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ABSTRACT The discovery of software faults at early stages plays an important role in improving
software quality; reduce the costs, time, and effort that should be spent on software development. Machine
learning (ML) have been widely used in the software faults prediction (SFP), ML algorithms provide varying
results in terms of predicting software fault. Deep learning achieves remarkable performance in various
areas such as computer vision, natural language processing, speech recognition, and other fields. In this
study, two deep learning algorithms are studied, Multi-layer perceptron’s (MLPs) and Convolutional Neural
Network (CNN) to address the factors that might have an influence on the performance of both algorithms.
The experiment results show how modifying parameters is directly affecting the resulting improvement, these
parameters are manipulated until the optimal number for each of them is reached. Moreover, the experiments
show that the effect of modifying parameters had an important role in prediction performance, which reached
a high rate in comparison with the traditional ML algorithm. To validate our assumptions, the experiments
are conducted on four common NASA datasets. The result shows how the addressed factors might increase
or decrease the fault detection rate measurement. The improvement rate was as follows up to 43.5% for PC1,

8% for KC1, 18% for KC2 and 76.5% for CM1.

INDEX TERMS Deep learning algorithms, software fault prediction, classification, hyper parameters.

I. INTRODUCTION

Developing high-quality software is one of the most chal-
lenges for software engineers. For that, software development
should pass through a sequence of activities under certain
constraints to come up with reliable and high quality soft-
ware. A major drawback to having good quality and reliable
software is the occurrences of faults, where faults degraded
the software quality and become unreliable end products also
not acquire customer satisfaction. Reference [1] In order to
achieve high-quality software, suitable planning, and control
of software development cycle measures must be followed.
The existence of faults is inevitable and it might occur in
various phases of software development. One of the quality
models that help to reduce software failure is Software fault
prediction that also helps to avoid learning may provide
valuable improvement in software fault prediction.

Developing software free from faults is very difficult.
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Most of the time, unforeseen deficiencies and unknown
bugs might be exposed even when a team has carefully
applied development methodologies. It is very important to
predict the potential faults of any software and to apply better
planning and management for testing and maintenance of a
project. Fault prediction will give the development team more
chances to execute testing more than once on modules or files
with high faults probability. This will lead to more focus on
the faulty modules. As a result of this, the probability of fixing
the remaining faults will increase and any software products
released to end-users will become more qualified.

This approach also decreases the maintenance and support
efforts for the project. Low quality of software can obviously
be caused by software faults, these faults required extensive
effort to rectify the errors, and SFP has been used to reduce
the impact of these faults.

The SFP also reduce the costs, time and effort should
be spent on software products [3]. Reference [38] reported
that the most expensive software development activities are
the cost finding and correcting faults. a large number of
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FIGURE 1. CNN architecture [38].

researches have been conducted using machine learning tech-
niques for software fault prediction such as support vector
machine, genetic algorithm [42] Artificial Neural Network
(ANN) [43], decision tree [44], etc. More efforts need to be
explored.

Mu et al. [45], addressed different deep learning techniques
and answer the following questions, what are the common
models of deep learning and their optimization methods, are
they commonly using open source frameworks, what are the
major existing problems and what are the future suggested
solution. Their systematic review saved our effort and time
by find the most appropriate resources and findings.

In this research deep learning algorithms had been used
with keeping in mind the shortcomings of the previous ones.

Deep Learning is a set of techniques used for learning from
many layers in Neural Networks; it is a subfield of machine
learning that uses supervised and/or unsupervised strategies.

This has magnificent success in various domains [34].
Deep learning lets computational models that are made from
multi layers to learn representations of data with multiple
levels of abstraction [9]. It automatically extracts essential
features from raw data and makes it robust, with respect to
variations in input [33].

Moreover, Deep learning has the capability to handle large
amounts of data, provides a lot of models that permit exploit-
ing unlabeled data to learn useful patterns, representations
learned by deep neural networks can be shared across dif-
ferent tasks [13].

Convolutional Neural Networks (CNNs) employs a math-
ematical operation called convolution [5]. It is a type of
feedforward neural network [10]. CNNs consist of combi-
nations of the stacked convolutional layers that are divided
into smaller sized convolutional layers to reduce the com-
putational complexity. Max pooling (subsampling) layers
that conform one or more pairs (often each pooling layer
is placed after a convolutional layer). Then fully-connected
layers and the final layer are a classifier as shown in Figure 1.
Neurons in the convolutional layer are connected to the neu-
rons in the next layer, depending on their relative location.
In CNN the training process contains forward propagation
used to compute the actual classification of the input data with
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current parameters, and back propagation used to bring up to
date the trainable parameters for minimizing the differences
between the actual and desired classification output. CNNs
are trained with the back propagation algorithm. It begins by
giving initial weights randomly for the entire network, then
the weight will update.

Weight sharing reduces the need for computation and is
one of the advantages of CNN. Also, max pooling is used
to reduce the input data size at each step of nonlinear com-
putation, and subsampling the result minimizes the effect of
distortion. While minimizing the number of parameters it
is accompanied by the decreasing number of connections,
shared weights, and downsampling [11]. CNNs give better
performance, savings in memory and computation complex-
ity requirements.

