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 Buffer overflows are one of the most common software vulnerabilities that 

occur when more data is inserted into a buffer than it can hold. Various 

manual and automated techniques for detecting and fixing specific types of 

buffer overflow vulnerability have been proposed, but the solution to fix 

Unicode buffer overflow has not been proposed yet. Public security 

vulnerability repository e.g., Common Weakness Enumeration (CWE) holds 

useful articles about software security vulnerabilities. Mitigation strategies 

listed in CWE may be useful for fixing the specified software security 

vulnerabilities. This research contributes by developing a prototype that 

automatically fixes different types of buffer overflows by using the strategies 

suggested in CWE articles and existing research. A static analysis tool has 

been used to evaluate the performance of the developed prototype tools.  

The results suggest that the proposed approach can automatically fix buffer 

overflows without inducing errors. 
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1. INTRODUCTION 

Software development, a rapidly expanding field since the 21st century, the security of the software 

is a major issue for any organization. Firstly, software applications were limited to a single machine, their 

maintenance cost and security was also limited. With an increase in an Information Technology 

infrastructure, applications from single machine moved to multiple machines. Even cloud-based applications 

were also introduced. Because of the portability and popularity of web-based applications in recent years, 

desktop applications were replaced by web-based applications in medium and large-scale organizations.  

On the other hand, web-based applications are less secure than desktop applications. Constructing secure 

software needs a great deal of security education. Many software developers are not aware of and equipped 

with enough security education. In addition, many programming books do not teach how to write secure 

programs [1, 2]. 

Buffer overflow or Morris Internet worm attack first occurred in 1988. An attacker can easily attack 

the programs usually developed in unmanaged languages. Buffer overflow happens as a result of poor input 

validation, causes the system to crash and gets control over program execution. Various manual approaches 

have been proposed for fixing buffer overflow vulnerability. Manually fixing a vulnerability is a time-

consuming task, needs more effort and may induce programming errors. A prototype was developed which 

uses the mitigation strategies suggested by the public vulnerability repository to fix buffer overflow 

vulnerability. A static analysis tool was used to search out the weaknesses in the source code. Cybercrimes 

are constantly increasing. The security of the software is a necessity in this era of fastest-growing software 
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vulnerabilities. A simple error during software development can lead to huge financial losses. Recent 

research shows that cybercriminals are finding new ways to attack small and large organizations. Kaspersky, 

a security company reported that a group of cybercriminals intruded more than 100 banks causing a financial 

loss of more than $1 Billion. As machine learning processes a huge amount of data, hackers target machine 

learning causing cyberattacks. DDoS attacks are used in IoT based devices by making the whole system 

down. Physical infrastructure such as media channels, telecommunication networks, hospitals is also  

the victim of cyberattacks because of low-level security.  

According to a Gartner Group report, 70% of the vulnerabilities are found in software applications. 

For the last 25 years i.e. 1998-2012, Buffer Overflow was the most occurring vulnerability. According to 

CVE results from 1988-1998, a buffer overflow was declared as the vulnerability of the decade [3]. Common 

Vulnerabilities and Exposures was launched by MITRE in 1999. It provides a list of identifiers for known 

software security vulnerabilities. CVE data is synchronized with NVD which immediately updates 

information regarding fixing vulnerabilities, severity score and impact rating in CVE entries. CVE details 

provide information about vulnerabilities by their type and their severity level. This information varies year 

over year. Statistics of buffer overflow reported in CVE are shown in Figure 1, it is obvious that there has 

been an increase in reported buffer overflow vulnerabilities in recent years. 

 

 

 
 

Figure 1. Statistics of buffer overflow in CVE 

 

 

A Recommender System [4-6], was proposed to achieve higher software security by giving training 

to software developers. This system uses public vulnerability repository such as CWE, which suggests 

mitigation strategies for different vulnerabilities. Static analysis techniques were used to search out  

the vulnerabilities in legacy code. Further, the mapping algorithm was used which mapped the mitigation 

strategies with the vulnerabilities found. The rest of this paper is organized as follows. Section 2 discusses 

the background; section 3 discusses the research methodology; section 4 discusses experiments and results, 

and section 5 gives conclusion and future work.  

 

 

2. BACKGROUND 

Buffer overflow attack [7, 8, 9] can occur if a large amount of data is inserted into a fixed-length 

buffer than it can occupy and crashes the system by overwriting extra information to an adjacent memory 

space. Programs written in unmanaged programming languages are usually susceptible as these languages do 

not have built-in protection against this vulnerability [10]. An attacker takes advantage of this overflow by 

inserting malicious code into the memory. Different types of buffer overflow along with their existing 

mitigation strategies are shown in Table 1. 

