision making
requires

� Establishing a context for success: providing time for ideas to form, creating
an environment in which an open discussion can take place, and agreeing on
the decisions taken.

� Framing the issue properly and finding alternatives: making sure that the
process does not stop at the first formulation of the problem or the first solu-
tion encountered. Including opponents and skeptics in the discussion can help
take different perspectives and points of view and find alternative solutions.

� Choosing the alternative that appears to be the best. Solutions can be
measured according to qualitative and quantitative parameters. When choos-
ing what alternative to take, both positive and negative impacts should be
debated. The agreement on the decision can be in one of many different
forms: general consensus andmajority occur when everyone or the majority
of participants agree; qualified consensus occurs when key selected stake-
holders agree; and directive leadership can be the last resort, when no
consensus can be found.

5.3.3.2.3 Audit and Review Meeting

Audit and review meetings are held to assess the status of a product or project.
These meetings are usually organized by identifying three roles:

1. The auditors, who are responsible for analyzing products or project doc-
umentation in order to form an opinion and an evaluation. Good char-
acteristics of auditors include adequate proficiency to carry out the work,
independence (so that no interests can influence one way or another the audit-
ing process), and professional care in conducting the audits and in reporting
it (EPA, 2000).

2. The project members, who are responsible for providing clarifications and
explaining the choices and status.

3. The moderator, who ensures that the agenda is followed and the meeting
environment remains productive. In fact, since auditors and the selected
project members have seemingly conflicting goals, ensuring that a good
attitude is kept also ensures that the meeting remains productive.

Making IT Perfect � 181

Audit meetings can be triggered by various causes, among which a periodic
evaluation, a project deliverable, a potential problem, accidents, and improving
performances.

An auditing process might include the following activities:

� Definition of the goals and boundaries of the audit
� Identification of the auditing committee
� Distribution of all the relevant material to the auditors
� Preparation of the auditing by the auditors
� The conduction of the analysis and auditing activities during the meeting
� Preparation of the final report.

Examples of auditing activities include quality inspections (e.g., code walk-
throughs), accident investigations, and project progress assessment, to men-
tion a few.

5.3.3.2.4 Brainstorming

Brainstorming is a technique described by Alex Osborn in Osborn (2008), a book
first published in 1948, in which the author describes the techniques used in the
creative firm where he worked. Although today the term brainstorming is used
simply to denote a meeting to collect ideas, brainstorming meetings have a precise
structure and precise rules.

Concerning the structure, following an opening session, where the problem is
framed and rules explained, brainstorming meetings are structured in rounds to
collect ideas, possibly stimulated by the meeting organizer, or solicited by having
each participant propose at least one idea. A wrap-up session allows one to collect
all the information in a structured way.

Concerning rules, to ensure that ideas are properly elicited and collected,
Obsorn suggests the following:

� Focus on quantity and welcome unusual ideas. The more ideas that are
generated, the more chances there are of finding good ones; for this reason,
unusual ideas are to be welcomed in the brainstorming process.

� Withhold criticism. In brainstorming, criticism should be withheld. Instead,
participants should focus on extending or adding to ideas, reserving criticism
for a later stage of the process. By suspending judgment, participants will feel
free to generate unusual ideas.

� Combine and improve ideas. The underlying assumption is that the sum is
bigger than the individual contributions, and therefore combining ideas yields
better results.

An important aspect of the technique is highlighting associations among ideas,
so that they can then be grouped and combined at a later stage. Brainstorming
meetings can be conducted in many different ways. See, for instance, Colwell (2004)

182 � Introduction to Software Project Management

for a discussion about the organization of brainstorming sessions and Mittleman
(2013) for some variations to the technique.

Researchers have criticized some of Obsorn’s assumptions, among which, iron-
ically, the fact that criticisms have to be withheld. More radical criticisms question
the need for the rules described above and attribute the effectiveness of the technique
more to the interaction of different minds and mindsets than to other contributing
factors. See Lehrer (2013) for a very nice recap on the matter.

5.3.3.2.5 Other Creative Techniques

Many other creative techniques have been proposed and are largely applied. We
mention the six hats technique, according to which six different mindsets are
defined, represented by hats of six different colors. People participating in the meet-
ing are asked to take a hat and provide feedback according to the corresponding
mindset. Mindsets are then shifted while the meeting continues; see Bono (2013)
for more details.

Several references on the web mention techniques to foster creativity, among
which are CreatingMinds.org (2013).

5.3.3.3 Delphi

The Delphi method was devised in the 1960s by Helmer et al. (1967) to improve
the effectiveness of meetings. One of the goals was create an environment in which
nonscientific factors such as “who has the loudest voice,” “stubbornness,” or “sup-
posed authority” would not be allowed to bias data. The methodology focuses on
collecting data, but the format is general enough to accommodate other kinds of
information gathering.

The method is composed of the following steps:

� Deliver a set of question to the experts (best if in the form of a questionnaire),
such as, for instance, the effort required for each activity of the plan.

� Have the experts use their techniques to come out with an answer (the original
paper emphasizes the importance of simulation, but in general, any technique
is fine).

� Collect answers and highlight the median value and the interquartile range,
that is, the interval containing the majority of opinions.

� Ask the experts to reconsider their opinion and, if the estimations are still out
of the interquartile range, have them, motivate their choices.

� Iterate, presenting also the motivations for outliers, till the closest match to
the consensus can be derived.

5.3.3.4 Planning Poker

Planning poker is a modern (and fun) version of the Delphi technique, adopted
by agile methodologies for the estimation of the difficulty associated with the

Making IT Perfect � 183

development of user stories and tasks. The technique can, however, be used for
other purposes.

Planning poker takes its name from the fact that participants at the meetings are
given a deck of cards and seem to be playing a card game. In more detail, the cards
are organized in colors and each color contains all the possible estimations a person
can give to a given user story. Note that the values are a limited set of numbers,
for instance, following the Fibonacci series (e.g., 1, 2, 3, 5, 8, 13, . . .); two special
values, “infinity” and “?,” mean, respectively, extremely complex or “I don’t know.”
Each person is given all the cards in a color.

The game proceeds as follows. For each user story, users are asked to provide
their estimations. Following the Delphi approach, they do so in secret, by picking
one card from their decks. Then everyone shows their cards at the same time. If the
evaluations agree, the user story is assigned the weight chosen by the team. However,
if there is significant disagreement in the evaluations, a discussion follows so that the
players can justify their choices. Similar to Delphi, other rounds then follow till an
agreement is reached.

As a curiosity, the technique also considers the case in which an agreement is not
reached. Following the words of Grenning, the inventor of the technique, “the team
can then discuss their different estimates and try to get to consensus. If you can’t get
consensus, don’t sweat it. It is only one story out of many. Defer the story, split it,
or take the low estimate” (Grenning, 2002).

5.4 Questions and Topics for Discussion
1. Discuss the commonalities and differences among the motivational theories

presented in the chapter.
2. What are the motivations for micromanaging, if any? What are the risks of

micromanagement?
3. Consider the different personality traits presented in the chapter. How

would you position yourself? What software development better suits your
characterial traits?

4. Discuss the merits and limitations of the different organizational structures
we have seen in the chapter.

5. Define a communication plan for the Theater 3001 project.

References
Academic Help, 2013. People should enhance their communication skills. Available at

http://academichelp.net/samples/annotated-bibliography/people-should-en%hance-
communication-skills.html. Last retrieved April 28, 2013.

184 � Introduction to Software Project Management

Amabile, T. M. and S. J. Kramer, 2011. The power of small wins. Harvard Business
Review (5), 77.

Bass, B. M., 2008. The Bass Handbook of Leadership: Theory, Research, and Managerial
Applications (4th edition). Free Press, New York.

Bass, B. M. and G. Dunteman. May 1963. Behavior in groups as a function of self-
interaction, and task orientation. The Journal of Abnormal and Social Psychology 66(5),
419–428.

Bass, B. M., G. Dunteman, R. Frye, R. Vidulich, and H. Wambach, 1963. Self, interac-
tion, and task orientation inventory scores associated with overt behavior and personal
factors. Educational and Psychological Measurement 23(1), 101–116.

Blake, R. R. and Mouton, J. S., 1964. The Managerial Grid. Gulf Publishing Company,
Houston, TX, USA.

Blume, L., 2013. Communication skills bibliography. Available at http://www.lilblume.ca/
communication. Last retrieved April 28, 2013.

Boehm, B. W. and R. Ross. 1989. Theory-w software project management principles and
examples. IEEE Transactions on Software Engineering 15(7), 902–916.

Bono, E. D., 2013. Six thinking hats. Available at http://www.debonogroup.com/
six_thinking_hats.php. Last retrieved April 28, 2013.

Colwell, B., 2004. Brainstorming, influence, and icebergs. Computer, 37(4), 9–12.
CreatingMinds.org, 2013. Tools for creating ideas. Available at http://creatingminds.org/

tools/tools_ideation.htm. Last retrieved April 28, 2013.
EPA, 2000, January. Guidance on technical audits and related assessments for environmental

data operations. Technical Report EPA/600/R-99/080, United States Environmental
Protection Agency.

Grenning, J., 2002, April. Planning poker or how to avoid analysis paralysis while release
planning. Available at http://renaissancesoftware.net/files/articles/PlanningPoker-
v1.1.pdf. Last retrieved March 4, 2012.

Harvard Business School, 2006. Decision Making: 5 Steps to Better Results. Harvard Business
Essentials. Harvard Business Review Press, United States.

Helmer, O., O. Helmer-Hirschberg, and Rand Corporation, 1967. Analysis of the Future:
The Delphi Method. P (Rand Corporation). Rand Corporation.

Hersey, P. and K. H. Blanchard. 1969. Life cycle theory of leadership. Development Journal
23(5), 26–34.

Hersey, P., K. H. Blanchard, and D. E. Johnson. 2012. Management of Organizational
Behavior (10th Edition). Prentice Hall, NJ.

Herzberg, F., January 2003. One more time: How do you motivate employees? Harvard
Business Review. Available at: http://hbr.org/2003/01/one-more-time-how-do-you-
motivate-employees/ar/. Last retrieved Nov 2, 2013.

Herzberg, F., B. Mausner, R. Peterson, and D. F. Capwell. 1957. Job Attitudes: Review of
Research and Opinion. Psychological Service of Pittsburg, Pittsburg.

Herzberg, F., B. Mausner, and B. B. Snyderman. 1959. The Motivation to Work (2nd
edition). John Wiley, New York.

Kolata, G., December 1998. Scientific myths that are too good to die. The New York
Times. Available at: http://www.nytimes.com/1998/12/06/weekinreview/scientific-
myths-that-are-too-good-to-die.html. Last retrieved Nov 2, 2013.

Kolata, G., June 2009. Light work. The Economist. Available at: http://www.economist.
com/node/13788427.

Making IT Perfect � 185

Lehrer, J., 2013, January. Groupthink—The brainstorming myth. The New Yorker. Avail-
able at http://www.newyorker.com/reporting/2012/01/30/120130fa_fact_lehrer. Last
retrieved November 15, 2013.

Maslow, A., 1943. A theory of human motivation. Psychological Review 50, 370–396.
Maslow, A., 1954. Motivation and Personality (1st edition). Harper & Brothers, New York.
McGregor, D., 1960. The Human Side of Enterprise. McGraw-Hill, New York.
McGregor, D. and J. Cutcher-Gershenfeld, 2005. The Human Side of Enterprise (Annotated

Edition). McGraw-Hill, New York.
McGregor, D., 1966. The human side of enterprise. In W. G. Bennis and E. H. Schein,

editors, Leadership and Motivation, Essays of Douglas Mc-Gregor, Volume 2. MIT Press,
Cambridge, MA.

Merrill, D. W. and R. H. Reid, January 1981. Personal Styles & Effective Performance. CRC
Press, Boca Raton, FL.

Mittleman, D. D. and Briggs, R. O., 2013. Directed brainstorming: New
techniques to improve idea generation. Available at http://www.midwest-
facilitators.net/downloads/mfn_20000128_mittleman_briggs.pdf. Last retrieved
November 22, 2013.

Morville, P. and J. Callender, 2010. Search Patterns: Design for Discovery. O’Reilly, Sebastopol,
CA, USA.

Newton, C., 2013. The five communication styles. Available at http://www.clairenewton.
co.za/the-five-communication-styles.html. Last retrieved April 28, 2013.

Osborn, A., 2008. Your Creative Power: How to Use Your Imagination to Brighten Life, to Get
Ahead. University Press of America, United States.

Ouchi, W. G., 1981. Theory Z. Avon Books, New York.
Rampur, S., 2012, March. Communication styles in the workplace. Available

at http://www.buzzle.com/articles/communication-styles-in-the-workplace.html. Last
retrieved April 28, 2013.

Taylor, F. W., 1911. The Principles of Scientific Management (1919 edition). Harper &
Brothers, New York and London.

Tomczyk, C. A., 2005. Project Manager’s Spotlight on Planning. Harbor Light Press, San
Francisco, CA, USA.

Zhong, C.-B. and J. House. 2012. Hawthorne revisited: Organizational implications of the
physical work environment. Research in Organizational Behavior 32(0), 3–22.

Chapter 6

Software Project Pricing

6.1 From Cost to Pricing
Project pricing is how much we charge the client for a project. As excellently
pointed out by Sommerville (2007), there is no simple relationship between
cost and pricing, since broad organizational, contractual, political, and business
considerations influence the price charged.

To understand better some pricing strategies for software products, a good start-
ing point is to look at a product life cycle and understand what are the sources of
costs and revenues for a software system. This is shown in Figure 6.1, where we
distinguish four different phases:

1. Inception (or feasibility) is the phase during which an organization analyzes
the opportunities and risks related to the development of a new software sys-
tem and authorizes its development. In some cases, the process is initiated
internally. This is the case of products that will be sold or deployed inter-
nally to improve the organization’s efficiency or capabilities. In other cases,
the process is initiated externally. This happens, for instance, if a prospective
customer asks for the development of a one-off software system or specific
services related to a product of the performing organization. The activity is
organized as one or more projects, using the project selection techniques we
have seen in Section 3.1.

2. Development is where the actual development of the software system takes
place. Software development is organized with one or more projects, as
illustrated in the previous chapters.

3. Operation and maintenance is where the system is used and updated
to meet old requirements, which were implemented wrong, and new

187

188 � Introduction to Software Project Management

System
development Operations DivestmentBusiness

justification

(Product evolution
and upgrade)

Maintenance

Figure 6.1 The life cycle of a product.

requirements coming from changed conditions in the operations or business
environment.

4. Divestment is the phase during which a system is retired. Divestment costs
might be significant; consider the case of stopping a nuclear power station.
For software systems, however, the situation is rather different and the costs
related to the divestment of a software system are mainly related to migrating
the application data to a new operating environment.

All phases of the process mentioned above are a source of costs for an organiza-
tion. They are also a form of investment and a source of revenue, according to the
project goals and the destination of the product being developed. To exemplify, let
us consider two different scenarios.

The first is a situation in which a software house decides to develop a new prod-
uct to be sold to users. Inception and development of the system is an investment;
during these phases, in fact, the software house will be spending money without
getting any revenue for the work being performed. During operations, the situation
is partly reversed: money will start flowing in from selling the software. For business
to make sense, the revenues should sustain the operational costs (e.g., maintenance
and support), cover the inception and development costs of the system built (or the
inception and development of a new system), and allow for some profit.

The second is a situation in which a customer requires services for the devel-
opment of a one-off system. We can take two different points of view, that of the
customer and that of the contractor. From the customer’s point of view, inception
and feasibility are a cost; the first may be as an internal investment (e.g., to evalu-
ate the benefits of the system); the second may be in the form of services requested
of the contractor. During operations, the client will save money or possibly make
more money by using the system developed. When the system is retired, the cus-
tomer will bear the expenses. The contractor is in the opposite situation. Inception
and development will be a source of profit. During operations, various situations

Software Project Pricing � 189

occur. The contractor might incur unexpected expenses if a low-quality delivery,
for instance, requires extensive corrective maintenance. Conversely, the contractor
could incur additional revenues if the client asks for new functions to be added to
the system.

The scenarios above are quite common and apply to different kinds of projects
and products, not necessarily software systems. Software and the characteristics of
the software business, however, introduce novel possibilities in the arrangements
between the client and the supplier.

Software, like any other digital good, is extremely cheap to reproduce: thus, most
of the costs related to the software business are for the production of the first copy.
Software is also cheap to distribute through the Internet. This, and the fact that
the software industry is more internationalized than any other sector, fuels a global
competition like no other (Bruxam et al., 2013).

This chapter introduces some basic concepts about project and product pricing.
It is a vast subject, whose surface we can only scratch. Here, we will look at some of
the basic principles and concepts.

6.2 Software Pricing
6.2.1 Software Pricing Models
According to Bruxam et al. (2013), there are three ways to determine the price of
software:

1. Based on cost
2. Based on value
3. Based on competition.

Cost-based pricing determines a project price based on the costs. Costs related
to software, as we have seen, include production and distribution. Production costs
can be estimated using the techniques we have seen in Section 3.4 or, more simply,
accounted for once a system is production-ready. Operating costs include distribu-
tion, maintenance, and customer support and are sometimes underestimated.

Things are not so clear-cut, though. To provoke the reader, Davidson (2012)
suggests that production costs are sunk costs, that is, money already spent and
therefore unrecoverable. Thus, according to the author, only operating costs should
be part of the pricing equation. We elaborate a bit and say that cost-based pricing
should at least cover the operating costs; otherwise, it would not even make sense to
distribute a software system. Cost-based pricing should thus carefully analyze what
are operating costs, which are often hidden; consider the time spent on customer
support. If we want our business to grow, on top of that, cost-based pricing should
allow a sufficient profit to pay for the development of new systems.

Value-based pricing determines the cost based on how much the customer is
willing to pay. This allows one to define a pricing strategy more flexibly, since it is

190 � Introduction to Software Project Management

based on the perceived value of a system. The perceived value can be changed in dif-
ferent ways. For instance, Davidson (2012) suggests using the company’s reputation,
offering a better service, and creating a community or a sentiment behind a specific
brand or product.

Finally, competition-based pricing determines the cost based on how much the
competition is charging for a similar system.

6.2.2 Selling and Licensing Software
Ownership is another important factor in determining the value and the price of a
software system.

In principle, three possible schemas are applicable: licensing, leasing, and selling.
When a company licenses a software system, it grants the right to use the soft-

ware to a customer, while retaining the ownership. The license is usually sold and the
money made with the licenses is used to pay for the development and maintenance
costs, as described above.

Licenses are sold in different ways. The most common is selling by the copy.
Larger organizations often benefit from bulk purchases, with which they buy, at a
discount, the right to use multiple instances of the software. Bulk purchases, in turn,
can be by user, by seat, or by instance, according to whether the number is bound
to the people who have the right to use the system, to the computers on which the
software can be run, or to the maximum number of instances that can run at any
given time.

Leasing is another schema in which the right to use the software is sold for
a limited period. Users need to renew their licenses on a regular basis. Similar to
many other markets, in some cases, the entry cost is set low to reduce the barrier to
entrance. Leasing is very popular with web applications, since access to a system is
directly controlled by the company leasing the software, which can grant it or revoke
it as needed. Some desktop applications also use or offer a leasing mechanism. This,
however, requires specific protections to be in place, so that the software does not
run if the lease has expired.

With respect to the previous model, leasing has some advantages both for the
client and the seller. The first, in fact, can get the product at a lower entry cost. The
second has a revenue model that guarantees more steady revenues.

Finally, software can be sold. Although this is seldom (if ever) the case for off-
the-shelf software, for one-offs, the client might be interested in taking ownership
of a system.

6.2.3 Open Source Software
A very peculiar type of license is that of open and free software. The concept has
its roots in 1983, whenRichard Stallman started theGNU project with the goal of
building an operating system that would be free for users to use and for developers

Software Project Pricing � 191

to collaborate on (GNU Software Foundation, 2013). In the process, he also started
a movement that has led to the development of industrial-strength software used
by millions of people, such as the Firefox browser, the Linux operating system,
the Apache HTTP Server, the LibreOffice office suite, and the Ruby On Rails
development framework, to mention a few.

