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ABSTRACT Software vulnerability can cause disastrous consequences for information security. Earlier
detection of vulnerabilities minimizes these consequences. Manual detection of vulnerable code is very
difficult and very costly in terms of time and budget. Therefore, developers must use automatic vulner-
abilities prediction (AVP) tools to minimize costs. Recent works on AVP begin to use techniques of deep
learning (DL). All the proposed approaches are based on techniques of feature extraction inspired by previous
applications of DL such as automatic language processing. Code metrics were widely used as features to
build AVP models based on classic machine learning. This study bridges the gap between deep learning and
machine learning features and discusses a deep-learning-based approach to finding vulnerabilities in code
using code metrics. Obtained results show that code metrics are very good but not the better to use as features
in DL-based AVP.

INDEX TERMS Automatic vulnerability prediction, code metrics, deep neural networks.

I. INTRODUCTION
The presence of vulnerabilities in software is inevitable
because writing secure code is very difficult and requires a
lot of expertise. And since humans are prone to mistake, even
experienced and elite developers can make programming
errors that lead to disastrous consequences on information
security. Earlier detection of software vulnerabilities mini-
mizes these consequences. The manual detection of vulnera-
ble code is very difficult, tedious task and very costly in terms
of time and budget. To assist developers and minimize these
costs, tools that can automatically predict vulnerable source
entities (file, function, etc.) must be used to let developers
focus their efforts on most likely vulnerable components.
These costs can be minimized even more if the used tools
can identify the exact location of vulnerabilities (vulnerable
source lines). In the research field, the automatic vulnerability
prediction (AVP), drew the attention of many researchers.
Indeed, many approaches of AVP have been proposed in the
literature such as vulnerability prediction models (VPMs)
built based on machine learning (ML) techniques and soft-
ware features (software metrics, bag-of-words, etc.).
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Most of the proposed VPMs used software metrics as input
to discriminate between vulnerable and clean source entities.
Because in one hand, software metrics can perfectly quantify
software characteristics such as complexity, coupling, and
size and on the other hand, it was proven in the practice that
there is a correlation between these software characteristics
and vulnerabilities. The main limitation of the VPMs built
using software metrics is that they do not have the capacity of
pinpointing the exact location of vulnerabilities because met-
rics are calculated at a coarse level of granularity (package,
file, class, function). Instead, they only predict if the source
entity is vulnerable or clean.

In recent studies (see Related Works sub-section), resear-
chers begin to investigate AVP using techniques of deep
learning. The researchers used techniques inspired by pre-
vious applications of DL such as automatic language pro-
cessing to automatically extract features. Although software
metrics were widely used in previous studies that used classic
ML in AVP, software metrics have not yet been evaluated as
features in DL-based AVP. At the best of our knowledge, until
now no one tried to use software metrics with DL to detect
vulnerabilities (prediction at a finer granularity).

In this study, we aim to fill this research gap and to propose
an approach of vulnerability detection based on DL and
software metrics. As we mentioned in previous paragraphs,
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software metrics can perfectly quantify software characteris-
tics that are correlated to vulnerabilities. Therefore, they may
represent good features to build VPMs based on DL.

The contribution of this study is twofold:

• Investigating the usefulness of code metrics as features
for deep learning in vulnerability detection.

• Proposing a dataset of code metrics generated from
labeled code slices: as part of the study, we propose
and make publicly available a dataset of code metrics
generated from labeled code slices.

The remainder of the paper is organized as follows:
Section II presents background and the most relevant
related works, Section III presents the research question and
describes the proposed approach and the followed method-
ology to carry out the study, Section IV presents the exper-
imentations, Section V presents the obtained results and
discussion, Section VI presents the limitations of the study,
Section VII summarizes the work done in this study and
indicates some perspectives.

II. BACKGROUND AND RELATED WORK
In this section, background andmost related works are briefly
presented. We begin by giving the context of the study by
presenting all concepts related to it (deep neural networks,
vulnerability prediction, and code slicing) after that we ter-
minate by citing most related works.

A. DEEP NEURAL NETWORKS
Deep learning is a subfield of ML. Most deep learning
techniques are based on artificial neural networks (ANN).
An ANN is a network of computational models: artificial
neurons (ANs) that are inspired by the biological neuron
of the human brain. The AN receives inputs from many
other ANs, process them and produce an output that is then
transmitted to other neurons. The data processing that occurs
in each AN is very simple, but the global behavior of the
whole network generated by the interaction of its ANs leads
to solving complex problems [1].

