
Research Article

Mohammad Zarour, Mohammed Akour, Mamdouh Alenezi*

Enhancing DevOps Engineering Education
Through System-Based Learning Approach

https://doi.org/10.1515/edu-2024-0012
received February 02, 2024; accepted April 17, 2024

Abstract: System-based learning (SBL) in engineering
domains integrates systems thinking and engineering prin-
ciples to develop a system. In software engineering, to
develop software using the DevOps process, using SBL envir-
onment, students gain a comprehensive understanding of
the DevOps software development process and apply theoretical
concepts to real-world problems by implementing a complete
system pipeline, encompassing the design, development, testing,
and deployment of software systems. This article introduces an
SBL approach to teaching DevOps engineering, addressing the
limitations of traditional methods in equipping students with
the necessary skills and knowledge. To evaluate the effective-
ness of the SBL approach, a case studywas conducted to teach a
DevOps course within an undergraduate software engineering
program. Students completed a project involving the implemen-
tation of a system pipeline from requirement gathering to
deployment. Results from the case study demonstrate that the
SBL approach has improved students’ understanding of DevOps
engineering and the software development big picture. The
approach enhanced students’ systems thinking and problem-
solving capabilities and prepared students for the challenges
of a rapidly evolving technological landscape.

Keywords: DevOps engineering, system-based learning,
software development process, systems thinking, project-
based learning

1 Introduction

A system is a set of elements that are connected to each
other by feedback relationships and organized in a way

that achieves a function (Meadows, 2008). Because of the
value added by the relationships between the various
components, a system is more than the sum of its parts
(Meadows, 2008). Higher education fields, including busi-
ness, engineering, and medicine, demand that students be
able to understand and operate complex systems. To deliver
such diverse areas, universities and colleges require more
than just traditional, isolated learning methodologies. A
useful framework for comprehending the interdependence
of the various components that make up a system and pro-
moting a more comprehensive approach to learning and
change is provided by system thinking. System thinking
has fundamentally changed both how problems are concep-
tualized and how solutions are approached (Ndaruhutse,
Jones, & Riggall, 2019).

Systems thinking approaches are different from what is
known as deterministic approaches. Deterministic approaches
concentrate on breaking down systems into their constituent
elements. The underlying presumption is that the system as a
whole can be comprehended if its constituent parts can
(Silberstein & Spivack, 2023; Walker, Stanton, Salmon, Jenkins,
& Rafferty, 2010). Since more than 50 years, deterministic
approaches have advanced fields like safety science and
human factors and ergonomics. However, deterministic
approaches are not suitable for all fields; fields like artificial
intelligence, and new advancements in information and
communication technology require more system-based
approaches (Ackoff, 1973; Lee & Rine, 2004; Sharma, 2006;
Sterman, 2018). Moreover, deterministic approaches are found
to be unsuitable for the fourth industrial revolution, the
internet of things, ecological sustainability, climate change
adaptation, and food and farming systems. Problems such as
these are increasingly recognized as “systems problems” (Dul
et al., 2012; Salmon, Walker, Read, Goode, & Stanton, 2017;
Wilson, 2014), and applying reductionist methods to tackle
such problems has several limitations that have been high-
lighted by various researchers, see, for example, Salmon et al.
(2017), Walker, Salmon, Bedinger, & Stanton (2016), Walker
et al. (2010), and Woods and Dekker (2000).

Hence, system thinking is a problem-solving approach
that encourages looking beyond individual components
and examines the bigger picture. It focuses on

Mohammad Zarour: Department of Software Engineering,
The Hashemite University, Zarqa, Jordan
Mohammed Akour: Department of Software Engineering,
Prince Sultan University, Riyadh, Saudi Arabia

* Corresponding author: Mamdouh Alenezi, Department of Software
Engineering, Prince Sultan University, Riyadh, Saudi Arabia,
e-mail: malenezi@psu.edu.sa

Open Education Studies 2024; 6: 20240012

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/edu-2024-0012
mailto:malenezi@psu.edu.sa

understanding how parts of a system work together to
achieve a whole, considering the feedback loops and unin-
tended consequences of actions. In the context of the
DevOps development process, the development system
encompasses development and operation processes, tools,
team members, and software users. By understanding how
these elements interact, we can make more informed deci-
sions about improving the overall DevOps experience.

However, the inherent complexity and interdisciplinary
nature of DevOps engineering pose significant challenges
for traditional pedagogical approaches, which often empha-
size compartmentalized and theory-heavy learning (Ferino
et al., 2023; Fernandes, Ferino, Kulesza, & Aranha, 2020; Jones,
2019a). Teaching DevOps engineering effectively requires stu-
dents to understand and apply a range of complex concepts
and tools, such as continuous integration/continuous delivery
(CI/CD) pipelines, containerization, and infrastructure as code
(IaC) (Fernandes et al., 2022; Jones, 2019b; Leite, Rocha, Kon,
Milojicic, & Meirelles, 2019). Traditional teaching methods,
such as lectures and textbook readings, may not be sufficient
to help students develop the practical skills and problem-sol-
ving abilities required to succeed in a DevOps engineering role
(Bruel & Jiménez, 2019; Ferino et al., 2021, 2023; Fernandes
et al., 2020, 2022; Hobeck et al., 2021; Jones, 2019a). Accordingly,
a gap between education and industry exists in certain
DevOps practices (Sánchez-Cifo, Bermejo, & Navarro, 2023).
Therefore, innovative teaching approaches that promote
active learning and practical application are needed.

Implementing a system-based learning (SBL) approach
for teaching DevOps engineering is justified by the need to
foster a deeper understanding of the intricate relationships
between various stages of the software development life
cycle. In contrast to traditional methods, SBL encourages
learners to view the entire system as a whole, promoting a
seamless integration of development and operations pro-
cesses (Harden, Davis, & Crosby, 1997; Spain, 2019). This
holistic perspective not only helps students grasp the
underlying principles of DevOps but also equips them
with the critical thinking and problem-solving skills neces-
sary to address complex, real-world challenges. Further-
more, collaboration and communication, which are central
tenets of DevOps, are inherently promoted by the SBL
approach (Halder, Joshi, Mehrotra, Rathinam, & Shrivas-
tava, 2018). By fostering a learning environment that
requires students to work together and engage in active
dialogue, SBL cultivates a collaborative mindset that is indis-
pensable for success in the field of DevOps engineering.
Thus, an SBL approach is not only aligned with the core
values and objectives of DevOps but also offers a more
effective means of preparing students to excel in this bur-
geoning field.

Therefore, this article aims to explore the implementa-
tion of an SBL approach for teaching DevOps engineering
as an elective course in an undergraduate software engi-
neering program. We will discuss the theoretical founda-
tions of SBL and its potential benefits for teaching DevOps
engineering. We will also describe a case study in which
we implemented SBL for a DevOps engineering course and
evaluate its effectiveness based on student feedback and
performance metrics. The findings of this study will pro-
vide insights into the use of SBL for teaching DevOps engi-
neering and contribute to the development of innovative
teaching approaches in software engineering education.

