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ABSTRACT The distributed cooperative offloading technique with wireless setting and power trans-
mission provides a possible solution to meet the requirements of next-generation Multi-access Edge
Computation (MEC). MEC is a model which avails cloud computing the aptitude to smoothly compute
data at the edge of a largely dense network and in nearness to smart communicating devices (SCDs).
This paper presents a cooperative offloading technique based on the Lagrangian Suboptimal Convergent
Computation Offloading Algorithm (LSCCOA) for multi-access MEC in a distributed Internet of Things
(IoT) network. A computational competition of the SCDs for limited resources which tends to obstructs
smooth task offloading for MEC in an IoT high demand network is considered. The proposed suboptimal
computational algorithm is implemented to perform task offloading which is optimized at the cloud
edge server without relocating it to the centralized network. These resulted in a minimized weighted
sum of transmit power consumption and outputs as a mixed-integer optimization problem. Also, the
derived fast-convergent suboptimal algorithm is implemented to resolve the non-deterministic polynomial-
time (NP)-hard problem. In conclusion, simulation results are performed to prove that the proposed
algorithm substantially outperforms recent techniques with regards to energy efficiency, energy consumption
reduction, throughput, and transmission delay performance.

INDEX TERMS Energy Efficiency, MEC, NP-hard problem, SCD, Cooperative offloading.

I. INTRODUCTION

In recent years, the implementation of the internet of things
(IoT) network allows smart communicating devices (SCDs)
embedded with sensors the capacity to interconnect through
internet infrastructures. However, the SCDs are resource-
constraint with low processing capacity and limited battery
lifetime [1] to fully satisfy the demands of the mobile users.
The exponential growth of smart communicating devices
requires a high demand for network bandwidth and storage
capabilities. In order to overcome the above challenge, multi-
access edge computing (MEC) has been initiated.

The introduction and recent innovations of MEC have
provided SCDs with a systematic network model which
avails the usability of cloud computing aptitudes at the radio
access network (RAN) edge. MEC is gradually changing
cloud computing services to facilitate the high performance

of distributed IoT networks [2, 3]. Specifically, MEC of-
floading can enhance the IoT smart devices by offloading
high computation tasks to the proximity of edge servers
with the priority to minimize their energy consumption. We
can justify the fact that offloading is needed regularly due
to limited computational power, low mobile device storage
capacity, and high energy consumption. Since the MEC cloud
server has a high computation capability, its deployment will
significantly boost faster data processing in IoT networks [4],
without adding extra processing power. The MEC compu-
tation offloading [5] can be performed either locally or the
computational task is transfer to the nearest cloud edge server
for data processing.

Cooperative allocation of the computation task among
mobile users can mitigate uneven computation workloads
distribution and computation resources. The authors in [6, 7]
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stated that to achieve a reliable MEC computation offloading
in IoT networked devices remains a challenging issue. This
has resulted and formed the basis of this research.

In this paper, we propose an energy-efficient suboptimal
algorithm for cooperative offloading based on a Lagrangian
offloading algorithm for MEC computation in distributed
IoT networks. The SCDs compete for limited computation
resource that impedes smooth task offloading for multi-
access MEC in high demand environments. In the proposed
system, task scheduler in each SCD contains dual servers; the
local central processor (LCP) which locally executes tasks,
and the wireless transmitters (i.e., LTE-A or Wi-Fi) which
offloads the task non-locally. Without relocating to the central
network, the offloading task will be optimized at the cloud
server. The next target will be to minimize the total energy
consumed by the SCDs. For this, we mutually optimized the
computation speed for data transmission, the transmit power
allocation per sub-channel, and the offloading ratio, leading
to a mixed-integer optimization problem which is an NP-hard
power problem. Using the Lagrangian dual decomposition
approach, an algorithm based on suboptimal convergent is
proposed to mitigate this problem, and to improve the data
transmission throughput which in turn minimizes the energy
consumption of computational tasks offloading.

Therefore, we summarized our contributions in this paper
as follows:

• We propose an energy-efficient cooperative offloading
algorithm for multi-access edge computing in the dis-
tributive IoT network, where the offloading task is opti-
mized at the cloud edge server.

• With the aim of minimizing the total transmission
and computational power consumed by the SCDs, our
techniques mutually optimized the computation of data
transmission speed, offloading ratio, and transmit power
allocation per sub-channel and the outcome becomes a
problem of mixed-integer optimization. The challenge
inner- and inter-coupling that influences each transmit-
ting SCDs is tackled by joint optimization of the compu-
tational speed through Dynamic Voltage Scaling (DVS)
technique, subchannel distribution, subchannel transmit
power, amount of data transmitted per subchannel, and
the subchannel offloading ratio.

• We propose a suboptimal convergent algorithm by ap-
plying the Lagrangian dual decomposition technique,
to improve the NP-hard problem and enhance latency
requirements so as to minimize the energy consumed in
the computation of SCDs tasks.

• Finally, our proposed technique is validated and the
simulation results show a significant out-performance
of existing techniques as regards data throughput and
energy consumption.

The rest of this paper is arranged as follows: Section II
contains related works while the system model is contained
in Section III. The research problem is formulated in Sec-
tion IV. Section V describes the Multi-access computation

offloading scheme analysis, and the Simulation results for
the system performances are presented in Section VI while
the Conclusion is stated in Section VII.