 

 

Table 1. Different types of buffer overflows and their mitigation strategies 
Types of Buffer Overflows  Proposed Mitigation Strategies 

Stack-Based Buffer Overflow  Add boundary check 

Heap-Based Buffer Overflow  Add malloc check 

Format-String Buffer Overflow  API substitution 

Integer-Based Buffer Overflow  Use LONG LONG INT 

Unicode Buffer Overflow  Proposed solution doesn’t exist 
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Stack-Based Buffer Overflow occurs when a string is copied from source buffer to a destination 

buffer using strcpy function. While copying, strcpy function does not check the size of the destination buffer 

which may lead to a buffer overflow attack. Vulnerable and healed source code for stack-based buffer 

overflow is shown in Figure 2, in which array declared as src[] having a size of 12 bytes while the array 

declared as dest[] having a size of 10 bytes. Instead of the smaller size of the destination array, strcpy 

function copies the source string to the destination string. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Vulnerable and healed code for stack-based buffer overflow, (a) Replacing “strcpy” with “strncpy”, 

(b) Using “if-else” check 

 

 

Stack-based buffer overflow can be fixed by adding boundary checks. This strategy makes decisions 

by checking the size of the source buffer and then comparing it with the destination buffer. In healed code, 

‘strncpy’ function was used instead of ‘strcpy’. The difference between the ‘strcpy’ and ‘strncpy’ function is 

that the strncpy function checks the size of the destination buffer and copy only those bytes till the size of  

the destination buffer. 

Stack-based buffer overflow vulnerability detection technique was proposed in binary codes [11]. 

Different buffers were scanned to find out the risk functions. Against these risky functions, a function library 

is established. Finally, vulnerability is detected by comparing the buffer size which is used with the buffer 

size already declared. The proposed approach only detects the stack overflow vulnerability whereas our 

approach first detects and then fixes the vulnerability. 

Heap-Based Buffer Overflow. Static memory allocation is used to declare an array of desired space. 

e.g. In case, we have declared an array to store data for 10 students and if the number of students is changed, 

then the allocated memory may not fulfill our requirements. To save this memory loss, malloc function was 

introduced to allocate memory dynamically. An if-else check will be used to check whether a pointer has 

allocated memory or not? 

A smart fuzzing method was used to detect heap-based buffer overflow [12, 13]. Based on concolic 

execution, this technique detects vulnerabilities more accurately. Addresses of the dynamically allocated 

memory chunks were stored in a memory table. The memory table is updated upon the allocation and 

deallocation of these memory chunks. This vulnerability table is then used to create vulnerability constraints. 

Android-based smart devices are the victims of attackers by inserting malicious code and steal  

useful information. 

Format-String Buffer Overflow occurs by the combination of data and control information. Text 

strings are sometimes automatically converted to larger formats. sprintf is used to input the formatted string 

into a character array similarly as ’printf’ is used to write the string into the console. Vulnerable and healed 

code for format-string buffer overflow are shown in Figure 3(a). While writing the formatted string to 

the character array, sprintf doesn’t check for the overflow. snprintf is used that checks the length of the buffer 
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and copies a determined number of bytes including the null terminator at the end. An if-else check is added 

which after checking the condition copies the buffer. 

Many approaches such as runtime, testing, and static analysis approaches have been proposed but 

none of them can distinguish all types of format string vulnerability [14, 15]. The analysis approach finds out 

the format string functions. Usually, the format string functions are printf, fprintf, sprintf, etc. This approach 

only detects the vulnerability, however, it reduces the number of false positive. 

Integer-Based Buffer Overflow occurs when after performing some operation whose value may 

exceed the maximum or minimum range. e.g. If we add, 100 +200, the result will exceed 8 bits. Integer-based 

buffer overflow can be fixed by changing the data type from INT which is 32 bit long to LONG LONG INT 

which is 64 bit long. Vulnerable code for integer-based buffer overflow are shown in Figure 3 (a), whereas 

the healed code is shown in Figure 3(b). 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Vulnerable and healed code for format-string and integer-based buffer overflow, 

(a) Replacing “sprintf” with “snprintf”, (b) Replacing “INT” with “LONG LONG INT”  

 

 