Today, the term free software has a relatively broad meaning, with different
rights and obligations for users. Some free licenses simply allow one to use an
application without paying any fee. Other approaches, which we call open source
software, also make the source code available for anyone to improve and use. Even
if we restrict our attention to open source software, more than 60 different licensing
schemas are available Open Source Initiative (2013). Of these, according to Open
Source Resource Center (2012), two of the most popular are the GNU General
Public License and theMIT License. The former protects original and any deriva-
tive work, which has to be made available under the same license (Free Software
Foundation, 2007). The latter is a very liberal schema that allows the software to be
reused and relicensed as one wishes (MIT, 2013).

There are different motivations for developing a system using an open source
license. Ideals are the main driver of many like Stallman. Others use it as a way to
build a critical mass and foster the development of applications for which there are
not enough resources. This is the case, for instance, of Netscape, which released the
source code of its browser,Netscape Navigator, as an attempt to resist the increasing
pressure set by Microsoft with Internet Explorer (Kornblum, 1998; Lewis, 1995).

Open source software can also be a source of revenue. The main models include

� Donation and gadgets
� Service providing
� Advertisement
� Market segmentation and freemium services.

Various organizations behind the development of open source systems base their
revenue on donations or by selling gadgets, such as T-shirts or mugs. This is the
case, for instance, of Mozilla and the GNU Software Foundation.

Another way to make a living out of open software is by selling services. RedHat,
for instance, distributes a custom version of Linux for free.∗ The company makes a
profit by selling customer support, training, and other services.

Revenues can also come from showing advertisements while the application is
running. The schema is used mostly with web applications and with applications for
smartphones. In both cases, specific developer kits are available to try and customize
the advertisements based on the user characteristics. In some cases, companies also
offer an ad-free version at a price, a case of market segmentation.

∗ Linux is distributed with the GNU License, which makes the software and any derivative work
open source. RedHat could, in principle, sell the software as long as it made available all source
code.

192 � Introduction to Software Project Management

Various companies offer a base version of a system for free and charge users
for additional services. This is an example of market segmentation or freemium
services, a contraption of the free and premium words. For instance, Github, a
source-code hosting company, offers a freemium service. Similar to the previous
case, freemium systems break the barrier to entrance by making it easier for a user
to try a new system, switch to it, and eventually pay for the additional services which
the platform offers.

We conclude by noting that some for-profit companies developing closed-source
software support and profit from open source systems. In a typical scenario, an open
source component might be the basis for closed-source extensions. The company
licenses the closed-source extensions while making available its contribution to the
open source component, on which their system is based. This is done both to fulfill
open source licensing obligations and to keep a community working on the open
source component. This is the case, for instance, of Apple’s operating system (OSX),
whose operating system is partly based on BSDUnix, released under an open source
license.

In other situations, the open source component might be made available to
foster integration and extensions by a community of volunteers. This is the case,
for instance, of Ruby On Rails, a web application framework made available
under a very liberal open source license. David Hansson developed the first
version of Ruby on Rails, while he was working at 37Signals on BaseCamp,
the flagship product of the company. Today, Ruby on Rails is a very popu-
lar web applications development framework. Releasing Ruby On Rails in open
source fostered the growth of a large community. Thus, additional effort required
to make a system open source was richly rewarded by the vibrant community
it created and the visibility obtained by the company and its products. Thus,
even if the initial release was not motivated by self-interest, it created a win-win
situation.

In synthesis, companies and foundations alike support the development of open
source software. Projects developing software in open source have produced hun-
dreds of millions of source lines of code and systems as large as 30.7 million source
lines of code (Black Duck Software, 2013). It is therefore an opportunity and a
model to consider with attention.

6.3 Project Pricing Strategies
In the previous section, we have seen some techniques to determine the price
of a software system. On many occasions, however, this can be very difficult or
irrelevant.

In these situations, looking at the project costs is a second good strategy. We
can take two points of view, that of the client and that of the supplier. Basically,
the strategies described in the following sections allocate financial risks between the

Software Project Pricing � 193

supplier and the client, trying to find the equilibrium that makes it convenient
for both parties to achieve the project goals, given the constraints. Given the fact
that the client and the supplier often have different goals, this process is difficult,
challenging, and very interesting.

6.3.1 Determining the Project Price
From the supplier’s point of view, given the basic equation:

Price = profit + costs (6.1)

we can end up with different project pricing strategies, according to which one of
the elements we fix in the equation (Maylor, 2010).

We can fix the price. Setting the price of a project to howmuch a client is willing
to pay, for instance, can be an effective way to get a contract. The strategy, called
pricing to win, however, constrains every other project aspect around the price.
Risks include the possibility of not making any profit or delivering at a loss. If the
price is set too low, another risk is compromising the quality or the delivery of the
project outputs.

To mitigate the problems above, a target costing strategy can be put in place.
According to this strategy, both price and profit are determined. The first is based on
a value that makes the project competitive, the second according to the desired mar-
gin of profit. The costs are then met by elaborating on the other project constraints.
The management, for instance, can evaluate different implementations; it can make
project activities more efficient, or it can push the cost constraints to suppliers of
project components.

The technique, applied systematically by Japanese companies, is today popular
in the aerospace and automotive fields (Maylor, 2010). See Feil et al. (2004) for a
nice historical overview.

An alternative schema fixes the profit and determines the price based on the
actual costs incurred on a project. The profit is typically in the form of a percentage
of the actual costs. The schema increases the probability of achieving the time and
quality goals one desires. However, one risk for the client is that costs spiral out of
control. Another consideration is that there are no incentives, from the economic
point of view, to deliver efficiently or according to the required quality and schedule.

Finally, it has to be remarked that an organization may deliberately choose to
be not profitable in a project to achieve a more strategic goal, such as entering a
new market, getting a new important client, and limiting competition from other
companies. In these situations, project costs need to be covered internally.

6.3.2 Contractual Agreements
Given the constraints above, we can come with different contractual agreements
that try and allocate project risks between the client and the supplier.

194 � Introduction to Software Project Management

Fixed price contract is a kind of agreement where the price is fixed at the
beginning of the project for a given set of services or products to be delivered.

For the supplier, this contract requires accurate estimations and sufficient mar-
gins to accommodate for changes in the effort and other unexpected expenditures.
It suits better projects in which the requirements are very clear. The client will end
up paying an extra price (the margin imposed by the vendor to accommodate for
unexpected events), but the price will be known before starting the project.

If estimations are inaccurate or the price is set too low, one risk is compromising
project deliveries, as explained above. As pointed out in Wysocki (2011), “all poten-
tial suppliers might agree on a fixed price, but this could be a way to just get in the
door and work the details later.”

In specific cases, for instance, if the requirements volatility becomes unexpect-
edly high, additional agreements might be set to deal with unforeseen expenses. A
“cost-plus” contract, however, might be more appropriate if the risks are known in
advance—see below.

Time and materials is a kind of agreement in which the supplier exposes the
costs to the client and bills according to the actual costs incurred. It requires the
vendor to track the activities and actual time spent on the project. An additional
effort might be required to check the eligibility of expenses, some of which might
not be covered by specific agreements.

An initial estimation can be set to give a rough estimation of the project costs.
The contractual agreement, however, corresponds to the fixed profit pricing strategy,
since additional expenses are covered for, if the initial estimations are not met.

The agreement works well in situations with a high uncertainty or volatility of
requirements, since it shares the project risks between the two contracting parties.

Retainer is a kind of contract in which a fixed price is paid to the vendor in
exchange for a fixed amount of time provided.

It is equivalent to renting manpower to achieve a specific goal and, similar to the
time and materials agreement, it works better when the requirements are not clear
and have a high variability.

Finally, cost plus is a kind of agreement in which the buyer pays a contractor
for all the allowed expenses up to a set limit. An additional payment is foreseen to
allow the contractor to make a profit if certain conditions are met.

This kind of agreement is applied by government agencies for larger projects
when it is difficult to come out with a price and the project execution risk is shared
between the buyer and the vendor.

There are various kind of cost-plus agreements, among which we mention

� Award-fee contracts, if the additional payment is bound to the final quality
of the product.

� Incentive-fee contracts, if the additional payment is bound to contracts that
meet or exceed the performances. Incentive fee contracts reward efficiency.

� Fixed-fee contract, if the fee may be adjusted as a result of changes in the
work to be performed under the contract. This permits contracting for work

Software Project Pricing � 195

that might otherwise present too great a risk to contractors. However, it pro-
vides the contractor only a minimum incentive to control costs (Government,
1998).

Cost-plus can be used when efficiency, quality, or improved performances are a
desirable feature. Think, for instance, of the U.S. space program.

However, cost control becomes more difficult. Moreover, similar to time and
materials, additional bookkeeping is necessary, for example, to verify that all the
expenditures exposed by the contractor are eligible.

6.3.3 Contractual Agreements and Project Budget
From the financial point of view, the client and the supplier have contrasting goals
in setting a schedule for payments. The client typically would like to pay as late as
possible, while the supplier tries to be paid as soon as possible.

A reasonable compromise must be found between the client and the supplier
to show a reciprocal commitment, reduce the financial exposure of the supplier,
and minimize the risks of the client paying for services or products that will not be
delivered.

To demonstrate the balance that needs to be established between the supplier
and the client, consider Burke (2006), who discusses the future and past or sunk
costs. In economics, only future costs and profits have to be considered when taking
a decision. Any decision we take, in fact, will not allow us to change the past: we
can make new money, but nice as it would be, we cannot “unspend” the money we
have already spent.

Thus, if financial consideration is the only element to decide whether a project has to
continue or is better stopped, the supplier has a simple equation: it has to determine
how much the project will cost to complete and how much money the project will
award at completion. If the amount is positive, then the project is worth continu-
ing; if not, there is no financial reason to continue a project. Thus, the agreement
between the client and the supplier should be such that the money awarded at the
end of the project is higher than the cost to complete it.

However, if payments are awarded only at project delivery, a significant invest-
ment might be required on the supplier side. The required financial exposure might
be impossible to bear or the risk of not being paid at the end of the project could be
considered too high to actually get started with the work.

Two main types of agreements are achieved to solve the problem above:
payments based on deliverables or time billing.

When adopting a payment structure based on deliverables, the client awards
the customer a percentage of the total project price on achievement of specific
deliverables or an important project milestone.

The actual payments have to be agreed case by case. An approach fixes the
payments based on the costs to achieve a milestone. The schema ensures that,
in nominal conditions, the costs to complete it are always lower than the money

196 � Introduction to Software Project Management

awarded. Moreover, the financial exposure for the supplier is limited, since payments
are performed milestone by milestone.

To reduce the risks of the supplier, an advance payment might be requested at
project start. This has the advantage of showing the commitment of the client to the
project. For software development projects, the advance payment is often between
20% and 30% of the project total budget. A large number of projects require an
advance payment on contract signing.

To simplify the process, organizations working in specific sectors standardize
both the milestones for which they ask a payment and the payment structure, in the
form of a percentage of the total amount charged for the project.

Stack Overflow (2008) and Hunt (2010) describe the payment structures actu-
ally used by some software consultants. One of the schemas described there, for
instance, requires a 20% advance payment, followed by a 70% payment on software
delivery, and a final 10% awarded on project completion.

A second approach, called time billing/reimbursement, requires payments on
a regular basis according to the expenses the supplier has actually incurred.

When using this schema, at the end of every reporting period, the supplier bills
the client based on the time actually spent on the project and, if allowed by the
agreement, for the expenses actually incurred. If the agreement does not include the
reimbursement of any expense, the client bills only for the time. In this case, an
overhead is added on top of the hourly rates to cover for the other project expenses.
See Section 3.7. Additionally, a percentage might be added on top of the invoice as
a profit by the organization.

An important aspect characterizing time billing is the required amount of for-
mality. Some public bodies, such as the European Union, require a detailed account
and actual proofs of the expenses sustained. In other situations, the level of formality
might be lower. The paperwork required for both parties changes a lot.

Finally, in specific cases, an analysis of the cash flow can be used to determine the
actual financial needs of a project and, based on that, decide on a payment structure.
This is particularly important if the project has to self-sustain financially.

The four diagrams of Figure 6.2 show the impact of different payment structures
on the cash flow of a project. The first diagram (Figure 6.2(a)) shows a retainer
agreement, in which payments for services to be provided (marked P1, P2, and P3)
ensure the project is self-financed. The second diagram (Figure 6.2(b)) shows a time
billing agreement, in which regular payments (marked P1, P2, and P3) reimburse
for the actual expenses incurred. The project needs a continuous investment from
the supplier. The risks are lowered by regular payments that cover the actual costs.

Figure 6.2(c) and (d) show payment structured by milestones. In the first case,
shown in Figure 6.2(c), the project is largely self-financed. This is made possible
by an advance payment (P1) and a milestone payment (P2) that also cover some
future project costs. The last case, shown in Figure 6.2(d), is a project that requires
an investment from the supplier, which is nearly covered on payment P1 and finally
covered at the end of the project, with payment P2.

Software Project Pricing � 197

Time Time

TimeTime

$ $

$ $

P1 P2 P3
P1 P2 P3

P1 P2 P3

P1 P2

(a) (b)

(c) (d)

Figure 6.2 The impact of different payment structures on a project cash flow.
(a) Using a retainer payment structure; (b) using time billing payment structure;
(c) with an advance payment by milestone; (d) without an advance payment by
milestone.

6.4 Procurement and Outsourcing
Projects require different competencies and abilities, and often their success is the
result of a joint effort of different companies and consultants.

Procurement management is the set of activities to effectively manage vendors
and contracts with vendors. It spans different phases of a project life cycle, including
planning, execution, and project closing.

The procurement process can be organized in the following four activities:

1. Identify needs, during which the actual procurement needs are made clear.
2. Identify vendors: solicitation, selection, award, during which the most

appropriate vendor is individuated. Different approaches can be used. We
will have a look at the main ones below.

3. Manage contract execution, during which the project manager will moni-
tor and control the project by ensuring that the procurement activities are
proceeding as agreed.

4. Accept final product, during which the product is accepted.

When we outsource we start a (sub)project in which we take the role of the
client. The techniques we have seen in the previous chapters therefore help us set up
the main activities required for a sound management of the procurement activities.

For instance, the needs identification phase can use the assessment techniques we
have seen in Section 3.1. If we need to choose between externalizing some activities

198 � Introduction to Software Project Management

or performing them in-house, for instance, we can use a make or buy analysis to
analyze the benefits and risks and select the best alternative.

A similar consideration applies to managing contract execution. The monitoring
and control techniques we have seen in Chapter 3 help in establishing clear goals and
analyzing subcontractors’ performances. One aspect to consider is that visibility over
the actual project data of subcontractors might be limited. Thus, it becomes more
important to define reporting duties and what metrics and data the subcontractor
should make available.

The acceptance of the final product can be conducted using the quality assurance
and testing techniques illustrated in Chapter 4.

More interesting are the considerations related to the vendor selection process,
which we describe in more detail in the following two sections.

6.4.1 Vendor Solicitation
Vendor solicitation is the process according to which potential vendors are
contacted and informed about your business needs.

This is usually done with an invitation to tender. The invitation to tender
contains a specification of the products and services to be provided, together with
other constraints related to the proposal.

At a minimum, an invitation to tender will include the following:

� A specification of the products or services to be provided. Think of a scope
document. Attention should be paid to ensure that the document clearly states
the goals and constraints related to the contract, such as, for instance, timing,
quality, and costs; required reliability and compliance with standards; type of
support to be provided after the contract ends; andmanagement of intellectual
property rights.

� Procedure to submit a proposal and the selection criteria that will be used
to award the contract. Best price is a selection criterion. Other considera-
tions might be equally important, as we saw when we discussed contractual
agreements—Section 6.3.3. The selection criteria are typically required for
contracts awarded by public administrations.

Contractors distribute invitations to tender through various channels, such as
advertisements in newspapers, websites, mailing lists, and specialized journals; gov-
ernments make available their tenders in official documents (e.g., Official Gazette);
some companies and some websites provide services of collecting tenders by type
and sector.

Tenders can either be open, when any subject can participate, or restricted,
when only the supplier can be contacted by the buyer to participate in the bidding
phase.

Software Project Pricing � 199

In some situations, a direct call or negotiated procedure to a single vendor
might also be used. Restricted and direct calls are used when there are specific project
concerns. In these cases, the selection process includes only the vendors who satisfy
certain constraints, like having adequate or specific technical competencies. Con-
cerns about financial solidity and the capacity to support the delivered solution after
the project ends might also be taken into account. The standard bidding procedure
for public administrations is the open tender. Restricted or negotiated procedures
can be chosen in specific and motivated situations. The risk is, in fact, that of using
public money to favor certain contractors.

For open and restricted tenders, once the proposals are collected, the buyer will
select a vendor. This is done by evaluating how the different proposals meet the cri-
teria identified. According to the size and procedures in place, a commission might
be appointed with the task of evaluating the proposals.

Evaluations often use score matrices (Section 3.1.3.2) to measure the relative
merits of each proposal. In this case, the bid with the highest score is awarded the
contract. For score matrices to be fair and effective, of course, the criteria have to
be defined before any evaluation actually starts. The problem of fairness, of course,
remains in the way in which scores are assigned.

Table 6.1 shows a score matrix to evaluate and select different vendors. The
example is taken from the criteria used by the European Union to finance a class
of research projects (The Secretariat of the African, C. and P.A.G. of States, 2012).
In particular, the evaluation proceeds along two main dimensions, the relevance of
the proposal (called action in the table) and its design. Four criteria are identified for
assessing the relevance of the action; two for its design. Each criterion has a weight
of 1 and a maximum score is set for each criterion.

Note that making the evaluation criteria known in advance can help the vendor
define a proposal that is more fitting to the needs of the contractor.

For negotiated procedures and for contracts in the private sector, the procedures
mentioned above can be simplified.

Once the vendor is selected, a contract is stipulated among the parties. Con-
tracts specify the work to be carried out and the conditions regulating timing and
payments. These are usually specified through a technical annex, which describes
the work and the project. Additional clauses determine the ownership, liabilities,
and intellectual property rights. Laws governing the contract and the procedure for
the resolution of disputes complete the required information.

6.4.2 Procurement Timing Activities
Procurement of services and products can be a lengthy matter. Needless to say, suf-
ficient time and resources have to be allocated to ensure that the various activities
are carried out by the book.

200 � Introduction to Software Project Management

Table 6.1 Example of Selection Criteria for EU Research Projects
Criteria Weight Maximum Score

1. Relevance of the action
1.1 How relevant is the proposal to the objectives and

priorities of the call for proposals?
1 10

1.2 How relevant is the proposal to the particular needs
and constraints of the target countries or regions?

1 10

1.3 How clearly defined and strategically chosen are
those involved (final beneficiaries, target groups)?
Have their needs been clearly defined and does the
proposal address them appropriately?

1 5

1.4 Does the proposal contain specific added-value
elements, such as environmental sustainability, pro-
motion of gender equality and equal opportunities,
good governance and human rights, or climate
change?

1 5

2. Design of the action
2.1 How coherent is the overall design of the action? In

particular, does it reflect the analysis of the problems
involved and take into account external factors and
relevant stakeholders?

1 10

2.2 Is the action feasible and consistent in relation to the
objectives and expected results?

1 10

In general, the schedule should consider

� The preparation of the invitation to tender, during which attention must
be paid to ensure that all the relevant requirements (technical, project, and
support) are in place, since little (or nothing) can be done to change the terms
of the contract, once the invitation is out.

� Sufficient time for potential bidders to become aware of the bid and respond
properly. Open tenders solicited by the public administration in Italy need to
be published at least 50 days before the submission deadline. European project
proposals have even longer deadlines.

� Sufficient time to evaluate the proposals received. According to the procedures
in place, this could include the time to select and appoint a commission. Once
the commission is in place, it needs time to read and evaluate the proposals
and write a report explaining the choices. In some cases, commissions might
ask for clarifications from the bidders. In this case, additional time has to be
allocated so that the bidders can respond properly.

� Time to award the contract.
� Time for the contractor to actually deliver the products or services agreed

upon.

Software Project Pricing � 201

Table 6.2 Example of a Procurement Schedule
Calendar Time

Activity How (Working Days)

Preparation of the
invitation to tender

Involvement of the technical staff for
the requirements and of the legal
department for terms and conditions

5

Waiting for an offer
from the vendor

15

Evaluation of the offers Check with the technical staff that the
requirements are met; check the
additional conditions set by the vendor

2

Place the order Involve the procurement office and send
the request

1

Wait for hardware to
be ready

20

Total 43

For open tenders, this schedule results in months between the preparation of the
bidding and the actual start of the work.

