
Software Security Specifications and Design

How Software Engineers and Practitioners Are Mixing Things up

Mohammad Zarour
 Software Engineering Department

 Prince Sultan University, Riyadh,

Saudi Arabia
mzarour@psu.edu.sa.

Mamdouh Alenezi
 Software Engineering Department

 Prince Sultan University, Riyadh,

Saudi Arabia
 malenezi@psu.edu.sa

Khalid Alsarayrah
 Software Engineering Department

 Hashemite University, Zarka,

Jordan

 khalidt@hu.edu.jo.com

ABSTRACT

Huge numbers of worldwide-deployed software suffer from poor

quality and possess vulnerabilities with serious impact. Meanwhile,

people are using such software to save and manage their valuable

information including their monetary data. This has increased the

hackers’ appetite to attack software. Henceforth, researchers and

practitioners are convinced that software security is not an added

value or a gold-plating need. Consequently, security requirements

specification and implementation become vital during the software

development process. Unfortunately, researchers and practitioners

are doing so in a rush. This has made them mix concepts and

practices up in a way that can terribly make the problem of

delivering software overdue more chronic which will result in a

security and technical debt. This research represents a corrective

study that sheds light on what has been achieved in analyzing and

designing secure software and what are the problems committed

and how to handle them.

CCS CONCEPTS

• Software and its engineering • Software creation and management

KEYWORDS

Software Architecture, Software Design, Software Development

Management, Software Engineering, Security

ACM Reference format:

Mohammad Zarour, Mamdouh Alenezi and Khalid Alsarayrah. 2020.
Software Security Specifications and Design: How Software Engineers and
Practitioners Are Mixing Things up. In Proceedings of ACM International

Conference on Evaluation and Assessment in Software Engineering

(EASE’20). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3383219.3383284

1 Introduction

Since the late sixties of the previous century, where the term

software engineering is coined, software engineers are striving to

develop software that meets customer needs, represented as

functional and non-functional requirements, within time and budget

constraints. Many software processes models have been developed

as our understanding of the software nature and its needs are

developed. The focus was, and still be, on delivering what the

customers expect from the software to run their businesses and

achieve their functionalities within the traditional quality needs

related to efficiency, reliability, and ‘naïve’ security.

Nowadays, ‘naïve’ software security that focuses on securing

software users by password-protected accounts with certain

privileges is not enough. We continuously discover that a big

number of deployed software worldwide is of poor quality and

suffering from vulnerabilities with serious impact [1]–[4]. The

wide-spread usage of the internet, huge web-based and mobile apps

development along with the unprecedented amount of data

generated on daily bases that comprise all our life aspects, have

increased the hackers’ appetite to attack software. Hackers have

been increasingly exposing and exploiting vulnerabilities for a long

time, and their success is very probable nowadays due to the

software poor quality. Unfortunately, traditional network perimeter

defenses that include firewalls, antiviruses, and intrusion detection

and prevention systems have, to a large extent, failed to stop

software attacks. This is because hackers are focusing more on

attacking software leveraging from undisclosed vulnerabilities.

Hence, the ball has been thrown back to the software development

community to produce more secure applications using secure

development process models.

Consequently, several initiatives have been made to address

security in the software development lifecycle (SDLC). This

includes models from industry, such as Microsoft Security

Development Lifecycle (SDL) [5], descriptive activity surveys

such as Building Security in Maturity Model (BSIMM) [6], and

standards, such as the ISO/IEC 27034 [7]. Moreover, security

initiatives and tools that support the integration of security in the

development lifecycle have been proposed by different researchers,

see for example [8]–[11]. Unfortunately, despite of all these efforts

to tackle the security requirements during the development process,

vulnerable software products are still produced and successful

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org .

EASE 2020, April 15–17, 2020, Trondheim, Norway

©2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7731-7/20/04…$15.00

https://doi.org/10.1145/3383219.3383284

https://doi.org/10.1145/3383219.3383284
mailto:Permissions@acm.org
https://doi.org/10.1145/3383219.3383284

Software Security Specifications and Design EASE 2020, April 15–17, 2020, Trondheim, Norway

attacks never stop. This means that the way the security

requirements are captured during the requirement and design

phases may not be suitable and need further investigation. This is

what we try to examine on this research work. Software security is

the idea of engineering software so that it continues to function

correctly under malicious attack [12]. This means to adopt software

engineering practices in the software process that tackle security

issues early. The rest of the paper is organized as follows. Section

2 presents a literature review about software security and the related

work. Section 3 discusses how researchers and practitioners are

mixing things up. Section 4 discusses the security in the

requirements engineering phase while section 5 discusses the

security in the design phase. Section 6 discusses possible

limitations. Section 7 concludes the paper and presents future work.