The essential example of a deep learning model is the
feedforward deep network or multilayer perceptrons (MLPs).
The capability of Deep Learning to solve complex applica-
tions and its accuracy continually increases [5]. Multilayer
Perceptron (MLP) is the essential deep learning models.
Extending Artificial NNs with many layers, Artificial Neu-
ral Networks with multi-hidden layers called deep neural
networks have become popular because leading to amazing
performance gains on difficult learning tasks and success in
various machine learning projects. Therefore, deep neural
networks are becoming favored over shallow networks. The
deep neural network has hundreds of hyper-parameters and
complex topologies. Moreover, the choice of design very
important; most of the time success counts on finding the
right architecture for the problem. Recently the developer
focused on designing distinct architectures on new problems.
When the numbers of layers and units are increased it will
represent functions with higher complexity.

Deep Learning Algorithms are employed in several type of
research to investigate their capability in SFP.

Software failures have economic impact, time loss and
other effects. The reliability of the software become the core
concern for the industry and community, therefore, the soft-
ware should be free of fault. Software fault prediction is
studied by many researchers using various approaches, each
approach provide different degree of accuracy. Deep learning
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proves to be very effective in various domain, like image
processing, speech recognition, natural language processing.
Using Deep learning in the area of Software fault prediction
might show new contribution in enhancing the accuracy of
fault prediction in comparison with existing approaches.
The following research questions are addressed in this
study:
1. Whether the deep learning can be leverages the soft-
ware faults prediction performance?
2. Does the modifying architecture of the model make
enhancement to algorithms accuracy?
3. Which deep learning algorithms provide the best SFP
performance?

The significance of the proposed model can be summarized
as follows:

Measuring the effectiveness of deep learning algorithms
for SFP and determined the best algorithm quality, addressing
the effectiveness of the modifying architecture of the deep
learning algorithms. The technique will be helpful to develop-
ers and testers to focus on code, which will eventually restrain
the testing and maintenance cost along with contributing
towards improvement of software and the reliability for the
whole product.

The main contribution of this paper is to investigate the
factors that might have an influence on the performance of
deep learning algorithms in the area of SFP. In this paper,
two main algorithms are used to conduct the experiments
and monitor the factors influence i.e. Multi-layer perceptron’s
(MLPs) and Convolutional Neural Network (CNN). These
factors are: number of layers, numbers of epoch, the batch
size, dropout rate and the optimizer. Several comparisons are
performed and discussed in detail in the result section.

Il. LITERATURE REVIEW

In this section, we review the most important relevant studies
that focused on SFP and discussed the previous results for the-
stat-of-art, which used ML, NN, and Deep Learning. There
are many studies improved software quality, and making
better use of resources, and reducing or eliminating fault.
Therefore, it is necessary to explore these researches to ensure
understanding of the aspects of SFP.

A. MACHINE LEARNING
ML successfully applied in SFP and still there is a lot of space
to improve the accuracy of prediction for that [12] propose
collaborative representation classification (CRC) based soft-
ware defect prediction (CSDP) approach, prepared to classify
whether the query software modules are faulty or non-faulty.
Used ten datasets from NASA MDP in the experiment,
and compare the proposed approach with various approaches
that are weighted Naive Bayes (NB), cost-sensitive boost-
ing neural network (CBNN), Compressed C4.5 decision tree
(CC4.5), and coding based ensemble learning (CEL). The
result appears the best performance was for the proposed
approach.
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FIGURE 2. Neuron [6].

Borandag et al. [39] developed a method called Majority
Vote based Feature Selection algorithm (MVFES) that had
been used to identify the most influential software metrics.

They used PC1, CM1, KCI, and JMI to exam the effi-
ciency of MVFS, used of combinations of filter (Information
Gain, Symmetrical Uncertainty ReliefF feature, Correlation-
based approach) and machine algorithms. The results show
that the MVFS method able to enhances defect prediction
performance by finding out the most influential software
metrics. Reference [40] proposed model includes a modified
under-sampling method and a correlation feature selection
with ensemble learning to increase the accuracy of prediction
and decrease processing time, the model had been applied on
ten open source datasets. The experiments showed that the
proposed model gave a perfect performance in the prediction
process, the improvements reached up to 96% in terms of
F1 measure.

The following techniques use a clustering model to predict
the fault for the unsupervised data. They suggest and eval-
uate new algorithms, such as K-Sorensen-means clustering,
which is a new SFP clustering algorithm for K-means, using
Sorensen distance to calculate cluster distance. JM1, PC1,
and CM1 are three datasets subject to the proposed approach.

The results show the K-Sorensen clustering advantage
compared to K-Canberra means [14]. Clustering is applied
in few studies for SFP because it has some problems like the
difficulties to determine the number of clusters, to solve it
the expectation-maximization (EM) and Xmeans model sug-
gested by [15] to predict the fault when training data are not
present, for experiment used AR3, AR4, and AR5 PROMISE
repository data. The analysis data show that the Xmeans is
superior over EM and another model from previous research.
Furthermore, using data without feature selection gives better
accuracy reaching 90.48%. Wahono and Herman [16] pro-
posed a model that combined the genetic algorithm to deal
with the feature selection and bagging algorithm to deal with
the class imbalance problem. This model is applied over
nine NASA datasets and compares the result among SVM,
DT, NN and Statistical Classifiers that show a remarkable
improvement in prediction performance for most classifiers
and the best was for SVM 89.9%. Wang et al. [17] use ensem-
bles of feature ranking technique with comparison to filter -
based feature ranking techniques like information gain, gain
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FIGURE 3. Feed forward network [6].

ratio, the models are built with NB, multilayer perceptron,
KNN, SVM, and logistic regression. Three datasets from the
PROMISE data repository are used. Results reveal that the
ensemble technique has the best performance over any other
individual ranker.