Procurement is best scheduled backward, starting from the date on which a spe-
cific good or service has to be obtained and moving backward as the time required
by each activity is determined.

As a simple example, consider an activity to buy hardware. A possible schedule is
shown in Table 6.2. Many other examples are available. See Mills and Reeve (2011)
for another timescale.

6.5 An Example
Consider the Theater 3001 project we presented in Section 3.11.

To decide on a payment schedule, a simple approach is that of allocating costs
proportionally to the effort required to achieve each project milestone.

Approximating the numbers a bit, we get

� M1 Specifications: e8500
� M2 Environment and system: e31,000
� M3 Experimentation: e1500.
To minimize the risks related to financial exposure, we have different possi-

bilities:

1. We can choose a “time & materials” (or “retainer”) contractual agreement,
with payments fixed on a monthly basis. The schema ensures that we get paid
for the work performed and, in the case of the retainer contract, for the work
we will perform. However, these options might not be suitable for the client.

202 � Introduction to Software Project Management

2. We can choose a “fixed cost” contractual agreement, requiring an advance
payment to get started and other regular payments, based on the achievement
of project milestones. This schema minimizes risks on both sides, as explained
below.

A possible allocation of payments is shown in Table 6.3. We evaluate the schema
considering financial exposure and fairness of the agreement between the client and
the supplier.

Concerning the first point, we have a schema in which the client makes an
initial investment that covers the expenses at the start of the project. The supplier
then needs to cover the project costs with internal resources. The final payment is
then used to balance any due. (Note, however, that the tariffs we use already include
a profit; thus, the actual exposure of the supplier is lower than what the numbers
show.)

It can also be observed that

� The payment associated with M1, together with the advance payment, is
about the value of the work to produce the deliverables associated with the
milestone. It is thus fair both to the client and the supplier.

� The payment associated with M2 is necessarily lower than the value of the
deliverable, since we need to take from somewhere the funds to cover the
initial payment.

� The payment associated with M3 (end of project) is higher than the value
of the work to achieve the milestone. This is to keep the commitment of
the supplier in the project. Consider, for instance, the situation in which the
payment associated with the last milestone is equal to or lower than the costs
sustained by the supplier. Reasoning from a purely economical point of view, it
would be indifferent or, worse, counterproductive for the supplier to continue
work in the project.

For the reason highlighted above, the final payment usually has a higher
incidence than the one shown in the table.

Table 6.3 The Payment Schema for the Theater 3001 Project
Event Date Amount Euros Cumulative

Kick-off Jun 01 10% e4100 e4100
M1 Jul 02 10% e4100 e8200
M2 Sep 11 60% e24,600 e32,800
End Sep 30 20% e8200 e41,000

Total e41,000

Software Project Pricing � 203

6.6 Questions and Topics for Discussion
1. What are the main strategies to determine software price?
2. Consider the Theater 3001 project. Find the break-even point if we are given

the opportunity to license the system at e3000 each. What would be the
price we need to set if we intend to break even with 500 licenses?

3. What are the operational costs of the Theater 3001 system? Provide your
estimation of the costs.

4. What are the aspects to consider when leasing a software?
5. Set a leasing price for the Theater 3001 system.
6. Are there components of the Theater 3001 project you could make open

source without compromising opportunities for a business? What kind of
additional benefits could you achieve with such an arrangement?

References
Black Duck Software, 2013. Ohloh home page. Available at http://www.ohloh.net. Last

retrieved May 25, 2013.
Bruxam, P., H. Diefenbach, and T. Hess, 2013. The Software Industry—Economic Principles,

Strategies, Perspectives. Springer-Verlag, Berlin, Heidelberg, Germany.
Burke, R., 2006. Project Management, Planning and Control Techniques (4th ed.). John Wiley

& Sons, New York, NY, USA.
Davidson, N., 2012. Don’t Just Roll the Dice. Efendi Minibooks, United Kingdom.
Feil, P., K.-H. Yook, and I.-W. Kim, 2004, Spring. Japanese target costing: A historical

perspective. International Journal of Strategic Cost Management, 11, 10–19.
Free Software Foundation, 2007, June. GNU general public license. Available at

http://www.gnu.org/licenses/gpl.html. Version 3, 29 June 2007. Last retrieved May
25, 2013.

GNU Software Foundation, 2013, March. Overview of the GNU system. Available at
http://www.gnu.org/gnu/gnu-history.html. Last retrieved May 25, 2013.

Hunt, B., 2010. Tips on the structure and timing of payments for web site projects. Avail-
able at http://www.webdesignfromscratch.com/business/payment-timing-structure-
tips/. Last retrieved July 8, 2013.

Kornblum, J., 1998, March. Netscape sets source code free. Available at
http://news.cnet.com/2100-1001-209666.html. Last retrieved June 28, 2013.

Lewis, P. H., 1995, March. Netscape knows fame and aspires to fortune. Available at
http://www.nytimes.com/1995/03/01/business/business-technology-netscape-knows-
fame-and-aspires-to-fortune.html?pagewanted=all&src=pm. Last retrieved November
15, 2013.

Maylor, H., 2010. Project Management (4th ed.). Pearson, Harlow, England.
Mills & Reeve, 2011. Timescale tracker. Available at http://www.mrprocurement.co.uk/files/

Uploads/Documents/timescale_tracker.pdf. Version 1.07. Last retrieved November 15,
2013.

MIT, 2013. The MIT license. A template is available at http://opensource.org/licenses/MIT.
Last retrieved May 25, 2013.

204 � Introduction to Software Project Management

Open Source Initiative, 2013. Open source initiative, license by name. Available at
http://opensource.org/licenses/alphabetical. Last retrieved May 25, 2013.

Open Source Resource Center, 2012. Open source license data. Available at
http://osrc.blackducksoftware.com/data/licenses/. Last retrieved May 25, 2013.

The Secretariat of the African, Caribbean and Pacific (ACP) Group of States, 2012. ACP-
EU Cooperation Programme in Science and Technology II—Guidelines for Applicants.
Available at http://www.acp-st.eu/content/acp-eu-cooperation-programme-science-
and-technology-ii-st-ii-call-proposals-launched. Last retrieved November 15, 2013.

Sommerville, I., 2007. Software Engineering (8th ed.). Addison-Wesley, Redwood City, CA.
Stack Overflow, 2008. What payment structure do you use for small projects? Avail-

able at http://stackoverflow.com/questions/383975/what-payment-structure-do-you-
use-for-small-projects. Last retrieved July 6, 2013.

US Government, 1998. 48 cfr 16.306—cost-plus-fixed-fee contracts—code of federal regu-
lations. Available at http://www.gpo.gov/fdsys/granule/CFR-2010-title48-vol1/CFR-
2010-title48%-vol1-sec16-306/content-detail.html. Last retrieved April 25, 2013.

Wysocki, R. K., 2011, October. Effective Project Management: Traditional, Agile, Extreme (6,
illustrated ed.). John Wiley & Sons, New York, NY, USA.

Chapter 7

Managing Software
Development Projects

7.1 Project Life Cycles
So far, we have looked at the activities to build software (Chapter 2) and at the
activities to manage software development processes (Chapters 3 through 5). We
paid less attention, however, to the way in which they integrate in a coherent process.

In this chapter, we look at the development processes that have been proposed
to accommodate the needs of different types of software development. Some favor a
more thorough definition of the problem and solution before moving to the imple-
mentation phase. Others embrace flexibility and start implementation with partial
information. In some cases, processes also come with a set of best practices and
prescriptions that explain how activities should be carried out. In all cases, these
approaches influence the organization of work, the structure of teams, and also the
typical documentation and paperwork that a project produces.

At a bare minimum, we can characterize processes along two main
dimensions:

1. The linearity of the process: the order in which the development of more
elementary components of the project is organized

2. The formality of the process: the amount of infrastructure a project requires.

Concerning linearity, we can distinguish sequential, cyclical, and parallel develop-
ment. The first proceeds from specification to implementation, with little opportu-
nities for backtracking. The second organizes development in different rounds, with
each round delivering more or improved functionality. The third uses concurrent

205

206 � Introduction to Software Project Management

development: an initial activity organizes further development efforts, which are
then carried out in independent and parallel tracks; a final activity integrates the
contribution of the different tracks.

If we look at the formality of the process, authors distinguish among traditional,
agile, and extreme project management.

The term traditional project management denotes highly structured frame-
works, in which managers use the techniques described in Chapters 3 and 4 to plan
and monitor projects. The underlying assumption is that efficiency can be achieved
with a top-down and planned organization of work. Only with this approach, accord-
ing to their advocates, it is possible to eliminate misunderstandings, errors, and
rework, while at the same time promoting an efficient use of resources. To go back
to our millefoglie example, traditional managers prefer a well-structured millefoglie,
with each layer nicely laid out.

Agile project management, by contrast, focuses on efficiency and flexibil-
ity. For the supporters of agile methodologies, management is an infrastructure
that adds unnecessary work and unnecessary rigidity to the process. According
to their supporters, projects should exploit any opportunity to improve the qual-
ity of a product and the efficiency of its development. This cannot be achieved
if the development process is highly structured and regulated. Agile thus favors
people over processes and interaction over formality. Agile fans prefer a low-fat
millefoglie.

Finally, high-risk and exploratory projects require evenmore flexibility than agile
methodologies can provide. Extreme project management thus denotes a situa-
tion in which long-term planning is impossible: high speed, high change, and high
uncertainty are the three conditions characterizing these projects. Extreme project
managers do not know whether they will have a millefoglie for dessert.∗

When starting a new software development project, managers are faced with the
need to choose a management approach and a development process. There is no
such thing as the best process. Factors such as the criticality of the application, uncer-
tainty, and unpredictability of the project environment, organizations and people
involved, and regulations and recommendations determine which is the most appro-
priate choice. Quoting McCracken and Jackson (1982), “To contend that a life cycle
scheme, even with variations, can be applied to all system development is either to
fly in the face of reality or to assume a life cycle so rudimentary as to be vacuous.”

The next sections therefore provide some more information to take more
informed decisions. The processes we present compose the elementary activities
that we have presented in Chapter 2, organizing them in different ways in order
to adapt to different project conditions. The focus will be on the organization of

∗ Notice that extreme project management is different from extreme programming, which we will
see in Section 7.3.1.

Managing Software Development Projects � 207

the technical activities; the combination of a development process with a proper
management framework will help ensure that all pieces fit together.

7.2 From Traditional to Agile
7.2.1 The Waterfall
The waterfall is traditionally the first process presented in books and courses, given
its rationality and simplicity. We confirm the rule and start from the process defined
by Royce in the 1970s.

Simplifying a bit, in the waterfall development activities proceed sequentially,
from conceptualization of the problem to delivery of the final product. Each activity
of the process takes as input the outputs produced by the previous activity of the
chain, uses them to produce artifacts closer to the final product, and passes the
outputs to the next activity in the chain (Royce, 1970).

A simplified version of the waterfall process is shown in Figure 7.1. (We changed
the naming and number of activities, which are more articulated in the original
definition.) The first activity is requirements, which outputs the requirements doc-
uments. This, in turn, is used to define the system architecture during the design
phase. The phase produces a system architecture. This is the input for the next
activity in the chain, namely, implementation, which produces the system to be
tested. The last two phases in the process are testing, during which the system is
checked for compliance with the requirements, and deployment, during which the
system is installed in production.

Requirements Design Implementation Testing

Requirements
document

System
architecture System System

ready

Deployment

System in
production

Figure 7.1 The waterfall.

208 � Introduction to Software Project Management

The model can be easily extended to accommodate project management activi-
ties. In its simplest extension, the process starts with a high-level planning activity
to define the project scope, schedule, risk, and budget. If algorithmic estimation
techniques are used, after the requirements phase, a second detailed planning takes
place. This generates the plan for the subsequent development activities of the
waterfall. Amonitoring and control activity runs in parallel with the development
activities. A final closing activity properly terminates the project. This is shown in
Figure 7.2.

In the ideal case, the waterfall is a staged process in which quality control on the
outputs of an activity determine the transition to the next activity, with no possibil-
ity of backtracking. In practice, lack of information, misunderstandings, mistakes,
and changed conditions cause some backtracking. For instance, during the coding
phase, it might become necessary to revise the system architecture to fix a conceptual
and unanticipated issue that is making implementation cumbersome.

The rigidity of the waterfall is, at the same time, its main advantage and weak-
ness. In projects where the requirements are very clear or in which a controlled
development environment is very beneficial, the waterfall process shows its advan-
tages. However, in many other cases, the rigidity of the waterfall can hinder, rather
than speed up, development.

Different variations of the waterfall have been proposed in the literature to over-
come some of its limitations. For instance,McConnell (1996) mentions the sashimi
waterfall, where activities are allowed to overlap, the waterfall with subprojects,
in which the implementation of different components defined by the architecture

Requirements Design Implementation
and testing Deployment

Requirements
document

System
architecture System System in

production

High-level
planning

Management
documents

System sizing
and detailed plan

Management
documents

Monitoring
and control Closing

Project
data

D
ev

el
op

m
en

t
ac

tiv
iti

es
M

an
ag

em
en

t
ac

tiv
iti

es

Figure 7.2 The waterfall with project management activities.

Managing Software Development Projects � 209

proceeds in parallel, and the waterfall with risk reduction, in which an initial risk
analysis helps mitigate risks in the later phases of implementation.

The approaches just mentioned introduce some flexibility while retaining the
waterfall’s main characteristics. In many situations, however, even these changes
are not sufficient and a more radical approach is necessary. Abstracting a bit, these
models variate on the waterfall model by

� Allowing for structural backtracking during the testing phase. In the V-
cycle model, testing activities provide systematic ways to consolidate the
implementation or backtrack to the most appropriate development activity.
This is explained in more detail in Section 7.2.2.

� Allowing for an iterative and evolutionary development of the system. All
the phases are repeated various times to deliver increasingly refined versions of
the system. This is explained in more detail in Section 7.2.4.

� Blurring the boundaries between activities. By further pushing the sashimi
model, processes organize the development in stages in which different activ-
ities run in parallel with different levels of intensity. This is explained in more
detail in Section 7.2.3.

� Embracing flexibility and change. By reducing management and paperwork
in favor of flexibility and efficiency, software development becomes more
efficient. This is explained in more detail in Section 7.3.

In the following paragraph, we present the different processes using a similarity
approach, in which we slowly move away from the waterfall model, rather than a
chronological approach, which would favor a historical presentation of the methods.
One of the motivations is that older, in this context, does not mean obsolete. The
waterfall is still applied in many development projects.

7.2.2 The V-Model
The V-Model is a process adopted by the German Federal Government that empha-
sizes the verification and validation of a system. As pointed out by IABG (2013),
the model has undergone various revisions since its first definition in 1992, and it
has been elaborated in different versions. Some of these versions focus on the devel-
opment phases, while others propose a broader framework that includes technical,
support, and managerial activities. We will focus on the technical activities only,
pointing the reader to Testing (2013) and Christie (2008) for a discussion about
some of the variations of the model.

As we have seen in Section 2.4.1, testing can be organized in different activities,
according to their scope. The V-Model, in particular, distinguishes four types of
testing:

1. Unit testing, which focuses on each component
2. Integration testing, which focuses on the integration of components

210 � Introduction to Software Project Management

3. System testing, which evaluates the compliance of a system with its specified
requirements

4. Acceptance testing, which is meant to evaluate that a system meets its
customer’s specification.

As we move from unit testing to acceptance testing, we increase the scope of the
activity. The impact of bugs increases similarly. Bugs discovered during unit testing
require local changes, while bugs discovered during acceptance testing require a
more thorough analysis of the overall process. Consider the following two cases: a
bug discovered during unit testing and a bug discovered during acceptance testing.
The first is caused by an incorrect implementation of a module and it will be fixed by
modifying the code of the module under test. A bug discovered during acceptance
testing, however, has more far-reaching implications. The bug, in fact, could have
originated during the system specification phase, when analysts incorrectly captured
a customer requirement. The fix, in general, will require a revision of all choices
taken after the error was made. This is the only way, in fact, to ensure that the
correct fix is applied.

The V-Model accommodates such differences by having different testing activ-
ities causing backtracking at different depths in the process. The organization of
core development activities foreseen by the V-Model is presented in Figure 7.3.
The left side of Figure 7.3 shows the development/construction activities. The pro-
cess proceeds from the specification of the requirements to coding in a way similar
to the waterfall. The process differs when testing activities start, as shown on the

Requirements

Specification

Architectural
design

Coding Unit testing

Integration
testing

System
testing

Acceptance
testing

Figure 7.3 The V-cycle.

Managing Software Development Projects � 211

right side of Figure 7.3. More specifically, the V-Model organizes testing in the
four activities we presented above. Bugs discovered in each testing phase will cause
the process to restart from the first development activity that might have origi-
nated them. Thus, for instance, unit testing has two possible outcomes. If all tests
pass, the process moves to the next phase, namely, integration testing. However, if
some unit test fails, the process is restarted from the first development activity that
might have caused the problem, namely, coding. Similar is the case for the other
activities.

7.2.3 The Rational Unified Process
The rational unified process (RUP) is a framework designed by Rational Software,
the company also behind the definition of the Unified Modeling Language.∗ RUP
is a very articulated framework that aims at supporting a wide range of software
development projects. Its application typically requires one to select which activities
are relevant and to tailor the process to the needs at hand.

The specification of RUP is based on best practices and on process specifi-
cation, which describes how to organize activities while taking advantage of tool
automation.

There are six main practices behind RUP:

1. Develop software iteratively. The goal is to allow increasing understanding
of the system to be developed, similar to the spiral model.

2. Manage requirements. The goal is to provide adequate support to commu-
nicate with the customer, to evaluate different alternatives, and to manage
changes.

3. Use component-based architectures. The goal is to support an incremen-
tal approach to development by building robust components that can be
integrated.

4. Visually model software. The goal is to simplify communication and to use
a simple and unambiguous representation to build a shared vision.

5. Verify software quality. The goal is to ensure adequate quality of the final
product.

6. Control changes to the software. The goal is to provide adequate change
management practices that support iterative development.

See Sommerville (2007) and Rational Software (2011) for more details.
RUP recognizes that during software development, different activities run in

parallel and overlap, rather than being neatly separated like in the waterfall. The
process is thus presented according to two dimensions, one that takes into account
time and development phases and the other that takes into account development
activities.

∗ Rational Software is now a division of IBM.

212 � Introduction to Software Project Management

RUP organizes development activities in nine workflows. Seven of the work-
flows correspond to those we have already seen in Chapter 3.

They are

� Business modeling
� Requirements
� Analysis and design
� Implementation
� Testing
� Configuration and change management
� Deployment.

RUP adds two additional workflows. A project managementworkflow includes
all activities related to managing a system, while an environment workflow is
concerned with making the proper tools available for development.

Workflows run throughout a project. However, as development progresses, con-
cern and focus change and we can distinguish different phases. Thus, RUP organizes
four development phases. These are

� Inception, during which the main ideas and operating requirements of a
system are identified

� Elaboration, during which the requirements are used to define the system
architecture

� Construction, during which the system is actually built
� Transition, during which the system is deployed and the next phase is planned

for.

Each phase terminates with a well-defined milestone, during which the team
verifies that key goals of the phase have been achieved. If necessary, each phase can
be further organized into iterations to break the complexity of system development
in more manageable chunks.

As mentioned earlier, all workflows are active during all phases of development,
with different levels of intensity. Thus, for instance, the main effort during inception
will be spent on business modeling. However, the team will also engage in some
requirements elicitation. If necessary, some analysis and design will allow the team to
analyze some of the issues that could emerge in later phases of development, thus
minimizing the risks. Similar is the case for the other phases.

One of the advantages of RUP is that it comes with a step-by-step guide and
a set of templates that can be used to kick-start a project. This simplifies a bit its
application and the costs related to its adoption. On the other hand, as mentioned
earlier, the process and templates are very elaborate (see Table 7.1 for some data).
Its efficient and effective implementation therefore requires a customization step.

To overcome the problem, variations of the process have been proposed, among
which are OpenUP. More information about RUP can be found in Kroll and
Kruchten (2003), Kruchten (2004), and Rational Software (2011).