Although the first attempts to model the brain are old (the
1940s), the interesting results were obtained just in the few
recent years when deep ANNs (DNNs) were proposed. The
ANs in a DNN are ranged in many interconnected layers.
There are three types of layers:

• Input layer: There is only one input layer in a DNN.
It receives inputs (the actual inputs of the global system
which are also the data to be processed), processes them
and transmits them to the hidden layers.

• Hidden layers: There are zero or several hidden layers
in a DNN. The hidden layers let the DNN learn more
about the data to be processed. The more the DNN has
hidden layers, the more it can solve a complex problem.
The outputs of each hidden layer become the input of the
next hidden layer and so on.

• Output layer: Like the input layer, there is only one
output layer in a DNN. It receives inputs from the last

FIGURE 1. Simple DNN.

hidden layer, processes them and transmits them to the
final output of the DNN which are also the final results
generated by the system.

Figure 1 shows an example of a simple DNN that has
the following architecture: input layer (10 neurons), two hid-
den layers (6 neurons and 4 neurons) and an output layer
(2 neurons).

Just like classic ML algorithms, a DNN must be learned
before using it. Supervised learning is the most used in
applications such as pattern recognition, automatic language
processing, and general classification problems. The super-
vised learning in DL needs large amounts of labeled data and
powerful machines to run the learning process. For example,
to build a face detector, one needs a large collection of images
labeled as containing faces, often with a bounding box around
the face [2]. That is why just in recent years that the DL
has seen great success because of the growing computing
power offered by the recent computers and the large amounts
of labeled data offered by the new technologies such as the
internet.

B. VULNERABILITY PREDICTION MODEL (VPM)
Given that software vulnerability is a particular kind of soft-
ware defect that affects information security, techniques used
in automatic defect prediction are also used in automatic
vulnerability prediction (AVP). One of these techniques is
Defect Prediction Models (DPM) [3]–[7]. DPMs are models
predicting the existence or likelihood of code defects in code
entities: file, class, function, etc. [8].

VPMs and DPMs are built based onmachine learning tech-
niques and using software attributes as input to discriminate
between vulnerable and clean source entities [9]. The Data
used to train and validate VPMs are collected from previous
versions of the studied software. Based on vulnerabilities
information extracted from vulnerability databases such as
NVD (National Vulnerability Database), source entities are
retained and labeled as vulnerable or clean. Then, features
(software metrics) of each source entity are extracted and
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collected in datasets. In cross-project prediction, datasets col-
lected from other software are used. This type of prediction is
useful when studying new software that does not have earlier
versions or sufficient data on their vulnerabilities.

Most of the prior studies in the field of AVP tried to evalu-
ate theories that are a correlation between software character-
istics: complexity, coupling, etc and vulnerabilities [10]–[13].
In other studies [8], [14] researchers reported that the classic
software metrics used in DPM are not accurate for VPM.
They suggested that new security-specific code metrics must
be used to improve VPM’s performances. Others [15], [16]
concluded that the main problem of VPMs is the limited data
on vulnerabilities.

The proposed VPMs allow vulnerability prediction at a
coarse granularity: package, file, class, and function. This can
assist developers and let them focus their effort on most likely
vulnerable source entities. However, if the source entities
have a lot of lines of code, the task of pinning down the
location of vulnerable pieces of code will be very difficult and
time-consuming. Therefore, researchers proposed in recent
works [17], [18] of vulnerability detection to use finer granu-
larity, code gadgets where only a few lines of code that are
related to vulnerabilities are involved. This notion of code
gadget was inspired by the concept of code slicing. In the next
sub-section, we will present this concept.

C. CODE SLICING
Code slicing or program slicing was first introduced by
M. Weiser [19]. He defined program slicing as a method for
automatically decomposing programs by analyzing their data
flow and control flow to produce a reduced program called
a slice. Since then, many research works were addressed
the program slicing to propose: algorithms of computing
slices, different types of code slicing and many applications
in software engineering. A good description of features, main
applications and a common example of slicing techniques can
be found in [20].

The strong point of code slicing is that it can give insight
about multiple behavioral aspects of the source entity, such as
all source lines that change the value of a variable, or state-
ments that participate in computing the return value of a
function [21]. In the security context, this can be useful to
get for examples: all statements that are related to a critical
system call or all statement that can change the values of
variables which are used as parameters in critical functions
calls (memory management, string manipulation, etc.). This
way, only lines of code that are related to vulnerabilities
can be extracted and analyzed which lead when applied
in vulnerability prediction to indicate the exact location of
vulnerabilities.