2 Literature Review

Software is being developed for decades until now. Software

engineers and IT professionals were able to develop software that

meets customers’ requirements. Security was not an issue in the

past as most of the developed applications were standalone

applications with very restricted connectivity. Hence, the software

development process focused on developing software that is

functional with high performance but not necessarily secure.

Nowadays, with the advent of the Internet of Things (IoT) and

ubiquitous computing, software engineers are developing software

that is more complex with higher extensibility and connectivity

features using the traditional development lifecycles that ignore the

software security as a demanding and desirable requirement.

Software extensibility and connectivity effects on security has been

discussed in [13]. The new technologies help to evolve better

software, but hackers and hacking strategies are evolving much

faster as well. Henceforth, security is not considered as an added

value anymore. Accordingly, software processes have been

amended to integrate secure software development practices in

what is known as secure software development. Developing

security conscious software to face the increasing amount and

quality of cyber-attacks is still lacking maturity and the research in

this domain is still in its infancy phase, hence we are conducting an

ordinary literature review to cover what has been documented in

the literature. Although developers are not necessarily security

experts, they are expected to develop secure software [14] and are

held responsible for discovered security vulnerabilities [15].

Unfortunately, the research work that discusses the human effects

on software security is lacking and the weakest link in such

software development are the developers! [16][17].

But developers lack necessary security knowledge which resulted

in loose security practices [17]. Moreover, security is not

considered in the design stage, security is not a priority during

implementation, developers do not test for security, and security is

not considered during code review [17]. Hence, it is unrealistic to

rely on developers only to perform security tasks while lacking the

expertise [17]. Developers are usually focused on achieving the

specified functionalities and performance requirements and

security is not their main concern [16]. Some researchers proposed

a solution to this problem by taking the secure code development

from developers and assign it to analysis tools and specialized easy

to use APIs, or at least use these analysis tools and APIs to provide

help and guidance to developers while developing secure software

[18]–[20]. Blaming developers for vulnerabilities does not solve

the problem which extends up in the organizational hierarchy that

comprises various issues influencing software security [15]. The

focus of this research does not extend to the organizational, cultural

and awareness issues, but rather focuses on security issues within

the requirements and design phases.

2.1 Security in the Requirements Engineering

Phase

Requirements engineering is concerned with discovering,

developing, tracing, analyzing, qualifying, communicating and

managing requirements that define the system at successive levels

of abstraction [21]. Requirements at this phase should be specified

independently of any technology/platform. This technology

independence is vital in order not to limit the solution space from

which the designer designs the software blueprint.

The software is successful when it maintains all the functionalities

requested by the users and are expressed as functional user

requirements (FUR) and within certain constraints specified as non-

functional requirements (NFR). For example, “The registration

system shall allow students to register a course” is a FUR, while

“The registration system shall encrypt student’s credentials when

authenticating him/her” is an NFR. The FUR and NFR are specified

at the system level as high-level requirements. However, there is

yet no consensus on how to describe, specify, measure and evaluate

NFR during the early phases, leading to various difficulties and

ambiguities [22], this makes specifying security requirements more

difficult as well.

Security requirements at the system level are defined as the

confidentiality, integrity, availability, and authenticity of the

systems [23]. Researchers have documented different approaches

to identify, in more details, how to capture such requirements. For

instance, McDermott and Fox [24] introduced the concept of Abuse

cases to model harmful activities between the system and malicious

actors. Abuse case models are claimed to increase both user and

customer understanding of the security features of a proposed

product. Other researchers followed the same abuse model to

analyze security requirements in the requirement phase, see for

example, [25], [26]. The concept of misuse case model is

introduced by Alexander [27] where the misuse case is defined as

a use case from the point of view of an actor hostile to the system.

Alexander stated that the interplay of use and misuse cases during

analysis could help engineers elicit and organize requirements more

effectively. Other researchers have used and extended the concept

of misuse case model. For instance, Sindre et. al. [28] have

represented both use cases and misuse cases in a single diagram. In

addition, they described a detailed template to specify misuse cases.

Similarly, Mai et. al. [29] used misuse cases to model security and

privacy requirements. Sindre also developed mal-activity swim-

lane diagrams [30] as a technique for capturing attacks that could

complement misuse cases for early elicitation of security

EASE 2020, April 15–17, 2020, Trondheim, Norway M. Zarour et al.

requirements. His technique allowed the inclusion of hostile

activities together with legitimate activities in one diagram.