II. RELATED WORKS
The advent of MEC has formed a novel computing model to
enhance data processing in proximity to SCDs and connected
things at the network edge [8]. Many recent works surveyed
for cooperative SCDs are aimed to improve the performance
of IoT networks, subject resource-intensive constraints such
as network bandwidth capacity [9], computation offloading,
and energy consumption budgets [10]. In [11], a distribution
of computation load for smart mobile devices was studied by
employing both computations offloading and radio resource
constraints. [12] proposed a clustering algorithm for load
balancing in heterogeneous networks to minimize energy
consumption while sustaining and satisfying users’ demands.
The effective computation offloading among the energy-
constrained MEC is important to avoid huge computation
latency in order to achieve a high QoS in the network.

The overall MEC systems performance solely depends on
offloading technique design, which has a close relationship
with the type of applications SCDs run. While multiple
SCDs simultaneously transmit similar or different highly
intensive computation tasks [13], because of parallel local
and cloud execution, the ideal system performances do not
only assume inner-coupling for each transmitting SCD, but
is correspondingly inter-coupled amid SCDs because of the
competition for limited transmission resource. The inner- and
inter-coupling also affects each other, and therefore compli-
cates multiple SCDs offloading technique and strategy [14].

Recent researches have broadly studied the offloading
technique and strategy for multiuser MEC schemes [15 - 17].
Most recent studies have jointly investigated the computation
offloading, not just with resource allocation constraints, but
coupled with caching techniques [18]. In [19], an energy-
efficient autonomic offloading (EEAO) technique that jointly
applies the physical layer design and latency for application
running was designed. The energy consumption was modeled
for computation task for identical mobile consumptions in
MEC environment. Thus, the computation offloading by mo-
bile SCDs is randomly derived as a partly Markov decision
approach to reduce the cost of MEC systems, consisting of
the offloading execution time and the energy consumption
[20]. In [21], the optimal energy efficiency performance in
mobile-edge computing was investigated. The computation
offloading technique was observed to have achieved reduced
energy consumption for each mobile user in allocated time
slot. The authors in [22] studied an energy efficient task
offloading (EETO) in 5G MEC based on a two-tier small-
cell network setting. By jointly examining the energy cost
in offloading task for backhaul communication links, the
minimized energy consumption problem was formulated. An
algorithm is designed to improve the computation offloading
task in order to realize global convergence. Therefore, a joint
optimized transmit power, required number of data trans-
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mission throughput and the CPU cycles for mobile devices
achieved a low energy consumption, however, the systems
latency was not greatly improved as expected [23, 24].

Moreover, due to the high demands for SCDs in a com-
putation system, the energy-efficient offloading is critical
target in the construction of an effective computation of-
floading system in MEC networks. In [25], the authors con-
sidered some energy-efficient offloading strategies in task
computational transcoding for edge-cloud mechanism. An
algorithm based on online offloading was proposed with a
focus of achieving a minimized energy consumption while
reaching low latency. To enhance energy efficiency in MEC, a
multiuser-based computation offloading problem was investi-
gated by [26], and [27] used a game theoretic technique to de-
sign a distributive algorithm for a wireless network based on
multi-channel. Different from these studies, our focus is on
improved MEC which does not only minimize energy con-
sumption but also improves throughput and latency between
transmitting mobile SCDs. Hence, we propose an optimal co-
operative offloading technique to enhance energy efficiency
in dynamic IoT networks of the cloud computing system.
However, recent works did not give much consideration to the
influence terminal execution technique has on multi-access
computation which results in highly deteriorated network
performance [28], [29], [30], [31], [32]. This also contributes
to the focus of our research.

III. SYSTEM MODEL
The system model consisting of the network, communication
and computation models of proposed techniques is analyzed
in this section.

A. NETWORK MODEL

 

CENTRAL NETWORK

MEC Server

MEC Server

SCDs

SMALL CELLS

MEC Server Base Station

Wireless Relay

SMALL CELLS

Base Station

FIGURE 1: MEC Cooperative computation offloading in IoT
Network

As described in Figure 1, a MEC-based cooperative com-
putation offloading setting in IoT Network is considered. In
the network, the numbers of SCDs are alternatively enclosed
by a base station (BS), a nearby small cell (SC) transmit-
ters, such as Wi-Fi AP or an LTE-A, coupled with a wireless
relay (WR). With the aim of availing all transmitting SCDs
the MEC services, either a single or multiple MEC servers
is linked to both the (BS) and (SC) through the fiber links.
Hence, SCDs tasks computations is either offloaded at the
(BS) via the connected MEC server, the (SC) connected
MEC server, or indirectly to the (BS) through the (WR)
and the wireless transmitters (WT ). The fiber links is used in
connecting the (SCs) and the (BS) to the central network.
With the aim of achieving an efficient spectrum reuse, the
same frequency band is shared between the (WR) and the
(BS) during computation and task transmission.

The rate at which the task arrives at the SCD i’s scheduler
is given as δSCDi . The decision of the SCD i task scheduler
is implemented according to the offloading probability αi,
rate. This represents the probability of offloading an inbound
task is to the MEC server. The tasks computed are presumed
to be indivisible, therefore it is impossible to further break
them down into sub-tasks. The system further assumes a task
scheduler is incorporated in all the MEC servers, which either
selects to compute an inbound task or to offload the task to
the remote cloud. For the SCDs, the inbound task through
the MEC server S will either be offloaded remotely to the
cloud with a probability βj or can be locally executed with
probability (1− βj).

In this MEC scenario, assuming SCDs in unit cell will
function as [27]. During data processing, the SCDs send SC
a request. Using the information gathered the SC fashion
out a strategy for computation task offloading and updating
independent SCD.