B. NEURAL NETWORK APPROACH

Usually, neural networks consist of three components. The
first is neurons. It is simple computing cells. Each neuron
can receive input signals, process the signals and finally
produce an output signal. Neural networks employ a massive
interconnection between them to achieve good performance.

Figure 2 shows the model of a neuron that has a set connect-
ing links, each of which is characterized by weight, an adder
for summing the input and an activation function.

The second component is network architecture. The feed-
forward network is the most common type of neural network
architecture that is composed of an input layer, a hidden
layer, and an output layer. In a Feed-forward network the
information moves forward in the neural network from left
to right, from the input nodes, through the hidden layers
to the output nodes as shown in Figure 3. The third is a
learning algorithm that is used during the learning processes
to describe a process that adjusts the weights of the network
to reduce the errors of the outputs.

The weights are iteratively trained with the errors propa-
gated back from the output layer by back propagation algo-
rithm [6], [7]. A neural network derives its computing power
through its massively parallel distributed structure and its
ability to learn.

These capabilities make it able to find good solutions
to complex problems. Reference [7] Neural networks can
perform complex functions and present their superiority over
the human brain to solve the problems. That was obvious
in many fields like classification, pattern recognition, and
speech recognition. Reference [4] NN is a dominating super-
vised learning technique [8]. Reference [4] designed a neural
network model to measure the performance using the mean
squared error function that provides the result in terms of
accuracy. The model was designed using Gradient descent

63948

Second Qutput
hidden layer
layer

with adaptive learning (GDA), Baysian Regulation (BR) and
Levenberg Marquardt (LM) techniques to train the neural
network. This configuration was done on MATLAB 2013.
The result reveals prediction in neural networks by using the
GD. Its best-predicted accuracy was 98.97% on dataset ANT
1.7 dataset. Additionally, it is considered a faster technique.
Jin et al. [12] used ANN to reduce the dimensionality of
the metrics space that is combined with the support vector
machine for SFP. They propose a new software fault-prone
prediction model called SFPM based on the concept of the
filter model and sequential search strategy. They used the
open-source WEKA, and four mission-critical NASA soft-
ware projects datasets (PC1 and CM1(C)), (KC1 and KC3
(C++, Java)). SVM prediction performance was compared
with the four models DT, KNN, logistic regression (LR) and
NB. SFPM has been proven to be effective for establishing
a relationship between software metrics and fault-proneness.
Reference [3] used ANN with other models to compose a
hybrid model, employed the ANN and Adaptive Neuro-Fuzzy
Inference System. The model suggests the iterative prediction
starts with a Fuzzy Inference Systems (FIS) when no data is
available for the software project. When the data becomes
available the data-driven method is used.

The dataset in this research PROMISE (consist of 18 object
oriented metrics) was used for comparison with the pro-
posed model. ANN, Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS), FIS are three different classification methods
employed to predict software faults. The experiments are
performed in MATLAB to validate the performance. The
proposed iterative fault prediction model is implemented as
a plugin for the Eclipse environment. Therefore, the results
indicate that the iterative SFP is successful and can be trans-
formed into a tool that can automatically locate fault-prone
modules and the performance of the ANN exceeds the per-
formance of the ANFIS.

C. DEEP LEARNING

Li et al. [18] propose Defect Prediction via Convolutional
Neural Network (DP-CNN). CNN is used to automatically
learn the semantic and structural features of programs.

VOLUME 8, 2020



0. A. Qasem et al.: Influence of Deep Learning Algorithms Factors in Software Fault Prediction

IEEE Access

N 2

Source Assembly CFGs Vector
files files representations

(a) Building Control Flow Graphs

FIGURE 4. DGCNNs steps [2].

The approach contains four phases, starting with Abstract
Syntax Trees (ASTs) which is used to extract tokens that
are encoded into numerical vectors. Then it employs CNN
and combines it with traditional defect prediction features.
Finally, it uses the Logistic Regression to decide if the
code files are having buggies or not. The experiments
were made over seven open source projects and show that
the DP-CNN improves the state-of-the-art method on aver-
age 12%. Dam et al. [19] develop a prediction model able
to learn features automatically for representing source code
that has been used for defect prediction. They use a tree-
structured Long Short- Term Memory network (LSTM) that
matches directly with the Abstract Syntax Tree representa-
tion of source code (ASTs). The model is built as a tree-
structured network of LSTM units to reflect better syntactic
and many levels of semantics in source code. The function
results from training the model are used to automatically
decide the defectiveness of new files whether within the
project or in a different project. Also, it is capable of locating
the parts in a source file that probably causes a defect. This
aids in understanding and identifying exactly what the model
is considering and to what degree it has specific defects.
Their approaches have four main phases that are: (i) Parse
a source code file into an Abstract Syntax Tree; (ii) embed
AST nodes that are used to map the label name of each AST
node into a fixed-length continuous-valued vector; (iii) input
the AST embedding’s to a tree-based network of LSTMs
to obtain a vector representation for the whole AST; and
(iv) use classifier such as Logistic Regression to predict
defect by using the vector from previous phase as an input.
They performed an evaluation of the Samsung dataset that
contains open-source projects and PROMISE repository
datasets. The result has been obtained from this approach
demonstrates that can be applied to practice.

