SE489 DevOps Engineering
Lab 2

Lab 2: More Git Operations

Objective: After completion of this lab session successfully, students will be able to use some of most widely
used Git Operations of creating branches and merging them together.

In last lab we have used git commands from windows command prompt, now we will customize git bash shell
to the local repository we have created in previous lab session.

1. From start menu, start Git by writing git bash

Q git basH

Al Apps Documents Web More v

Best match

I Git Bash
App

Search the web Git Bash
App
£ git bash - See web results >
Command 7 Open
[m] git bash > 8 Run as administrator

£2 Run as different user

2. Git bash shell will appear, showing default directory of the installation

MINGWE4:/c/Users/mzafa — a x

5

3. Git follows DOS commands, use dos commands to change the working directory to the local
repository we have created at d:\DevOps Tools\Lab Manual
(Hint: because folder name consist of spaces, we can’t write them directly, use tab after
writing part of the name before the space e.g. for DevOps Tools, write DevOps and press tab,
DevOps\ Tools will appear)

MINGW64:/d/DevOps Tools/Lab Manual = (m] X

$ cd d:

/d

$ cd Devops\ Tools/Lab\ Manual/

/d/DevOps Tools/Lab Manual
$ |

master at the end of the path confirms that we are now at the original branch known as master
in the terminology of Git

Before proceeding further, if we want to check the log,

/d/DevOps Tools/Lab Manual
$ git log
commit 0753bac68996260caf37d200a88e6ed4ee5d2716a (HEAD -> master)
Author: Zafar Igbal Khan <zkhan@psu.edu.sa>
Date: Tue Jun 21 17:06:02 2022 +0530

removed additional files
commit 26c04773b8b44dd7d04c16d99d6636e93d49eb6e5
Author: zafar Igbal Khan <zkhan@psu.edu.sa>
Date: Tue Jun 21 02:10:55 2022 +0530

With three print statements

/d/DevOps Tools/Lab Manual

The string shown after commit are sha keys allotted to the commit operations, author shows
who has made these commit operations, last strings are messages used with the commit
operations, now it helps us to identify the commit operations.

Now if we want to experiment with some new features, while keeping original intact, we
create branches, a branch inherits all the files from the original branch (“master” in our case)
Let’s create two branches with the help of git branch command

MINGW64:/d/DevOps Tools/Lab Manual

/d/DevOps Tools/Lab Manual

$ git branch testO

/d/DevOps Tools/Lab Manual
$ git branch testl

| /d/DevOps Tools/Lab Manual
$

We have created two branches viz. testO and testl

6. To list all the local as well as remote branches, -a switch is used

MINGW64:/d/DevOps Tools/Lab Manual

/d/DevOps Tools/Lab Manual
$ git branch -a

testO
testl

/d/DevOps Tools/Lab Manual

*shows, we are at master now

7. To delete a branch, -d switch is used, delete branch testl and then verify it through listing

MINGWE4:/d/DevOps Tools/Lab Manual

/d/DevOps Tools/Lab Manual
$ git branch -d testl
Deleted branch testl (was 0753bac).

/d/DevOps Tools/Lab Manual

$ git branch -a

testO

/d/DevOps Tools/Lab Manual
$ |

now it is showing only one branch, obviously another one has been deleted.

10.

11.

Now let’s switch to this branch te_s_t_Q,_ __l_1§§__(:h_t_a__(;_k(_)__l_J_f[_)

MINGW64:/d/DevOps Tools/Lab Manual

/d/Devops Tools/Lab Manual

$ git checkout testO
Switched to branch 'testO'

/d/Devops Tools/Lab Manual

last word shows that we are in testO branch
Check contents of the new branch with Is/dir command

MINGW64:/d/DevOps Tools/Lab Manual

/d/Devops Tools/Lab Manual
$ 1s
DEMO. java

/d/Devops Tools/Lab Manual
$ dir
DEMO. java

/d/DevOps Tools/Lab Manual

Now create a copy of demo.java file using CP command, verify it with the help of Is
command

MINGW64:/d/DevOps Tools/Lab Manual

/d/DevOps Tools/Lab Manual
$ cp demo.java demolll.java

/d/DevOps Tools/Lab Manual
$ 1s

DEMO.java demolll.java

/d/DevOps Tools/Lab Manual

A copy of the demo.java with name demo111.java has been created.