Managing Software Development Projects � 213

Table 7.1 Some Data about the RUP 2000 Model Definition
Discipline Number of Deliverables

Business modeling 8
Requirements 7
Analysis and design 2
Test 2
Management 11
Configuration and change management 1
Deployment 3
Implementation 1
Environment 7

Total 42

7.2.4 The Spiral
The spiral process was first proposed by Boehm (1988) and the process was first
used for the production of the TRW Software Productivity System, an integrated
environment for software engineering systems.

The main motivation behind the spiral is to reconcile the rigidity of the water-
fall with the uncertainties and flexibility required by software development projects.
In its original formulation, in fact, the waterfall leaves little opportunities to ana-
lyze and assess risks. Even in its risk-driven variance, the process is still sequential,
with no opportunities to take into considerations the risks identified and occurring
during system development.

The spiral changes this approach by organizing development into a risk-driven,
iterative process. Each iteration builds on the results achieved at the previous one.
In the words of Boehm: “the model reflects the underlying concept that each cycle
involves a progression that addresses the same sequence of steps, for each portion
of the product and for each of its levels of elaboration, from an overall concept of
operation document down to the coding of each individual program.”

All iterations have the same structure, organized in four main activities:

1. Determine objectives, during which the team puts together the following
information: the objectives to be achieved for the current portion of devel-
opment, that is, the current loop of the spiral; the constraints that need to
be satisfied (e.g., costs, time); the potential alternatives that could achieve the
goals, while satisfying the constraints.

2. Evaluate alternatives and risks, during which the team identifies and resolves
the main risks. During this phase, the alternatives identified at the previous
step are evaluated to understand which solution fits the objectives and con-
straints better. The risk resolution phase includes a wide set of activities, such
as prototyping, simulation, interviews, and modeling.

214 � Introduction to Software Project Management

3. Develop, during which the team produces the outputs determined by the
information gathered at the previous step. During the first cycles of the spiral,
these outputs will consist of software concepts, specifications, and designs.
Later stages will produce an implementation of the system.

4. Plan the next iteration, during which the team plans the next cycle of the
spiral that is planned. Starting from the outputs of the other phases, a crit-
ical review of the results, and an analysis of the main objectives, the project
manager and the team plan and prioritize the next activities.

7.2.5 Prototyping/Evolutionary
One big concern in software development is to bridge the communication gap
between the customer and the development team, in order to facilitate the
comprehension of the customer’s needs, explain the main constraints posed by the
existing technologies, and come out with a system that satisfies the customer’s needs
while respecting the cost and quality constraints. Any approach that facilitates such
communication is therefore beneficial (McCracken and Jackson, 1982).

In the prototyping or evolutionary approach, the team builds one or more
prototypes of the system, in order to verify various project assumptions about the
system being built. The prototypes are incomplete versions of a system, demon-
strating some of its functions. The simplest prototypes are mockups, which mimic
the behavior of the system, using different technologies, and demonstrate to the
customer how the system could work or behave.

Two types of system development are possible when using the prototype
approach using throwaway prototypes or adopting an evolutionary model.

Throwaways are prototypes built to demonstrate a function or test a specific
approach. For instance, a throwaway prototype could be defined to show how a user
interface could behave or to verify whether certain nonfunctional constraints can be
met, given the current requirements (e.g., performances). The prototype ceases to
be useful when it has proven (or disproved) what it was built for.

Remark

Throwaway prototyping is a practice that can be easily embedded in many develop-
ment processes. When it becomes necessary to verify a specific project assumption,
the team starts the development of a throwaway prototype, in parallel to the other
standard development activities. When the throwaway prototype has had its use,
the prototyping activity terminates and the process proceeds as usual. Thus, for
instance, a manager could extend the requirements phase of a waterfall process to
include the construction of a prototype of the GUI. Short of the extra activity to
build the prototype, the process will exactly follow the waterfall model.

Evolutionary prototypes, by contrast, evolve to the final product through suc-
cessive refinements. This requires an iterative process. Each iteration ends with the

Managing Software Development Projects � 215

production of a prototype, which is used as the basis for the next cycle. At the end of
each cycle, the customer might be asked to validate the prototype, in order to steer
development and take into account the customer’s needs. As one can imagine, evo-
lutionary development considerably limits the amount of time and effort dedicated
to requirements and design, favoring coding instead.

For instance, McConnell (1996) highlights a process composed of the following
four steps:

1. Initial concept, whose goal is to highlight the most evident characteristics of
a system

2. Design and implement the initial prototype, whose goal is to sketch the
system architecture and build an initial prototype

3. Refine the prototype till acceptable, whose goal is to progressively refine a
system through different iterations

4. Complete and release the prototype, whose goal is to complete the last
prototype so that it can be deployed

The evolutionary model is particularly suited for the development of new tech-
nologies or new ideas. Consider, for instance, a scenario in which a first cycle allows
one to build a simplified prototype that explores a new concept in user interaction.
The prototype is tested with some users and the information then used to develop
the prototype into a fully functional system.

Some of the disadvantages include increased costs and delivery time.
The prototype model also has its difficulties, as can easily be imagined. As

pointed out in Boehm (1988), it is difficult to plan system development. Moreover,
premature (and wrong) choices made on early prototypes might make their evolu-
tion into the final product cumbersome and difficult. Finally, Boehm argues that it
might be difficult to identify a good sequence of evolutionary prototypes to apply
to a poorly structured and large legacy system, making the use of the evolutionary
approach ineffective in such scenarios.

7.2.6 Cleanroom Software Engineering
Cleanroom software engineering is a development process based on formal meth-
ods and statistical testing, whose goal is to achieve zero-defect software (Linger,
1993). The process was tested on various systems in the 1990s, many of whom
were safety-critical applications. Linger (1993) reports that the smallest system was
an automated documentation system of about 1.8 KLOC, while the biggest was a
control system for a NASA satellite of about 170 KLOC.

The zero-defect goal is achieved by a controlled, iterative process in which a
pipeline of software increments accumulates to achieve the final product. The incre-
ments are developed and certified by small, independent teams, with teams of teams
for large projects, a characteristic we also find in agile processes.

216 � Introduction to Software Project Management

Formal verification techniques and statistical testing are used for the certi-
fication.

Figure 7.4 illustrates the process. Starting from the customer requirements, a
specification of the system behavior, formalized with a functional specification
and a usage specification, defines the basis for further development. These two
documents, the first of which is used for development and the second for testing,
allow the team to define the system components and to plan the development and
testing increments (increments planning in Figure 7.4). The implementation of
each system increment is the responsibility of two independent teams. The devel-
opment team develops the components, using formal methods (formal design and

Specification

Increments
planning

Formal design and
implementation

Random test case
generation

Statistical testing

Quality
certification

Testing results
(estimation of MTTF)

Process improvement
suggestions

[system not finished yet]

[system
built]

Functional specification Usage specification

Customer requirements

Figure 7.4 Cleanroom software engineering.

Managing Software Development Projects � 217

implementation), while the testing team is responsible for verifying the behavior of
the components. This is achieved with statistical methods; the corresponding activ-
ities in the diagram are random test case generation, to generate test cases, and
statistical testing, to perform the tests. A final quality certification activity pro-
duces an estimation of the mean time to failure (MTTF) and suggestions to improve
results in the next increment.

An important remark is that the philosophy behind the process is quick and
clean, rather than quick and dirty. As mentioned in Linger (1993), “Team correct-
ness verification takes the place of unit testing and debugging, and software enters
system testing directly, with no execution by the development team. All errors are
accounted for from first execution on, with no private debugging permitted.”

7.3 Agile Methodologies
The waterfall process and the other traditional software development processes
structure the process to limit variability and changes. Each artifact and each step of
the process consolidate and fix constraints, increasing one’s confidence in the stabil-
ity of artifacts that are easy to modify and, more important, that might not capture
the actual needs. This approach draws from other engineering disciplines. Take, for
instance, bridge construction. In the early phases, when the design of the bridge is
blueprinted, the changes are relatively easy. As we move with development, however,
making changes becomes increasingly costly and difficult, since we are constrained
by the physical artifacts we have already built.

If the analogy promotes a vision of software that is as solid as a bridge, at the
same time it fails to recognize its unique flexibility. Changes in software are not
always costly. Thus, imposing rigidity with a process where or when it is not needed
makes it impossible to exploit opportunities for building a better system, when
these opportunities arise and are convenient to implement. In other words, the pro-
cess should exploit, rather than limit, the unique characteristics of software and the
opportunities it offers to make its development more efficient.

Agile methodologies start out of the frustration of practitioners with traditional
techniques. The Agile Manifesto, written in 2001 during a gathering in the moun-
tains of Utah, lists four main principles that differentiate agile development from
traditional practices (Manifesto for agile software development, 2001; Highsmith
and Fowler, 2001).

These are
� Individuals and interactions over processes and tools
� Working software over comprehensive documentation
� Customer collaboration over contract negotiation
� Responding to change over following a plan.

A set of software development methodologies and processes is based on the
Manifesto’s principles, and agile development has gained a lot of popularity in

218 � Introduction to Software Project Management

recent years. Today, the adoption of agile methodologies is comparable to that of
traditional techniques. According to Geracie et al. (2012), who report on a survey
conducted in 2012, when asked about the methods used to produce software, 18%
of the respondents declared using agile or Kanban; another 18% declared using the
waterfall model; and 53% declared using both.

7.3.1 Extreme Programming
Extreme Programming (XP) is an agile methodology designed by Kent Beck, Ward
Cunningham, and others while working on the C3 project at Chrysler (Copeland,
2001; Wells, 2009). XP introduces various interesting concepts, which can improve
the way in which software is developed, even when the method is not fully adopted.

XP starts from the consideration that change is an integral part of software devel-
opment and that a sound software development process should embrace change
rather than discourage it altogether. However, since resources are not infinite, appro-
priate practices and mechanisms must be in place to evaluate the importance and
cost of changes so that choices are made, reasonable goals set, and work prioritized.
Thus, XP ensures that the cost of change is constant throughout the development
life of a product, rather than increasing as we move along the development process
(Chromatic, 2003).

The XP process is characterized by the following three main elements:

1. Values, which define the inspirational principles that guide any XP project
2. Practices, which describe the techniques applied in XP projects
3. Process, which describes how activities are organized, what roles are identi-

fied, and what artifacts are to be produced.

The XP values are open and honest communication, honest feedback,
simplicity, and courage.

The first value is open and honest communication. This is essential to reduce
friction between the different stakeholders participating in a project and their differ-
ent goals/interests. XP, in particular, has customers and developers speaking directly.
So, rather than having a marketing department passing every customer’s request
to the developers as they come and irrespective of the complexity, XP favors an
approach in which priorities are set and the work to be done discussed and chosen
together by the customer and by the developers.

The second value is honest feedback, which is essential to build a shared view
about the system and the project. For this reason, XP favors rapid feedback. The
closer the feedback is to what is being commented on, in fact, the simpler it is to
give it and to learn from it, as well as to adapt activities to changed conditions.
As mentioned in Chromatic (2003), “rapid feedback reduces the investment of time
and resources in ideas with little payoff. Failures are found as soon as possible, within
days or weeks, rather than months or years.”

Managing Software Development Projects � 219

The third value is simplicity, namely, keeping a system as simple as it can be,
but not any simpler than that. The XP design philosophy is inspired to the KISS
design principle, an acronym that stands for keep it simple, Stupid.

The fourth value is the courage to take difficult decisions, be they technical or
managerial. If a system does not work, it has to be fixed, even if the work required
might be significant and delay the actual delivery. If a project is late, it is better to
tell the customer.

XP also prescribes a set of rules (Wells, 1999). Some of these rules are easier to
implement than others and might also be the reason other agile processes, such as
Scrum, have become more popular. Among the most interesting and controversial
rules, we mention:

� Make small and frequent releases.
� Give the team an open workspace.
� Stand-up meetings are organized every day.
� People are moved around to facilitate communication.
� Prototypes are created to reduce risk related to planning.
� The customer is always available.
� Unit tests are written before the code.
� All code is pair programmed.
� Ownership of the code is collective.
� When a bug is found, tests are created.

Figure 7.5 shows a simplified version of the XP process. The process is based
on an iterative development that favors small releases and continuous feedback, at
different levels of granularity. Each iteration is a complete development cycle, which

Development

Acceptance
test

Plan
releases

Spike

Software
release

Prototype

User stories

Write user
stories

[done]

[not done]
Iteration
planning

Iteration

Figure 7.5 The XP process.

220 � Introduction to Software Project Management

starts with an estimation and a selection of user requirements, written in the form
of stories, and ends with a release.

We distinguish, in particular:

� Write user stories, which outputs the requirements of the system to be
developed, in the form of user stories.

� Plan releases, which takes as input the user stories and outputs the overall
project plan. Information, such as the number of ideal hours∗ required for
each user story and the team velocity (number of ideal hours actually com-
pleted in a given time period), can be used to determine a rough plan for
the project. An important aspect of the estimation is that, different from
traditional techniques, it is performed by the developers.

� Development is structured in iterations, lasting between 1 and 3 weeks. The
iteration starts with an iteration planning activity, during which the team
selects the user stories to implement, according to priority, effort, and other
constraints. Development then starts, using a test-driven approach, in which
tests are written before the code is written, and pair programming.Daily stand-
up meetings, moving people around, and promoting collective ownership of the
code allow one to create a shared view on the system.

Iterations end with a release, that is, working software delivering some functions
to the customer. The process is then iterated at the most appropriate level by adding
user stories (if necessary), revising the release plan (if necessary), and starting the
next iteration.

7.3.2 Dynamic System Development Method
The Dynamic system development method (DSDM) was first introduced by the
DSDMConsortium, starting from the experience of RAD (rapid application devel-
opment) and from three considerations: people are key to project success, change is
inevitable, and no software is perfect the first time it is released. It is an agile methodol-
ogy embracing the considerations of the Agile Manifesto, which would be published
various years after DSDM.

The method has undergone various revisions; the current version was released
in 2007 and is namedDSDM Atern, after a bird, the “Arctic Tern.”

Figure 7.6 shows the DSDM development process, which is iterative and
organized in seven phases.

The preproject phase is where a project starts and all the activities necessary
to set up a project are performed. The next two phases are feasibility, where the
team investigates whether the goals are achievable with the given constraints, and

∗ An ideal hour is an hour fully dedicated to the development of a user story. No interruptions,
no phone calls, no extra tasks—that is an ideal hour!

Managing Software Development Projects � 221

Preproject

Feasibility

Foundations

Exploration

Engineering

Incremental
deployment

Postproject

Figure 7.6 The DSDM process.

foundations, where the business value of the proposed project is analyzed, require-
ments are prioritized using the MoSCoW approach, and the baseline architecture is
sketched. The iterative process starts at the end of this activity.

Iterations are organized in three steps of fixed duration (time-boxed). The explo-
ration step produces a prototype, which is used to refine requirements and priorities
with the client, to identify nonfunctional requirements and to define an operational
plan for the next activity.

The engineering step is where the nonfunctional requirements are added to the
prototype and the prototype is made fit for delivery.

The incremental deployment step is where the results of the current increment
are released.

Finally, a postproject phase hands over the final solution to the client and
manages product maintenance.

The method is well documented and various resources are available on the Inter-
net, including the official page of the DSDM consortium, which makes available,
with certain restrictions, material and templates for practitioners and teachers alike
(DSDM Consortium, 2013).

Another characteristic of the DSDM method is that it has been integrated with
the PRINCE2� management framework, adding a sound management framework
to the development practices proposed by the method. See, for instance, DSDM
Consortium (2000, 2007).

7.3.3 Scrum
Scrum was first proposed in Takeuchi and Nonaka (1986) as a way to overcome
the limitations of the traditional product development practices and achieve more
speed and flexibility. The analogy is with the sport of rugby, where all players move

222 � Introduction to Software Project Management

together toward a goal, setting a rhythm and adapting quickly to variations in the
external conditions.

The approach is based on six principles, which fit together like a jigsaw and are
all essential in order to achieve results:

1. Built-in instability, achieved by giving teams broad goals and general
strategic directions

2. Self-organizing project teams, achieved by allowing teams to self-organize
roles, tasks, and work

3. Overlapping development phases, achieved by having different production
phases overlap (similar to RUP), so that bottlenecks can be better dealt with

4. Multilearning, so that the team can learn both from internal and external
sources and adapt quickly to changing conditions and environments

5. Subtle control, by providing the right steering to the project without inter-
fering too much (e.g., selecting the right people for the job, creating an open
environment, tolerating, and anticipating mistakes)

6. Organizational transfer of learning, by ensuring that the know-how
acquired in a project is transferred and reused in other projects.

Jeff Sutherland and Ken Schwaber adapted the metaphor to software devel-
opment in Sutherland (1995). Today, Scrum is probably the most popular agile
methodology. According to VersionOne (2013), in fact, Scrum or Scrum variants
account for 72% of agile projects.

The process is very simple and based on three roles (which we have already seen
in Section 5.2.4), three main artifacts (the product backlog, the Scrum board, and
a potentially shippable product (PSP)), and an iterative development process that
proceeds in time-boxed sprints typically lasting between 2 and 4 weeks each.

Figure 7.7 shows the process. Similar to XP, the development in Scrum projects
is driven by user stories (see Chapter 2). Simplifying a bit, user stories are the
planning chunks, which define the work items of the project.∗

The product owner labels user stories with a priority in which the team assigns
each a weight, called story points. The priority represents the importance for the
customer, while the weight measures the difficulty of implementing a user story.
Different from traditional planning techniques, story points do not measure the
effort, but rather they are an abstract measure of complexity. This measure is also
team-dependent, since the same number might represent two different weights for
two different teams. See Section 5.3.3.4 for a description of how teams assign story
points to user stories.

∗ In practice, user stories are split into more elementary tasks, which are closer to actual imple-
mentation. This allows one to optimize work by identifying software elements that are common
to different user stories; tasks can also be used for nonfunctional requirements, which are
difficult to represent as user stories.

Managing Software Development Projects � 223

Plan
iteration Iteration

Daily
scrum

Burndown
update

Retrospective

Product
backlog Scrum board

Potentially
shippable
product

Write
backlog

[not done]

[done]

Figure 7.7 The Scrum process.

Iterations start with a planning phase, during which the team selects the user
stories to implement according to priority and (story) points. The number of stories
allocated to each sprint depends upon the team velocity, namely, the number of
story points that the team can develop during a sprint. Note that since velocity is an
essential planning measure and since its value depends on the actual time the team
dedicates to a project, Scrum requires to use people full time on Scrum project.

The story allocated to a current sprint are collected in a scrum board, which
is the basis for monitoring and control. The Scrum board is organized in columns.
Each column corresponds to a specific status of a work item, such as, for instance,
to-do, doing, done. A special area of the board might be dedicated to those user
stories that are blocked, namely, have been allocated, but cannot be implemented
in the current iteration. User stories are represented by post-it that are put on the
Scrum board according to their status. Thus, during an iteration, they move from
the left-hand side of the board to the right-hand side, as work proceeds.∗ Team
members self-allocate work by choosing user stories and moving them on the board.
The Scrum board thus also becomes a tool to quickly report on the project status.
Figure 7.8 shows an example of a Scrum board, with different user stories (work
items) in different states.

∗ When user stories are split in tasks, the whiteboard can also be organized in lines, with each line
allocated to a specific user story and containing all the tasks necessary to implement the user
story.

224 � Introduction to Software Project Management

To-do Doing

Blocked/next iteration

Done

US1 US6
US156

US4
US10

US28

US26

US2
US7

US17
US13

US111

US121

Figure 7.8 Scrum board.

The Scrum master monitors the overall progress updating the burndown chart
and taking other quantitative measures. See Sections 3.9.5 and 3.9.6 for more
details.

One important characteristic of sprints is that they are shielded from external
influences. No change to the planned work can occur during a sprint, allowing the
team to focus on the user stories selected at the beginning of the sprint.

During a sprint, daily stand-up meetings, called scrum meetings, are held.
During these meetings, each team member answers three questions:

1. What have I done yesterday?
2. What will I do today?
3. What impediments do I have?

The daily meeting allows members to commit to the work to be done, while at the
same time highlighting the main impediments which hinder work.

During the sprint, on a daily basis, the scrum master updates the burndown
chart to monitor progress and measure the sprint velocity. See Section 3.9.5 for the
details.

The sprint ends when the time has passed, independent of the stories actually
implemented. The number of points actually implemented is used to determine
the velocity achieved during the sprint. The stories allocated to the sprint, but not
implemented, return to the product backlog.