2 Background

2.1 DevOps Software Development Process

DevOps engineering has emerged as a critical approach to
software development that emphasizes collaboration, auto-
mation, and continuous improvement of new software ver-
sions while guaranteeing their correctness and reliability
(Bass, Weber, & Zhu, 2015; Leite et al., 2019; Zarour,
Alhammad, Alenezi, & Alsarayrah, 2020). It involves the inte-
gration of development and operations teams to automate and
streamline the software development process while ensuring
high-quality software delivery (Hornbeek, 2019). As such, it has
become an essential skill for software engineers seeking to
succeed in today’s fast-paced technology industry (Gurcan &
Cagiltay, 2019). Nowadays, the field of DevOps engineering has
rapidly evolved, transforming the landscape of software devel-
opment and deployment by integrating the principles of CI,
continuous delivery, and automation (Buttar et al., 2023). As a
result, there is an increasing demand for skilled professionals
who can effectively navigate and apply these principles in
real-world contexts (Amaro, Pereira, & da Silva, 2022) and
understand the culture and mindset of DevOps (Jha et al.,
2023). In academia, unfortunately, academics are not moti-
vated to learn or adopt DevOps, and no strong evidence exists
of academics teaching DevOps (Pang, Hindle, & Barbosa, 2020).
Few trials are reported in the literature that discuss the experi-
ence of offering a dedicated DevOps course at different uni-
versities (see, e.g., Demchenko et al., 2019; Hobeck et al., 2021;
Jennings & Gannod, 2019; Paez & Fontela, 2023; Radenković,
Popović, & Mitrović, 2022). Hence, to meet the increasing
demand for DevOps professionals and to enrich the literature
with more reports on offering DevOps courses, we have intro-
duced DevOps engineering as an elective course in our soft-
ware engineering program.

2 Mohammad Zarour et al.

The development and operations teams create, deploy,
and manage both the infrastructure (environments) and
deployment (CI/CD) pipelines in a way that drives the
DevOps culture, values, and practices (Díaz et al., 2024). A
typical DevOps CI/CD pipeline consists of four main phases,
as depicted in Figure 1. The source code repository is where
the code for the application is stored and managed using a
version control management system. It can be a public or
private repository, such as GitHub or BitBucket. The CI
stage takes the code from the repository and builds it
into a binary artifact. This stage focuses on early and fre-
quent integration of code changes. The resulted artifact is
typically a Docker image or a Kubernetes pod. The contin-
uous delivery/continuous deployment (CD) stage then tests
the binary artifact and deploys it to a staging environment.
The continuous delivery (CD) and continuous deployment
(CD) are both DevOps practices aimed at streamlining the
software development and release process. Continuous
Delivery: Ensures software is always release-ready. Contin-
uous Deployment: Automates the entire release process,
including deployment to production. This allows the developers
to test the changes in a production-like environment before
deploying them to production. The continuous deployment stage
then automatically deploys the binary artifact to the production
environment. Although continuous delivery and continuous
deployment are closely related concepts in DevOps, they differ
in their final step of delivering changes to production.

The CI/CD pipeline can be implemented using a variety
of tools and technologies (Alnamlah, Alshathry, Alkassim,

& Jamail, 2021; Kamath, Vignesh, & Darshan, 2023). Some
popular CI/CD tools include Jenkins, Travis CI, and CircleCI.
Some popular CD tools include Docker and Kubernetes.
The CI/CD pipeline is a critical part of the DevOps work-
flow. It helps to ensure that code is always up-to-date and
that changes are deployed to production in a safe and
controlled manner. The CI/CD pipeline can be customized
to fit the specific needs of the application. For example, the
pipeline can be configured to run different tests at dif-
ferent stages. The pipeline can also be configured to deploy
the application to different environments, such as staging,
production, and development. Figure 2 illustrates how the
CI/CD pipeline intersects with the development and opera-
tion processes.

Hence, adopting a successful DevOps process in software
development needs more effort from both academicians and
professionals in the industry to better understand and imple-
ment DevOps practices and uncover neglected or untouched
areas yet, for instance, controlling cross-functional teams in
the dynamic and iterative nature of the control in DevOps
process (Wiedemann, Wiesche, Gewald, & Krcmar, 2023).

2.2 SBL

SBL involves the integration of theory, practice, and reflec-
tion in a problem-based learning environment (Harden
et al., 1997; Matinho et al., 2022; Syeed, Shihavuddin, Uddin,

Figure 1: Typical DevOps CI/CD pipeline.

Enhancing DevOps Engineering Education 3

Hasan, & Khan, 2022). SBL is not uncommon in graduate
education; it is being used in medicine to understand the
interconnectedness of bodily systems, which is crucial for
doctors and nurses. For example: Zhong, Huang, and Lin
(2023) found that the application of the OBL (organ system-
based learning) practice teaching model in the digestive
system department is conducive to improving the theore-
tical knowledge of nursing students and improving the
core competence and clinical teaching satisfaction. Simi-
larly, Lu, Li, Cao, and Min (2022) found that the OBL model
in undergraduate clinical practice teaching of anesthe-
siology has significantly improved the education quality,
theoretical achievement, and comprehensive ability of
interns. SBL emphasizes the use of real-world scenarios
and hands-on experiences to help students develop the
knowledge and skills required to solve complex problems
(Namasivayam, Fouladi, Tien, & Moganakrishnan, 2019). By
simulating a real-world environment, students can practice
problem-solving skills and apply theoretical concepts to
practical scenarios. Garrubba, Donkers, Daniel, and Ennulat
(2015) found that both system-based and problem-based are
both effective teaching methods for teaching physical diag-
nosis curriculum. Atta and AlQahtani (2018) found that
teaching pathology, by traditional medical schools that are
in the process of shifting toward an integrated SBL, needs to
be more documented and addressed. As a result, the system-
based practice has become increasingly common in medical
education (Bhate et al., 2023; Castillo et al., 2020).

Accordingly, SBL, which emphasizes the integration of
knowledge across disciplines and the development of prac-
tical problem-solving skills, offers a more holistic and
immersive learning experience well-suited to meet the

demands of the fast-paced and interconnected world of
DevOps engineering.

While SBL and project-based learning (PBL) share
similarities, such as their student-centered and real-world
problem-focused nature, they also exhibit notable distinc-
tions (Li & Zhu, 2023; Radenković et al., 2022). SBL empha-
sizes the comprehension of complex systems (Purao, Vaish-
navi, Welke, & Lenze, 2009), adopts an interdisciplinary
approach, and places greater emphasis on collaborative
learning (Raj et al., 2021), e.g., focuses on system-thinking
perspective (Ahlgren, 2013; Finn, Avalos, & Dunne, 2014;
Kim & Senge, 1994; Mobus & Kalton, 2015; Spain, 2019).
On the other hand, PBL primarily focuses on resolving
specific problems and may exhibit a narrower scope com-
pared to SBL. SBL projects tend to be more extensive and
intricate, allowing for diverse interpretations and solu-
tions, while PBL projects often have more defined para-
meters. In the context of software engineering, SBL offers
a promising approach to teaching intricate subjects such as
DevOps engineering. DevOps engineering involves the inte-
gration of software development and operations teams to
automate and streamline the software development pro-
cess while ensuring the delivery of high-quality software.
Proficiency in this field requires a range of skills, including
knowledge of CI/CD pipelines, containerization, and IaC.
Table 1 summarizes the benefits and challenges of various
teaching strategies that are used in various domains including
software engineering and can be adopted to teach DevOps
courses. In this research work, we are investigating the adop-
tion of the SBL strategy in developing software applications
from the requirements engineering and analysis to the testing
and then delivery. Further research is needed to evaluate the

Figure 2: DevOps CI/CD pipeline intersection with development and operation processes.