Considering a group of SCDs represented by R =
{1, 2, ..., R} is presented. It is assumed that only one com-
putation task Ci is available to be executed on SCD i
during the period of computation offloading. Recall that all
the computation tasks are indivisible. Therefore, there are
two terms that may clearly define the computation task Ci
i.e., Ci = (si, pi), where Si represents the size of input
data of task Ci, while pi represents the amount of LCP
sequences required in achieving Ci. We assume that there
are M uplink channels connected to the BS and represented
as M = {1, 2, ...,M}, and N uplink channels connected to
the SC and characterized as N = {1, 2, ..., N}.

Considering the SCDs features and their tasks, for example
the density of workload, the computing capacity, the energy
consumption, and the data size of the task, the SCD users are
categorized into two. Let λi ∈ {0, 1} denote the offloading
result of task Ci, where λi(0) implies that Ci is intended to
be accomplished locally at SCD i’s LPC, and λi(1) implies
that Ci will be offloaded either locally or to the MEC server
that is indirectly connected to the k through the WR and
the wireless transmitter. This kind of offloading decision is
dependent of the quality of communication and the channel.
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B. COMMUNICATION MODEL
An identical bandwidth B in the subchannels is solely al-
located without channel interference among the SCDs [12],
[13]. Assuming Pr,m, er,m and σ2 indicate the transmit
power of SCD r on subchannel m, Gaussian noise, and
the coefficient of uplink channel fading from SCD r to
subchannel m respectively. Thus, the rate of transmission of
SCD r on subchannel m is given by

LT = Blog2

(
1 +

Pr,md
−k
l |er,m|

2

σ2

)
(1)

C. COMPUTATION MODEL
This section describes the computation offloading technique
in two scenarios, where Ui and Vi indicates size of the input
data and the latency requirements:
• Local computing: Power consumed P by CPU is P =
τS3, where τ is the coefficient subject to chip design
and S is the computational speed of CPU based on
dynamic voltage scaling technique that improves en-
ergy management scheme. Assuming the computational
speed of SCD is Sui and the task execution time tui .
Therefore, the task execution time is given by

tui =
αiUi.γi
Sui

(2)

And the energy consumed Eui is

Eui = αiUi.γi.τS
3 (3)

• Computation Offloading to Central network: Let (1 −
γi)Ui denotes the bits offloaded to the MEC cloud server
at uplink data ψ(1 − γi)Ui , where ψ is the uplink
transmission overhead. Let ur,m represents the size of
the data offloaded to subchannel m. Thus, we expressed
transmission time as

lci = max

{
ui,m
LT

,∀m
}

(4)

And the energy consumed for transmitting data to the
MEC cloud server as

Eci =
M∑
m=1

[
µ(βr,mPr,mui,m)

LT

]
(5)

where µ denotes the reverse efficiency of power amplifier. It
is assumed that cloud task computation capacity is infinite.
Thus, we can ignore the cloud computing time. In addition,
the downlink transmission cost could be ignored due to less
data received compared to the large downlink transmission
rate [4],[32]. Table 1 presents a description of all mathemati-
cal parameters and their derivations.

For the λi(3) category of SCDs whose task offloading is
directed either locally or to the transmitting MEC server
which is indirectly connected to base station (k), we set
different offloading priorities for them and is defined as

$i =
gi,kPr,m√

Eci
(6)

where gi,k is set as the systems channel gain. Algorithm
1 illustrates a comprehensive SCD user offloading priority
selection.

Algorithm 1 Priority selection algorithm in Offloading Pro-
cess
Initialize:
Smart Communicating Devices: R = {1, 2, ..., R};
Wireless uplink channels:N = {1, 2, ..., N};
SCD Computation task: Ci = (si, pi);
SCD Transmission power: Pr,m, i ∈ R;
SCD category: λi(0) = λi(1) = φ;
Selection priority: $ = φ;

1: for SCD i = 1toR do.
2: for transmission channel j = 1toN do.
3: compute the channel data execution rate tui of each

SCDs as stated in (2), and the energy consumption
Eui represented in (3);

4: for transmission channel j = 1toN do
5: if Er ≤ Eui then;
6: i⇒ λi(0);
7: else
8: i⇒ λi(1);

9: $i = gl,rPr,m/
√
Eci ;

10: end if
11: end for
12: Output:
13: Selected SCD category: λi(0), λi(1);
14: Selection priority of SCD: $ = {$i}, i ∈ λi(1).

D. COMPUTATION PROBLEM FORMULATION
The Multi-access computational offloading (MCO) problems
P1...P3 are formulated in this section.

P1 : min
gl,B,P,L,λ

R∑
r=1

xrEr(glr , br,m, Pr,m, lr,m, λr)

s.t.D1 : max{tlr , tar} ≤ Lr,∀r,
D2 : 0 ≤ glr ≤ Flr ,∀r,

D3 :
M∑
m=1

br,mPr,m ≤ PTr ,∀r,

D4 : Pr,m ≥ 0,∀m, r,

D5 :
M∑
m=1

br,mkr,m ≥ β(1− λr)Jr,∀r,

D6 : lr,m ≥ 0,∀m, r,

D7 :
R∑
r=1

br,m ≤ 1,∀m,

D8 : br,m ∈ {0, 1},∀m, r,
D9 : 0 ≤ λr ≤ 1,∀r,

where Er(glr , br,m, Pr,m, lr,m, λr) denotes the energy
consumption (EC) of SCDs r, and can be represented as
Er(glr , br,m, Pr,m, lr,m, λr) = Elr + Eir . Furthermore,
xr, Lr,, Glr , and PTr are respectively considered as the
weighting measure, computational latency, optimal velocity
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TABLE 1: NETWORK PARAMETERS AND DERIVA-
TIONS