At the end of a sprint, a PSP is released, that is, a product that the customer can
use. The PSP is presented during a sprint review, during which the team demos what
it has accomplished. While the method focuses on working software, it also allows
for mockups and other products to be shipped. This makes the method also usable
in complex projects, where a sprint might not be sufficient to start building software.

Managing Software Development Projects � 225

Finally, a retrospective about the sprint allows the team to analyze what has
worked and what problems it has encountered during the sprint, so that the process
can be improved in the next cycle.

7.3.4 Kanban
Lean manufacturing is a management practice mainly derived from the experience
of the Toyota Production System, which starts from the consideration that every-
thing that does not add value to the customer is waste and needs to be eliminated.
Although the original definition had seven different sources of waste, three basic
categories can be identified:muda (nonvalue-adding activities),mura (variations in
production), and muri (overburden) (Ikonen et al., 2010).

Kanban is a lean-management practice that eliminates waste by using a just-
in-time, pull-based production system. The system was first applied to the factory
floor as a way to limit inventory levels. In the traditional process, production pushes
products to the market independent of actual demand; if the production is higher
than the actual demand, inventory builds up. Kanban reverts the process by creating
a pull system, in which work is processed through being signaled, rather than being
scheduled. Every time someone in the production chain has the need of a product
upstream, he or she picks it, actually pulling an item from the chain and moving
the demand upstream. The analogy is similar to that of supermarkets, where clients
get what they need and shelves are filled based on the actual demand of customers.

Kanban means signboard in Japanese and the name derives from the fact that
a signboard is used to monitor the pulling process. The signboard is organized in
different areas, each corresponding to a different step of the production chain. Cards
are used to represent different work items, with each card representing a different
item being assembled in the production line. As work items are pulled into line,
so do cards move on the billboard, allowing for a simple way to monitor progress
and needs.

Kanban is becoming a popular technique for software development. According
to Ikonen et al. (2010), in fact, various sources of waste can be identified in software
development. Among them are partially done work, which ties up resources, unnec-
essary paperwork and gold plating, which consume resources without adding value,
task switching, which consumes resources and delays delivery,∗ waiting, which keeps
resources idle, and defects, which require extra work to be fixed.

The analogy between factory floor and software development is that software
development can be thought of as a production pipeline, with feature requests enter-
ing on one end of the pipe and working software exiting on the other end (Peterson,

∗ If task A and task B require 5 man-days, if work is performed sequentially by one person, A will
be delivered after 5 days and B after 10 days. However, if the person works on both items at the
same time, both will be delivered in 10 days.

226 � Introduction to Software Project Management

2009). The software pipeline is composed of different and distinct steps, as we have
seen when presenting the waterfall model. The equivalent of inventory build-up are
software features getting stuck during one development phase. Kanban thus tries to
reduce the number of features being worked on in parallel. There are, in fact, various
advantages in reducing the amount of work in progress, or “in process,” using the
terminology of Scotland (2010) including focusing and delivering early (earlier).

According to Peterson (2009), the implementation of a Kanban system for
software production can proceed as follows:

� Define the development process, which allows one to identify where features
come from and what steps they go through. For instance, it could be that each
feature goes through the following steps: analysis, design, implementation,
and testing.

� Define the entry and exit points of the process, which allows one to identify
where you have control on the process

� Agree with your team policies to pull items and to set priorities. Having an
explicit specification of the selection process is, in fact, the only way to discuss
about it and improve it.

� Get started and empirically adjust. Empirical adjustment is based on creat-
ing effective feedback loops and creating an environment in which the team
is willing to experiment and collaborates on improving the process.

One important aspect for the implementation of a Kanban system is that it
requires a shift of mentality, since the method requires teams to improve their
capacity to collaborate, for instance, to reduce buildup of work (Scotland, 2010).

Figure 7.9 depicts the process by showing a Kanban board. Four steps have
been identified in the development process, “analysis,” “design,” “implementation,”
and “testing.” Various feature requests, represented by cards in the board, are being
worked on. For instance, three features are in the analysis phase, two in the design

Analysis Design Implementation Testing

C1

C2

C3

C4Done!

C5

C6

C10Done!

C11Done!

C12

C13

Figure 7.9 The Kanban board.

Managing Software Development Projects � 227

phase, and two in the implementation phase. Some features are done and ready to
be pulled to the next step: see, in particular, C4, C10, and C11.

7.4 Open Source Development Practices
In Section 6.2.3, we introduced the concept of free software and discussed some
revenue models. Here, we focus on the engineering aspects of the domain, high-
lighting the peculiarities and challenges. The analysis is interesting and useful also
for projects that are not developed using an open source license.

7.4.1 Open Source Development Challenges
Open source software development is typically carried out by a geographically dis-
tributed community of volunteers under the steering of the owners of the project.
Larger projects might also have companies behind, which tasks employees with the
development or steering of the project.

The peculiar business model of the software being developed, together with the
challenges posed by the team structure, requires one to pay particular attention to
some steering, managerial, and technical activities.

Some challenges are related to maintaining a project healthy. This requires one
to focus efforts on:

� Community building and growth, which include all the activities to have a
large community of developers and users. The former, in fact, is necessary to
develop and maintain the system. The latter is what makes a system useful and
interesting to develop. Notice that some open source systems compete with
commercial counterparts, backed by for-profit companies. For this reason,
some projects have a specific marketing structure and evangelists to promote
their software.

� Financing and sustainability. Even though open source software relies
(mainly) on the work of volunteers, these projects incur various costs. We have
seen some of the commercial models of open source software in Section 6.2.3.

Attention has also to be paid to development practices, since the methodologies we
have seen so far do not cope very well with teams of volunteers. The impacts are at
different levels and some of the concerns include

� Project steering. Adequate policies, means, and tools have to be defined for
deciding on the evolution of a system. A system roadmap helps to keep a sys-
tem coherent and functional, but at the same time, it might shift the interest
of volunteers. A second aspect to consider is that many open source systems
promote a collective ownership of the project, posing interesting questions on
how the roadmap is formed in the first place.

228 � Introduction to Software Project Management

� Assignment of work. Since contributions to open source systems are mainly
based on the work of volunteers, tasks are often self-assigned. Completion
time is more difficult (if not impossible) to control.

� Maintain the system structure coherent. Since contributions come from
people with different background and experience, style, approach, and coding
standards differ quite a bit. To keep the systemmaintainable, it becomes essen-
tial to enforce vision over a system’s architecture, define a design philosophy,
and enforce coding standards.

� Quality control. For the reasons mentioned above, effective quality control
practices have to be in place to ensure that contributions do not introduce
bugs.

� User documentation. Work in open source projects focuses on the fun parts,
which is coding for many. As a result, finding volunteers for other important
activities, such as writing user documentation, can be difficult.

7.4.2 An Open Source Development Process
Figure 7.10 shows a development process for open source systems. An open
source software project rarely starts from scratch. More frequently, a project

D
ev

el
op

Project artifacts

Initial
release

Code

Release

Steer
System

 roadmap

Product
backlog

Source
code

Packaged
release

Review

Incorporate

Patch

Figure 7.10 A development process for open source systems.

Managing Software Development Projects � 229

starts with an initial release performed by the person or team making a system
available as open source. Together with the first release of a system, the team pre-
pares the technical infrastructure to make the software artifacts available to the
community.

The process then continues with a set of activities that are loosely intercon-
nected:

� Steer, shown in the upper part of Figure 7.10, includes the activities to decide
the roadmap of an open source system.

� Develop, shown in the middle portion of Figure 7.10 (and organized in three
distinct activities), includes all software development activities to improve a
system.

� Release, shown in the lower portion of Figure 7.10, includes the activities to
release a new version of an open source system.

7.4.2.1 Open Source Project Steering

Like any other software product, open source projects benefit from the definition of
a clear vision and evolution roadmap. Often, but not always, the roadmap tends to
focus on the technical aspects of development, such as the architectural choices and
approaches that have to be preferred.

According to the community that has been built around an open source project,
different models can be used to define a roadmap. Two popular models include the
benevolent dictator model and the participatory model.

In the benevolent dictator model, one person or a restricted team is in charge
of taking final decisions. As pointed out in Fogel (2009), the benevolent dictators of
successful projects work more as facilitators and moderators, integrating comments
and observations of expert programmers participating in the community. This has
two reasons. First, it is unlikely that one person has enough expertise to cover all
technical areas of a project, and second, obsessive control is not an excellent way to
build a community. The benevolent dictator is often the project initiator, because of
the credibility gained in the community and the technical proficiency in managing
the view of a project. Personal and communication skills are a plus, although not all
project owners are famous for their politeness and diplomacy.

Completely different is the participatory model, in which decisions are taken
by consensus and, when consensus is not reached, by voting. One issue to address
in this kind of model is who participates in the discussion and who has the right
to vote. Some models prefer to involve volunteers with more seniority, who have
contributed significantly or steadily to a project. This is the model adopted for the
development of Mozilla Thunderbird, as described in Mozilla Foundation (2013c).
Others prefer to involve a larger base, which includes all people who ever con-
tributed to the system. While the latter method is simpler to implement, as it has a
measurable access criteria, it also has risks related to equally weighting the opinion
of people with quite a lot of different experience on the system being developed.

230 � Introduction to Software Project Management

Concerning the value of the roadmap as a project guidance, in this case, also
two different models are in place. When there is a strong community of regular
contributors, work and tasks are assigned similar to what happens in other soft-
ware development projects. In this scenario, the roadmap is implemented and the
system evolves as planned. In other situations, this is not feasible. In these cases,
the roadmap can be considered as a list of features or desiderata, which are made
public and available to contributors. Features land into the software when someone
volunteers and takes charge to implement them.

7.4.2.2 Open Source Development

As mentioned earlier, one important aspect of any open source project is maintain-
ing a coherent vision of a system. This is vital, since a loosely controlled evolution
can lead to a system that is difficult or impossible to maintain.

For the reasons mentioned above, open source software relies on two practices:

1. The enforcement of coding guidelines, which describe good coding practices
and standards and how to write code that is considered of high quality for
the project at hand. Coding guidelines are documents that specify naming
conventions, that is, how names are assigned to filenames, classes, variables,
and constants; minimum requirements for comments, that is, how a specific
method or class should be documented; source code structuring, for example,
how the code should be indented or organized; other syntactic rules, like, for
instance, what constructs to avoid; and other general guidance on how to
write code. Several coding standards are available, some of which have been
specifically devised for open source projects and some of which have been
defined for specific programming language; see, for instance Free Software
Foundation (2013), Batsov (2013), Oracle (1999), and Linux kernel coding
style (2013e). Notice that coding standards devised for open source projects,
such as Free Software Foundation (2013), are adopted and used in free and
commercial development projects alike.

2. The use of a version control system ensures, on the one hand, that all con-
tributors have the possibility of assessing system resources and, on the other,
that changes and modifications are controlled and can be reversed, if neces-
sary. Notice that while read access to the version control system is granted to
anyone, writing and committing is granted to a controlled and restricted set
of people.

Open source contributions are often in the form of incremental/evolutionary
patches to an existing and consolidated code base. System evolution tends to be
regulated by the following three-step process, called patch contribution process in
Sethanandha et al. (2010):

� Code is the process of creating a modification to an existing system. Coding
is usually performed by a volunteer, either in response to a known problem or

Managing Software Development Projects � 231

feature request in the product backlog or to follow up on a need or request
originated by the volunteer. The coding process terminates with a publish
and discover operation, to make the contribution available to the commu-
nity. When a distributed versioning system is used, this operation takes the
name of fork (the creation of a new branch in the code) and pull request
(the request to include a particular contribution in the codebase of a system).
Other methods used include distribution of patches tomailing lists.

� Review is the process of verifying that a patch complies with the quality and
coding standards defined by the project. This is performed or managed by
volunteers with seniority, who are either tasked with quality control or who
have the overall responsibility over a module or over the whole system. If
the proposed patch meets the quality criteria, it is added to the code base;
otherwise, more coding takes place till the minimum quality requirements are
met.

� Incorporate is the process of incorporating a patch into the codebase. An
aspect during this step is to ensure that changes are well isolated. This is to
ensure that they can be reversed, if need be and, more important, that it is
possible to choose what changes are incorporated in the next release. See the
next section for more details.

7.4.2.3 Open Source Releases

Releasing open source software requires one to address the following points:

� Deciding/controlling what features make it into the next version
� Deciding when to release.

To illustrate the issues, we will see the release process of the Firefox browser.
According to the model, four different source code repositories (or branches) are
made available to all contributors. Each repository is used to generate a version of
the Firefox browser. The repositories are organized as a waterfall, with repositories
that are downstream receiving changes from those upstream. In more detail:

1. The mozilla-central repository is the topmost repository and it is used to
incorporate all changes and contributions of the community. It generates
nightly builds, that is, versions of the browser incorporating the most recent
changes. Nightly builds can be unstable (since the changes have undergone
little quality control) and are used by a relatively small community. Crash
reports are used to perform some quality control on the features contributed
by the community.

2. Themozilla-aurora repository incorporates those changes ofmozilla-central
that are getting ready for production. The repository generates alpha builds,
that is, versions of the browser that can be very unstable but are meant for a
slightly larger user base.

232 � Introduction to Software Project Management

3. The mozilla-beta includes all those features from mozilla-aurora that will
land in the next release of the browser. The branch generates beta releases,
which are meant for an even wider audience. The build and the repository are
used to discover and fix any issue found in the browser, so that the browser
can get ready for release.

4. Finally, the mozilla-release repository is used as a reference to keep track of
the versions of Firefox that have been released.

For the sake of completeness, we remark that the Mozilla uses a fifth repository,
called the shadow repository, for security fixes. The repository, however, is not
public, to avoid publicizing ways in which a security bug could be exploited. The
shadow repository merges into mozilla-central.

Development and fixes proceed in parallel on each repository, leading to a stag-
gered development process. The approach has been chosen “to allow for continuous
new feature development on mozilla-central, while the other channels are devoted
to stabilizing features ready for a wider audience” (Mozilla Foundation, 2013a).
The overall development cycle, from central to release, lasts about 16 weeks and
is shown in Figure 7.11. Security, quality assurance, and other testing activities are
conducted in parallel to development. The release process defines a specific proce-
dure to decide whether to release the next version or not. The “go/no-go” decision
is taken in a specific release activity. Compare activity 8 in the plan in Figure 7.11.

See Mozilla Foundation (2013a,b) for more details.
Mozilla has chosen an approach to software release in which the goals are fixed

and duration varies according to achievement. That is, the release process is about
16 weeks, but it could last more or less, according to how quickly development
and testing proceed. This is very similar to what happens in traditional software
development.

A different approach is preferred by other projects. LibreOffice, for instance,
adopts a time-based release, an approach according to which releases are predeter-
mined and fixed in the calendar. Each release cycle for a significant release lasts 6
months, with minor releases given to the public more often. What features actually
land on each release depend on the maturity of their implementation as release time

1
2
3
4
5
6
7
8

Task Name
Mozilla-central
Mozilla-aurora
Mozilla-beta
Firefox
Check compatibility
Security check
Quality assurance
Go/no go decision

W52 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W

Figure 7.11 Firefox release process.

Managing Software Development Projects � 233

approaches: the schedule is fixed, but what functions are delivered is not. See Open
Document Foundation (2013) for more details.

7.5 Questions and Topics for Discussion
1. What are the main advantages and disadvantages of traditional project

management?
2. What are the main advantages and disadvantages of agile project manage-

ment?
3. Could an agile process be used for the development of safety-critical systems?

Which could be the point of attention? What are the opportunities?
4. Try and set up a Kanban board for the ticket tracking process described in

Figure 2.5.
5. Set up a Kanban board for your to-do list and try to use it for a couple of

weeks. Then discuss the advantages and issues you have encountered.
6. What are the similarities between Kanban and Scrum? What are the differ-

ences?

References
Batsov, B., 2013. Rails style guide. Available at BozhidarBatsov. Last retrieved May 25, 2013.
Boehm, B. W., 1988. A spiral model of software development and enhancement. IEEE

Computer 21(5), 61–72.
Christie, J., 2008. The seductive and dangerous v-model. Testing Experience, (4):73–77.

Available at http://www.scribd.com/doc/53329390/Testing-Experience-Issue-04-Dec-
2008. Last retrieved November 22, 2013.

Chromatic, 2003. Extreme Programming Pocket Guide. O’Reilly, Sebastopol, CA.
Copeland, L., 2001. Extreme programming. Available at http://www.

computerworld.com/s/article/66192/Extreme_Programming. Last retrieved
November 22, 2013.

DSDM Consortium, 1997. Integrating DSDM� into an existing PRINCE2 environment.
White paper, DSDM Consortium.

DSDM Consortium, 2000. Using DSDM� with PRINCE2. White paper, DSDM
Consortium. Available at http://leadinganswers.typepad.com/leading_answers/
files/DSDM_Prince2_WP_10.pdf. Last retrieved June 8, 2013.

DSDM Consortium, 2013. DSDM� consortium. Available at http://www.dsdm.org. Last
retrieved June 26, 2013.

Fogel, K., 2009. How to Run a Successful Free Software Project–Producing Open Source
Software. CreateSpace, Paramount, CA. Also available at http://producingoss.
com/en/index.html.

Free Software Foundation, 2013, April. GNU coding standards. Available at
http://www.gnu.org/prep/standards/. Last retrieved May 1, 2013.

Geracie, G., D. Heidt, and S. Starke, 2012. Product team performance. Technical report,
Actuation Consulting.

234 � Introduction to Software Project Management

Highsmith, J. and M. Fowler, 2001. The agile manifesto. Software Development Magazine
9(8), 29–30.

IABG, 2013. Das v-modell�. Available at http://v-modell.iabg.de/index.php. Last retrieved
June 26, 2013.

Ikonen, M., P. Kettunen, N. Oza, and P. Abrahamsson, 2010. Exploring the sources of waste
in Kanban software development projects. In Proceedings of EUROMICRO Conference
on Software Engineering and Advanced Applications, pp. 376–381, Lille, France.

Kroll, P. and P. Kruchten, 2003. The Rational Unified Process Made Easy: A Practitioner’s
Guide to the RUP. The Addison-Wesley Object Technology Series. Addison-Wesley
Publishing Company Incorporated, Boston, MA, USA.

Kruchten, P., 2004. The Rational Unified Process: An Introduction. The Addison-Wesley
Object Technology Series. Addison-Wesley, Boston, MA, USA.

Linger, R. C., 1993. Cleanroom software engineering for zero-defect software. In ICSE, pp.
2–13.

Linux kernel coding style, 2013e. Available at https://www.kernel.org/doc/Documentation/
CodingStyle. Last retrieved May 25, 2013.

Manifesto for agile software development, 2001. Available at http://agilemanifesto.org. Last
retrieved May 19, 2013.

McConnell, S., 1996. Rapid Development—Taming Wild Software Schedules. O’Reilly,
Sebastopol, CA, USA.

McCracken, D. D. and M. A. Jackson, 1982, April. Life cycle concept considered harmful.
SIGSOFT Software Enginering Notes 7(2), 29–32.

Mozilla Foundation, 2013a. Mozilla firefox: Development process–draft. Available at
http://mozilla.github.io/process-releases/draft/development_overview/. Last retrieved
May 25, 2013.

Mozilla Foundation, 2013b. Mozilla firefox: Development specifics—draft version. Avail-
able at http://mozilla.github.io/process-releases/draft/development_specifics/. Last
retrieved May 25, 2013.

Mozilla Foundation, 2013c. Thunderbird/new release and governance model. Available
at https://wiki.mozilla.org/Thunderbird/New_Release_and_Governance_Model. Last
retrieved June 28, 2013.

Open Document Foundation, 2013. Release plan. Available at https://wiki.document
foundation.org/ReleasePlan. Last retrieved May 25, 2013.

Oracle, 1999. Code conventions for the java (TM) programming language. Avail-
able at http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-
136057.html. Last retrieved May 25, 2013.

Peterson, D., 2009. What is Kanban. Available at http://www.kanbanblog.com/explained/.
Last retrieved June 7, 2013.

Rational Software, 2011. Rational unified process—Best practices for software devel-
opment teams. White Paper TP026B, Rev 11/01, Rational Software. Available
at http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/
1251_bestpractices_TP026B.pdf. Last retrieved November 15, 2013.