4 Mohammad Zarour et al.

effectiveness of other approaches and identify best practices
for preparing students with the knowledge and skills neces-
sary to succeed in the DevOps field.

3 Methodology

Implementing SBL in DevOps courses can be accomplished
by focusing on the following key aspects:
• The system as a whole: SBL teaches students to perceive
the software development process as a holistic system
rather than a collection of independent tasks. This approach
enhances their understanding of how different parts of the

process interact and how modifications in one part can
affect others.

• The environment: SBL instructs students to consider the
environment in which software will be developed and
deployed. This includes factors such as the hardware,
software, and people involved in the process.

• The people: SBL guides students in developing effective
teamwork skills, fostering their ability to work collabora-
tively with others. This involves cultivating communica-
tion, collaboration, and conflict-resolution skills, which
are vital in a DevOps engineering role.

As the concept of SBL adoption in DevOps course
delivery is relatively new, we will use case study

Table 1: Comparison of well-known teaching approaches

Approach Benefits Challenges References

PBL • Hands-on experience
• Collaboration
• Communication
• Problem-solving
• Active learning
• Increased engagement
• Deeper understanding

• Project design/management
• Resource and support needs
• Time commitment
• Learning objective coverage

Adorjan and Solari (2021), Ceh-Varela,
Canto-Bonilla, and Duni (2023), Mielikäinen,
Viippola, and Tepsa (2023), Naik and Girase
(2020), Pérez and Rubio (2020)

Simulations and
case studies

• Safe learning environment
• Reflection and analysis
• Critical thinking
• Real-world exposure
• Resource-independent
• Adaptable skill levels

• Real-world complexity capture
• Simulation setup time
• Case study selection/adaptation
• Limited hands-on experience

Campos, Nogal, Caliz, and Juan (2020), de
França and Travassos (2004), de França and
Ali (2020), Lee and Rine (2004)

Game-based
learning

• High engagement and
motivation

• Experimentation and risk-
taking

• Problem-solving and critical
thinking

• Personalized learning
• Collaboration and teamwork

• Development effort/investment
• Aligned game mechanics
• Student suitability
• Assessment difficulty

Baumann (2020), Elina Jääskä and Aaltonen
(2023), Flores, Paiva, and Cruz (2020),
Gomes and Lelli (2021), Ngandu,
Risinamhodzi, Dzvapatsva, and Matobobo
(2023), Videnovik, Vold, Kiønig, Bogdanova,
and Trajkovik (2023)

Blended learning • Flexibility and adaptability
• Personalized learning
• Diverse learning styles
• Approach strengths
combined

• Active learning and
engagement

• Planning and coordination
• Integration and outcome assurance
• Increased instructor workload
• Technology intensiveness

Barbosa (2022), Luzik, Akmaldinova, and
Tereminko (2019), Mielikäinen et al. (2023),
Ożadowicz (2020), Perez, Castellanos, and
Correal (2020)

SBL • Deeper Understanding of the
system as a whole

• Enhanced students’ Problem-
Solving skills

• Enhance student’s BigPicture
Thinking

• Promotes effective
Collaboration in
interdisciplinary teams

• Teacher Role Shift from knowledge
transmitters to facilitators

• Curriculum Development and Design
of learning experiences

• Evaluation Strategies where new
assessment methods that go beyond
traditional memorization-based tests

• Potential Abstraction of the complex
systems

Ackoff (1973), Dul et al. (2012), Salmon et al.
(2017), Sharma (2006), Walker et al. (2010,
2016), Wilson (2014), Woods and
Dekker (2000)

Enhancing DevOps Engineering Education 5

methodology to explore how SBL can be adopted in a
DevOps course. A case study is a research methodology
that investigates a single unit, such as a person, group,
organization, or event. It is an in-depth study that seeks
to understand the phenomenon in its real-world context
(Hunziker & Blankenagel, 2024; Moeed, Dobson, & Saha,
2024; Verma, Verma, & Abhishek, 2024). Case studies are
often used in software engineering research to investigate
complex problems or to understand the impact of new
technologies. Among the various types of case studies, we
are adopting an exploratory case study approach, which
is not uncommon in software engineering; for instance,
Dingsøyr, Nerur, Balijepally, and Moe (2012) employed an
exploratory case study approach to provide insights into
the evolution and understanding of agile methodologies in
the software development industry. Helo and Hao (2022)
have conducted an exploratory case study to analyze the
emerging AI-based business models of different case com-
panies aiming to identify several areas of value creation
for the application of AI in the supply chain. Hata, Novielli,
Baltes, Kula, and Treude (2022) to understand how devel-
opers use the new GitHub asking questions feature, how
the developers perceive it, and how it impacts the devel-
opment processes. In our context, using the case study
methodology involves three main phases (Figure 3).

3.1 Preparation

– Define the research questions: The first step is to define
the research questions. These research questions are
aligned with the principles of SBL. The main research
questions to tackle in this case study are as follows:
1. RQ1: How can an SBL approach be implemented in a

DevOps course?
2. RQ2: How does this approach impact student learning

outcomes compared to the traditional delivery method?
3. RQ3: What are the perceived benefits and challenges

of using SBL for teaching DevOps concepts?
– Identify the learning objectives and key concepts: The

main objective of this case study is to teach students the
DevOps process in a way that they perceive the software
development process as a whole system, rather than as a
collection of independent tasks. The key concepts that students
need to learn include communication and collaboration, CI,
continuous delivery, and the importance of automation.

– Design the course: Design the course includes
1. Select a specific course to deliver the DevOps material.

In our case, we have selected an elective course in the
software engineering curricula for senior students (400-
level courses) to offer the DevOps course.

2. Design learning activities: The next step is to design
learning activities that will help students to learn the
key concepts. These activities should be hands-on and
should encourage students to work together. The main
activity focuses on involving students in projects to
develop a software system using DevOps principles.

3.2 Implementation

– Assess the current state of knowledge: It is important to
assess the current state of knowledge related to the main
DevOps concepts before starting the course. This will
help you to identify any gaps in their knowledge and
to tailor the course to their specific needs. In our case,
and during the first class, the instructor asked the stu-
dents to discuss their understanding of the DevOps pro-
cess, the CI/CD concept, and the main automation tools.
The students knowledge of these concepts was almost
null. Few students mentioned that they had heard of the
term DevOps but had no clue about how it works.

– Deliver the course: At this phase, the DevOps course,
which has been prepared, see next section, by the
authors of this article, is delivered to students.

– Provide feedback: It is important to provide feedback to
students throughout the course. This will help them to
track their progress and to identify any areas where
they need additional help.

– Update course as needed: As you teach the course, you
may need to modify the learning activities or the assess-
ment methods to ensure that the course is meeting the
needs of the students.