The static analysis approach was used for the detection of integer-based buffer overflow by finding 

sensitive code locations [16]. The static phase performs Control Flow Graph recovery and Call Graph 

recovery. Once found, an automated POC was generated to fix the vulnerability. This approach was more 

accurate and doesn’t give any false positive and false negative. IntPatch [17] fixes integer overflow in C/C++ 

source code at compile time. This approach identifies the un-secure arithmetic operations and fixing 

statement is inserted after each vulnerable arithmetic operation. A novel approach using symbolic execution 

was proposed for fixing integer overflow vulnerability in source code [18]. After detecting a vulnerability,  

a repair pattern was generated which patches the source code. Code refactoring is performed which checks 

whether the vulnerability is removed or still exists. If a vulnerability exists still there, a message unrepaired 

integer overflow is generated. This approach was more efficient than manual repair, however, it works only 

for integer type vulnerability. Unicode Buffer Overflow occurs by injecting Unicode characters into an input 

that expects ASCII characters. Since ASCII code covers only Western language characters while Unicode 

can create a character for almost all languages. 

Ranges for Unicode characters in different languages are given below: 

- English Alphabets (0041-005A, 0061-007A) 

- Greek Characters (0370-03FF) 

- Mathematical Operators (2200-22FF) 

- Arabic Characters (0600-06FF) 

If we want to print Alpha Sign having code “nx03B1” in normal mode, we will get a garbage value. 

Vulnerable and healed code are shown in a listing below. To remove unicode buffer overflow, set  

the program in Unicode mode and replace cout, printf with wcout, wprintf respectively, the vulnerable and 

healed code is shown in Figure 4.  
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Figure 4. Replacing ‘printf’ with ‘wprintf’ 

 

 

2.1.  Public vulnerability repository 

Public software vulnerability repository, Common Weakness, and Enumeration (CWE) hold useful 

articles about security vulnerabilities and their mitigation strategies. MITRE, launched a CVE list containing 

a distribution of software weaknesses in 1999. CWE provides a standard list of software vulnerabilities that 

can be helpful for software developers as well as to large government and private organizations as 

a knowledge base for these security flaws. These software weaknesses are categorized into three main 

concepts. 

- Research Concepts 

- Development Concepts 

- Architecture Concepts 

These CWE mitigation studies along with existing research studies are combined for developing  

a prototype tool. This tool detects the vulnerable modules and then fix them as a healed code. Different types 

of buffer overflow and suggested CWE mitigation strategies are shown in Table 2. 

 

 

Table 2. Buffer overflow types and CWE mitigation strategies 
Types of Buffer Overflows  CWE Mitigation Strategies 

Stack-Based Buffer Overflow  Use safer, equivalent functions which check for boundary errors 

Heap-Based Buffer Overflow  Perform bounds checking on inputs 

Format-String Buffer Overflow  Avoid using functions like ”printf” 

Integer-Based Buffer Overflow  Use safe packages such as SafeInt(C++) or IntegerLib(C or C++) 

Unicode Buffer Overflow  Use the principle of least privilege 

 

 

3. EXISTING AUTOMATED APPROACHES 

Buffer overflow, a base for many other vulnerabilities. If buffer overflow is handled, more than 50% 

of the attacks could become ineffective. Vulnerable files were located using tool implementation [19]. 

Firstly, an application is run under normal condition and a record of the stack trace is made. In the next step, 

an application with an overflow attack is run again. Results of both the stack traces are compared whether 

they are similar or different? By tracing the vulnerable path, a vulnerability is removed in an application. 

However, this tool only works for locating “strcpy” function. Shaw et al. [20] proposed that the legacy C 

source code can be transformed using program transformation. Safe Library Replacement and Safe Type 

Replacement were used to heal the vulnerable C language codes. SLR replaces unsafe functions such as 

strcpy with g strlcpy, memcpy with memcpy s, gets with fgets or gets s, etc. in Linux systems. STR replaces 

all character pointers with safe data structures i.e., “stralloc” pointers. 

The static analysis approach is used for finding buffer overflow vulnerability using tools such as 

Fortify, Splint, and Checkmarx [21]. Various manual approaches were used for fixing buffer overflow 

vulnerability. These approaches then guided for the automated fixing of buffer overflow vulnerability. 

According to [22], web applications were statically analyzed and categorized into dodgy code vulnerabilities, 

malicious code vulnerabilities, and security code vulnerabilities. These kinds of vulnerabilities are inserted 

because of developers’ bad programming practices. FindBugs plugin was used to detect vulnerabilities in 

Java web applications. It references the vulnerabilities to OWASP top 10 and CWE. A secure development 

framework was developed that should restrict the developers from using bad programming practices. 

BovInspector, an automated tool, fixes buffer overflow vulnerability in C programs. The tool checks  

the buffer overflow warning path in a program. These warnings are then validated using symbolic execution. 