Royce, W. W., 1970. Managing the development of large software systems. In Proceedings of
the Western Electronic Show and Convention (WESCON 1970), pp. 1–9. IEEE Com-
puter Society. Reprinted in Proceedings of the 9th International Conference on Software
Engineering, ACM Press, 1989, pp. 328–338, United States.

Scotland, K., 2010. Aspects of Kanban. Software Development Magazine. Available at
http://www.methodsandtools.com/archive/archive.php?id=104. Last retrieved June 7,
2013.

Managing Software Development Projects � 235

Sethanandha, B., B. Massey, and W. Jones, 2010. Managing open source contributions for
software project sustainability. In Technology Management for Global Economic Growth
(PICMET), 2010 Proceedings of PICMET ’10, pp. 1–9, Phuket, Thailand.

Sommerville, I., 2007. Software Engineering (8th ed.). Addison-Wesley, Redwood City, CA.
Sutherland, J., 1995, October. Business object design and implementation workshop.

SIGPLAN OOPS Messenger 6 (4), 170–175.
Takeuchi, H. and I. Nonaka, 1986. The new new product development game. Harvard

Business Review (January–February).
Testing, C. 2013. The seductive and dangerous V-model. Available at http://www.

clarotesting.com/page11.htm. Last retrieved November 22, 2013.
VersionOne, 2013. 7th annual state of agile development survey. Technical report, Ver-

sionOne. Last retrieved June 26, 2013.
Wells, D., 1999. The rules of extreme programming the rules of extreme programming.

Available at http://www.extremeprogramming.org/rules.html. Last retrieved May 31,
2013.

Wells, D., 2009. Extreme programming. Available at http://www.extremeprogramming.org/
donwells.html. Last retrieved November 22, 2013.

Chapter 8

Development and
Management Standards

8.1 Microsoft Solutions Framework
Microsoft solutions framework (MSF) is a disciplined approach to software
development, first introduced by Microsoft� in 1994, to overcome some of the
limitations of existing development practices, such as the inability to adapt to
changing requirements. The method emphasizes a deliberate application of proven
techniques. In fact, it includes best practices applied in Microsoft�, observed in
other organizations, and suggested by effective development processes.

The main motivation for MSF is to define a method that mixes agile and tra-
ditional techniques to get the best of the two approaches. In fact, according to
the Visual Studio Team System (2004), agile relies too much on individual ability,
while traditional techniques can be cumbersome and slow to adapt. The framework
has evolved over time, accommodating the experience gotten from the field. See
Microsoft (2013) for the latest definition of the framework.

The framework is based on the following concepts:

� Foundational principles: the core inspirational principles on which the
framework is based.

� Models: the way in which the foundational principles are systematically
applied to a project. We look, in particular, at the team model, which
describes the team structure and interactions, and at the process model,
which describes the organization of activities.

� Disciplines: namely, the tools that support the development process.

237

238 � Introduction to Software Project Management

8.1.1 Foundational Principles
MSF is based on eight foundational principles, which establish the basic principles
of the framework. They take inspiration from agile methodologies. They are sim-
ple and self-explaining and there is not much arguing about their usefulness in a
software development project.

Four of them focus on team, team structure, and team organization. The first, in
fact, suggests foster open communication; the second demands empowering team
members, and the third requires establishing clear accountability and shared
responsibility. The fourth principle states learning from all experiences.

The remaining four establish some basic properties about the project approach
and the development process. The fourth and fifth principles suggest working
toward a shared vision and focusing on delivering business value, so that focus
can be kept during a project. The need for agility and flexibility is stated in the sixth
principle, which recommends staying agile and expecting change. The seventh
principle states the importance of investing in quality.

8.1.2 Team Model
MSF organizes software development by allocating activities and responsibilities to
seven different roles, each corresponding to a different project concern. The roles are

� Product management: the role responsible for ensuring that the system being
developed delivers value to the customer

� Program management: the role responsible for ensuring that the solution is
delivered according to the project constraints

� Architecture: the role responsible for designing a solution that meets the
requirements and constraints

� Development: the role responsible for building the solution according to the
specification

� User experience: the role responsible for ensuring usability of the solution
� Test: the role responsible for quality assurance
� Release/operations: the role responsible for smooth transition from develop-

ment to operations.

The coupling between roles and project concerns clearly allocates the responsi-
bility of each major project concern to a specific set of people. Thus, for instance,
people taking the architecture role in a project will be responsible for building
a solution that meets the requirements and constraints, possibly negotiating and
mediating with the team members with different roles.

Another distinguishing feature is that MSF favors small teams and a flat struc-
ture. The first simplifies interaction and maintains the process agile. The second

Development and Management Standards � 239

empowers team members, simplifies building a shared vision, and eases the process
of building a solution that meets all the required constraints and qualities.

8.1.3 Process Model
MSF supports an iterative development process, which takes inspiration from the
waterfall model and the spiral model. It is shown in Figure 8.1.

The process is staged and based on five different activities. Each activity ends
with a milestone, with specific acceptance criteria. Milestones are opportunities to
verify the achievement of the goals of one phase, adjust scope, if needed, and decide
the transition to the next phase. In the words of Lory et al. (2003), the “end of each
phase represents a change in the pace and focus of the project.” Similar to the agile
disciplines, at the end of each cycle, a product is deployed and the process iterates
with a broader scope.

The first activity is envisioning and the corresponding milestone is
vision/scope approved. During this activity, the team, the customer, and the
project sponsor define and agree on the scope of the project, on a preliminary plan,
and on the project risks. At the end of the phase, all actors agree on the goals to be
achieved and on the approach to achieve them.

Following the envisioning, the team can start the planning activity, with the
corresponding milestone project plans approved. During this activity, the team
defines the solution in detail, specifying what will be built, how it will be built,
who will build it, and when it will be built. The starting point is the output of the
previous step, and the main documents that are produced are

Plan

Envision

Build

Stabilize

Deploy

Figure 8.1 The MSF process model.

240 � Introduction to Software Project Management

� Functional specification, describing the functional and physical characteris-
tics of the system to be built

� Master project plan and master project schedule, describing the tasks
performed by each role and their schedule.

The next two activities, developing and stabilizing, focus on building the sys-
tem and readying it for deployment. The first activity, developing, builds a working
system. Its milestone is scope complete. The second activity, stabilizing, performs
testing on the system built, readying it for deployment. The milestone to transition
to the next activity is release readiness approved.

The process ends with a deployment phase, during which the system is deployed
and put in production.

8.1.4 Disciplines
During each iteration, three tracks run in parallel to the main development process,
supporting its implementation. They are

� Risk management
� Readiness management
� Project management.

Risk management is conducted following the approach and principles
described in Section 4.2.

More interesting is the readiness management discipline, whose goal is to
ensure that adequate knowledge, skills, and abilities (KSAs) are in place to success-
fully conduct a project. The discipline embeds a continuous learning environment
in the development process and is organized in four activities.

An initial requirements definition activity allows one to identify the main char-
acteristics of the project and, consequently, the main KSA requirements. Microsoft
(2005) distinguishes among high potential, strategic, key operational, and support
projects concerning, respectively, the development of new products, the experi-
mentation of new technologies, and the upgrade and customization of existing
products.

Following the definition of the requirements, an assessment phase conducted on
the team through self-assessment or other types of evaluation allows one to identify
the main needs and gaps.

These are filled in the next phases, making the team ready for the project
activities.

Finally, concerning the project management discipline, one important and
distinguishing ingredient of MSF is that there is no formal project manager. Var-
ious management activities in MSF projects, in fact, are allocated to the program
management cluster, but the responsibility is distributed among the team. The orga-
nizational structure remains flat. This also applies to larger projects, for which MSF
envisages the identification of a role with specific project management duties.

Development and Management Standards � 241

8.2 PMBOK� Guide
The project management body of knowledge (PMBOK� Guide) is one of the
main references for project management. It is structured as a collection of practices
and techniques that help ensure the soundmanagement of a project. The framework
is applicable to any kind of project, including software development projects. The
body of knowledge is maintained by the Project Management Institute, an asso-
ciation of professionals in the area of project management (Project Management
Institute, 2013).

PMBOK� Guide organizes management disciplines and activities in two
dimensions. The first dimension defines the knowledge area to which a specific dis-
cipline applies. PMBOK� Guide, in particular, distinguishes 10 disciplines, which
we describe in Section 8.2.1. The second dimension identifies the project phase
during which a specific discipline can be applied. More information can be found
in Section 8.2.2.

PMBOK� Guide is a comprehensive framework from which project managers
need to select the activities that best suit the project needs.

8.2.1 Knowledge Areas
Knowledge areas identify the main management concerns in a project. These run
throughout the life cycle of a project. PMBOK� Guide distinguishes 10 different
areas that a manager should monitor in a project:

1. Project integration management, with the goal of harmonizing all man-
agement activities and ensuring that a project aligns with the performing
organization’s goals.

2. Stakeholder management with the goal of managing stakeholders. It is
a new area, introduced in the fifth edition of the manual. Before that,
PMBOK� Guide described activities related to managing stakeholders in the
communications management area.

3. Scope management, with the goal of controlling the project scope.
4. Time management, with the goal of defining, managing, and controlling the

project schedule and timing.
5. Cost management, describing how to manage and control the project budget

and costs.
6. Quality management, describing how to manage quality in a project.
7. Human resources management, describing best practices to manage

resources in a project.
8. Communication management, which focuses on managing communica-

tions.
9. Risk management, which focuses on identifying, assessing, and managing

risks.
10. Procurement management, which focuses on the management procurement

activities.

242 � Introduction to Software Project Management

8.2.2 Process Groups

According to PMBOK� Guide, projects develop in five distinct activities:

1. Initiating includes all activities related to starting a project.
2. Planning includes all activities to plan and get organized with work.
3. Executing includes all activities necessary to implement and build what

is specified in the project scope, according to the cost, time, and quality
constraints.

4. Controlling includes all activities necessary to monitor a project. Running in
parallel to the executing phase, this activity collects data about a project and
compares them with the forecast defined in the planning phase.

5. Closing includes all activities necessary to close a project and hand over the
project results.

8.2.3 Processes
Knowledge areas and process groups can be organized in a table, having the pro-
cess groups as columns and the knowledge areas as rows. At the intersection of each
knowledge area and process group, PMBOK� Guide identifies a set of activities
that address a specific project concern in a specific project phase. These are summa-
rized in Table 8.1. Thus, for instance, at the intersection of time management and
planning, there is the prepare schedule activity, whose goal is that of coming out with
a plan for the project.

Concerning the sequence in which the different activities can be executed, there
is a natural ordering from left (process initiation) to right (project closing) and
from top to bottom. Project activities, however, can also be organized according to
a different ordering, if one prefers to do so.

8.2.4 PMBOK� Guide for Software Development

PMBOK� Guide collects a set of practices that are applicable to any project, includ-
ing those related to software development. As a matter of fact, IEEE� and PMI�
are drafting, at the time of the writing of this book, a specific guide to the appli-
cation of PMBOK� Guide practices. Some considerations on the matter can be
drawn independent of the report being developed.

PMBOK� Guide is a comprehensive framework. A full application of its prac-
tices is definitely best suited for traditional and very structured approaches to
software development. This is the case, for instance, of the Waterfall model, RUP,
and V-Model, although both RUP and the V-Model come with their own project
management practices.

In a traditional scenario, in fact, various PMBOK� Guide knowledge areas and
processes integrate rather well and, in some cases, overlap with the corresponding
phases required by the traditional software development process. According to the

Development and Management Standards � 243
Ta

bl
e

8.
1

PM
B

O
K

�
G

ui
de

A
ct

iv
it

ie
s

In
iti

at
in

g
Pl

an
ni

ng
Ex

ec
ut

in
g

C
on

tr
ol

lin
g

C
lo

si
ng

In
te

gr
at

io
n

D
ev

el
op

pr
oj

ec
t

ch
ar

te
r

D
ev

el
op

pr
oj

ec
t

m
an

ag
em

en
t

pl
an

M
on

ito
ra

nd
co

nt
ro

lp
ro

je
ct

w
or

k

C
lo

se
pr

oj
ec

t

D
ev

el
op

pr
el

im
in

ar
y

pr
oj

ec
ts

co
pe

In
te

gr
at

ed
ch

an
ge

co
nt

ro
l

St
ak

eh
ol

de
rs

Id
en

tif
y

st
ak

eh
ol

de
rs

Pl
an

st
ak

eh
ol

de
r

m
an

ag
em

en
t

M
an

ag
e

st
ak

eh
ol

de
r

en
ga

ge
m

en
t

C
on

tr
ol

st
ak

eh
ol

de
r

en
ga

ge
m

en
t

Sc
op

e
Sc

op
e

pl
an

ni
ng

Sc
op

e
ve

ri
fic

at
io

n
Sc

op
e

de
fin

iti
on

Sc
op

e
co

nt
ro

l
C

re
at

e
W

B
S

Sc
he

du
le

co
nt

ro
l

Ti
m

e
A

ct
iv

ity
de

fin
iti

on
A

ct
iv

ity
se

qu
en

ci
ng

A
ct

iv
ity

re
so

ur
ce

es
tim

at
in

g
Sc

he
du

le
de

ve
lo

pm
en

t
C

os
t

C
os

te
st

im
at

in
g

C
os

tc
on

tr
ol

C
os

tb
ui

ld
in

g
Q

ua
lit

y
Q

ua
lit

y
pl

an
ni

ng
Pe

rf
or

m
qu

al
ity

as
su

ra
nc

e
Pe

rf
or

m
qu

al
ity

co
nt

ro
l

H
um

an
re

so
ur

ce
s

H
um

an
re

so
ur

ce
pl

an
ni

ng
D

ev
el

op
pr

oj
ec

t
te

am
St

af
fa

cq
ui

si
tio

n
M

an
ag

e
pr

oj
ec

t
te

am

co
nt
in
ue
d

244 � Introduction to Software Project Management

Ta
bl

e
8.

1
(c

on
ti

nu
ed

)P
M

B
O

K
�

G
ui

de
A

ct
iv

it
ie

s
In

iti
at

in
g

Pl
an

ni
ng

Ex
ec

ut
in

g
C

on
tr

ol
lin

g
C

lo
si

ng

C
om

m
un

ic
at

io
ns

C
om

m
un

ic
at

io
n

pl
an

ni
ng

In
fo

rm
at

io
n

di
st

ri
bu

tio
n

Pe
rf

or
m

an
ce

re
po

rt
in

g
R

is
ks

R
is

k
M

an
ag

em
en

t
pl

an
ni

ng
R

is
k

m
on

ito
ri

ng
an

d
co

nt
ro

l
R

is
k

id
en

tifi
ca

tio
n

Q
ua

lit
at

iv
e

an
d/

or
qu

an
tit

at
iv

e
ri

sk
an

al
ys

is
R

is
k

re
sp

on
se

pl
an

ni
ng

Pr
oc

ur
em

en
t

Pl
an

pu
rc

ha
se

an
d

ac
qu

is
iti

on
s

R
eq

ue
st

se
lle

r
re

sp
on

se
s

C
on

tr
ac

tc
lo

su
re

Pl
an

co
nt

ra
ct

in
g

Se
le

ct
se

lle
rs

C
on

tr
ac

t
ad

m
in

st
ra

tio
n

Development and Management Standards � 245

project goals, in fact, the requirements definition phase of the waterfall process cor-
responds or greatly overlaps with the scope definition activity of PMBOK� Guide.
Similarly, most of the quality assurance activities of PMBOK� Guide correspond to
the different testing activities of the waterfall model and the V-Model.

Not all activities of PMBOK� Guide are relevant for software development
projects. Some activities, such as quantitative risk assessment, find niche applications
in software development projects. Moreover, projects with a strong focus on software
developmentmight find the activities related to the communications and procurement
management knowledge areas to be less important.

The application of PMBOK� Guide to agile development processes requires a
lot more work. The best approach is one that picks only selected activities of those
found in Table 8.1, according to the actual needs.

8.3 NASA Practices
NASA contributes significantly to the definition of good practices and standards for
the management and development of (safety-critical) systems. Today, it defines and
enforces the application of standards to contractors in the most diverse engineering
disciplines. In the following sections, we focus on three important publications.
The first is relative to the engineering practices of complex systems; the sec-
ond describes the requirements that currently apply to the software development
process; the third shows an example of a software development process, taken
from NASA guidelines and documents released in the 1990s, but still relevant and
applicable. All documents provide insightful information on the organization of
projects.

8.3.1 NASA System Engineering Practices
NASA’s system engineering practices are collected in NASA (2007), where systems
engineering is defined as a “methodical, disciplined approach for the design, real-
ization, technical management, operations, and retirement of a system. A system
is a construct or collection of different elements that together produce results not
obtainable by the elements alone.”

The manual, clear and very readable, describes how to organize the development
of a complex system. There are two main characterizing aspects in the organization
of a project.

The first is what is called the system engineering engine, which breaks the com-
plexity of system development using a product work breakdown structure. In this
way, in fact, each node of the WBS defines a set of technical and managerial goals
to lower levels, while at the same time ensuring that the technical and managerial
constraints imposed by the upper nodes of the WBS are met.

246 � Introduction to Software Project Management

The second feature is that system engineering is a linear and staged process orga-
nized in seven main phases (NASA, 2012). The first three end with a concept, which
if validated allows a project to move to the actual construction phase. They are

� Prephase A: concept study, during which possible solutions are investigated
� Phase A: concept and technology development, where the project is defined
� Phase B: preliminary design and technology, during which the preliminary

design is established.

A successful exit from Phase B moves the project to the actual construction and
operation, which is organized in the following four phases:

� Phase C: final design and fabrication, where the system is designed and
components built

� Phase D: system assembly, integration and test, launch, during which the
components are integrated

� Phase E: operations and sustainment, where the system is operated and
maintained

� Phase F: closeout, during which a system is properly disposed of.

The transition from one phase to the next is regulated by key decision points,
or KDPs. There is at least one decision point per phase, but the actual number of
KDPs per phase depends on the type of system being developed. This is illustrated
in Figure 8.2. As can be seen from the figure, the first three phases are dedicated
to the formulation of a solution, in the form of a design. After Phase B, a formal
approval moves the project to system production and, after Phase D, to operations.
The cycle terminates with the disposal of the system.

NASA Life cycle phases

Phase pre-A:
Concept study

Phase A:
Concept and

technology
development

Phase B:
Preliminary
design and
technology

Phase C:
Final design and

fabrication

Phase D:
System assembly,
integration and

test, launch

Phase E:
Operations

and
sustainment

Phase F:
Closeout

Formulation Implementation

Approval

KDP A KDP B KDP C KDP D KDP E KDP F

Launch

Project life cycle phases

Figure 8.2 The NASA life cycle.

Development and Management Standards � 247

8.3.2 NASA Software Management Process Requirements
NASA has an articulated set of policies and standards related to software develop-
ment. We will look at NASA (2009). The starting point is that NASA distinguishes
eight different classes of software, which differ for their effect, should they fail.

The classes are identified by a letter. The first class identifies the most criti-
cal software. Thus, for instance, class A software is safety-critical software used in
manned missions, while class H is general-purpose desktop software.

Clearly, different requirements apply to the development of different classes of
software. Thus, rather than suggesting a specific process, NASA (2009) does not
include any recommendation about the best software life cycle model; rather, it lists
the requirements that a development process for a specific class of software should
have. In this way, a manager is free to choose the process that fits better the system
at hand, as long as it meets the requirements specified in the document.

The requirements of the admissible development processes are organized in the
following areas:

� Software management requirements, which regulate many aspects of soft-
ware development projects, such as interfaces with other organizations,
estimation of costs, and verification and validation of minimum requirements

� Software engineering life cycle requirements, which define the minimum
set of activities that have to be performed in any software development project

� Supporting software life cycle requirements, which identify the support
processes that need to accompany development

� Software documentation requirements, which list the minimum set of
documents and minimum set of information they need to contain.

Concerning software management requirements, a minimum of five different soft-
ware plans have to be defined independent of the software class. These cover,
respectively, overall management, with the software development or management
plan; quality, with the software test plan and the software assurance plan; con-
figuration management, with the software configuration management plan; and
operations, with the software maintenance plan. In addition, safety-critical software
requires the definition of a software safety plan.