3.3 Evaluation

– Assess student learning: Finally, assess student learning
to ensure that they have achieved the learning objec-
tives. This assessment can be done through a variety
of methods, such as quizzes, exams, and projects.

– Reflect on the course: It is important to reflect on the course
after it is finished. This will help you to identify what worked
well and what could be improved for future courses.

4 Results

This section discusses the implementation of the presented
method in the previous section to design and run the
DevOps course using the SBL approach.

6 Mohammad Zarour et al.

4.1 Step 1: Preparation

The course “DevOps Engineering” is meticulously designed
to equip students with the requisite knowledge and skills to
implement DevOps as a method for delivering systems to
enterprises with enhanced quality and velocity. To imple-
ment an SBL approach in a DevOps course, the following
steps are taken:
1. Define what the System is? Developing a software system

using the DevOps development approach is an ideal can-
didate for SBL because it inherently functions as a system.
The system in the DevOps process consists of:
(a) Development (coding, testing, building, and version

control).
(b) Operations (infrastructure and configuration

management).
(c) Automation (test automation, CI/CD, and monitoring

automation).
2. Design Curriculum and Learning Activities: The course

is structured into ten modules, each focusing on a
unique aspect of DevOps engineering. Each module
includes succinct videos (2–5 min) that elaborate on
each concept in detail. Moreover, a minimum of two
detailed real-world case studies per module are incor-
porated, offering practical perspectives related to the
module’s concepts. In the tenth week of the semester,
two guest lecturers from the industry are invited to give
a lecture (one for each of them) for students and answer
their questions about the practical use of DevOps in real
environments. The course adopts PBL where students
work in teams (4–5 students each) to deliver their final
project where they work together to build and deploy a
software application using DevOps principles. Students

in each project select an active open-source project and
build a pipeline for it. The project was divided into three
phases to make it more manageable and achievable for
students. The course’s grade distribution is based on
assignments and labs (20%), presentations (5%), a mid-
term exam (15%), a course project (20%), and a final
exam (40%). During the course delivery, three assign-
ments and nine labs are practiced by students. The labs
practically guide students through the construction of a com-
plete pipeline, from version control systems to exploring
KubeCTL. They cover an array of topics such as version
control systems, CI, containerization, configuration manage-
ment, and continuous monitoring. The course targets six
specific learning outcomes (CLOs), namely:
(a) CLO 1: Recognize DevOps principles, methods, and

practices.
(b) CLO 2: Appraise DevOps principles and practices

including integration, delivery, and testing.
(c) CLO 3: Illustrate how to apply DevOps tools used for

monitoring, alerting, and reporting.
(d) CLO 4: Apply DevOps concepts in an enterprise

environment by automating processes using tools.
(e) CLO 5: Select the best strategy to deploy software

applications utilizing CI/CD pipelines.
(f) CLO 6: Apply the principles of DevOps to a software

development project.
3. Promote collaboration and run feedback loops. The pro-

ject and assignments’ activities encourage collaboration
and communication among students. This reflects the
real-world scenario where students play roles like devel-
opers, operations teammembers, and automation specia-
lists and work together effectively. Students also practice
the feedback loops where, for example, they analyze how

Figure 3: Research methodology steps.

Enhancing DevOps Engineering Education 7

a code change in development triggers the CI/CD pipeline
to respond to that code change.

By achieving the specified outcomes and getting involved
in the various activities and project work, students will be
well-equipped with the necessary knowledge and skills to pro-
ficiently implement DevOps practices and principles in a real-
world software development environment. Defining course
objectives, course learning outcomes, course material, assign-
ments, assessments, and project design that involves adopting
the DevOps process to develop and release a whole system
based on the SBL approach, all these activities provide an
answer for the first research question RQ1: How can an SBL
approach be implemented in a DevOps course?

4.2 Step 2: Implementation

The DevOps engineering course has been delivered twice in
two consecutive semesters: Fall 2022 and Spring 2023. The
section size ranges from 20 to 25 students in each semester.
As presented in the preparation step, the course material
and labs are delivered in 15 weeks per semester. As planned,
the project runs through three main phases as follows:
1. In the first phase, students familiarize themselves with

the chosen project’s specifics, including understanding
its architecture and design. They provide the GitHub
link to the project for transparency and accessibility.

2. The second phase shifts focus to the practical applica-
tion of DevOps principles. Students undertake tasks
such as local testing, code pushing into production, set-
ting up a CI/CD pipeline, monitoring, and application
deployment, thereby providing a hands-on introduction
to the critical components of DevOps engineering.

3. The third phase requires students to execute another
cycle of their pipeline, incorporating a new deployment
with a new feature or a bug fix. This allows them to gain
experience in iterative development and CI, essential
facets of DevOps. They also compile a final project
report and presentation, enhancing their communica-
tion and documentation skills.

The project was delivered on a dedicated GitHub
public repository, which contained the project’s source
code, DevOps setup related to the project, and project
report (ideally as a set of linked markdown documents
starting from the repository README). The project report
described the project rationale and contained all artifacts
related to the problem analysis and the design phases.

At the project’s culmination, students defend their
design and implementation in an oral examination. Each

student is allocated a 5-min presentation slot, with a max-
imum total presentation time of 20 min per group. The
examination is an opportunity for students to articulate
their understanding of the project, defend their design
decisions, and demonstrate their practical skills. The eva-
luation, as discussed in step 3 below, considers the quality
of the presentation, the project report, and the devel-
oped code.

To provide a comprehensive overview of the student’s
experience and the quality of their work, we will delve into
two exemplary projects completed by the students. The
first project, known as IEEE CMS, entails a content manage-
ment solution designed to facilitate the management of
various types of contents by university clubs. This parti-
cular version focuses on catering to the needs of event
planners and organizers. The project aims to streamline
the process of managing and updating content on the chap-
ter’s website and utilizes a CI/CD pipeline to automate the
process of building, testing, and deploying the application.
The project was undertaken by a team of five engineers, all
serving as DevOps engineers who have worked together to
build the CI/CD pipeline. Figure 4 showcases the CI/CD pipe-
line implemented for their project, and Figure 5 illustrates
the deployment diagram associated with their project. The
system consists of a container for a web server, another
container for the application server, and a third container
for the database server. The system also includes a CI/CD
pipeline, which automates the process of building, testing,
and deploying the application.

The second project centers on the development of a
Python AI assistant. The Python AI assistant aims to create
a chatbot that can assist with a variety of tasks such as
scheduling meetings, answering questions, and providing
information. The project entailed the creation of “Jarvis,” a
voice-command assistant service designed for Python 3.8.
The team responsible for this project consisted of four
engineers, all serving as DevOps engineers who have
worked together to build the CI/CD pipeline. The project

Figure 4: IEEE CMS CI/CD pipeline.

8 Mohammad Zarour et al.

utilizes a CI/CD pipeline to automate the process of building,
testing, and deploying the chatbot. Figure 6 portrays the CI/
CD pipeline implemented for their project. Furthermore,
Figure 7 provides a dashboard that showcases the status
of each build. It provides a visual representation of the build
status of the application, allowing the development team to
quickly identify any issues or errors that may have occurred
during the build process. The dashboard displays various
metrics such as the build status, test coverage, and deploy-
ment status.