Previous studies focus on extracting features using tree
representations of programs, the performance of the mod-
els is affected due to existing features and tree structures
that sometimes fail to capture the semantics of programs.
To investigate the semantics of programs deeply, [2] proposed
a model to automatically learn defect features. They applied
directed graph-based CNN (DGCNNSs) to learn semantic
features. The key step for the model is generating Control
Flow Graphs (CFGs) by assembly code using g++ on Linux
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to obtain the graph representation of a program. CFG is
constructed to describe the execution flows of the assembly
instructions which disclose the behavior of the program. The
other step is applying a graphical model on CFG datasets that
contain the multi-view multi-layer CNN for directed labeled
graphs to give models based on CFG data.

These steps start with vector representations that represent
a vertex as a set of real-valued vectors corresponding with the
number of views. Next, gather extracted features from all the
parts of the graphs into a vector after applying two convolu-
tion layers followed by a dynamic pooling layer. At the final
step, a feature vector is forward to a fully-connected layer
and an output layer to compute the categorical distributions
for possible outcomes as presented in Figure 4.

The experiments were conducted over four datasets
(SUMTRIAN, FLOW016, MNMX, SUBINC) obtained from
the CodeChef site. They employed several machine learning
algorithms to build predictive models that are NN, SVM, and
KNN. This approach presents the best performance in com-
parison with the feature-based approach (the improvement
was from 4.08% to 15.49%) and tree-based approaches (the
improvement was from 1.20% to 12.39%).

Reference [41] They combined the word embedding and
Long Short- Term Memory (LSTM) algorithm for defect
prediction. The proposed model contains three steps; the
first step extracts a token from its abstract syntax tree.
Second, the token is transformed into a vector. Third, use the
vector and its labels to build a Long Short-Term Memory.
The LSTM algorithms perform defect prediction by auto-
matically learn the semantic information of programs. The
experiments applied to eight open-source projects show that
the proposed model outperforms state-of-the-art defect pre-
diction approaches. Deep learning algorithms utilization in
the prediction areas reveals promising results; some of the
most recent published articles used CNN and MLP without
concentrate on addressing the effectiveness of manipulating
the main factors that might have direct influence of the per-
formance of prediction [46], [47].

Ill. RESEARCH METHODOLOGY

In this section, we started to review the basic design steps,
which required using MLPs and CNN for software faults
prediction using the NASA datasets. The methodology steps,
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we started with selected four datasets with various fault per-
centage, then normalized for these datasets as preprocessing
steps. The MLP is applied initially, and modify its parameters
to measure the performance for it.

Algorithm  psendo-code

Choose an initial (Number of layer, hyper parameters) randomly
Perform validation
Repeat
Select the number of layer (1-N: N depends on experiments)
Select Hyper parameter
Perform training
Perform validation ( if Detection Rate # best Detection Rate)
Replace hyper parameters
Replace the number of layer
Until stopping criteria

FIGURE 6. Algorithm pseudo code.

Finally, we compared the results to find the best results
achieved and applied the same steps for CNN. The MLP and
CNN algorithms are implemented on python 3.6 language
based on many libraries (such as Keras, Numpy, Panda and
Sklearn, Matplotlib) to perform the experiments. Thereupon,
each step is discussed in greater details in the subsequent
subsections. An overview of our proposed methodology
and the pseudo code are presented in in Figure 5 and 6
respectively.
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A. SELECT DATASET

The datasets are selected from the NASA Metrics Data
Program (MDP), include software measurement data and
associated error data collected. NASA MDP dataset is made
publicly available in order to encourage repeatable, verifi-
able, refutable, and/or improvable predictive models of soft-
ware engineering.

TABLE 1. Dataset characteristics.

. Faulty L
Dataset | #attributes | Language Description
Percentage
cM1 22 C 9.83% a NASA spacecraft
instrument
storage
management for
KC1 22 C++ 15.45% receiving and
processing ground
data
KC2 22 C++ 20.50% Science data
processing
PC1 22 C 6.94% flight software for
earth-orbiting
satellite

The datasets have been heavily used in software defect
prediction experiments. The data sets’ characteristics are pre-
sented in table 1. The attributes of the datasets are shown
in Table 2 [20], [21].
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TABLE 2. Attributes of datasets.

Attribute Attribute Definition

ID

1 Loc McCabe’s line count of code

2 V(g) McCabe "cyclomatic complexity"

3 EV(g) McCabe "essential complexity"

4 IV(g) McCabe "design complexity"

5 Halstead total operators +
operands

6 Vv Halstead "volume"

7 L Halstead "program length"

8 D Halstead "difficulty"

9 | Halstead "intelligence"

10 E Halstead "effort"

11 Halstead

12 T Halstead’s time estimator

13 I0Code Halstead’s line count

14 I0Comment Halstead’s count of lines of
comments

15 IOBlank Halstead’s count of blank lines

16 |0CodeAndCommentd Numeric

17 unig_Op unique operators

18 uniq_Opnd unique operands

19 total_Op total operators

20 total_Opnd total operands

21 branchCount of the flow graph

22 Problems {no,yes}

B. NORMALIZATION
Normalization is used with numerical attributes that can find
new ranges from an existing range based on an equation.