As one might expect from a document by NASA, various other requirements
of NASA (2009) cover safety-critical and mission-critical software, spelling the
minimum functional requirements, support activities, and minimum requirements
for contractors. For instance, different classes of software are bound to different
maturity levels of subcontractors. Class A software requires a CMMI� level 3
certification (see Section 8.5).

As mentioned earlier, no specific constraint is imposed on a development
process. However, at a minimum, any project must include the following activities:

� Requirements definition, which collects user and customer requirements and
for which traceability and change management practices must be in place.

248 � Introduction to Software Project Management

� Software design, which defines the architecture of a system; the stan-
dard requires to maintain a bidirectional traceability between design and
requirements.

� Implementation, which produces code that must be unit tested and checked
using static checkers. Bidirectional traceability with the design and explicit
software versioning policies ensures that the software can be traced to each
element of the architecture (and, by transitivity, to a set of requirements) and
is properly versioned.

� Testing, which verifies the software functionality. Class A to C software
(safety- and mission-critical software) requires some form of formal verifica-
tion to be performed.

� Software operations, maintenance, and retirement, which require the defi-
nition of appropriate plans for the operational and retirement phases of a
software system.

Six supporting activities complete the requirements of a sound development
process. They are

1. Software configuration management
2. Risk management
3. Software peer reviews/inspections
4. Software measurement
5. Best practices
6. Training.

Of these, the first four are more directly related to the development, while the
last two are more focused on exploiting and improving NASA organizational assets.

8.3.3 NASA Software Development Practices
NASA (1990) and NASA (1992) describe a disciplined approach for the develop-
ment of software systems. It is an implementation of the requirements described in
the previous section.

The development process is based on a sashimi waterfall (compare
Section 7.2.1), which is organized in phases and activities.

The phases are

� Requirements definition and requirements analysis, which define and
organizes the requirements

� Preliminary design phase, and detailed design phase, which define the
system architecture with different levels of consolidation and certainty

� Implementation, which builds the system

Development and Management Standards � 249

Pe
rc

en
ta

ge
 o

f t
ot

al
 st

aff
 eff

or
t

System
test

phase

Implementation phaseRequirements
definition

phase

Calendar time

Design

Implementation

System testing

Acceptance
testing

Preliminary
design phase

Requirements
analysis phase

Acceptance
test phase

Maintenance and
operation phase

Detailed
design
phase

Requirements analysis

Figure 8.3 Relative weight of different activities in the NASA development
process.

� System test and acceptance test phase, which perform the system and
acceptance tests, respectively.

The document also recognizes five different types of activities, which are
necessary to build a software system. They are requirements analysis, design,
implementation, system testing, and acceptance testing.

Similar to RUP, different activities are performed concurrently during system
development. For instance, during the requirements analysis phase, most of the effort
is dedicated to the requirements analysis activity, but some design and, possibly, some
implementation activities will also take place. This is shown in Figure 8.3, taken
from NASA (1992), where the relative weight of each activity is shown for each
development phase.

Also of particular interest are the practices suggested for metrics collection.
Table 8.2, adapted from NASA (1992), in particular, shows the timing and the
type of data that should be collected during a project. In more detail, the guidelines
suggest collecting metrics concerning estimated size (measured in SLOC), actual
effort spent (man-hours), project status (SLOC written, test completed), and change
and error traffic (requirements growth, errors, and changes). These data, in fact,
allow one to monitor the main aspects of a development project, as discussed in
Chapters 3 and 4.

250 � Introduction to Software Project Management
Ta

bl
e

8.
2

M
et

ri
cs

C
ol

le
ct

io
n

Pr
og

ra
m

M
ea

su
re

So
ur

ce
Fr

eq
ue

nc
y

M
aj

or
A

pp
lic

at
io

n

Es
tim

at
es

Es
tim

at
es

of
:T

ot
al

SL
O

C
(n

ew
,

m
od

ifi
ed

,r
eu

se
d)

To
ta

le
ffo

rt
M

aj
or

da
te

s

M
an

ag
er

s
M

on
th

ly
Pr

oj
ec

ts
ta

bi
lit

y
Pl

an
ni

ng
ai

d

R
es

ou
rc

es
St

af
fh

ou
rs

(to
ta

la
nd

by
ac

tiv
ity

)
D

ev
el

op
er

s
W

ee
kl

y
Pr

oj
ec

ts
ta

bi
lit

y
R

ep
la

nn
in

g
in

di
ca

to
r

Ef
fe

ct
iv

en
es

s/
im

pa
ct

of
th

e
de

ve
lo

pm
en

tp
ro

ce
ss

be
in

g
ap

pl
ie

d
St

at
us

R
eq

ui
re

m
en

ts
(g

ro
w

th
TB

D
s,

ch
an

ge
s,

Q
&

A
s)

M
an

ag
er

s
B

iw
ee

kl
y

Pr
oj

ec
tp

ro
gr

es
s

U
ni

ts
de

si
gn

ed
,c

od
ed

,t
es

te
d

D
ev

el
op

er
s

B
iw

ee
kl

y
A

dh
er

en
ce

to
de

fin
ed

pr
oc

es
s

SL
O

C
(c

um
ul

at
iv

e)
A

ut
om

at
ed

W
ee

kl
y

St
ab

ili
ty

an
d

qu
al

ity
of

re
qu

ir
em

en
ts

Te
st

s
(c

om
pl

et
e,

pa
ss

ed
)

D
ev

el
op

er
s

B
iw

ee
kl

y
Er

ro
rs

ch
an

ge
s

Er
ro

rs
(b

y
ca

te
go

ry
)

D
ev

el
op

er
s

B
y

ev
en

t
Ef

fe
ct

iv
en

es
s/

im
pa

ct
of

th
e

de
ve

lo
pm

en
tp

ro
ce

ss
es

C
ha

ng
es

(b
y

ca
te

go
ry

)
D

ev
el

op
er

s
B

y
ev

en
t

C
ha

ng
es

(to
so

ur
ce

)
A

ut
om

at
ed

W
ee

kl
y

A
dh

er
en

ce
to

de
fin

ed
pr

oc
es

s
Fi

na
lc

lo
se

ou
t

A
ct

ua
ls

at
co

m
pl

et
io

n:
Ef

fo
rt

M
an

ag
er

s
1

tim
e,

at
co

m
pl

et
io

n
B

ui
ld

pr
ed

ic
tiv

e
m

od
el

s
Pl

an
/m

an
ag

e
ne

w
pr

oj
ec

ts
Si

ze
(S

LO
C

,u
ni

ts
)

So
ur

ce
ch

ar
ac

te
ri

st
ic

s
M

aj
or

da
te

s

Development and Management Standards � 251

8.4 PRINCE2�

PRINCE2� (Project in a Controlled Environment, version 2) is a de facto standard
for projects conducted with the UK government. It started as an evolution of the
PROMPTII methodology, defined in the 1970s by Simpact Systems (Offices of
Government Commerce, 2009).

The initial consideration is that PRINCE2� recognizes that project manage-
ment is seldom linear and straightforward. In a project, therefore, four management
levels interact, exercise influence and control, and need to exchange inputs and
information.

They are

� Corporate or program management. The highest level of the hierarchy, cor-
porate and program management, influences projects by setting the business
context for a project.

� Project direction. Immediately below the previous level, project direction
ensures strategic steering to the project mediating and interpreting in the
project context requests and constraints coming from the upper level. Strate-
gic steering is performed by senior management and is based onmanagement
by exception strategy. Project direction approves a plan and then delegates its
execution to the project manager; senior management intervenes only if some
significant deviation from the plan occurs.

� Project management. Responsible for conducting a project, the project
manager focuses on the daily planning and management of activities.

� Product delivery. The last management level, product delivery focuses on
the delivery of planned products, that is, project deliverables.

The definition of PRINCE2� is based on a process model, which defines the
management activities to carry out, and on a set of components, which support the
management activities. Eight is the magic number. There are eight main activities in
the PRINCE2� process model and eight different components. We analyze them
in more detail in the next sections.

8.4.1 PRINCE2� Process Model
PRINCE2� adopts a staged approach to project development. We can distinguish,
in particular, an initial phase, a development phase, and a closing phase:

� The initial phase is composed of starting and initiating, which have the
goals of setting up a project and getting the project started.

� The development phase is organized in stages (or iterations), which can run
sequentially or in parallel, according to the project’s logic. Each stage is com-
posed of three different groups of activities: managing product delivery,
controlling a stage, and managing stage boundaries, which have the goals

252 � Introduction to Software Project Management

of preparing activities of a specific iteration, controlling how work develops in
the iteration, and closing the iteration.

� The closing phase is composed by closing a project, which manages all
project closing activities.

The main development cycle is governed by two processes that run through-
out a project. The first, directing a project, includes all activities meant to give
strategic guidance to a project. The second, planning, includes daily and routine
management activities.

Let us see in more detail the goals and content of each process.

8.4.1.1 Starting a Project

Different from many frameworks, PRINCE2� explicitly allocates time for the
preparation of a project management structure. Thus, the goal of starting a project
is to define a project’s objectives and allocate sufficient time and resources to
properly plan the project.

The process successfully ends when the project manager, the project team, and
the project board are identified and appointed, the project benefits are assessed and
considered worth pursuing, a project approach to the delivery of products is chosen,
and the next step (project initiation) is planned.

8.4.1.2 Initiating a Project

Given the information of the previous step, during project initiation, the actual
plans for the project are defined.

This includes planning the schedule, risks, quality, and project outputs. Dur-
ing this phase, the technical infrastructure is also set up. This includes a document
repository and location for logs, such as, for instance, risk logs.

The process successfully ends when the project plans are defined and the project
is authorized.

8.4.1.3 Directing a Project

Directing a project mainly involves the project board and it has the goal of
providing strategic steering to a project.

Based on the information obtained from the project manager and the other
processes, the project board authorizes project phase transitions, the application of
exception plans, and confirms project closure.

If a project requires it, this process also provides ad hoc steering.

8.4.1.4 Controlling a Stage

Work in PRINCE2� projects proceeds in stages, with each stage corresponding to
a project cycle, a work-package element, or other project element with a clear scope
and output.

Development and Management Standards � 253

Controlling a stage properly starts a stage. The work required includes autho-
rizing the work in a stage, allocating the necessary resources, and monitoring the stage
execution, so that the expected product is actually built.

The main goals are to ensure that the quality, cost, and time constraints are
satisfied, so that the planned benefits are achieved.

8.4.1.5 Managing Product Delivery

The main activities in managing product delivery are the authorization of the work
in a stage and reporting to the project manager about the progress and the main param-
eters (quality, cost, time). When a product is completed, the process ends with the
team manager getting the approval for the work performed.

The process allows for a clear separation of duties and responsibilities between
the project manager, who is responsible for controlling a stage, and the team man-
ager, who is responsible for carrying out the work envisaged in a stage. This is
similar to the distinction between a project manager and a work package leader,
which we have seen in Section 5.2.1.

In large projects, this process also allows one to clarify the allocation of duties
and responsibilities between the contractor and the suppliers, similar to what
was explained in Chapter 3 when we considered the Contract Work Breakdown
Structure (CWBS); see page 56.

8.4.1.6 Managing Stage Boundaries

The managing stage boundaries process performs all the activities necessary to
close a stage, including the collection of performance data and planning for the next
stage, verifying that no significant changes have occurred in the project environment
and in the expected benefits, and preparing a report for the project board.

8.4.1.7 Closing a Project

Closing includes all those activities necessary to verify project outputs, collect
project data, assess benefits, and report on performances.

This is similar to what we have already discussed in Section 3.10.

8.4.1.8 Planning

Planning is the set of activities that allows one to build a project plan. Most of the
activities required to build a plan have already been illustrated in Chapter 3.

Some of the distinguishing features are that PRINCE2� planning requires a
project narrative to be developed and the definition of exception plans.

A project narrative is a textual description of a plan, explaining its structure and
providing insights on the motivations driving one to specific project choices. The
project narrative makes the project assumptions clear, simplifying comprehension
and helping in the approval process.

254 � Introduction to Software Project Management

An exception plan is a plan that is applied to put the project back on track,
should an exceptional situation occur. PRINCE2� recognizes that plans are not
perfect and that replanning is necessary. Thus, if, during project execution, someone
recognizes the occurrence of an exceptional situation, the management board might
authorize the definition and the application of an exception plan, which applies to
activities up to the end of the current stage and which are meant to put the project
back on track. The exception plan updates or replaces the nominal plan.

A final aspect to highlight is the British aplomb with which the guide recom-
mends performing estimations in a project. At p. 174 of Offices of Government
Commerce (2009), in fact, we find: “Estimating cannot guarantee accuracy, but it
is better than not estimating at all.”

8.4.2 PRINCE2� Components
Eight components support the implementation of the processes we have just
described. They are concerns and best practices spanning the different processes
and phases of a project.

PRINCE2�, in particular, defines the following components:
� Business case
� Organization
� Plans
� Controls
� Management of risk
� Quality in a project environment
� Configuration management
� Change control.
Of these, the practices suggested for the management of risks, quality, and con-

figuration management are very similar to what we have already seen in Chapters 3
and 4. In the rest of this section, therefore, we focus on the remaining components,
highlighting some characterizing aspects proposed by the methodology.

8.4.2.1 Business Case

Business case is the reason for a project to exist. The higher level of the manage-
ment structure authorizes a project based on a business justification and a project
continues as long as it has a business case.

A business case is fully specified by providing the following information:
� A reason, which explains why the project outcome is needed.
� The options, which outline the alternatives to the project output.
� The benefits provided by the project outputs.
� The risks, which could seriously affect the outputs.
� The cost and timescale and investment appraisal, which evaluate a solution

based not only on the development costs but also considering the opera-
tional, maintenance, and support costs. As specified in Offices of Government

Development and Management Standards � 255

Commerce (2009), “the baseline for investment appraisal is the ‘do nothing’
option, i.e., what will the picture of costs and benefits be if the project is not
undertaken?”

8.4.2.2 Organization

PRINCE2� proposes a reference organizational structure for a project, which
identifies and clearly allocates roles and responsibilities.

In synthesis, the structure proposed by the methodology is a hierarchical struc-
ture, organized around the four layers identified above: thus, we can identify a project
board that provides strategic guidance, a project manager, who is responsible for the
management of a project, and team managers, responsible for organizing work in
stages.

One noteworthy aspect is that the project board needs to include representa-
tives, which can ensure that the three different interests of a project are represented,
namely, the business (the product meets a business need), the user (the product sat-
isfies a user need), and the supplier (the product is built according to the supplier’s
capabilities and skills).

A second important aspect that is highlighted by Offices of Government Com-
merce (2009) is that the project board is not a democracy, but rather, a key decision
maker. This is to avoid themanagement by committee syndrome, in which project
decisions reflect a mediation of different interests and people, rather than focusing
on the most appropriate action to have the project succeed.

8.4.2.3 Plans

Plans are the basis for any project. According to PRINCE2�, a good plan identi-
fies the products to be produced; the activities, resources, time, and dependencies
necessary to produce the products; a schedule of the activities, coherent with the
dependencies among activities; and agreed tolerances. The identification of assump-
tions and prerequisites allow the project manager to understand the opportunities
and constraints and build a plan that is coherent with this information.

In PRINCE2�, plans are organized at different levels of granularity, ranging
from the program plan, the highest level, to the team plan, which defines how to
achieve a specific deliverable. An exception plan allows one to manage nonnominal
situations. The plans are interconnected, with higher-level plans setting constraints
and framing boundaries of more detailed plans.

8.4.2.4 Control

Control is about verifying that the project is proceeding according to plans and
verifying that the planned products are produced according to quality, cost, and
time.

A first good practice we find in this component is that PRINCE2� acknowl-
edges variations in planning, by incorporating tolerances in the plan. Thus, rather

256 � Introduction to Software Project Management

than having plans with fixed data, project managers in PRINCE2� reason with
ranges of values.

The definition of tolerances in a project proceeds from the top of the hierarchy
to the bottom, with higher levels defining what deviations are acceptable. Control
allows the monitoring of actual results and creates a flow of deviations from the
nominal plan from the lower levels of the management structure to the upper levels.

A second interesting aspect is the suggestion to use a daily project log. The
manual suggests that the project manager should make writing the daily log a regular
routine. Entries in the log can be organized by product and highlight any significant
event, such as the status of work, outstanding issues, and products that will be due
soon.

8.4.2.5 Change Control

PRINCE2� recognizes that change is structural in a project and that a sound
change control system is essential to any project. Change management is based on
a project issue log, that is, a way to systematically capture changes. Project issues
include

� Changes in requirements, independent of their (apparent) impact. Even
changes that seem minor, in fact, might have major consequences.

� Changes in the project environment, including, but not limited to, changes
in regulations, suppliers, team members, and policies.

� New risks that occurred or were identified during project execution; risk that
occurred.

� Problems or errors occurring on work being carried out.
� Queries about any aspect of the project.

Similar to what is described in Section 4.1, issues can either be a request for
changes or nonconformance reports (off-specifications, using PRINCE2� terminol-
ogy) and they need to be captured, assessed, and decided upon, documenting all the
steps along the way.

PRINCE2� is flexible in defining what decision process should be applied
for change management. This, in fact, depends on various project characteris-
tics. Not surprisingly, the guide states that it is important to define processes and
responsibilities in the initial phases of the project.

8.5 Capability Maturity Model Integration
Capability maturity model integration (CMMI�) is a certification program
developed by the Software Engineering Institute, which is meant to measure the
ability, ormaturity, of an organization to develop and manage projects. The program
starts from the consideration that there are three main components in an organiza-
tion: the first is people, the second is tools and equipment, and the third is procedures.

Development and Management Standards � 257

These components are held together by processes. Thus, measuring and improv-
ing an organization’s processes helps to improve the capabilities and performances
of an organization. CMMI�, in particular, focuses on three domains: product and
service development, service establishment and management, and product and service
acquisition.

CMMI� measures the maturity in levels. Each level defines a set of organiza-
tional capabilities and builds on the previous one by adding some new capabilities.
CMMI� identifies five different levels:

1. Initial. This is the starting level, where no process is defined or, when it
defined, it is not controlled. As mentioned in CMMI� Product Team (2010),
“Success in these organizations depends on the competence and heroics of
the people in the organization and not on the use of proven processes.” Any
organization is at least at level one.

2. Repeatable. This is the level of organizations that have a managed process.
Projects are planned and managed by skilled people, who apply practices
and standards and ensure an adequate control. The actual practices in place,
however, are project-specific.

3. Defined. This is the level of organizations that have defined standards for
managing projects. These standards are proactively applied and are used
organization-wide.

4. Quantitatively managed. This is the level of organizations that are able to
measure process performances.

5. Optimizing. This is the level of organizations that can make sense of the
quantitative data they measure and that can use the data to improve their
process.

The positioning of an organization at a specific level is determined by establish-
ing and applying a set of good practices in different process areas.

A process area is a set of practices that are important for successfully managing a
project. For instance, CMMI� for product and service development defines 22 process
areas. Among them, we find those defined in the previous chapters of this book and
some specific ones, such as, for instance, causal analysis and resolution and decision
analysis and resolution. Some areas are relevant only for higher maturity levels.

In more detail, the methodology defines a number of generic and specific goals.
Generic goals apply to multiple process areas, while specific goals are particular to
an area. For instance, one generic goal at level 2 is that responsibility is assigned for
“performing the process, developing the work products, and providing the services
of the products.” Although the methodology defines practices that help achieve each
specific goal, the model is flexible with respect to the way in which an organization
satisfies it. The only important aspect is that the goals are met. Table 8.3 lists the
CMMI� process areas for product and service development and summarizes the
number of practices suggested by the methodology to achieve the goals of a specific

258 � Introduction to Software Project Management

Ta
bl

e
8.