4.3 Step 3: Evaluation

The course exit survey is an important tool to gather valu-
able feedback from students about their academic experi-
ence. It is designed to evaluate the level of student satisfac-
tion with the curriculum and course being taught, as well
as their confidence in achieving the course learning out-
comes. Students were asked to use a five-category scale,
ranging from “strongly disagree” (1) to “strongly agree”
(5), to evaluate statements on their achievement level of
each CLO defined for this course. Their feedback is an
indicator of whether the adopted SBL teaching approach
was effective or not. The students, who filled out the
survey, were of the same level (senior students), and all of
them had no experience with SBL teaching approach and
that they had not practiced it before. Therefore, we can
assume that the SBL was fairly new educational approach
for all the students in this study. The average age for the
students was 22 years old and all of them were male.

The course exit survey was conducted twice. The total
number of students’ feedback for the two semesters was 45
responses (n = 45), and they were studied as one sample to
analyze their responses and see how effective was the SBL
teaching strategy, see Figure 8 for details about the overall
achievement per CLO in each semester.

The summative descriptive statistics are shown in
Table 2; more than 70% of the students indicated that
they were “Adequately Satisfied” or “Fully Satisfied” with

Figure 5: IEEE CMS deployment diagram.

Figure 6: Python AI CI/CD pipeline.

Enhancing DevOps Engineering Education 9

Figure 7: Python AI build status dashboard.

Figure 8: Course learning outcomes – students’ achievements.

Table 2: Student responses to the CLO exit survey (n = 45)

CLO Not
satisfied (%)

Barely
satisfied (%)

Somewhat
satisfied (%)

Adequately
satisfied (%)

Fully
satisfied (%)

Mean STD Dev.

CLO 1 0 0 2 11 87 4.84 0.34
CLO 2 0 0 9 11 80 4.71 0.30
CLO 3 2 4 9 9 76 4.51 0.28
CLO 4 0 4 9 13 76 4.67 0.28
CLO 5 0 4 9 13 73 4.56 0.27
CLO 6 0 0 4 18 78 4.73 0.30

10 Mohammad Zarour et al.

their accomplishment of each course learning objective.
This suggests that the learning process was adequately
successful. CLO 1 and CLO 2 have the highest percentage
of students (87 and 80%, respectively) reporting “Fully Satis-
fied.” This suggests that the course effectively equipped stu-
dents with core DevOps skills. We noticed that there’s a
slight decrease in the percentage of “Fully Satisfied”
responses as we move from CLO 1 and 2 to CLO 3–6 (ranging
from 73 to 78%). This might indicate a need for further
refinement in how these later learning outcomes are
addressed in the course. The low percentages (0–4%) in
the “Not Satisfied” and “Barely Satisfied” categories suggest
that most students felt the course adequately addressed the
learning objectives.

Note that the standard deviation values for all CLOs
are relatively low (between 0.27 and 0.34). This suggests a
certain level of consistency in student responses, meaning
the results are not overly skewed towards one satisfaction
level or another. Overall, these results suggest a successful
DevOps course with a strong foundation in core skills (CLO
1 and 2) and a generally positive student experience.
However, there might be room for improvement in how
the course addresses learning outcomes (CLO 3–6) to main-
tain the same level of high student satisfaction. The number
of students who passed the course compared to the number
who registered for the course is shown in Figure 9. The
passing rate per semester is shown in Figure 10, and the
detailed grade distribution of all students is also shown in
Figure 11. It is worth mentioning that while preparing this
article, a well-known local organization interviewed our
graduates who have taken the DevOps course and were
totally satisfied with their DevOps knowledge and skills
and the job interviews resulted in hiring all those graduates.
The discussions above answer the second research question:
How does this approach impact student learning outcomes
compared to a traditional delivery method?

4.4 Educational Recommendations

The results of the conducted study suggest that SBL can be
applied to facilitate DevOps teaching courses. Based on our
findings, the learning of important but rather complex
topics, such as DevOps, can be fostered when students
are able to apply and practice learning objectives by imple-
menting the whole software development process as one
system.

The key lessons learned and presented in the following
section will help to understand and guide the design of an
SBL solution to educate project management phenomena
and practices. We assume that these lessons are not specific
to teaching project management methods, like DevOps, but
can be applied to the design and implementation of other
learning solutions outside of the scope of project manage-
ment as well. Key lessons learned are:
1. Ensure that the DevOps theoretical bases and SBL learning

approach are explained clearly through lectures, reading
materials, videos, and case studies.

2. Analyze the course content and delivery methods for
CLO 3–6 to identify areas for improvement.

Figure 9: Passing rate of registered students.

Figure 10: Passing rate per semester.

Figure 11: Course learning outcomes – students’ achievements.

Enhancing DevOps Engineering Education 11

3. Explain DevOps pipeline phases and development require-
ments, and rules before start using the tools and practice
building the pipeline so that the learning focus will be on
the technical aspects, not the theoretical aspects.

4. Build repetitions into various DevOps projects and solu-
tions: Repetition helps students memorize and learn.

5. Conduct follow-up interviews with students (especially
those who reported lower satisfaction) to gain more
specific feedback about their learning experience and
refine the DevOps course to ensure that all learning
outcomes are effectively addressed.

6. We suggest not waiting until the end of the course to
gather feedback. In the future iterations of DevOps
course delivery, we plan to conduct mid-course surveys
or interviews to identify areas where students might
need additional support.

5 Challenges, Limitations, and
Future Work

While SBL is found to be a powerful approach for teaching
DevOps course, we faced some challenges when imple-
menting it:
1. Instructor’s role: Traditional instructors are often knowl-

edge transmitters. SBL requires a transition to facilitator
roles, guiding students through system exploration and
analysis. This might require faculty development to equip
instructors with the necessary skills for facilitating SBL
activities effectively.

2. Course design: Designing DevOps learning experiences
that represent complex software engineering systems
and their interactions necessitates careful planning.
Developing new course materials, labs, and case studies
specifically tailored to SBL principles in the domain of
DevOps was time-consuming and resource-intensive.

3. Students achievement evaluation: Evaluating student
understanding of DevOps principles and automation
requires new assessment methods that are beyond tradi-
tional memorization-based tests. In our case, we adopted
project-based assessments that can demonstrate a student’s
ability to apply SBL principles to design, develop, and
deploy software within a system context. This approach
was found to be complex and time-consuming yet effective
in assessing students’ achievement.

4. Time limitations: SBL in the domain of DevOps requires
specific software tools and cloud infrastructure. Such
resources may not always be available, hence, instruc-
tors need to invest more time to explore open-source

alternatives and consider creative solutions to maxi-
mize available resources.

The present study has some limitations, which may
limit the generalization of its findings. Our SBL learning
approach focuses on teaching DevOps practices to senior
undergraduate students. Our findings are based on some
basic measures calculated based on students’ survey results.
For future investigation purposes, more case studies need to
be conducted on using SBL in teaching various software
engineering courses. Hence, more measures and variance
analysis could be incorporated into the learning solutions.