D. RELATED WORK
For the sake of brevity, in this subsection, we present only the
most relevant related works that investigated vulnerabilities
detection using deep learning techniques.

Most of the prior research work in the field of AVP
has only focused on classic machine learning techniques.
In recent years, a few researchers begin to investigate AVP
using techniques of deep learning. The first attempt to inves-
tigate deep learning in vulnerability prediction was done
by [22]. Researchers did a literature review and concluded
that depend on the previous vulnerability data, different kind
of deep learning algorithms can be applied in AVP: super-
vised learning models if there is sufficient data, unsupervised
deep learning models if there is no vulnerability data and
semi-supervised models if there is a limited data. Since then,
a few but very interesting studies have been carried out.
These recent studies tried to make deep learning suitable
for AVP by drawing inspirations by previous applications of
deep learning techniques; where challenging problems such
as pattern recognition, natural language processing, image
processing, etc. were solved.

Inspired by the notion of region proposal in image pro-
cessing, researchers in [17] proposed to divide a program
into smaller pieces of code (i.e., number of statements),
which may exhibit the syntax and semantics characteristics
of vulnerabilities. These small pieces of code called code
gadget (CG) can be obtained by extracting code slices (see
the previous sub-section) from the source code. This also
lets them predict vulnerability at a fine granularity (CG)
which means that the exact location of vulnerabilities can
be indicated by the proposed vulnerabilities detection system
called VulDeePecker. To address the limitations of VulDeeP-
ecker (considering only the vulnerabilities that are related to
library/API function calls, leveraging only the semantic infor-
mation induced by data dependency and considering only
the particular RNN known as Bidirectional Long Short-Term
Memory (BLSTM) ), researchers proposed in [18] a frame-
work for using deep learning to detect vulnerabilities dubbed
Syntax-based, Semantics-based, and Vector Representations
(SySeVR).While in VulDeePecker only one RNNmodel was
used, in SySeVR several models were evaluated (CNN, DBN,
and 4 variants of RNN: LSTM, GRU, BLSTM, and BGRU).

Since DNNs take vectors as input, researchers proposed
to transform program slices into vectors of tokens that are
semantically meaningful for vulnerability detection. Based
on the technique of word embedding, they encoded the tokens
of each slices using the word2vect tool [23] into size-fixed
vectors which are the actual input of the DNNs. This tech-
nique (word embedding) is inspired by the application of deep
learning in natural language processing. In [24] researchers
investigated two deep neural network models: CNNs and
RNNs in vulnerabilities prediction in two ways:

• They used them to learn features based on the technique
of word (or token) embedding. After that, the learned
features are used as input to build a VPM based on a
Random Forest classifier,

• They used them to learn features and as classifiers.

The studies that used automatically-learned features as
inputs for DNNs have reported interesting results Table 1.
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TABLE 1. Recent studies conducted in vulnerabilities detection using
deep learning.

However, this approach does not consider important code
characteristics such as complexity which correlate with
vulnerabilities [11], [14], [26]. Another limitation of this
approach lies in the fact that on the one hand neural networks
take a size-fixed vector as input, but on the other hand,
the token number in each source entity (slice or function)
may be different. To address this problem, in this approach a
threshold is used. When a vector is shorter than the threshold,
zeroes are padded to the end of the vector. When a vector is
longer than the threshold, portions from the vector are deleted
to make it equal to the threshold which may lead to a very
important loss of information.

Code character ristics such as complexity can be quan-
tified by corresponding code metrics. While several pre-
vious studies [8], [12]–[15], [26]–[28] have used software
metrics as features to build VPM based on classic machine
learning techniques, only one study [25] has used software
metrics with deep learning to predict vulnerabilities at the
file granularity level. In that study, authors proposed a web-
service-based VPM to predict vulnerable components (files)
of web applications, several machine learning techniques
which exist in Azure Machine Learning Studio environ-
ment (Bayes point machine, Boosted decision tree, Random
forest,. . .) and a multi-layer perceptron (MLP) were inves-
tigated. The authors reported that the best performance is
achieved by the MLP (Last line in table 1). The main limi-
tation of this study is that the prediction was at a coarse gran-
ularity (file granularity). This means that code metrics were
calculated from the whole source code of the file (vulnerable
lines and clean lines) and the built VPMs only predict if the
file is vulnerable or clean without locating the vulnerable
lines. Another limitation is that the used dataset [15] was pro-
posed to evaluate VPMbased on classic machine learning and
does not provide sufficient data that let deep learning models
achieve the best training. Therefore, in this work, we propose
to predict vulnerabilities at the slice granularity. Instead of
calculating metrics from the whole source code of the file