Parameter Description
Ui Input data size
Vi Network Latency requirement
αi Offloading probability
βj Probability of offloading to remote cloud
(1 − βj) Probability of local execution
Ci System Computation task
Pr,m Transmit power of SCDs
er,m Coefficient of uplink channel coding
σ2 Gaussian Noise
P = τS3 CPU power consumption
τ Coefficient of chip design
S CPU computational speed based on DVS
Sui Computational speed of SCD at local computing
tui Execution time of local computing
Eui Energy consumed at local computing
Eci Energy consumed at MEC server transmission
P1...P3 MCO formulated problems
D1...D9 Constraints for measuring energy consumption
P ∗
r,m Optimal power auxiliary
ζ Pre-defined error tolerance point
∆µr Lagrange Multipliers Update
λ∗r Optimal offloading ratio
s∗r,m Optimal communicated bits
$i SCDs offloading priority
gi,k System channel gain

for computation, and optimal transit power allocation (of
SCDs r).

Our objective in P1 is to lessen the weighted amount
of power consumed by communicating devices subject to
D1−D9. In this regard, the weighted sum is considered as the
tradeoff of power consumed by the SCDs. The weighting sum
value measures relatively in reflection to the importance of
SCDs. Technically, SCDs with less residual energy could be
assigned greater weighting measures. We therefore explains
the constraints as follows; D1 ensures a guaranteed response
time of communicating SCDs;D2,D3 andD4 represents the
maximum computational velocity and the maximum transit
power allocation assigned to individual SCD; D5 and D6

ensures that all are task offloaded and transmitted over an
allocated sub-channel;D7 andD8 guarantees the assignment
of maximum of one SCD for each sub-channel for uplink
communication. Considering that br,m assumes an integer
state, P1 is a non-deterministic polynomial-time hardness
(NP-harder).

IV. MULTI-ACCESS COMPUTATIONAL OFFLOADING
SCHEME
In this section, we attempt to derive the multi-access compu-
tational offloading, hence, in close forms, transmit power al-
location (TPA) and an optimal computation velocity (OCV),
is calculated while a suboptimal algorithm based on La-
grangian dual decomposition (LDD) is proposed.

A. OPTIMAL COMPUTATIONAL VELOCITY AND
TRANSMIT POWER ALLOCATION
In this subsection, simplifying P1 by minimizing the vari-
ables over glr and first Pr,m we attempt to compute the

OCV and TPA. Hence, the optimal power glr generated for
computation is then obtained as

g∗lr (λr) = αrλrJr
Lr

(7)

While the optimal power auxiliary Pr,m derived from (1) is
given as

P ∗r,m(br,m, lr,m) =
1

fr,m

(
2
lr,m
XLr − 1

)
. (8)

Further analyses of the multi-access computational prob-
lem in P1 indicates that at every increase of the optimal
power (glr ), the power consumption of SCDs r also increases
in a monotonic form. Hence, tlr ≤ Lr is further derived and
this further results in glr ≥ αrλrJr

Lr
.

Therefore, the optimal computational velocity problem
(P2) is formulated as;

P2: min
B,L,λ

R∑
r=1

xr

[
ε(αrJr)3

L2
r

λ3
r + Eir(br,m, lr,m).

]
s.t.D10 : λr ≤ LrFlr

αrJr
,∀r,

D11 :
M∑
m=1

br,m
fr,m

(
2
lr,m
XLr − 1

)
≤ PTr ,∀r,

D5,D6,D7,D8,D9

B. SUBOPTIMAL LAGRANGIAN DUAL
DECOMPOSITION ALGORITHM
This subsection applies the Lagrangian dual decomposition
Algorithm (LDDA) to resolve the aforementioned simpli-
fied computational problem (P2). Diminishing br,m to 0 ≤
b̃r,m ≤ 1, we introduce a fresh variable sr,m = b̃r,mlr,m,
hence, the diminished problem can be stated as P3 below:

P3: min
B̃,L,λ

R∑
r=1

xr

[
ε(αrJr)3

L2
r

λ3
r + Eir(b̃r,m, sr,m)

]
s.t.D12 :

M∑
m=1

b̃r,m
fr,m

(
2

sr,m
XLr b̃r,m − 1

)
≤ PTr ,∀r,

D13 :
R∑
r=1

b̃r,m ≤ 1,∀m,

D14 : 0 ≤ b̃r,m ≤ 1,∀m, r,

D15 :
M∑
m=1

sr,m ≥ β(1− λr)Jr,∀r,

D16 : sr,m ≥ 0,∀m, r,
D9, D10,

where

Eir(b̃r,m, sr,m) =
M∑
m=1

ρLr
fr,m

b̃r,m

(
2

sr,m
XLr b̃r,m − 1

)
. (9)

In the expression ψ(b̃r,m, sr,m) =

(
2

sr,m
XLr b̃r,m − 1

)
, it

can be seen that ψ(b̃r,m, sr,m) is jointly convex in b̃r,m
and sr,m, since it’s a positive semi-definite Hessian matrix.
Similarly, the objective and feasible regions of (P2) are
convex and (P3) is convex as well. Therefore, obtaining
the optimal solutions by applying the LDDA by denoting:
µ = (µ1...µR)0, v = (v1...vM )0, as the respective Lagrange
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multipliers which are consistent with D12,D13 and D15,
hence, the (P3) LDD is expressed as;

L(B̃, S, λ, µ, v, γ) =
R∑
r=1

xr

[
ε(αrJr)3

L2
r

λ3
r + Eir(b̃r,m, sr,m)

]
+

R∑
r=1

µr

(
M∑
m=1

ψ(b̃r,m,sr,m)
fr,m

− PTr
)

+
R∑
r=1

γr

(
βJr(1− λr)−

M∑
m=1

sr,m

)
+

M∑
m=1

vm

(
R∑
r=1

b̃r,m − 1

)
.