In conclusion, the SBL approach for teaching DevOps
engineering presented in this article not only addresses the
limitations of traditional teaching methods but also bridges
the gap between academic learning and practical applica-
tion. The introduction of the “DevOps Engineering” course
as an elective in a BS software engineering program has
proven to be a significant step towards the practical inte-
gration of systems thinking and engineering principles into
the software development process. The positive response
from students and the observable improvement in their
problem-solving skills and comprehensive understanding
of the system suggest the effectiveness of this approach.
This provides an answer to the third research question:
What are the perceived benefits and challenges of using
SBL for teaching DevOps concepts?

Future work should focus on refining the course cur-
riculum based on student feedback and industry trends,
DevOps is continually evolving to ensure its relevancy
and effectiveness. Additionally, considering the dynamic
nature of DevOps engineering, the curriculum should be
updated regularly to incorporate emerging tools and prac-
tices. Finally, extending this study to other universities and
comparing the results can further validate this teaching
approach, contributing significantly to the pedagogy of
DevOps engineering. Future iterations of the course could
consider incorporating more advanced topics in DevOps, such
as machine learning operations or data operations, to reflect
the expanding role of DevOps in these areas. Additionally, to
further enhance the learning experience, more interactive
and collaborative learning methods should be employed.
Moreover, the course could benefit from partnerships with
industry professionals. Guest lectures or workshops led by
industry experts could provide valuable insights into the prac-
tical application of DevOps principles and practices and offer
students the opportunity to network with professionals in
the field. Finally, it is crucial to maintain a robust feedback
mechanism for continuous improvement of the course.
Regular student feedback should be solicited and used to
inform future course improvements and updates. This will

12 Mohammad Zarour et al.

ensure that the course remains relevant, engaging, and
effective in achieving its learning outcomes.

Acknowledgment: The authors would like to acknowledge
the support of Prince Sultan University for paying the
Article Processing Charges of this publication.

Author contributions: All authors made significant contri-
butions to the research and manuscript preparation. All
authors have given their approval for the final version of
the manuscript and agree to be accountable for the work.

Conflict of interest: The authors state no conflict of interest.

References

Ackoff, R. L. (1973). Science in the systems age: Beyond ie, or, and ms.
Operations Research, 21(3), 661–671.

Adorjan, A., & Solari, M. (2021). Software engineering project-based
learning in an up-to-date technological context. In 2021 IEEE
URUCON, pp. 486–491. doi: 10.1109/URUCON53396.2021.
9647348.

Ahlgren, E. (2013). How to teach systems in engineering education: The
case of an energy systems course. Proceedings of the IETEC’13
Conference, Ho Chi Minh City, Vietnam.

Alnamlah, B., Alshathry, S., Alkassim, N., & Jamail, N. (2021). The necessity
of a lead person to monitor development stages of the DevOps
pipeline. Indonesian Journal of Electrical Engineering and Computer
Science, 21(1), 348.

Amaro, R., Pereira, R., & da Silva, M. M. (2022). Capabilities and practices
in DevOps: A multivocal literature review. IEEE Transactions on
Software Engineering, 49(2), 883–901.

Atta, I. S., & AlQahtani, F. N. (2018). Mapping of pathology curriculum as
quadriphasic model in an integrated medical school: How to put
into practice? Advances in Medical Education and Practice, 549–557.

Barbosa, M. W. (2022). Using blended project-based learning to teach
project management to software engineering students.
International Journal of Mobile and Blended Learning, 14(1), 1–17

Bass, L., Weber, I., & Zhu, L. (2015). Devops: A software architect’s per-
spective (1st). AddisonWesley Professional.

Baumann, A. (2020). Teaching software engineering methods with agile
games. 2020 IEEE Global Engineering Education Conference (EDUCON)
(pp. 1550–1553). doi: 10.1109/EDUCON45650.2020.9125129.

Bhate, T. D., Sukhera, J., Litwin, S., Chan, T. M., Wong, B. M., &
Smeraglio, A. (2023). Systemsbased practice in graduate medical
education: Evolving toward an ideal future state. Academic Medicine,
99(4), 357–362.

Bruel, J. M., & Jiménez, M. (2019). Devops’ 18 education panel: Teaching
feedback and challenges. Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment:
First International Workshop, DEVOPS 2018, Chateau de Villebrumier,
France, March 5–6, 2018, Revised Selected Papers 1 (pp. 221–226).

Buttar, A. M., Khalid, A., Alenezi, M., Akbar, M. A., Rafi, S., Gumaei, A. H., &
Riaz, M. T. (2023). Optimization of DevOps transformation for cloud-
based applications. Electronics, 12(2), 357.

Campos, N., Nogal, M., Caliz, C., & Juan, A. A. (2020). Simulation-based
education involving online and on-campus models in different
european universities. International Journal of Educational Technology
in Higher Education, 17, 107–189. doi: 10.1186/s41239-020-0181-y.

Castillo, E. G., Isom, J., DeBonis, K. L., Jordan, A., Braslow, J. T., &
Rohrbaugh, R. (2020). Reconsidering systems-based practice:
Advancing structural competency, health equity, and social
responsibility in graduate medical education. Academic Medicine,
95(12), 1817–1822.

Ceh-Varela, E., Canto-Bonilla, C., & Duni, D. (2023). Application of project-
based learning to a software engineering course in a hybrid class
environment. Information and Software Technology, 158, 107–189.
doi: 10.1016/j.infsof.2023.107189

Díaz, J., Pérez, J., Alves, I., Kon, F., Leite, L., Meirelles, P., & Rocha, C.
(2024). Harmonizing DevOps taxonomies – a grounded theory
study. Journal of Systems and Software, 208, 111908.

de França, B. B., & Travassos, G. H. (2004). Simulation based studies in
software engineering: A matter of validity. CLEI Electronic Journal, 18(1), 4

de França, B. B. N., & Ali, N. B. (2020). The role of simulation-based
studies in software engineering research. In Contemporary empirical
methods in software engineering (pp. 263–287). Cham: Springer
International Publishing. doi: 10.1007/978-3-030-32489-610.

Demchenko, Y., Zhao, Z., Surbiryala, J., Koulouzis, S., Shi, Z., Liao, X., &
Gordiyenko, J. (2019). Teaching DevOps and cloud based software
engineering in university curricula. 2019 15th International
Conference on eScience (eScience), 548–552. doi: 10.1109/eScience.
2019.00075.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of
agile methodologies: Towards explaining agile software develop-
ment. Journal of systems and software, 85(6), 1213–1221.

Dul, J., Bruder, R., Buckle, P., Carayon, P., Falzon, P., Marras, W. S., … Van der
Doelen, B. (2012). A strategy for human factors/ergonomics: Developing
the discipline and profession. Ergonomics, 55(4), 377–395.

Elina Jääskä, J. K., & Aaltonen, K. (2023). A game-based learning method
to teach project management – the case of the earned value
management. Cogent Education, 10(2), 1–22. doi: 10.1080/2331186X.
2023.2264035.

Ferino, S., Fernandes, M., Cirilo, E., Agnez, L., Batista, B., Kulesza, U., …
Treude, C. (2023). Overcoming challenges in DevOps education through
teaching methods. arXiv preprint arXiv:2302.05564.

Ferino, S., Fernandes, M., Fernandes, A., Kulesza, U., Aranha, E., &
Treude, C. (2021). Analyzing DevOps teaching strategies: An initial
study. Proceedings of the XXXV Brazilian Symposium on Software
Engineering (pp. 180–185).