or function, we extract slices (a few lines of code related
to vulnerabilities) then we calculate metrics for each slice.
This way, the built VPMs can predict if a slice (few lines of
code) is vulnerable or clean which leads to locate vulnerable
lines.We also use a large dataset (> 95351 instances) suitable
for DL.

III. METHODOLOGY
In this section, we present the research questions, proposed
approach and the different steps followed to conduct the
study.

A. RESEARCH QUESTIONS
Motivated by the success of DL techniques in other fields
such as pattern recognition, natural language processing,
etc., the recent research works in the field of vulnerabilities
prediction tends to use these techniques to predict vulnera-
bilities. Although code metrics were widely used and eval-
uated as features to build VPM based on classic machine
learning techniques, the recent studies that used the tech-
nique of DL have only focused on automatically-learned
features inspired by the previous applications of DL to
build VPM. No one of them to the best of our knowledge
has investigated whether code metrics can be used as fea-
tures to build VPM based on these advanced techniques
of DL.

The main aim of this study is to fill this research gap.
To achieve this objective, this study will try to answer the
following main research question:

RQ: Since code metrics were successfully used as features
to build VPM based on classic machine learning techniques,
can they be used as features with deep learning to detect
vulnerabilities?

B. PROPOSED APPROACH
We proposed an approach inspired of a recent study that
used deep neural networks to predict vulnerability at the
slice granularity [17]. In the proposed approach (Figure 1),
Instead of automatically learn features as it was done in the
previous approaches [17], [18], [24] which is a technique
inspired by the previous applications of DNN (natural lan-
guage processing, patterns recognition, etc.), we use a set of
code metrics as features to build VPM based on deep neural
networks. Given that codemetrics can perfectly quantify code
characteristics such as size, coupling and complexity, and
these characteristics are correlated to vulnerabilities, code
metrics may represent valuable data that allow DNNs to learn
the characteristics of vulnerable code.

To detect vulnerabilities, the source code of the source
entity (file, class, function) is decomposed into reduced por-
tions of code (few lines of code: slices) that are related to
a specific type of vulnerability. In this study, only vulnera-
bilities that are related to pointer usage (PU) are considered.
Then, the code metrics of each slice are calculated and used
as input of the DNN which classify the slice as vulnerable or
clean.
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TABLE 2. Descriptive statistics about the original dataset.

C. DATA PREPARATION
In this sub-section, we present the data preparation. We begin
by presenting the original dataset (slices dataset), after that,
we present the proposed dataset (code metrics dataset) which
is generated from the original dataset and used to train and
validate the proposed VPMs.

1) ORIGINAL DATASET (SLICES DATASET)
The data used to carry out the experiments are generated
from a public dataset [29] recently proposed by [18]. This
dataset contains 420,627 labelled code slices (CSs), including
56,395 vulnerable CSs and 364,232 clean CSs. It is orga-
nized into four parts. Each part contains CSs about a spe-
cific type of vulnerability. The actual version of this dataset
considers the following types of vulnerabilities: Library/API
Function Call (vulnerabilities that are related to library/API
function calls), Array Usage (vulnerabilities that are related
to improper use of arrays), Pointer Usage (vulnerabilities that
are related to improper use of pointers such as use after free
vulnerability), Arithmetic Expression (vulnerabilities that are
related to improper use of arithmetic expressions such as
integer overflow vulnerability). The size (number of CSs) of
each part is shown in Table 2. Four examples of labeled CSs
taken from the original dataset are shown in Figure 2. The
label of each CS is indicated in the last line, ‘‘1’’ means that
the CS is vulnerable and ‘‘0’’ means that the CS is clean.

2) CODE METRICS DATASET
We prepared a dataset of 18 code metrics (the features) cal-
culated from the labeled CSs of the original dataset. For the
sake of minimizing the number of experiments, only the PU
part (the biggest one) of the original dataset is considered.