It is performed during the preprocessing step, useful for
classification algorithms as NN, and distance measurements
as (KNN, clustering). This study applied the standardization
method such that the attributes preserve the normal distri-
bution. Standardization is a useful technique to transform
attributes with a Gaussian Distribution and differing means
and distribution. In Python, we use a Standard Scaler from
scikit-learn library. The following equation (1) represents the
Standardization formula.

x — min(x)

"~ max (x) —min(x) M
C. APPLYING DEEP LEARNING ALGORITHMS
In this phase, we applied two algorithms (MLPs and CNN)
to address their abilities in enhancing the accuracy of
SFP and determined the factor affecting the performance.
In this step, we will select the various numbers of layers,
different functions and different hyperparameters on each
experiment.

Then we repeat the process until we get a satisfactory
result.
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D. MODIFY MODEL PARAMETERS

The settings which have to be defined for the network include
hyper-parameter activation function, number of layers in each
layer and hyper-parameter.

1) HYPER PARAMETERS

Different hyper-parameters will be altered during each test
case, to examine the impact of it on accuracy. Tuning the
hyper-parameter is important to choose the correct settings
to obtain desired results. There are no precise rules to choose
exactly the right parameters, in general, the choice relies on
the type and size of the training dataset. Choosing correct
settings is essential but consider as a complex part of net-
work training. However, the tuning for hyper-parameter is
frequently dependent upon experience rather than theoretical
knowledge. Trade-offs are intrinsic in the parameter selection
due to restrictions such as memory limitation [22].

In our research, we conducted many experiments before
recording the results, for each algorithm the values of hyper-
parameters have been tested and evaluated its results. When
reaching to best number for one of these hyperparameters
then start to manipulate other hyperparameters to reach the
best result. After that, compare the values that improve the
performance of algorithms.

Also, drop out the values that did not have a positive effect
on the results of the algorithms. After that, compare the values
that improve the performance of algorithms.

Also, drop out the values that did not have a positive effect
on the results of the algorithms.

The hyper-parameters settings are listed below: Number
of epochs: an epoch is the number of passes through the
data set [22]. In our experiment, the number of epochs will
change, start from 10 up to 20000 epochs, to determine the
best number of epochs for the network to converge prop-
erly. Batch size: is the number of training samples. Batch
size is used to control many predictions that must be made
at a time, and fit the model. In general, the larger batch
size required more memory space. Reference [23] On the
other hand, small-batch sizes are preferable since they head
to produce convergence in a small number of epochs [24].
Different batch sizes will test, start from 1 up to 20. Dropout
rate: Dropout is a technique used to prevent over-fitting and
provide a way of approximately combining exponentially
many different neural network architectures efficiently. The
process of dropping units is done randomly [31]. In a neural
network, dropping out units, it’s temporarily removing it
with all its incoming and outgoing connections as shown
in Figure 7.

The dropout is used to feed forward neural networks, also it
can use it applied to graphical models used such as Boltzmann
Machines [32]. Different dropout rates will test from 0.2 to
0.6, using increments of 0.1. Optimizer function: is used to
update weights in back propagation stage to reduce the error.
We will use two Optimization functions, Adam (adaptive
moments) and Adagrad (adaptive gradient) [5].
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(a) Standard Neural Net (b) After applying dropout.

FIGURE 7. Dropout [30].

2) THE NUMBER OF LAYERS

There are many factors might influence greatly the perfor-
mance of the networks such as a number of hidden layers,
neurons in the hidden layer. The number of layers becomes
the most important criterion in the architecture of the
networks [25].

3) ACTIVATION FUNCTION

The activation function of an artificial neuron defines the
output of that neuron based on the input or set of inputs.
Each activation function takes one x input and executes a
specific mathematical calculation on it. The common activa-
tion functions that are used in Deep Neural Network are Sig-
moid, Rectified Linear Unit and hyperbolic tangent. Sigmoid:
frequently used in back propagation NN. The range is only
over (0, 1). It is an appropriate extension of nonlinearity that
limits previous uses in NN also presents an adequate degree
of smoothness [26]. The Sigmoid function is defined by the
formula (2):

Sx) = @

1+e 1
Hyperbolic Tangent (Tanh): is defined as the ratio between
the hyperbolic sine and the cosine functions [27]. The Tanh
function defined by the formula (3):

Tanh (x) = & 3
anh (1) = ——— 3)
Rectified linear units (ReLUs): used as an activation function
for the hidden layers in a Deep Neural Network, it becomes
widely used to train a much deeper network than Sigmoid
or Tanh activation functions. ReLU provides faster and more
efficient learning for Deep Neural Network(DNN) over com-
plex, high-dimensional data. The most important advantage
of ReLU is that it does not require an expensive compu-
tation, just a comparison, and multiplication. ReLU has an
efficient backpropagation without exploding or vanishing
gradient which makes it a particularly appropriate choice
for DNN [28].
Swish: is a smooth, non-monotonous function, unbounded
above, bounded below, it is results are similar or significantly
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outperforms ReLU on the deep neural network across a vari-
ety of challenging datasets. Swish defined as f (x) = x -
Sigmoid(x) [29].

E. COMPARISON

A comparison will be conducted in order to determine
the effectiveness of manipulating the studied parameters
(hyperparameter, number of layers and neurons, activation
function).

F. DATA ANALYSIS & INTERPRETATION

This study performs a comparison of deep learning algo-
rithms in terms of classification accuracy. In addition to
use, Detection rate and TNR, that is computed by consid-
ering the positive and negative prediction of objects. The
performance measures are computed through the following
equations.