Fernandes, M., Ferino, S., Fernandes, A., Kulesza, U., Aranha, E., &
Treude, C. (2022). DevOps education: An interview study of chal-
lenges and recommendations. Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering: Software
Engineering Education and Training (pp. 90–101).

Fernandes, M., Ferino, S., Kulesza, U., & Aranha, E. (2020). Challenges and
recommendations in DevOps education: A systematic literature
review. Proceedings of the XXXIV Brazilian Symposium on Software
Engineering (pp. 648–657).

Finn, Y., Avalos, G., & Dunne, F. (2014). Positive changes in the medical
educational environment following introduction of a new systems-
based curriculum: Dreem or reality? curricular change and the
environment. Irish Journal of Medical Science, 183, 253–258.

Flores, N., Paiva, A. C. R., & Cruz, N. (2020). Teaching software engi-
neering topics through pedagogical game design patterns: An
empirical study. Information, 11(3), 153. doi: 10.3390/info11030153.

Enhancing DevOps Engineering Education 13

https://doi.org/10.1109/URUCON53396.2021.&QJ;9647348
https://doi.org/10.1109/URUCON53396.2021.&QJ;9647348
https://doi.org/10.1109/EDUCON45650.2020.9125129
https://doi.org/10.1186/s41239-020-0181-y
https://doi.org/10.1016/j.infsof.2023.107189
https://doi.org/10.1007/978-3-030-32489-610
https://doi.org/10.1109/eScience.2019.00075
https://doi.org/10.1109/eScience.2019.00075
https://doi.org/10.1080/2331186X.2023.2264035
https://doi.org/10.1080/2331186X.2023.2264035
https://doi.org/10.3390/info11030153

Garrubba, C., Donkers, K., Daniel, L., & Ennulat, C. (2015). Perceptions of
physician assistant students’ readiness with system-based vs pro-
blem-based physical diagnosis curriculum. The Internet Journal of
Allied Health Sciences and Practice, 13(3), 9.

Gomes, R. F., & Lelli, V. (2021). Gamut: Game-based learning approach for
teaching unit testing. Proceedings of the XX Brazilian Symposium on
Software Quality. doi: 10.1145/3493244.3493263.

Gurcan, F., & Cagiltay, N. E. (2019). Big data software engineering:
Analysis of knowledge domains and skill sets using lda-based topic
modeling. IEEE Access, 7, 82541–82552.

Halder, A., Joshi, A., Mehrotra, R., Rathinam, B., & Shrivastava, S. (2018).
Setting objectives for a competency-based undergraduate obste-
trics and gynecology curriculum. Journal of Advances in Medical
Education & Professionalism, 6(4), 147.

Harden, R., Davis, M., & Crosby, J. (1997). The new dundee medical cur-
riculum: A whole that is greater than the sum of the parts. Medical
Education, 31(4), 264–271.

Hata, H., Novielli, N., Baltes, S., Kula, R. G., & Treude, C. (2022). Github
discussions: An exploratory study of early adoption. Empirical
Software Engineering, 27, 1–32.

Helo, P., & Hao, Y. (2022). Artificial intelligence in operations manage-
ment and supply chain management: An exploratory case study.
Production Planning & Control, 33(16), 1573–1590.

Hobeck, R., Weber, I., Bass, L., & Yasar, H. (2021). Teaching devops: A tale
of two universities. Proceedings of the 2021 ACM SIGPLAN
International Symposium on SPLASH-E (pp. 26–31). doi: 10.1145/
3484272.3484962.

Hornbeek, M. (2019). Engineering devops: From chaos to continuous
improvement. and beyond. BookBaby. https://books.google.com.sa/
books?id=LRJAywEACAAJ.

Hunziker, S., & Blankenagel, M. (2024). Single case research design. In
Research design in business and management: A practical guide
for students and researchers (pp. 141–170). Wiesbaden:
Springer Fachmedien Wiesbaden.

Jennings, R., & Gannod, G. (2019). DevOps – preparing students for
professional practice. 2019 IEEE Frontiers in Education Conference (FIE)
(pp. 1–5).

Jha, A. V., Teri, R., Verma, S., Tarafder, S., Bhowmik, W., Kumar Mishra, S.,
… Philibert, N. (2023). From theory to practice: Understanding
DevOps culture and mindset. Cogent Engineering, 10(1), 2251758.

Jones, C. (2019a). A proposal for integrating DevOps into software engi-
neering curricula. In J. M. Bruel, M. Mazzara, & B. Meyer (Eds.),
Software engineering aspects of continuous development and new
paradigms of software production and deployment (pp. 33–47).
Cham: Springer International Publishing.

Jones, C. (2019b). A proposal for integrating DevOps into software engi-
neering curricula. Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and
Deployment: First International Workshop, DEVOPS 2018, Chateau de
Villebrumier, France, March 5–6, 2018, Revised Selected Papers
1, 33–47.

Kamath, S., Vignesh, S., & Darshan, G. (2023). Revolutionizing cloud
infrastructure management: Streamlined provisioning and moni-
toring with automated tools and user-friendly frontend interface.
2023 3rd International Conference on Intelligent Technologies (CONIT)
(pp. 1–6).

Kim, D. H., & Senge, P. M. (1994). Putting systems thinking into practice.
System Dynamics Review, 10(2–3), 277–290.

Lee, S. W., & Rine, D. C. (2004). Case study methodology designed
research in software engineering methodology validation. In

Proceedings of the Sixteenth International Conference on Software
Engineering and Knowledge Engineering, pp. 117–122.

Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. (2019). A survey of
DevOps concepts and challenges. ACM Computing Surveys (CSUR),
52(6), 1–35.

Li, X., & Zhu, W. (2023). The influence factors of students’ transferable
skills development in blended-project-based learning environment:
A new 3p model. Education and Information Technologies, 28(12),
16561–16591.

Lu, F., Li, P., Cao, J., & Min, S. (2022). Application of organ system based
learning model in undergraduate clinical practice teaching of
anesthesiology. Chinese Journal of Medical Education Research,
701–704.

Luzik, E., Akmaldinova, O., & Tereminko, L. (2019). Developing software
engineering students’ readiness forprofessional mobility through
blended learning. Advanced Education, 6, 103–111.

Matinho, D., Pietrandrea, M., Echeverria, C., Helderman, R., Masters, M.,
Regan, D., … McHugh, D. (2022). A systematic review of
integrated learning definitions, frameworks, and practices in
recent health professions education literature. Education Sciences,
12(3), 165.

Meadows, D. H. (2008). Thinking in systems. Vermont: Chelsea green
publishing.

Mielikäinen, M., Viippola, E., & Tepsa, T. (2023). Experiences of a project-
based blended learning approach in a community of inquiry from
information and communication technology engineering students
at lapland university of applied sciences in finland. E-Learning and
Digital Media, 20427530231164053.

Mobus, G. E., & Kalton, M. C. (2015). Principles of systems science (Vol. 519).
Springer.

Moeed, A., Dobson, S., & Saha, S. (2024). Research design and metho-
dology. In Playful science investigations in early childhood: A longitu-
dinal case study (pp. 23–33). Singapore: Springer Nature Singapore.