BovInspector fixes these warnings using boundary checks, safer API’s and by extending the buffer size [23]. 

A software self-healing framework was proposed for the detection and fixing of software security 

vulnerabilities as shown in Figure 1. Suggested mitigation strategies from CWE were transformed into 

standardized rules for developing a code transformation module. This module replaced vulnerable code with 

a healed code. Cross-site scripting or XSS vulnerability was fixed using this prototype. This approach then 
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guided for fixing buffer overflows automatically without human intervention [24]. A combination of both 

static and dynamic analysis techniques was used for the detection of buffer overflow in binary files [25].  

The location of the vulnerability can be found by static analysis and then these vulnerabilities are tested by 

dynamic analysis to remove false positives. This technique works by converting the binary files into 

assembly language and then apply both static and dynamic techniques to find the overflow points. Results 

showed that various overflow functions such as strcpy, strcat and sprintf should be changed by more secure 

functions such as strncpy, strncat and snprintf respectively. However, our approach uses only static analysis 

for fixing buffer overflows. An integrated framework [26], was developed to find vulnerabilities in web 

applications using static analysis approach. The framework is shown in Figure 5. This helps programmers to 

produce secure code before software development. 

 

 

 
 

Figure 5. Software self-healing framework [23] 

 

 

3.1.  Proposed automated approach 
In our proposed approach, different modules are discussed separately. Table 2 holds useful articles 

for fixing different types of buffer overflow vulnerabilities. In this work, source code is analyzed using static 

analysis tool and vulnerable modules are found. Mitigation strategies from public vulnerability repository are 

transformed into standardized rules. These rules are then used by the source code healing module which 

transforms vulnerable source code into healed code. If a mitigation strategy against any vulnerability does not 

exist, then the public vulnerability repository is updated manually. The source code healing module 

transforms these manual solutions into automated standardized rules resulting in a modified code as shown in 

Figure 2. Our research comprises of the following research questions. 

- RQ1. How can the mitigation strategies in CWE articles for fixing different types of buffer overflow be 

used to automatically heal the vulnerable source code? 

- RQ2. Does the automated approach, in RQ1, compromise the accuracy of the resultant source code? 

 

 

4. RESEARCH METHODOLOGY 

Static analysis is used to analyze source code. Both static and dynamic analysis techniques can be 

used for finding the buffer overflow vulnerability. However, static analysis shows better results because static 

analysis checks the vulnerabilities before software deployment. The drawback of this technique is that it 

results in a high number of false positives. Our proposed system uses mitigation strategies for fixing different 

types of buffer overflows. These mitigation strategies along with existing research strategies are used to 

develop a prototype. The solution to fix Unicode buffer overflow was updated manually in a public 

vulnerability repository. Source code is run through this prototype which replaced vulnerable lines of code 

with secure lines. A modified version of the self-healing framework is shown in Figure 6. 
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Figure 6. Modified version of software self-healing framework 

 

 

4.1.  Static analysis tool 

KIUWAN a static analysis tool scans the source code and measures its quality. Its trial version is 

free and can be accessible on demand. It references the vulnerabilities defined by OWASP and public 

vulnerability repositories i.e. CWE. It uses the Code Quality Model for evaluating software characteristics. 

Some indicators of KIUWAN are shown in Table 3. 

 

 

Table 3. Summary of kiuwan indicators 
Indicator  Description 

Security  Repudiate unauthorized users to get access 

Reliability  Maintains a specified level of performance 

Efficiency  Provides performance relative to available resource 

Maintainability  Adaptable to changing requirements and functional specification 

Portability  Portability lies in code complexity 

Risk Index  Measure how much your code is vulnerable? 

Global Indicator  Calculates the weighted average of the characteristics of the application 

Defects  Shows how much rules are violated 

 

 

4.2.  Static analysis tool 

KIUWAN is a static analysis tool that scans the source code and measures its quality. Its trial 

version is free and can be accessible on demand. It references the vulnerabilities defined by OWASP and 

public vulnerability repositories i.e. CWE. It uses the Code Quality Model for evaluating software 

characteristics. Some indicators of KIUWAN are shown in Table 3. 

The methodology of our proposed approach is carried by making the static analysis of vulnerable 

source code using the KIUWAN static analysis tool. Source code for different types of buffer overflow 

vulnerability is scanned individually. Results after scanning a source code showed different types of 

vulnerabilities. These vulnerabilities are further categorized as: 

- Vulnerabilities by type 

- Vulnerabilities by language 

- Vulnerabilities by priority 

Among vulnerabilities by type, we selected vulnerabilities related to buffer overflow and among 

languages C++ was selected. This scanned source code is run through the source code healing module.  