(10)

1) Optimization Variable Update:
The optimized LDD function can be expressed as;

H(µ, v, γ) = inf
{B̃,S,λ∈Φ}

L(B̃, S, λ, µ, v, γ), (11)

as Φ is considered the area consistent with D9,D10,D14, and
D16. Combining D9 and D10 will yield

0 ≤ λr ≤ min
{

1, LrGlrαrJr

}
∆
= λr,max . (12)

By denoting the optimal solutions of (13) as b̃∗r,m, s
∗
r,m and

λ∗r , giving the KKT conditions as:

ϑL(B̃, S, λ, µ, v, γ)

ϑb̃∗r,m


> 0, b̃∗r,m = 0

= 0, 0 < b̃∗r,m < 1,∀m, r,
< 0, b̃∗r,m = 1

(13)

ϑL(B̃, S, λ, µ, v, γ)

ϑs∗r,m

{
> 0, s∗r,m = 0
= 0, s∗r,m > 0

,∀m, r, (14)

ϑL(B̃, S, λ, µ, v, γ)

ϑλ∗r

 > 0, λ∗r = 0
= 0, 0 < λ∗r < λr,max,∀r
< 0, λ∗r = λr,max

(15)

To minimize L(B̃, S, λ, µ, v, γ) for given parameters
(µ, v, γ), we solved three subproblems (Q1, Q2) and (Q3)
as follows:

(Q1): Optimal communicated bits (OCBs) on each sub-
channel:
By and differentiating L(B̃, S, λ, µ, v, γ) for a given parame-
ter B̃, subject to sr,m further substituting the result into (14),
we obtained:

s∗r,m =

[
XLr b̃r,mlog2

(
γrfr,mX(
ρ+

µr
Lr

)
ln2

)]+

, (16)

since [x]
+

= max{0, x}, therefore, l∗r,m is expressed as:

l∗r,m =
s∗r,m
b̃r,m

=

[
XLrlog2

(
γrfr,mX(
ρ+

µr
Lr

)
ln2

)]+

, (17)

(Q2): Optimal sub-channel assignment:
Since the OCBs on each sub-channel is achieved, we there-
fore generate their optimal sub-channel assignment (OSA) as
follows:

ϑL(B̃, S, λ, µ, ν, γ)

ϑb̃r,m
=

((
1− sr,m1n2

XLrb̃r,m

)
2

sr,m

XLrb̃r,m −1

)
ρLr+µr
fr,m

+νm
(18)

As we substitute (16) into (18) using (13), we obtained the
equation below:

b̃∗r,m =

{
0, vm > Dr,m

1, vm < Dr,m
, (19)

where Dr,m is expressed as

Dr,m =
ρLr + µr
fr,m

(
1−

(
1− l∗r,m1n2

XLr

)
2
l∗r,m
XLr

)
. (20)

Beginning from (20), it is expected that the sub-channel
will be allocated to the transmitting SCDs with the maximal
Dr,m, particularly

b∗r,m =

{
1, r = arg max1≤r≤RDr,m

0, else
, (21)

which rounds br,m to an integer.
(Q3): Optimal offloading ratio (OOR):

In an attempt to solve the OOR, differentiatingL(B̃, S, λ, µ, v, γ)
w.r.t. λr and further substituted the result into (15) to obtain

λ∗r = min

{
Lr
αrJr

√
βγr
3αrε

, λr,max

}
. (22)

2) Lagrange Multipliers Update

It is observed that for a given µ and γ, b̃∗r,m , l∗r,m and λ∗r
can be obtained. A subgradient projection ofH−(µ, v, γ) can
therefore be expressed as

∆µr = PTr −
M∑
m=1

b̃∗r,m

2

s∗r,m
XLr b̃∗r,m − 1


fr,m

, (23)

∆γr =
M∑
m=1

s∗r,m − βJr(1− λ∗r), (24)

Algorithm 2 below shows a detailed analysis of the sub-
optimal offloading performance, as ζ is set as an initial error
tolerance point.

Algorithm 2 Lagrangian Suboptimal Convergent Computa-
tion Offloading Algorithm (LSCCOA)

1: Initialization
2: ζ, µ, ν, γ, t
3: while ‖ µr(t+1)−µr(t)‖2+ ‖ γr(t+1)−γr(t)‖2 > ζ

do
4: Calculate b∗r,m, l∗r,m and λ∗r
5: Update µ and γ
6: end while
7: Calculate g∗lr (λr) and P ∗r,m(br,m, lr,m)
8: end
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V. SIMULATION RESULTS
Using an LTE-A network coupled with a fiber Wi-Fi network
parameter, we performed the following numerical analysis.
For our experiment, 80 smart communication devices (SCDs)
were randomly deployed within the range of 80m from each
network base station (N-BS). Additionally, six SCDs are
positioned across the area of network coverage of each access
point (AP). Channel gain of the cellular access mode is set as
gi,k, = c−σi,k amid SCD base station k and SCD i, representing
ci,k as the spatial separation between base station k and SCD
i, while σ = 6 as the factor for network path loss. We also
set αi = α(∀i = 1, 2, 3...) and βs = β(∀s = 1, 2, 3...).