Sensitivity/Detection rate: It is the proportion of positive
cases that were correctly identified. Describe if a class has a
fault, how often the fault will be positive. (True positive rate)
Detection rate = TP/(TP+4-FN). Accuracy: is the closeness
of a measured value to the true value, is the proportion of
the total number of predictions that were correct. Accuracy
= (TP+TN)/(TP4+TN+FP+TN). Specificity/ True Negative
Rate (TNR): The ability of the test to identify correctly those
do not have the faults. TNR = TN/(TN-+FP).

G. HARDWARE SPECIFICATION

While working on the implementation, two machines were
used in accordance to the time needed for testing. The first
one, a personal laptop, was used primarily for conducting
small tests that take short time. The second machine, a virtual
machine loaned from the Computer Centre, was used primar-
ily for long testing purposes.

The hardware specifications as in the table 4:

Specifications Personal Laptop Virtual Machine
Type Intel(R) Core(TM) | Intel(R) Xeon(R)
i5-5200U Platinum 8168
CPU
> | Speed 2.20GHz 2.70GHz
6 Processor 4 32
Size 12GiB 178GiB
é
Model I- PNY CS900 1- Virtual Disk
Number SSD 2- Virtual Disk
2- TOSHIBA
MQO1ABDI sdb.
A | Size 1-240GB 1- 64G sda
% 2-931.5G 2- 256G sdb

H. SOFTWARE SPECIFICATIONS
The virtual machine was running under the Linux Operating
System, Ubuntu 18.04.1 LTS version. It was primarily used
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TABLE 3. Number of EPOCH effect.

PC1 KC1 KC2 CM1
2 2 2 2
B2 |, |5 [BIE (.|| (8% |.|E| lBlE|.|:
55 5| & 55 3 E 55 p|E AR -
Sl (|8 (8|3l |5 |2 |2ls |§E B |2l |§ |2 B
g2 g & g2 ¢ 8 E g2 g & g2 8 & E
1000 |.929 |.012 |.998 10000 |.840 |.386 |.923 5000 |[.821 .519 |.897 5000 [.899 .170 |.975
' 5 5 s-
S & A >
7‘: 2000 |.928.054 [.994 | & | 15000 |.854 |.408 |.931 : 8000 |.819 .504 |.899 'v_‘:: 17000 |.905 [ 191 |.979
E g 2 2
§ 10000 |.935 |.363 |.977 _@ 25000 |.849 | .538 |.894 o 15000 |.814 |.438 |.908 o 20000 |.872 |.040 |.964
.a ': .a .a
) - g 8
2 = E =
w — w o~
TABLE 4. Batch size effect.
PC1 KC1 KC2 cMl1
2 2 2 2
o s o s ) & ) s
+> @ ] k31 + b s k31 += -z s k39 = z ] o
S8 DBz ElglElglEE g dlelElEl s
58 T A 58 |8 |A 5§ 8 |8 | A 5§ 8 |8 |A
5 930 |.051 [.996 5 .842 |.489 |.906 5 825 1.476 |.913 5 891 |.148 |.968
> 5 5 5
‘m" 10 928 |.142 (987 | »n |10 |.846 |.429 |.922 | en [10 |.831 [.447 |.928 | @& |7 .899 |.170 |.975
= o o o]
2 : : :
S 30 928 |.051 [.994 § 15 843 |.388 [.924 § 15 |[.819 |.451 |.911 § 10 |.887 |.212 |.957
S (=] = wv
N — N —

for testing without rendering any additional services in order
to provide as independent testing as possible. The laptop
Operating System was Ubuntu 18.04.1 LTS.

IV. RESULT

The implementation of the MLPs and CNN is done in Python
3.6.5 using Keras Frameworks. In addition, Numpy, Panda
and Sklearn libraries were used. Visualization is done using
the Matplotlib library and Spyder served as the develop-
ment environment. This work has developed without sep-
aration between the modification of the network and the
implementation of the network. We had tried more than two
hundred experiments with different (hyper-parameter, acti-
vation function and a number of layers). Experiments cover
the modification of the model parameters used to improve
the results. The following sub-sections present the results
obtained.
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A. MLPS RESULT

To address the effect of (number of epoch, batch size, dropout
rate, Optimizer, number of layers, activation function) the
proposed approach achieved the following results by MLPs
algorithms as described in tables 3 - 8.

NUMBER OF EPOCH In order to examine the effect of a
number of the epoch, we performed the following experiment
in MLPs as described in table 3.

BATCH SIZE In order to examine the effect of batch
size, we performed the following experiments as described
in table 4.

DROPOUT RATE In order to examine the effect of the
dropout rate, we performed the following experiments as
described in table 5.

OPTIMIZER In order to examine the effect of Optimizer,
we performed the following experiments as described in table
6. adgrad gave better accuracy and Detection rate values.
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TABLE 5. DROPOUT rate effect.

PC1 KC1 KC2 CM1
Q B (] 8 Q B (] 8
- < - < ey < - <
E L s EE |, g EIE |, |3 EE |, g
3 = 15} .8 e 3 15 .8 3| B 5 .8 3|3 15} .8
= o I k51 2| 9 s 251 2| 9 I k51 = 9 s 251
= & 8 |28 |g || & |8 |28 2|8 |8 |2 g E|& B |2
o = 3 O E o = = O [3) = 3 O E 3] = = O
] A s A 8| A IS A 8 A s A 8| A b A
2 935 |.363 |.977 2 853 |.371 1.941 2 810 |.429 |.908 2 891 |.224 |.964
)
g 4 924 389 (964 | . |.4 849 1346 |.941 | 5 | 4 814 1.439 | 910 - 4 .895 |.108 |.975
@ b= - =
g ) 922 |.389 |.962 g ) .857 |.315 [.956 g ) 825 1.485 | 911 2 ) .899 |.170 1.975
@ S ) E
g 8/6 9300 |1 S 6 (855352944 | S |6 |.812 476|904 |S |.6 |.890 .085 |.975
S 7 S S S
S = " v wv
-— — (@\] —
TABLE 6. Optimizer Effect.
PC1
architecture optimizer accuracy Detection rate TNR
10000 and 5 batch size adam .930 0 1.00
adgrad 935 363 977

NUMBER OF LAYERS In order to examine the effect of
a number of layers, we performed the following experiments
as described in table 7.