Edit this file with the default editor we have selected while installation of the git, Notepad,
with following command
$notepad demol1l.java, moment you will press enter, a notepad window will open

demol1l1l.java file

/d/Devops Tools/Lab Manual

$ notepad demolll.java

B demoln Java - Notepad

File Edit View

public class DEMO
{
public static void main(String[] args)|
{
System.out.println("Welcome to Java");
System.out.println("Welcome to DevOps");
System.out.println("Git is Fun");

}

Ln 3, Col 44 Unix (LF)

12. To make some changes, delete last print statement then save & close it.

13. Since we have created and modified a file, we can check, if it is being tracked or not by
invoking git status

MINGW64:/d/DevOps Tools/Lab Manual

/d/Devops Tools/Lab Manual
$ git status

on branch testO
Untracked files:

(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

/d/Devops Tools/Lab Manual

14. Now let’s add this to stage area and then check the status again

MINGW64:/d/DevOps Tools/Lab Manual

/d/Devops Tools/Lab Manual

$ git add -A
warning: LF will be replaced by CRLF in demolll.java.
The file will have its original Tine endings in your working directory

/d/Devops Tools/Lab Manual
$ git status
on branch testO
Changes to be committed:
(use "git restore --staged <file>..." to unstage)

/d/DevOps Tools/Lab Manual

-A, when used with add, adds all tracked and tracked files to staging area (file will be tracked)

15. Commit this change with message tag, with two print statements.

MINGW64:/d/DevOps Tools/Lab Manual

/d/DevOops Tools/Lab Manual
$ git commit -m "with two print statements"
[test0 9e9e2ed] with two print statements
1 file changed, 10 insertions(+)
create mode 100644 demolll.java

/d/DevOops Tools/Lab Manual

16. We can also create a branch with the help of checkout command by using switch -b and
branch name, and check the contents with Is

MINGW64:/d/DevOps Tools/Lab Manual

/d/Devops Tools/Lab Manual
$ git checkout -b testl
Switched to a new branch '"testl'

/d/Devops Tools/Lab Manual
$ 1s
DEMO.java demolll.java

/d/Devops Tools/Lab Manual

17. Repeat steps from 10 -12 to create and edit the copy, rename the file demo222.java, time
delete the second print statement as well so as only one print statement remains in the file.

/d/DevOps Tools/Lab Manual
$ cp demolll.java demo222.java

/d/DevOps Tools/Lab Manual
ES

DEMO.java demolll.java demo222.java

/d/Devops Tools/Lab Manual
$ notepad demo222.java

E *demo222.java - Notepad

Fle Edit View
public class DEMO

public static void main(String[] args)

{

System.out.println("Welcome to Java");
System.out.println("Welcome to DevOps");

o Windows (CRLF)

. Same as previously, lets check status, add this file and check status again.

MINGW&4:/d/DevOps Tools/Lab Manual

/d/Devops Tools/Lab Manual
$ git status
on branch testl
Untracked files:
(use "git add <file>...

to include in what will be committed)

hothing added to commit but untracked files present (use "git add" to track)

/d/Devops Tools/Lab Manual
$ git add demo222.java

/d/Devops Tools/Lab Manual
$ git status
on branch testl
Changes to be committed:
(use "git restore --staged <file>...

"

to unstage)

/d/Devops Tools/Lab Manual

19. Commit this file with message tag, “with one print statement”.

MINGW64:/d/DevOps Tools/Lab Manual

/d/DevOps Tools/Lab Manual
$ git commit -m "with one print statement”
[testl 55eelef] with one print statement
1 file changed, 8 insertions(+)

create mode 100644 demo222.java

/d/DevOps Tools/Lab Manual

20. Use successive checkout and Is, to look into various branches and their contents.
MINGW&64:/d/DevOps Tools/Lab Manual = (] X
/d/DevOps Tools/Lab Manual

$ 1s
DEMO.java demolll.java demo222.java

/d/Devops Tools/Lab Manual
$ git checkout testO
Switched to branch 'test0'

/d/DevOps Tools/Lab Manual
$ 1s
DEMO.java demolll.java

/d/Devops Tools/Lab Manual

$ git checkout master
Switched to branch 'master’

/d/DevOps Tools/Lab Manual
$ 1s
DEMO. java

/d/Devops Tools/Lab Manual

21. We can use merge to merge files from various branches, point to note that, we must be at the
destination branch of the merge operation.

being at master branch, we will merge contents from branch test0 into branch master

MINGW64:/d/DevOps Tools/Lab Manual = O X

/d/Devops Tools/Lab Manual

$ git merge testO

Updating 0753bac..9e9e?ed
Fast-forward

demolll.java | 10

1 file changed, 10 insertions(+)
create mode 100644 demolll.java

/d/Devops Tools/Lab Manual
$ 1s

DEMO.java demolll.java

/d/Devops Tools/Lab Manual

22. Rebase command is used to rebase the project, rebasing merges all files into one and produces
much clear structure of project tree.

MINGW64:/d/DevOps Tools/Lab Manual = O X

/d/DevOps Tools/Lab Manual
$ 1s

DEMO.java demolll.java

/d/DevOps Tools/Lab Manual
'$ git rebase testl

Successfully rebased and updated refs/heads/master.

/d/DevOops Tools/Lab Manual
$ 1s

DEMO.java demolll.java demo222.java

/d/DevOps Tools/Lab Manual

As obvious from the output produced, all files from the branch testl have been merged into master.