Considering |<| = 6 MEC servers, each linked to η end-
users, which are capable of controlling their task offload-
ing flexibly as their probability of computation offloading
change. Figure 2 illustrates the performance of the net-
work average response time against the system offloading
probability α of SCDs. From the illustration, the observed
SCDs experienced a reduction in their latency by configuring
their individual offloading probabilities subsequent to tech-
nique we proposed. It is important to note that the latency
of local computation severely rely on the competence of
computation of each SCDs, however, the reliance system
latency on the capabilities of computation is substantially
minimized in our proposed cooperative offloading scheme.
For example, assuming the clock frequency cfi (LCP pro-
cessing cycles/second) for SCD i’s increases from 200MHz
to 300MHz, the local computations average response time
will decrease from 14.5 s to 3.2s, as against 1.9s to 1.4s
performance in our proposed technique.
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FIGURE 2: Probability of SCD offloading vs System re-
sponse time

We further examine the relevance of the coordination
between the remote cloud and MEC servers in Figure 3. Our
observation proves that although response time is minimized
in the remote cloud-computing when compared to the edge-
only computation, however, our proposed technique signif-

icantly outperforms both techniques, as long as the MEC
servers’ offloading probability α is set accordingly.

0.0 0.2 0.4 0.6 0.8 1.0
1.5

2.0

2.5

3.0

S
y

st
em

 r
es

p
o

n
se

 t
im

e 
(s

)

Probability of MEC Servers offloading (b)

cfi=200 MHz

cfi=250 MHz

cfi=300 MHz

 

FIGURE 3: Probability of MEC Server offloading vs System
response Time.

Our proposed Lagrangian LSCCOA algorithm is com-
pared against EEAO proposed in [19] and EETO in [22] for
energy efficiency for different number of SCDs in Figure 4.
Considering EEAO and EETO, their objectives concentrated
mainly on minimizing energy consumed in sub-channel as-
signment and the distribution of power in the system, respec-
tively, However, in our proposed technique, by setting the
maximum power for transmission at 40dBm and the system
sum-rate coefficient at 0.42.
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FIGURE 4: Energy Efficiency computing performance under
different algorithms

It is observed that the proposed LSCCOA algorithm out-
performs the compared EEAO and EETO in terms of energy
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efficiency. As the SCDs increases, the EE slightly increase
and then stabilizes as computation continues in all the tech-
nique. Due to the co-channel interference minimized effect,
the transmitting density of all SCDs is minimized as well.
However, due to the allocation of more subchannels, the
system performance is constrained by the limited system
resources as the number of SCDs increases. A decline of EE
is also observed with the increasing requirement of minimum
data rate in the technique, because, there is need for the base
stations to optimize the subchannels transmit power in order
to preserve the requirements of the system throughput which
negatively affects energy efficiency.

In Figure 5, relative transmission energy consumed by
different active SCDs in LSCCOA is observed to be less
than that of EEAO and EETO, this is because, our proposed
optimal computational transmit power distribution sturdily
controls the transmit power existing at the unallocated sub-
channels necessitated in minimized levels of transmit power.
With an increase of the active SCDs, all available spectrums
are coordinated at different layers, and thus, significantly im-
proving the interference of the co-channel. Simultaneously,
it indicates that the energy efficiency increases alongside the
downward minimum targets rate for both LSCCOA, EEAO
and EETO, respectively, while the rate of rise declines. This
is because when the threshold is high, more active SCDs
experience difficulty in attaining the requirements, this in
turn exhausts the transmission power required to optimize
the systems performance. Therefore, this enhanced perfor-
mance indicates how the proposed LSCCOA algorithms out-
performs the compared techniques. Figure 6 evaluates the
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FIGURE 5: Transmit power performance under different
algorithms

average power consumed by the LSCCOA algorithm. In the
evaluation, the SCDs power consumption performance with
an increase in the number of active SCDs from 60 to 1200 is
expressed, and compared against three other techniques. The
average power consumption of each SCD in the entire system

computation task is approximately 44.206J . As compared
with the local system computing technique, although the
two compared algorithms save energy to an extent, however,
in computation, optimally intended energy conservation is
achieved by the proposed LSCCOA through task offloading.

By initiating 60 SCDs in the task computation process,
all three techniques manifest an independent power con-
sumption rate of 13.341J , 13.412J , and 14.751J . When the
number of SCDs is gradually increased, at 1200 transmitting
SCDs, the average power consumed by these SCDs indepen-
dently increases to 25.002J , 26.521J , and 28.063J , respec-
tively. This is because the same wireless channel resource
is accessed concurrently by multiple SCDs for a simultane-
ous task offloading implementation. Hence, this results in
increase of system interference. This interference between
each transmitting SCD in the system as described in (13), will
result in a minimized quality of communication, and thus, the
computational offloading rates. Therefore, as SCDs increase
to 1200, several users subscribe to use the local computing
technique which results in an increase of the average power
consumption of SCDs. Our proposed technique can save at
least 58.6% of the power consumption.
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FIGURE 6: Comparison of average power consumption un-
der different algorithms with different amount of SCDs

Considering system throughput, our proposed algorithm is
compared against two other techniques (EEAO and EETO)
in the research. Figure 7 indicates that, as 60 SCDs were
initiated in the computation process, the techniques all dis-
play an average throughput of 5823.52, 6848.51, and 7038.56
(all in bit per seconds), respectively. Although the SCDs
throughput in our proposed technique is minimal at the initial
stage, but, as the amount of SCDs increased from 60 to 100,
further minimization is observed at the throughput rate slope
than the compared two techniques. Throughout the entire
computation process, it is observed that as the amount of
SCDs increases, the throughput of SCDs with respect to our
proposed technique grew higher than that in the other tech-
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FIGURE 7: Average Throughput vs number of active SCDs
under different algorithms.

niques. Finally, with 1200 SCDs, the techniques manifest an
average throughput of 1166.2, 860.9, and 970.2 (all in bps),
respectively. With an increase exponential in the amount of
deployed active SCDs, there will be a relative and intensive
rise in the joint interference between SCDs.