ACTIVATION FUNCTION In order to examine the effect
of activation function, we performed the following experi-
ments as described in table 8.

B. CNN RESULT

To address the effect of (number of epoch, batch size, num-
ber of layers, activation function) the proposed approach
achieved the following results by MLPs algorithms as
described in table 9, 10, 11.

NUMBER OF EPOCH In order to examine the effect of the
number of the epoch, we performed the following experiment
on CNN as described in table 9.

BATCH SIZE In order to examine the effect of batch size,
we performed the following experiment on CNN as described
in table 10.

NUMBER OF LAYERS In order to examine the effect of
a number of layers, we performed the following experiment
on CNN as described in table 11.

C. COMPARISON

COMPARISON IN TERMS OF PERFORMANCE Metrics
Table 12 shows the best results we obtained from both algo-
rithms. The results show a clear advantage for CNN.
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COMPARISON IN TERM OF TIME AND NUMBER OF
EXPERIMENTS Table 13 shows the difference in effort in
terms of the number and time of experiments to obtain the
satisfactory results of both algorithms.

As a summary of MLPs and CNN experiments,
Tables 14 and 15 present improvements on results as param-
eters changed based on the detection rate.

V. DISCUSSION

To discuss findings and interpret the results, we evaluate the
appropriate parameters of the CNN and MLPs algorithms
which give us useful predictions.

A. MLPS

Based on experimental results on MLPs algorithm, the pro-
posed approach obtained the effective, which achieved by
modifying the network parameters as follows:

THE EFFECT OF THE HYPERPARAMETER The num-
ber of epoch had a significant effect, especially in increasing
the Detection rate. When we increase epoch number then all
of the following are increased: the Detection rate, the accu-
racy and the model ability to predict faults. For example,
when applying to the PC1 dataset and increasing the number
of the epoch from 1000 to 10000, the Detection rate ratio
increases from .012 to .363 and accuracy from 92 to 93.5.
However, after reaching the optimal number of the epoch,
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TABLE 7. Number of layers effect.

PC1 KCl1 KC2 CM1
” 2 . 2 . 2 ” 2
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TABLE 8. Activation function effect.
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the ratio of the TNR decreases and, there is a consequent
decrease in the accuracy. For example, when applying to
the KC1 dataset and increasing the number of the epoch
from the optimal number (15000) to 25000, the percent-
age of TNR decreases from .931 t0.894 and the accuracy
of .854 to .849. The effect of the batch size is similar to
that of the epoch. As the batch size increases, the accuracy
increases, until it reaches the optimal size. After that, any
increase in the batch size results in a decrease in accuracy.
For example, when the batch is changed from 5 to 7 and then
to 10, the accuracy and TNR change as follows: accuracy
(.891-.899-.891), TNR (.968-.975-.957). The results showed
that the best dropout rate was when using the value (.5) except
PC1 where it was (.2). This may be due to a small percentage
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of faults that PC1 has. Also, the Agrad optimizer is better than
Adam.

THE EFFECT OF THE NUMBER OF LAYERS The use
of five layers for the PC1 and KC1 dataset achieved the best
result, in terms of accuracy, Detection rate, TNR. On the other
hand, KC1 and KC2 gave the best results when using three
layers. In both cases with an increased number of layers,
the Detection rate is increased while reducing the TNR of the
data that reduces the accuracy. Through the results mentioned
above, the number of layers is different according to the
database itself. There may be a relationship between ratios
of faults and the number of instances with the ideal number
of the layers. This is what we will try to study and investigate
in future research.
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TABLE 9. Number of EPOCH effect.

PC1 KC1 KC2 CM1
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TABLE 10. Batch size effect.
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THE EFFECT OF THE ACTIVATION FUNCTION by
comparing the results in which different activation functions
were used, the ReLU showed superior results over other
activation functions.

B. CNN ALGORITHM

Based on our experiments and the results we obtained from
these experiments, there was an effect created by modifying
the network architecture. This effect was as follows:

THE EFFECT OF THE HYPERPARAMETER The
increase in the number of epoch had a positive effect on all the
datasets on which CNN was applied, whether it was accuracy
or other means of measurements. 4000 epoch was the optimal
number of epoch used for all experiments.

The effect of the batch size is similar to that of the
epoch. As the batch size increases, the percentage of means
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of measurements increases, until the optimal size is reached.
For CM1 the optimal batch size was 10 and was 15 for the
rest of datasets.