CSs are composed of a few lines of code related to vul-
nerabilities (figure 3). Therefore, we calculated only Line
of Code (LOC) metrics and code metrics related to the line
and the token granularities like McCabe [30] and Halstead
metrics [31]. Other types of code metrics related to other
granularities such as class granularity (Object-Oriented Met-
rics) and function granularity (FanIn, FanOut, etc.) cannot
be calculated. The actual version of the dataset contains the
following metrics:

• LOC metrics ( Physic lines: number of total lines,
Empty lines: number of empty lines, Lines of comments:
number of lines of comments, Lines of the program:

FIGURE 2. Proposed Approach.

number of program lines (directive, definition, declara-
tion, commands...)).

• McCabe Metrics (McCabe number: The cyclomatic
complexity)

• Halstead metrics (n1: number of distinct operators, n2:
number of distinct operands, N1: total number of opera-
tors, N2: total number of operands, n: program vocabu-
lary, N: program length, N’: calculated program length,
V: Halstead volume, D: difficulty, E: effort, T: the time
required to program, B1: number of delivered Bugs 1,
B2: number of delivered Bugs 2)

The preparation of the dataset followed two steps. The
first step consists of parsing the original dataset to sepa-
rate each CS then calculate its code metrics. The second
step consists of eliminating any redundant data. The final
version of the dataset [32] which is used in experiments
contains 95351 instances. To work with the Java API of
Weka, the actual version of the dataset is in the ARFF
(Attribute-Relation File Format) format.

ARFF file is an ASCII text file that describes a list of
instances sharing a set of attributes. ARFF files have two
distinct sections. The first section is the header informa-
tion, which is followed by the data information. The header
contains the name of the relation and a list of the attributes
(the columns in the data). The data section of the file contains
the data declaration line and the actual instance lines [33].
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FIGURE 3. Examples of labeled CSs from the original dataset.

3) BALANCING THE DATASET
For most software projects, the percentage of vulnerable
source lines is very low and the percentage of clean source
lines is very high. As a consequence, the extracted data
may inherit this characteristic which leads to an imbalanced
dataset (the number of negative instances is very higher than
the number of positive instances).

Training a VPM from such an imbalanced dataset is often
challenging because the VPM may be biased towards the
major class (negatives) and hence it only learns to predict
everything as negatives and ignores the minor class (posi-
tives). Therefore, undersampling is a technique that is often
used to balance the training set [11], [13], [15]. With this
technique, all the positive cases in the training set are retained,
while only a subset of the negatives is selected. The sample
of negatives is randomly chosen such that the number of
positives matches the number of negatives. The result is a
perfectly balanced training set, which is used to build the
VPM. The testing set is never altered, to preserve the correct
testing conditions (the number of vulnerable source lines is
very low and the percentage of clean source lines is very
high). To balance our data, we used undersampling in the
experiments using the implementation provided by the Weka
API, the SpreadSubsample unsupervised filter [33].

D. DNN MODEL
1) DNN MODEL SELECTION
The prior studies that investigated vulnerability detection and
prediction [17], [18], [24] have used automatically-learned
features as input for DNN. They used the technique of word

embedding to learn features which is a technique inspired
by the previous applications of DNN in the field of natu-
ral language processing. Therefore, they used DNN models
(Convolutional Neural Networks (CNNs), Recurrent Neu-
ral Networks (RNN)) which are suitable for automatically-
learned features and which are commonly used in that field.

In this study, we aim to investigate whether software met-
rics are accurate when used as features for deep learning to
detect vulnerabilities. The nature of the data (code metrics)
used in this study is different from the data used in previous
studies. Therefore, we prefer to use the DNN model that is
suitable for tabular data. The Multi-Layer Perceptron (MLP)
is a widely used DNN and it is very suitable for tabular data
such as the code metrics dataset prepared in this study. There-
fore, we used theMLPmodel to carry out the experiments and
to draw the final conclusion.

Nevertheless and for the sake of completeness, we used
also the LSTM (Long Short-TermMemory) which is a variant
of the RNN model.

2) DNN MODEL CONSTRUCTION
A typical DNNhas one input layer, one ormore hidden layers,
and one output layer. In this study, we investigated several
architectures with different numbers of hidden layers and
different neuron numbers in each hidden layer.