In addition, uplink data transmission rate will be de-
creased, which will result in the intensive surge of the power
consumed by cloud computing offloading much higher the
power consumption of the local MEC computing. Thus,
many of the SCDs will implement their computation through
the conventional MEC computing, which substitutes for of-
floading process. Comparing our proposed technique in this
regard with the EEAO and EETO algorithms, respectively,
it is observed that the throughput tends to go higher while
the corresponding decline rate is relatively slowed when
measured with our proposed technique.

Comparing the average latency of SCDs task execution in
the proposed technique with other two techniques, Figure 8
shows that the average latency of SCDs per task execution
is approximately 55.215s within the entire locally SCDs
computation technique. Deploying 60 SCDs, the latency of
these three techniques are 28.641s, 28.682s, and 32.543s. In
comparison with the system overall computation technique,
a minimum of 48.90% of this latency is conserved by the
proposed technique. When 1200 SCDs are deployed, the
respective latency gained by using the four techniques are
39.952s, 40.001s, 44.532s, and 55.215s. When compare
with the local computation method, our proposed technique
conserves about 45.41% of the computation time. This to
some extent higher than what is obtainable in the perfor-
mance of the compared algorithms.

Table 2 below shows a comparison analysis for the per-
formance of all three algorithms with respect to Energy
efficiency, average energy consumption, average throughput
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FIGURE 8: Comparison of transmission latency under dif-
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performance and Latency performances different numbers of
deployed SCDs.

TABLE 2: PERFORMANCE COMPARISON OF DIFFER-
ENT ALGORITHMS

Parameter LSCCOA EETO EEAO

Energy Efficiency (100
SCDs)

0.55 0.528 0.51

Average Energy
Consumption (60-1200
SCDs)

25.002J (saved 58.6%
Energy)

26.521J 28.063J

Average Throughput (60-
1200 SCDs)

1166.2bps 860.9bps 970.2bps

Average Latency (60-1200
SCDs)

39.952s (saved 41.41%
consumption time)

40.001s 44.532s

VI. CONCLUSION
This paper has examined and formulated multi-access coop-
erative computation offloading of SCDs in an IoT network
based on the DVS-enabled MEC system. The target is to
improve energy efficiency by minimizing the weighted sum
of energy consumed by the SCDs. The formulated NP-hard
problem was addressed via the application of our proposed
LSCCOA Algorithm. Finally, simulation results validate that
our proposed technique attains better performance in compu-
tation offloading and also optimally performs well at every
increase in the amount of SCDs.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980196, IEEE Access

Joseph Henry Anajemba et al.: Optimal Cooperative Offloading Scheme for Energy Efficient Multi-Access Edge Computation.

REFERENCES
[1] H. Guo, J. Liu and H. Qin, “Collaborative Mobile Edge Computation

Offloading for IoT over Fiber–Wireless Networks”, IEEE Network, vol.
32, no. 1, pp. 66–71, 2018.

[2] X. He, Y. Chen and K. K. Chai, “Delay-Aware Energy Efficient Com-
putation Offloading for Energy Harvesting Enabled Fog Radio Access
Networks”, in Proc. IEEE 87th Vehicular Technology Conference (VTC
Spring), pp. 1–6, 2018.

[3] K. Seong-Hwan, S. Park, M. Chen and Y. Chan-Hyun, “An Optimal
Pricing Scheme for the Energy–Efficient Mobile Edge Computation Of-
floading With OFDMA”, IEEE Communications Letters, vol. 22, no. 9,
pp. 1922–1925, 2018.

[4] K. Zhang, S. Leng, Y. He, S. Maharjan and Y. Zhang, “Mobile Edge Com-
puting and Networking for Green and Low–Latency Internet of Things”,
IEEE Communications Magazine, vol. 56, no. 5, pp. 39–45, 2018.

[5] S. Mao, S. Leng, K. Yang, Q. Zhao and M. Liu, “Energy Efficiency and
Delay Tradeoff in Multi–User Wireless Powered Mobile–Edge Computing
Systems”, in Proc. IEEE Global Communications Conference, pp. 1–6,
2017.

[6] X. Chen, “Decentralized Computation Offloading Game for Mobile Cloud
Computing”, IEEE Trans. Parallel Distribution System, vol. 26, no. 4, pp.
974–983, 2015.

[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective”, IEEE
Commun. Surveys Tutorial, vol. 19, no. 4, pp. 2322–2358, 2017.

[8] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient Multi–User Computation
Offloading for Mobile–Edge Cloud Computing”, IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[9] L. Chen, S. Zhou and J. Xu, “Computation Peer Offloading for
Energy–Constrained Mobile Edge Computing in Small–Cell Networks”,
IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1619–1632,
2018.

[10] C. Iwendi, Z. Zhang and X. Du, “ACO based key management routing
mechanism for WSN security and data collection,” 2018 IEEE Interna-
tional Conference on Industrial Technology (ICIT), Lyon, France, pp.
1935–1939, doi: 10.1109/ICIT.2018.8352482

[11] X. Tao, O. Kaoru, M. Dong, Q. Heng and K. Li, “Performance Guaran-
teed Computation Offloading for Mobile-Edge Cloud Computing”, IEEE
Wireless Communications Letters, vol. 6, no. 6, pp. 774–777, 2017.