THE EFFECT OF THE NUMBER OF LAYERS The use
of five layers for the PC1 and KC1 dataset achieved the
best results across the four statistical measures: accuracy,
Detection rate, TNR. On the other hand, KC1 and KC2 gave
the best results when using three layers. In both cases with
an increased number of layers the Detection rate increases,
while reducing the specificity of the data reduces the accu-
racy. Through the results mentioned above, the number of
layers is different according to the database itself. There
may be a relationship between ratios of faults has it and the
number of instances with the ideal number of the layers.
This is what we will try to study and investigate in future
research.
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TABLE 11. Number of a layer effect.
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TABLE 12. Performance metrics comparisons.
Algorithms PC1 KCl KC2 CM1
Q Q Q Q
g i 8 8
> | 8 > | 8 > | 8 > | 8
[ + < S < + < +
g 8 g 2 g 8 g 2
: 2 |E |8 |2 |E |3 |2 |E |8 |2 |E
<
MLPs 935 | 363 | .977 | .857 | .315 | .956 | .831 | .447 | 928 | .905 | .191 | .979
CNN 978 | .739 | .996 | 1.00 | 1.00 | 1.00 | .993 | 968 | 1.00 | .973 | .823 | .992
TABLE 13. Time and number of experiments comparisons.
| Algorithms | PCI | KC1 KC2 CM1 | total
o H| 25 o g 2E w g P o g 28 o £
cfg 3@5 93633 cfgbug O.gfa“o’-g o.gg o
S¥l 283 |28 288 |252z83 (25255 |28¢8 |8
MLPs 60 |20 (1)3 30 [28 | 840 |25 |12 |252 (35 |12 420 | 150 | 2712 | 113
CNN 24 |4 9% |25 |5 125 |20 |3 60 |30 |3 90 |60 |371 |16

C. THREAT TO VALIDITY

In this work, two deep learning algorithms are studied which

are Multi-layer perceptron’s (MLPs) and Convolutional Neu-

ral Network (CNN) to address the factors that might have an

influence on the performance of the algorithms in SFP.
Although the experiment results show how manipulating

the picked parameters are directly affecting the prediction
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performance, still there are threats to construct validity refer
to the generalizability of our results.
The major Internal Validity Threats in our study were
The addressed parameter settings, as we selected set
parameters to be manipulated in the proposed technique and
then the comparisons have been conducted base on these
parameter sittings.
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TABLE 14. Effects of modification (MLPS).
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The addressed code instrumentation: the source code
that used in our experiment was built to favor the two algo-
rithms that used in this study.

Finally, data set collection: we collect very common
dataset from real-world experiments.

As external Validity threats, we might not use the most
complex and big enough data set for evaluation purposes.
Moreover, the addressed and implemented algorithms might
be not enough to generalize the result as there are too many
others algorithms in the literature.

Authors try to mitigate the internal and external threats in
this work as follows:

1- There are others deep learning algorithms in the litera-
ture, therefore as future work, we plan to mitigate this threat
further by addressing even more Deep learning algorithms
and conduct a comprehensive comparisons. In spite of this
threat, in this work we studied the most commonly used deep
learning algorithms by past software engineering studies to
evaluate the factors effectiveness in fault prediction [2], [18],
[32], [35], [36], etc. Thus, we believe there is little threat
to construct validity from this part side. 2- In this work,
four factors’ influences are studied. In the future, we plan
to reduce this threat by addressing others factors that might
enhance or even reduce the algorithms performance. 3- This
study used a very common public dataset (the PROMISE
dataset), these datasets provide a real software faults and
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other related features. However, we have carefully picked the
information that is provided within the dataset and perform
some preprocessing steps to retrieve the relevant data of their
applications. We tried to minimize threats to validity by using
standard performance measures for fault prediction (TNR,
Accuracy and the error ratio). However, in the future we
intend to investigate other public or even commercial data set
that represents diverse software applications.

VI. CONCLUSION AND FUTURE WORK
Machine learning is widely used in the area of prediction, one
of the most promising subset is deep learning, the researchers
prove that how deep learning achieves tangible performance
in terms of prediction in various fields as computer vision,
natural language processing, bioinformatics and software
engineering etc. In this article, authors aimed to concen-
trate on answering two main research questions, Does the
manipulating algorithms parameter could lead to introduce
any performance enhancement in terms of accuracy?, Which
of the studied deep learning algorithms provide the best SFP
performance? The main essence of this study is to investigate
the factors that have a tangible effect on the performance of
the studied deep learning algorithms in the field of the SFP.
Several experiments have been conducted and followed by
analysis and comparisons where very common used data set is
used in these experiments. Results from the experiments were
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evaluated using accuracy, Detection rate, TNR. The results
obtained from the CNN algorithm presented outstanding
results of up to 100% for the KC1. Moving to the modifying
parameters affecting, each of the parameters has a positive
effect as the number increases to the optimal number which
gives the best results. The results showed that the increase
in the number of layers has a positive effect on the optimal
number of layers for each dataset. As for activation functions,
the ReLLU activation function showed the best performance.

As the summary for the experiments, the impact of enhanc-
ing parameters had exceptional effects, which reached good
results, especially for detection rate measurement. In the
future work, we intend to perform further experiments and
utilize other data set to address if the data set plays an
important role (domain) or it really depends on the algorithms
parameters solely. One of the main limitations in this work
is not investigating the effectiveness of all hyper parameters;
therefore, we intend to address some other factors in the
future work. This study aims to determine the best deep
learning algorithms for SFP and to reach the best possible
results. For future work, it would be worthwhile to investigate
the relationship between the dataset and its fault ratio with the
appropriate algorithm and its parameters. After determining
the potential relationship, it is necessary to develop a tool that
uses deep learning algorithms for SFP and, possibly, for other
fields.
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