To construct, train and test the DNNmodels used to predict
vulnerable CSs, we used the Java API of theWekaDeeplearn-
ing4j [34]. WekaDeeplearning4j is a Weka package based
on the Deeplearning4j library [35]. TheWekaDeeplearning4j
package supports fully connected feedforward networks, con-
volutional networks, and recurrent networks. It also provides
data loaders for standard tabular data, as well as image, text,
and sequence data.

IV. EXPERIMENTS
To evaluate the performances of the DNN model, we used a
standard k-folds cross-validation technique. In this technique,
the instances of the dataset are randomly divided into k folds
of equal size. Iteratively, each fold is retained as the testing
set. That way, theVPM is trainedwith the samples in the other
k-1 folds (training set) and used to predict the class of the CSs
in the testing set. To reduce the computation time, we carried
out the experiments using k = 3. In large datasets such as our
dataset, 3-folds cross-validation is quite accurate.

The prediction result of the model can be one of the
four cases: True Positive (if a vulnerable CS is predicted as
vulnerable by the model), True Negative (if a clean CS is
predicted as clean by the model), False Positive (if a clean CS
is predicted as vulnerable by the model), False Negative (if a
vulnerable CS is predicted as clean by the model). From the
number of TP, TN, FP, and FN several performance indicators
can be calculated.

We used four well-known and widely used performance
indicators: recall, precision, false-positive rate and false-
negative rate. A perfect VPM must not miss any vulnerabil-
ity (false negative ≈ 0%) and help to minimize maintenance
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costs by predicting as vulnerable only the source entities
that are actually vulnerable (false positive ≈ 0%). It must
also make a correct and precise prediction (recall ≈ 100%
and precision ≈ 100%). In the following, we summarize the
definitions and formulas of the used performance indicators:
• Recall: This indicator gives the percentage of vulnerable
CSs that are correctly classified by the model.

Recall =
TP

TP+ FN
∗ 100 (1)

• Precision: This indicator gives the percentage of CSs
classified as vulnerable by the model and are actually
vulnerable.

Precision =
TP

TP+ FP
∗ 100 (2)

• FP Rate: This indicator measures the percentage of mis-
classification positive among the real negatives.

FP Rate =
FP

FP+ TN
∗ 100 (3)

• FN Rate: This indicator measures the percentage of
negatives that are falsely classified as real positives.

FN Rate =
FN

FN+ TP
∗ 100 (4)

Optimizing the parameters of a DNN is very challenging,
especially when working with a new type of data or when
trying to solve a new problem that has not been solved before
by DL. The hyper-parameters for the back-propagation algo-
rithm are as follows: the learning rate is 0.01, the momentum
is 0.01. The other main parameters are as follows: the batch
size is 128, the number of epochs to train through is 2500.
These values were chosen based on what experts in the field
of DL recommend. We investigated the impact of using dif-
ferent architectures (different numbers of hidden layers and
different numbers of neurons in each hidden layer). To com-
bat over-fitting, we used early stopping implementation to
stop training after 20 epochs without loss improvement on
a separate validation set.

Because the metrics used to train the DNNs are continuous
variables and to combat any negative influences such as over-
fitting, we considered normalizing the data in experiments.

The machine running experiments has a 4 GB of RAM and
a CPU Intel Xeon E5-2650 V3 @ 2.30GHz 2.30GHz.

V. RESULTS AND DISCUSSION
Table 3 summarizes the obtained results using several
MLP configurations and 3 folds cross-validation. Four per-
formance indicators were considered to draw conclusions
(Recall and Precision: the higher the better, while the FP rate
and FN rate: the lower the better). ‘‘1 HL (6)’’ means DNN
with one hidden layer that contains 6 neurons, ‘‘3HL (6-3-2)’’
means three hidden layers with 6 neurons in the first HL,
3 neurons in the second HL and 2 neurons in the third HL.

As shown in Table 3 and Table 4, the DNN model gets
very good vulnerability detection performances in terms of all

TABLE 3. Results using the balanced dataset.

TABLE 4. Results in terms of additional performance indicators.

TABLE 5. Results using LSTM.

performance indicators (precision: 74.0% - 76.9% and recall:
73.4% - 76.6%). Obtained values in terms of FP Rate and FN
Rate are slightly higher (23.36% - 26.56%) but they still in
the range of acceptable values. We observed that increasing
the complexity of the DNN (from ‘‘1 HL (6)’’ to ‘‘3HL
(24-12-8)’’) improved the detection performances. But when
the complexity of the DNN became high (over 32 neurons in
each HL), the performances began to decrease. That’s let to
conclude that using simple architectures would be enough.
Based on the obtained results, we can conclude that code
metrics are very useful as training data to build a vulnerability
detection system based on DL.