Naik, V., & Girase, S. (2020). Project based learning methodology: An
effective way of learning software engineering through database
design and web technology project. Journal of Engineering Education
Transformations, 34, 375–379.

Namasivayam, S., Fouladi, M. H., Tien, D. T. K., & Moganakrishnan, J. A. S.
(2019). Design Engineering as a Means to Enhance Student
Learning in Addressing Complex Engineering Challenges. Design
Education Today: Technical Contexts, Programs and Best Practices
(pp. 249–270). Springer.

Ndaruhutse, S., Jones, C., & Riggall, A. (2019).Why systems thinking is important
for the education sector. Berkshire: Education Development Trust.

Ngandu, M. R., Risinamhodzi, D., Dzvapatsva, G. P., & Matobobo, C.
(2023). Capturing student interest in software engineering through
gamification: A systematic literature review. Discover Education,
2(47), 1–22. doi: 10.1007/s44217-023-00069-4.

Ożadowicz, A. (2020). Modified blended learning in engineering higher
education during the covid19 lockdown – building automation
courses case study. Education Sciences, 10(10), 292. doi: 10.3390/
educsci10100292.

Paez, N., & Fontela, C. (2023). Software engineering education in the
DevOps era: Experiences and recommendations. Anais do XXVI
Congresso Ibero-Americano em Engenharia de Software
(pp. 130–137). doi: 10.5753/cibse.2023.24698.

Pang, C., Hindle, A., & Barbosa, D. (2020). Understanding DevOps edu-
cation with grounded theory. Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software
Engineering Education and Training (pp. 107–118).

14 Mohammad Zarour et al.

https://doi.org/10.1145/3493244.3493263
https://doi.org/10.1145/3484272.3484962
https://doi.org/10.1145/3484272.3484962
https://books.google.com.sa/books?id=LRJAywEACAAJ
https://books.google.com.sa/books?id=LRJAywEACAAJ
https://doi.org/10.1007/s44217-023-00069-4
https://doi.org/10.3390/educsci10100292
https://doi.org/10.3390/educsci10100292
https://doi.org/10.5753/cibse.2023.24698

Pérez, B., & Rubio, A. L. (2020). A project-based learning approach
for enhancing learning skills’ and motivation in software engi-
neering. Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (pp. 309–315). doi: 10.1145/3328778.
3366891.

Perez, B., Castellanos, C., & Correal, D. (2020). Measuring the quality of
the blended learning approach to teaching computational sciences.
Journal of Physics: Conference Series. doi: 10.1088/1742-6596/1587/1/
012021.

Purao, S., Vaishnavi, V., Welke, R., & Lenze, L. (2009). A framework
for problem-based learning of systems development and
integration. 15th Americas Conference on Information Systems
(AMCIS).

Radenković, M., Popović, S., & Mitrović, S. (2022). Project based learning
for devops: School of computing experiences. E-Business
Technologies Conference Proceedings, 2, 127–131.

Raj, R., Sabin, M., Impagliazzo, J., Bowers, D., Daniels, M., Hermans, F., …
McCauley, R. (2021). Professional competencies in computing edu-
cation: Pedagogies and assessment. Proceedings of the 2021 Working
Group Reports on Innovation and Technology in Computer Science
Education (pp. 133–161).

Sánchez-Cifo, M. A., Bermejo, P., & Navarro, E. (2023). Devops: Is there a
gap between education and industry? Journal of Software: Evolution
and Process, 35(12), e2534.

Salmon, P. M., Walker, G. H., M. Read, G. J., Goode, N., & Stanton, N. A.
(2017). Fitting methods to paradigms: Are ergonomics methods fit
for systems thinking? Ergonomics, 60(2), 194–205.

Sharma, S. (2006). An exploratory study of chaos in human-machine
system dynamics. IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, 36(2), 319–326.

Silberstein, J., & Spivack, M. (2023). Applying systems thinking to
education: Using the rise systems framework to diagnose education
systems. Research on Improving Systems of Education (RISE). doi: 10.
35489/BSG-RISE-RI2023/051.

Spain, S. (2019). Systems thinking applied to curriculum and pedagogy: A review
of the literature. Curriculum Perspectives, 39, 135–145.

Sterman, J. (2018). System dynamics at sixty: The path forward. System
Dynamics Review, 34(1–2), 5–47.

Syeed, M. M., Shihavuddin, A., Uddin, M. F., Hasan, M., & Khan, R. H.
(2022). Outcome based education (obe): Defining the process and
practice for engineering education. IEEE Access, 10, 119170–119192.

Verma, R., Verma, S., & Abhishek, K. (2024). Research methodology.
Chhattisgarh: Booksclinic Publishing.

Videnovik, M., Vold, T., Kiønig, L., Bogdanova, A. M., & Trajkovik, V. (2023).
Game-based learning in computer science education: A scoping
literature review. International Journal of STEM Education, 10(54),
1–23. doi: 10.1186/s40594-023-00447-2.

Walker, G. H., Stanton, N. A., Salmon, P. M., Jenkins, D. P., & Rafferty, L.
(2010). Translating concepts of complexity to the field of ergo-
nomics. Ergonomics, 53(10), 1175–1186.

Walker, G., Salmon, P., Bedinger, M., & Stanton, N. (2016). What the death
star can tell us about ergonomics methods. Theoretical Issues in
Ergonomics Science, 17(4), 402–422.

Wiedemann, A., Wiesche, M., Gewald, H., & Krcmar, H. (2023). Integrating
development and operations teams: A control approach for devops.
Information and Organization, 33(3), 100474.

Wilson, J. R. (2014). Fundamentals of systems ergonomics/human factors.
Applied Ergonomics, 45(1), 5–13.

Woods, D., & Dekker, S. (2000). Anticipating the effects of technological
change: A new era of dynamics for human factors. Theoretical Issues
in Ergonomics Science, 1(3), 272–282.

Zarour, M., Alhammad, N., Alenezi, M., & Alsarayrah, K. (2020). DevOps
process model adoption in saudi arabia: An empirical study.
Jordanian Journal of Computers and Information Technology, 6(3).

Zhong, F., Huang, S., & Lin, Y. (2023). The application of “organ system-
based learning” digestive system teaching model in the clinical
internship teaching of undergraduate nursing students. Chinese
Journal of Medical Education Research, 22, 1246–1251.

Enhancing DevOps Engineering Education 15

https://doi.org/10.1145/3328778.3366891
https://doi.org/10.1145/3328778.3366891
https://doi.org/10.1088/1742-6596/1587/1/012021
https://doi.org/10.1088/1742-6596/1587/1/012021
https://doi.org/10.35489/BSG-RISE-RI2023/051
https://doi.org/10.35489/BSG-RISE-RI2023/051
https://doi.org/10.1186/s40594-023-00447-2

	1 Introduction
	2 Background
	2.1 DevOps Software Development Process
	2.2 SBL

	3 Methodology
	3.1 Preparation
	3.2 Implementation
	3.3 Evaluation

	4 Results
	4.1 Step 1: Preparation
	4.2 Step 2: Implementation
	4.3 Step 3: Evaluation
	4.4 Educational Recommendations

	5 Challenges, Limitations, and Future Work
	Acknowledgment
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