3
C

M
M

I�
Pr

ac
ti

ce
s

Le
ve

l1
Le

ve
l2

Le
ve

l3
Le

ve
l4

Le
ve

l5
A

re
a

Le
ve

l
Pr

ac
tic

es
Pr

ac
tic

es
Pr

ac
tic

es
Pr

ac
tic

es
Pr

ac
tic

es

G
en

er
ic

pr
ac

tic
es

1–
3

1
10

2
C

on
fig

ur
at

io
n

m
an

ag
em

en
t

2
7

M
ea

su
re

m
en

ta
nd

an
al

ys
is

2
8

Pr
oj

ec
tm

on
ito

ri
ng

an
d

co
nt

ro
l

2
10

Pr
oj

ec
tp

la
nn

in
g

2
14

Pr
oc

es
s

an
d

pr
od

uc
tq

ua
lit

y
as

su
ra

nc
e

2
4

R
eq

ui
re

m
en

ts
m

an
ag

em
en

t
2

5
Su

pp
lie

r
ag

re
em

en
tm

an
ag

em
en

t
2

6
D

ec
is

io
n

an
al

ys
is

an
d

re
so

lu
tio

n
3

6
In

te
gr

at
ed

pr
oj

ec
tm

an
ag

em
en

t
3

10
O

rg
an

iz
at

io
na

lp
ro

ce
ss

de
fin

iti
on

3
7

O
rg

an
iz

at
io

na
lp

ro
ce

ss
fo

cu
s

3
9

O
rg

an
iz

at
io

na
lt

ra
in

in
g

3
7

Pr
od

uc
ti

nt
eg

ra
tio

n
3

9
R

eq
ui

re
m

en
td

ev
el

op
m

en
t

3
10

R
is

k
m

an
ag

em
en

t
3

7
Te

ch
ni

ca
ls

ol
ut

io
n

3
8

V
al

id
at

io
n

3
5

V
er

ifi
ca

tio
n

3
8

O
rg

an
iz

at
io

na
lp

ro
ce

ss
pe

rf
or

m
an

ce
4

5
Q

ua
nt

ita
tiv

e
pr

oj
ec

tm
an

ag
em

en
t

4
7

C
au

sa
la

na
ly

si
s

an
d

re
so

lu
tio

n
5

5
O

rg
an

iz
at

io
na

lp
er

fo
rm

an
ce

m
an

ag
em

en
t

5
10

Development and Management Standards � 259

area. They are only a very indirect measure of the difficulty of achieving a level, since
different practices might be of different complexity.

In an ideal process, an organization implements an increasing number of prac-
tices to move up the certification ladder. CMMI� envisages two approaches to
certification, staged and continuous. They differ in scope and method. In the
staged approach, an organization achieves maturity levels by satisfying all the goals
defined at a specific level. In the continuous approach, organizations achieve capa-
bilities in specific process areas. A capability is achieved when all the goals of a
specific process area are met. Thus, the continuous model allows for a more gradual
or selective introduction of the practices. As a matter of fact, it defines a level 0,
in which an organization has achieved the goals of one or more key process areas.
The continuous model can be applied only up to level 3, since the higher levels of
CMMI� require all practices to be achieved together.

See CMMI� Product Team (2010) for more information.

8.6 Questions and Topics for Discussion
1. Discuss the main differences and similarities between PRINCE2� and

PMBOK� Guide.
2. Discuss the similarities and differences between the NASA development

process presented in Section 8.3.3 and RUP.

References
CMMI� Product Team, 2010. CMMI� for development, version 1.3. Technical Report

CMU/SEI-2010-TR-033, ESC-TR-2010-033, Software Engineering Institute.
Lory, G., D. Campbell, A. Robin, G. Simmons, and P. Rytkonen, 2003, June. Microsoft

Solutions Framework white paper. Technical Report, Microsoft. More information and
downloadable copy available at http://www.microsoft.com/msf. Last retrieved June 1,
2013.

Microsoft, 2005. Migrating Oracle on UNIX to SQL server on Windows. Technet,
Microsoft.

Microsoft, 2013. Microsoft Solutions Framework (MSF) overview. Available at
http://msdn.microsoft.com/en-us/library/jj161047.aspx. Last retrieved June 1, 2013.

NASA, 1990. Manager’s handbook for software development. Software Engineering Labo-
ratory Series SEL-84-101, NASA Goddard Flight Center.

NASA, 1992. Recommended approach to software development. Software Engineering
Laboratory Series SEL-81-305, Revision 3, NASA.

NASA, 2007, December. Systems engineering handbook. Technical Report NASA/SP-2007-
6105 Rev1, NASA.

NASA, 2009. NASA software engineering requirements. NASA Procedural Requirements
NPR 7150.2A, NASA. Available at http://nodis3.gsfc.nasa.gov/. Last retrieved June 1,
2013.

260 � Introduction to Software Project Management

NASA, 2012. NASA space flight program and project management requirements w/changes
1-10. NASA Procedural Requirements NPR 7120.5E, NASA. Last retrieved June 3,
2013.

Offices of Government Commerce, 2009.Managing Successful Projects with PRINCE2 (2009
ed.). The Stationery Office, London, UK.

Project Management Institute, 2013. Project Management Institute home page. Available at
http://www.pmi.org. Last retrieved June 1, 2013.

Visual Studio Team System, 2004, May. Visual studio 2005 team system:
Microsoft Solutions Framework. Available at http://msdn.microsoft.com/en-
us/library/aa302179.aspx.

Chapter 9

Open Source Tools
for Managing Projects

All the projects I managed or participated in used a number of tools to support
project activities. A good infrastructure, in fact, simplifies quite a bit of various
project activities and can help communicate with stakeholders and getting organized
and more efficient with the work.

In this chapter, we look at some of the common requirements of a project
infrastructure and the opportunities we have to implement such functions using
open source and free tools. Setting an infrastructure from scratch has a cost, even
if it based on free software. Time and resources to select, configure, and install
the tools, time to learn how to use them, and aspects related to their quali-
ties, such as their reliability, are some of the contributing factors. The general
indications found in this chapter serve as a starting point for the identifica-
tion of needs and, in some cases, solutions, perhaps simplifying the selection
process.

Managing projects has a significant component related to making sense of
data and interacting with stakeholders. Most of the tools presented in this chap-
ter do one thing or the other; in some cases, they do both. They, however,
remain tools and, as such, do not replace sound management. The best Gantt
charting tool is not replacement of sound planning. Similarly, the best document
sharing tool is of no use if the project team does not use it to store change
requests.

261

262 � Introduction to Software Project Management

9.1 Project Information Flow
Figure 9.1 shows the main pieces of information that a project generates. The figure
is organized in two parts. The top part shows the stakeholders, while the lower part
shows the information produced and exchanged in a project.

The first column shows the roles in the project. We distinguish, in particular,
the (external) stakeholders, the project manager, and the team. As the reader can imag-
ine, the diagram depicts the situation typical of a medium/small project managed
using traditional techniques. Larger projects involve more roles (e.g., a work package
leader) and, consequently, structure the information in more layers.

The lower part of Figure 9.1 shows the information typically produced in a
project. Each leaf of paper shows some kind of information exchanged in a project.
The arrows show how the information flows.

We start from the second column, that of the project manager. The project man-
ager manages information about the project scope, schedule, and costs, together
with other important aspects of a project, such as analyses about project status (EVA
in the diagram), quality, and risks. Finally, a project log maintains the history of the
project.∗

TeamProject manager

Schedule

Cost

Design
artifacts

Code

Tests

Stakeholders

Task list

Issues

EVA
Time sheets

Metrics

Quality

Risk
Status update

Scope

Deploy
scripts

Other
deliverables

Reports

Status update

White papers

Publicity

Steering

Change req.

Project log

Figure 9.1 Information flow in a project.

∗ Notice that in larger projects, this information is structured hierarchically or split into various
levels, as we have already seen.

Open Source Tools for Managing Projects � 263

We continue with the last column, that of the team. Design artifacts and code
define the system being built; test cases and deploy scripts support the validation
and the release. Other deliverables complete the set of information produced by the
team; their number and nature depend on the goals agreed on in the project.

The project manager and the team exchange information to coordinate their
work. A list of tasks determines the actual work items to be performed. It starts from
the project plan, which is updated by the team and the project manager as new work
items are individuated. As development proceeds, a number of issues arise. They are
stored and used by the project team to improve the code quality. At the same time,
they can be used to compute some quality metrics, as we have seen in Chapter 4.

The team regularly sends project data, such as time sheets and metrics, shown in
the third column to the project manager. Status updates about the project align the
project manager and team about the current status of the project. To go into more
detail, the data help determine the current project status along its main dimensions,
for example, time, costs, quality, and risks. This is also the basis for replanning, if
necessary. Compare Section 3.9.

The first column of Figure 9.1 presents all the other project stakeholders,
without distinguishing their different roles. In general, information between the
stakeholders and the project manager includes steering (in whatever form it comes,
from emails to written documents) and change requests. The project manager keeps
the stakeholders informed about the project status with regular status updates and
reports. More generic information, such as white papers and publicity, helps engage
other stakeholders.

An effective project technical infrastructure supports the production, storage,
and exchange of the information that is produced and consumed in a project. There
are two main choices in setting up an infrastructure.

The first is between integrated tools or a set of independent tools. Integrated
tools reduce issues related to data duplication and provide a single access point to
all project data. However, they might introduce constraints that make their use
impossible in a project. It might also be difficult to find a tool that accommodates
all the data collection needs of a project.

The second choice is between using a commercial service or installing the tools
in-house. Commercial services provide environments that are ready to use and come
with additional advantages, such as high availability and data backup and recovery.
Since most of the commercial services for projects are web-based today, they also
provide a simple approach to sharing data with other stakeholders. Privacy and pro-
tection of data, however, might be a cause for concern. Costs are another matter of
concern.

The rest of this chapter lists the requirements of a technical infrastructure orga-
nizing its description in four sections. We start by describing the basic infrastructure,
namely, the tools necessary in any project, no matter how informal or simple the
project is. The basic infrastructure focuses on the tools to share and makes infor-
mation available to other stakeholders. We then extend the basic infrastructure by

264 � Introduction to Software Project Management

adding tools that improve traceability and configuration management, which we call
the basic+ infrastructure. We continue by presenting some approaches to collabora-
tive document writing and conclude the chapter by looking at some tools specifically
built for managing projects. This is what we call the management infrastructure.

Software production uses a wide array of tools to support development activities,
such as integrated development environments, debuggers, and modeling tools, to
name a few. These are outside the scope of this chapter. Suffice it to say here that
some projects might also need to select the most appropriate development tools.

9.2 Basic Infrastructure
At a bare minimum, a project needs tools to manage communications and to collect
and store the project assets, namely, the project deliverables and other information
produced in the project.

Taking for granted email and an office suite (e.g., MS Office or LibreOffice), a
slightly more efficient infrastructure achieves the following goals:

1. Tracing communications, so that we can keep a log of what information was
sent to whom

2. Providing a unique point of access to project documents, so that all project
stakeholders will have access to the same information

3. Simplifying bookkeeping of data, for example, allowing project stakehold-
ers to update their contact point

4. Implementing some form of access control, if required, so that different
stakeholders will have different privileges on the project documents.

Some of the tools that can be used for this purpose include

� Mailing lists, which simplify communication by defining email addresses that
reach groups of people. In many systems, people can update their own data,
like, for example, the email address they use to receive email. More important,
in many cases, mailing lists keep historical data about all communications.
Some open source solutions include Sympa and GNU Mailman. Many big
companies, such as Yahoo! and Google, offer mailing list services for free.

� Chat and messaging allow project teams to have real-time conversations in
virtual “rooms.” As pointed out in Foster (2013), the definition of chat rooms
such as a “water cooler” simplifies communications by creating informal envi-
ronments where people feel freer to talk. This helps improve the flow of
communication and helps bind the team together. Various open source solu-
tions are available. Also, in this case, free services are made available by big
providers.

� Document repositories provide a virtual directory to store all project docu-
ments. The directory can be available on the cloud and possibly include some
mechanisms to keep the historical records of documents. The most famous

Open Source Tools for Managing Projects � 265

service is probably Dropbox, but Google, Amazon, and other companies offer
theirs. One of the potential issues with these kind of systems is that they do
not support configuration management practices very well. For this purpose,
a versioning tool is more appropriate. Sparkleshare, for instance, is an open
source alternative to Dropbox, which is based and integrates with git, a dis-
tributed versioning system. Sparkleshare stores documents on a server and uses
a notification mechanism that pushes all changes directly to the computers of
the users that have been granted access; a local copy of the document is thus
always available. Also see the next section.

� Collaborative software or groupwares are web-based systems that offer a
space on the web for a project. Groupwares are feature-rich, offering modules
for storing documents, planning, sharing to-do lists, and managing con-
tacts and calendars. Some popular choices oriented to software development
include Redmine and Trac. Many other solutions are available, among which
are Wiki engines (e.g., MediaWiki, MoinMoin, PMWiki, Gollum), which
allow one to upload documents and write webpages using a special markup
language.

9.3 Basic + Infrastructure
Establishing some basic configuration management practices is a good idea in any
project, even those that do not have it as a specific requirement. This, in fact, allows
one to control changes to documents and, more important, to unambiguously
associate a given version of a software system to the corresponding documentation.

Version control systems implement mechanisms to keep track of all changes
ever made to project assets. We have already seen that this is usually achieved by
storing all changes in a repository and that two different paradigms exist: centralized
and distributed. See Section 4.1.3.2 for more details.

Configuration control tools implement various functions on top of a ver-
sioning system to cover different aspects of the development process, including
the management of dependencies among components (see TechWell Contributor
(2013) for a comparison of version and configuration control systems).

For versioning systems, various open source solutions exist, among which some
very popular choices include git, mercurial, and svn. The first two are distributed
versioning systems, while the third is based on a centralized paradigm. Some services
on the Internet provide ready-made solutions. Among them we mention GitHub
and Bitbucket, probably the two most famous names.

The systematic use of a versioning system for managing documents helps achieve
various goals. The first is that it is possible to trace the evolution of a document over
time. The second is that we can revert a file to a previous version, if necessary. The
third is that we can manage parallel contributions to the same document, if the file
is text-based—unfortunately, this does not apply to most of the formats used for

266 � Introduction to Software Project Management

management documents; see the next section for another solution. The fourth is
to tag files with specific labels. This is useful when the tag marks a specific project
milestone or an important project event.

9.4 Collaborative Document Writing
Onmany occasions, it becomes necessary to work on the same document in parallel.
Unfortunately, the formats used by the main office suites do not work very well with
version control systems and the process of manually incorporating changes from
different reviewers is one of those tedious activities many managers sooner or later
will have to deal with.

Some approaches can help make the process a bit less painful. The first solution
is using the internal revision control system implemented by many office suites.
This makes it possible to trace changes and merge different versions of a document.
Keeping a document history, however, is more difficult than with version control
systems, such as git. A similar consideration can be made for the meta-information
that is usually attached to a document revision, such as author, date, and motivation:
revision control systems of office suites typically provide little support for this data.

The second solution is using a wiki or another tool, such as Google Document,
which allows the simultaneous editing of documents on the web. The advantages
are similar to those in the previous case, with some additional support to parallel
editing and history tracking. The main weakness is that these tools “separate” the
documents from the other artifacts of a project (unless all documents are stored
using the same service, something difficult to achieve) and make it more difficult to
enforce basic configuration management practices.

The third solution is using a text-based format for the document. Some pos-
sible choices include markup language such as HTML, Textile or Markdown, and
LaTeX. This allows one to easily integrate documents with the other artifacts of a
project, most notably source code. However, their format might be difficult to man-
age for some stakeholders. A possible approach is using a tool such as MSWord and
imposing HTML and the output format. However, the approach solves the problem
only for textual documents and reports; spreadsheets and other types (e.g., Gantt’s
charts) still need to be treated as described in the previous section.

9.5 Management Infrastructure
Manymanagement documents are text-based or spreadsheets. This is the case for the
scope document, budget, time sheets, earned value analysis, and various other project
plans, including risk and quality.

Specific tools can be used for Gantt’s charting. Some open source choices include

� ProjectLibre: an open source solution derived from OpenProj. Multiplat-
form, it comes with a rich set of scheduling and analysis features. It has

Open Source Tools for Managing Projects � 267

some functions that are rarely found in other tools, such as those to plot
earned value. Actively developed at the time of writing (June 2013), it
has some usability glitches and some odd behaviors. Do not expect much
documentation.

� GanttProject: another Gantt charting tool written in Java. It provides basic
scheduling features and does a fair job. Scheduling is only duration-driven.

� TaskJuggler: a text-based scheduling tool. The input is a text-based specifi-
cation of a plan and the output is a text-based specification of a schedule,
in which different activities are allocated to time-respecting hard and soft
constraints. It is a nice option if one is trying to understand what schedul-
ing options there are for a specific plan. Drafting a plan without a GUI is
demanding.

Several tools are available to manage a list of tasks and a list of issues, thanks also
to the increasing popularity of agile tools. Historically, bug and issue tracking tools
have been developed first; they can also be used as a task list, since the distinction
between an issue and a task is subtle from the point of view of the data needed to
represent them. Good solutions include Bugzilla and Mantis. Redmine and Trac
also provide their own issue and bug-tracking lists.

If we broaden our search to tools to support backlogs and agile development, we
come across a huge amount of services and tools for personal and team productivity.
Fulcrum is an open source choice based on Kanban. Kunagi is an open source
solution that implements the Scrum process.

Finally, some tools allow for an integrated management of project information.
We mention two open source solutions:

1. Achievo, which provides functions to plan projects, manage resources, and
control costs. The tool, implemented as a web application, allows a man-
ager to sketch a high-level plan organized in phases, each having a set of
to-dos. Achievo allows one to allocate resources and assign a budget to each
project/phase. The plan can then be monitored in its execution. A project
dashboard, available to all project members, allows one to get a list of tasks
and other information about a project. Team members can also submit their
own time sheets.

2. Project-open is another web application available in open source. Project-
open is based on a rich set of modules and covers various project and
enterprise resource management needs. Sixteen different modules are avail-
able and organized in three areas: project management, collaboration, and
finance. It is thus possible to deploy a solution that covers increasingly com-
plex functions, starting from planning and ending with financial reports and
indicators.

A final word can be spent about maintaining a project log. On top of simple
solutions, such as a text file, the use of slightly more specialized tools, such as a blog,

268 � Introduction to Software Project Management

can provide a bit more structure to the data and more opportunities to share it with
the project team.

References
Foster, W., 2013, June. 21 months in: How to manage a remote team. Available at

https://zapier.com/blog/how-manage-remote-team/. Last retrieved July 2, 2013.
TechWell Contributor, 2013. Version control vs. configuration management. A template

is available at http://www.cmcrossroads.com/article/version-control-vs-configuration-
management. Last retrieved June 9, 2013.

Software Engineering & Systems Development

Although software development is one of the most complex activities carried out by
man, sound development processes and proper project management can help to ensure
your software projects are delivered on time and under budget. Providing the know-
how to manage software projects effectively, Introduction to Software Project
Management supplies an accessible introduction to software project management.

The book begins with an overview of the fundamental techniques of project
management and the technical aspects of software development. This section supplies
the understanding of the techniques required to mitigate uncertainty in projects and
better control the complexity of software development projects. The second part
illustrates the technical activities of software development in a coherent process—
describing how to customize this process to fit a wide range of software development
scenarios.

•	 Examines project management frameworks and software development
standards, including ESA and NASA guidelines, PRINCE2

®, and PMBOK®

•	 Addresses open source development practices and tools so readers can adopt
best practices and get started with tools that are available for free

•	 Explains how to tailor the development process to different kinds of products
and formalities, including the development of web applications

•	 Includes access to additional material for both practitioners and teachers at
www.spmbook.com

Supplying an analysis of existing development and management frameworks, the
book describes how to set up an open-source tool infrastructure to manage projects.
Since practitioners must be able to mix traditional and agile techniques effectively,
the book covers both and explains how to use traditional techniques for planning
and developing software components alongside agile methodologies. It does so in a
manner that will help you to foster freedom and creativity in assembling the processes
that will best serve your needs.

Introduction to
Software
Project
Management

 Adolfo Villafiorita

www.auerbach-publications.com

ISBN: 978-1-4665-5953-0

9 781466 559530

90000

K15541

 Villafiorita
Introduction to S

oftw
are P

roject M
anagem

ent6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

K15541 cvr mech.indd 1 1/10/14 9:28 AM

	Front Cover
	Dedication
	Contents
	Preface
	Acknowledgments
	Author
	Chapter 1 Introduction
	Chapter 2 The Basics: Software Development Activities and Their Organization
	Chapter 3 Making IT Right: Managing Goals, Time, and Costs
	Chapter 4 Making IT Better: Managing Changes, Risks, and Quality
	Chapter 5 Making IT Perfect: Managing People and Organizing Communication
	Chapter 6 Software Project Pricing
	Chapter 7 Managing Software Development Projects
	Chapter 8 Development and Management Standards
	Chapter 9 Open Source Tools for Managing Projects
	Back Cover