This module is developed using regular expressions. These regular expressions search for a specific function 

in source code and the attributes declared with that function were found. Functions such as strcpy, sprintf, 

etc. were replaced with securer functions like strncpy and snprintf respectively by using regular expressions. 

Existing research studies for fixing different types of buffer overflow vulnerability along with the CWE 

mitigation strategies are combined together as a part of this module. The source code healing module 
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replaces vulnerable source code with healed code. Healed code obtained as a result of the source code healing 

module is then scanned using the same static analysis tool.The methodology used to heal the various types of 

buffer overflow vulnerabilities is shown in Figure 7. Accuracy of an automated approach will be measured 

by checking to what extent these vulnerabilities are removed in a healed code. Matrices such as risk index, 

global indicator, and defects were also compared. 

 

 

 
 

Figure 7. Methodology 

 

 

5. EXPERIMENTS AND RESULTS 

KIUWAN a static analyzer tool was used to detect vulnerabilities in source codes. The experimental 

setup is shown in Figure 8. Open-source codes for different types of buffer overflow vulnerabilities were 

scanned individually. A prototype using CWE mitigation strategies to fix different types of buffer overflow 

vulnerabilities was developed. These codes were passed through a prototype that replaced vulnerable source 

code with healed code. Healed code was analyzed using the KIUWAN tool. As a result, vulnerabilities are 

removed. Vulnerable and healed code for stack-based buffer overflow based on the guidelines in CWE121-

master are shown in Figure 9. 

Vulnerable and healed code for a heap-based buffer overflow is shown in Figure 10. The sample 

source code can be found at LPT-ArrMinHeap-LeftistTree-Point. Results against different types of buffer 

overflow vulnerability are shown in Table 4, it is obvious from the results that the proposed prototype tool 

was able to fix various types of buffer overflow errors in the target source code.  

 

 

 
 

Figure 8. Experimental setup 
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Figure 9. Fixing stack-based buffer overflow 

 

 

 
 

Figure 10. Fixing heap-based buffer overflow 

 

 

Table 4. Results: different types of buffer overflows 
Buffer overflow type Target Source Code No. of identified vulnerabilities 

Before healing 

the source code 

After healing the source code 

Stack-Based Buffer Overflow  CWE121-master 18 16 

Heap-Based Buffer Overflow  LPT-ArrMinHeap-LeftistTree-Point   19 5 

Format-String Buffer Overflow  Pablodroca/CppUnicodeTests 11 9 

Integer-Based Buffer Overflow  CWE190-BigInt-master 11 2 

Unicode Buffer Overflow  Test-UNICODE-SYMBOLSr 24 20 

 Summary 83 52 

 

 

It can be observed that 31 buffer overflow errors of various types were fixed. Vulnerable and healed 

code for a format-string buffer overflow is shown in Figure 11. The sample source code can be found at 

Pablodroca/CppUnicodeTests. Vulnerable and healed code for integer-based buffer overflow based on 

the guidelines in CWE 190 is shown in Figure 12. The sample source code can be found at BigInt-master. 

Vulnerable and healed code for Unicode buffer overflow can be found in Figure 13. The sample source code 

can be found at Test-UNICODE-SYMBOLS. 

 

 

 
 

Figure 11. Fixing format-string buffer overflow 

 

 

  
 

Figure 12. Fixing integer-based buffer overflow 

 

Figure 13. Fixing unicode-based buffer overflow 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An automated approach to fix buffer overflows (Aamir Shahab) 

3787 

6. CONCLUSION AND FUTURE WORK 

In this study, we found that buffer overflow, one of the growing vulnerabilities both in small and 

largescale software development industries. Manually fixing the vulnerability is a time-consuming task and 

may induce programming errors. An automated approach was proposed to overcome this problem.  

A prototype was developed which automatically fixes the buffer overflow vulnerability. Static analysis tool 

KIUWAN was used for the detection of the vulnerability. Regular expressions were used to replace 

vulnerable source code with healed code. Results obtained from the resultant source code were more accurate 

and efficient than the manual fixing of buffer overflow vulnerability. The scope of our study can be extended 

by focusing on other vulnerabilities such as SQL injection attack, broken access control, etc. Since we have 

used the CWE vulnerability repository, other public vulnerability repositories can be used as a knowledge 

base. Experimental results showed that the source code healing module alleviated vulnerabilities against 

every type of buffer overflow. But, integer-based buffer overflow occupies more memory as INT data type is 

replaced with LONG LONG INT. In the future, the identified drawback of this study can be minimized. 
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