[12] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic Computation Offloading
for Mobile–Edge Computing with Energy Harvesting Devices”, IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[13] S. K. Mishra, D. Puthal, B. Sahoo, S. Sharma, Z. Xue and A. Y. Zomaya,
“Energy–Efficient Deployment of Edge Dataenters for Mobile Clouds in
Sustainable IoT”, IEEE Access, vol. 6, pp. 56587–56597, 2018.

[14] X. Tao, O. Kaoru, M. Dong, Q. Heng and K. Li, “Performance Guaran-
teed Computation Offloading for Mobile–Edge Cloud Computing”, IEEE
Wireless Communications Letters, vol. 6, no. 6, pp. 774–777, 2017.

[15] L. Yang, H. Zhang, L. Ming, J. Guo and H. Ji, “Mobile Edge Computing
Empowered Energy Efficient Task Offloading in 5G”, IEEE Transactions
on Vehicular Technology, vol. 67, no.7, pp. 6398 – 6409, 2018.

[16] W. Zhang, Y. Wen, and H. H. Chen, “Toward transcoding as a service:
Energy–efficient offloading policy for green mobile cloud”, IEEE/ACM
Transactions on Networking, vol. 28, no. 6, pp. 67–73, 2014.

[17] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offloading
and resource optimization in proximate clouds”, IEEE Transaction of
Vehicular Technology, vol. 66, no. 4, pp. 3435–3447, 2017.

[18] T.G. Rodrigues, K. Suto, H. Nishiyama and N. Kato, “Hybrid method for
minimizing service delay in edge cloud computing through VM migration
and transmission power control”, IEEE Trans. Comput. 66 (5) (2017) 810–
819.

[19] H. Guo and J. Liu, “Collaborative computation offloading for multiaccess
edge computing over fiber–wireless networks”, IEEE Trans. Veh. Technol.
67 (5) 4514–4526, 2018.

[20] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading: How
much can WiFi deliver”, IEEE/ACM Trans. Netw. vol. 21 no. 2 pp. 536 –
550, 2013.

[21] L. Liu, Z. Chang, X. Guo, S. Mao and T. Ristaniemi, “Multi objective
optimization for computation offloading in fog computing”, IEEE Internet
Things J. 5 (1) (2018) 283 — 294.

[22] A. Ebrahimzadeh and M. Maier, “Distributed cooperative computation of-
floading in multi–access edge computing fibre–wireless networks”, Optics
Communications, 2019.

[23] C. Iwendi, M. Uddin, J. A. Ansere, P. Nkurunziza, J. H. Anajemba and A.
K. Bashir, “On Detection of Sybil Attack in Large-Scale VANETs Using
Spider-Monkey Technique”, in IEEE Access, vol. 6, pp. 47258–47267,
2018. doi: 10.1109/ACCESS.2018.2864111

[24] C. Iwendi, M. A. Alqarni, J. H. Anajemba, A. S. Alfakeeh, Z. Zhang
and A. K. Bashir, “Robust Navigational Control of a Two-Wheeled Self-
Balancing Robot in a Sensed Environment,” in IEEE Access, vol. 7, pp.
82337–82348, 2019. doi: 10.1109/ACCESS.2019.2923916.

[25] H. Guo, J. Liu, J. Zhang, “Efficient Computation Offloading for Multi–
Access Edge Computing in 5G HetNets”, International Conference on
Communications, 2018.

[26] R. Li, N. Cao, M. Mao, Y. Chen, and Y. Hu, “Joint User Association
and Energy Offloading in Downlink Heterogeneous Cellular Networks”,
Mobile Information Systems, 2018.

[27] H. Guo, J. Zhang, J. Liu, and H. Zhang, “Energy–Aware Computation
Offloading and Transmit Power Allocation in Ultradense IoT Networks”,
IEEE Internet of Things Journal, 2019.

[28] J. H. Anajemba, Y. Tang, J. A. Ansere and C. Iwendi, “Performance
Analysis of D2D Energy Efficient IoT Networks with Relay-Assisted
Underlaying Technique”, IECON 2018 – 44th Annual Conference of the
IEEE Industrial Electronics Society, Washington, DC, pp. 3864-3869,
2018.

[29] Meng Li, F. Richard Yu, Pengbo Si and Tanhua Zhang, “Energy-Efficient
Machin–to–Machine (M2M) Communications in Virtualized Cellular Net-
works with Mobile Edge Computing (MEC)”, IEEE Transactions on
Mobile Computing, 2019.

[30] Z. Tongxin, T. Shi, L. Jianzhong, C. Zhipeng, and X. Zhou, “Task Schedul-
ing in Deadline–Aware Mobile Edge Computing Systems”, IEEE Internet
of Things Journal, 2019.

[31] C. Iwendi, S. Khan, J. H. Anajemba, A. K. Bashir and F. Noor, “Realizing
an efficient IoMT-assisted Patient Diet Recommendation System through
Machine Learning Model”, in IEEE Access, 2020 doi: 10.1109/AC-
CESS.2020.2968537

[32] J. Zhang, X. Hu, Z. Ning, E. C.H, Ngai, L. Zhou, J. Wei, J. Cheng, B.
Hu, and V.C.M. Leung. “Joint Resource Allocation for Latency–Sensitive
Services Over Mobile Edge Computing Networks with Caching”,
IEEEInternet of Things, 2019

10 VOLUME 4, 2016