For the sake of completeness, we report in Table 4 addi-
tional performance indicators which are often reported in
related work (F-Measure and Area Under ROC: the higher
the better). And in Table 5 the obtained results using several
LSTM configurations.

MLP’s performances in terms of F-Measure are good:
between 0.7327 and 0.7657 and in terms of Area Under
ROC are very good: between 0.8027 and 0.8371. Also, MLP
performances in terms of all performance indicators except
the FP Rate and FN Rate were better than what we got
using the LSTM. This because the LSTM is more effective
in coping with sequential data involving context than with
tabular data [36]. The LSTM get good values in terms of FP
Rate and FN Rate.

To compare the proposed approach (which is based
on using code metrics as training data) with previous
approaches that used the same level of granularity (slice)
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TABLE 6. Results using classic ML techniques.

but automatically-learned features as training data [17], [18],
we used only the reported results (Table 1: line 1 and line 2)
because the data used in those studies are not available which
made replicating them very difficult. Because the reported
results are better than what we obtained in this study, we can
also conclude that the code metrics are good but not the better
data to use for building a vulnerability detection system based
on DL.

We considered also comparing the vulnerability detection
power of code metrics when used with DL and when used
with classic ML. To do so, we used the same dataset to build
and validate VPMs based on twowell-known andwidely used
ML algorithms: random forest (RF) and k-nearest neighbor
(KNN). The obtained results are reported in Table 6.

As can be seen, the classifiers built using code metrics and
the two classic ML algorithms get excellent performance in
terms of all performance indicators. Indeed, RF reached over
than 93% in terms of precision and recall. And fewer than
17% in terms of FP rate and FN rate. KNN’s performances are
very close to RF’s performances: 92.9% in terms of precision
and recall and 18.34% in terms of FPRate and FNRate. These
results let us conclude that code metrics are more suitable for
ML than DL.

VI. LIMITATIONS
To get relevant and credible results, we took into accounts the
following things during the study:

• Using a large dataset suitable for deep learning.
• Using cross-validation when evaluating the VPMs.
• Balancing the dataset to avoid any possible influence
related to unbalanced data on results.

• Using the Java API of Weka and WekaDeeplearning4j
which is a well-known and widely used tool in the fields
of Data mining andML. This avoids any problem related
to miss implementation of the DNN and classifiers algo-
rithms.

• Using a DNN model (MLP) suitable for the used data
(code metrics which is a tabular data).

Nevertheless, the study presents the following limitations
which must be addressed in the future works:

• The used data are generated from a large base of c/c++
open source codes. However, we cannot say whether
the conclusions generalize outside of all types of soft-
ware which is written in other programming languages.

Therefore, the proposed approach must be evaluated for
other types of software (web application and mobile
applications) and for software written in other program-
ming languages than c/c++. This represents an interest-
ing open research problem for future works.

• The approach is evaluated only for one type of vulnera-
bilities.

• To optimize the DNN architecture (number of hidden
layers, number of neurons in each hidden layer and other
hyper-parameters related to the learning algorithm) we
evaluated several architectures and took decisions based
on recommendations of experts in the fields of DL.
However other optimization techniques such as genetic
algorithms must be used in future works.

VII. CONCLUSION
This study aims to evaluating code metrics as features for
deep learning to detect software vulnerabilities. We proposed
an approach to use code metrics in a finer granularity (slice:
which contains few lines of code related to vulnerabilities).
This can lead to discovering the exact location of vulnerable
code. The finding shows that code metrics are good data that
let DNN learn more about the characteristics of vulnerable
code.

Other recent studies used techniques inspired by other
applications of DNN such as automatic language processing
to extract features and build vulnerability detection systems.
When we compared the obtained results with the reported
results of those studies, it’s concluded also that despite the
interesting results obtained, code metrics are good but not
the better. The results showed also that code metrics can give
excellent detection performance when used with classic ML
techniques than when used with DL techniques.

As part of the study, we have proposed and made publicly
available a dataset of code metrics that can be used by other
researchers to evaluate and develop VPMs. Indeed, we plan
to develop a real vulnerabilities detection system based on
the proposed approach and using the classic ML techniques.
Other interesting future work would be to address the limita-
tions and open problems presented in the previous section.
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