Schmitt and Liggesmeyer [31] proposed a model for Structuring

and Reusing Security Requirements during the requirements

engineering phase that requires exploring the possible threats,

weaknesses, and vulnerabilities as sources that necessitate the

security requirements specification during the requirements

engineering phase.

Fletcher and Liu [32] recognized that security requirements

analysis during the requirements phase is not enough and they

presented more security requirements analysis but in the cyber-

physical system. Their approach analyzes security requirements by

extending activity swim-lane diagrams to include mal-activities

and prevention or mitigation options in the same diagram to

identify threats posed by both internal and external misusers.

2.2 Security in the Design Phase

The software design phase is where the design decisions are made

to build the solution blueprint that fulfills the specified

requirements resulted from the requirements engineering phase.

The design phase is technology dependent; hence, the designers

need to make decisions regarding which technology/platform to use

for the system on hand. Designers need to analyze the possible

threats that may attack the system based on the chosen

technology/platform. Unfortunately, most of the IT practitioners

indicated that their development teams did not view security as part

of the design phase, or at best security is managed in an ad-hoc

fashion during this phase [17]. Assal and Chiasson empirical study

[17] concluded that many practitioners do not follow simple design

principles and are intentionally introduce complexity to avoid

rewriting existing code. Not adopting design principles will

generate a complex system design full of architectural flaws that

will lead to security problems [33]. Moreover, efforts towards

evaluating security may be hindered by poor readability and

complex design choices [17].

Nowadays, different levels of security are considered crucial in

almost all system. Researchers and practitioners are studying and

implementing security at different phases including the design

phase, see for example [17], [19], [37]–[40], [22], [25], [27], [29],

[32], [34]–[36]. Other researchers have worked on extending the

UML notation to represent security concerns, see for example [40]–

[44]. But what about systems that have been developed long time

ago where security requirements were not treated as a core

characteristic, this issue has been raised by Shin and Gomaa [45]

where they proposed a solution in which the security requirements

are captured, as a separate service, independently from application

requirements. Shin and Gomaa have adopted the concept of

separation of concern to separate the application concerns from

security concerns, then, evolve from a non-secure application to a

secure application is achieved.

Security has also been studied at the detailed design level, where

various security design patterns have been proposed based on their

traditional counter-patterns, see for example [34], [36], [46], [47].

3 How Researchers and Practitioners Are Mixing

Things Up?

As discussed in the previous section, the human effect on secure

software development is unneglectable. Developers are usually

held responsible for vulnerabilities, at least by the end-users, and

are expected to develop secure software. We believe that it is not

the developers who are the weakest link in the development

process, requirement engineers and designers should be equally

held responsible as well for any security flaw that leads to

vulnerabilities.

Unfortunately, the rush toward developing secure software resulted

in mixing tasks and practices to be done by the requirement

engineer, designer, and developers. Furthermore, real-life security

practices are deviating from best practices identified in the

literature [17]. Best practices are often ignored, simply since

compliance would increase the burden on the development team

[17]. Regrettably, ignoring compliance with standards will not

eliminate the burden on the development team, but it will distribute

it over the different phase which will result in having delayed

software projects be more delayed and will increase the technical

debt as well [48]. Moreover, some new terminologies that are

extracted from well-known ones have been improperly crammed

into the requirement or design context. For instance,

1. The users and stakeholders are involved in developing the

proposed abuse/misuse case model and mal-activity swim-

lane diagrams. However, how can the normal user help in

drawing abuse cases while they are neither experts in security

technicalities nor the threats that may affect their proposed

system. Eliciting security requirements from stakeholders is

hard and can yield partial and skewed results [49]. Hence, the

research documented in the literature that elicit detailed-level

security requirements from users and stakeholders

perspectives, as in [28], [30], [31], [35], [37], [50], are

expected to achieve partial success in this regard. Users and

stakeholders can express their high-level security needs as

functional and nonfunctional requirements, but they are

unaware of the details of how their system can be misused or

threatened once it is put in use. Hence, cramping

abuse/misuse cases at the requirement phase is not effective

and can confuse the stakeholders and end up with more vague

requirements that need rework in the design phase. Again,

this would make the problem of project delivery overdue

more chronic which will result in a security and technical

debt [48]. It seems that researchers working on security

requirements specification are snubbing this issue.

2. Moreover, not all known threats are applicable to all systems.

The threat that may attack a certain system depends on the

proposed solution, which will be developed during the design

phase, not the requirement phase. some researchers suggested

engaging the stakeholders in the security design as well [38].

Again, normal stakeholders are naïve when it comes to

discussing detailed security threats and those who commit the

attacks, i.e. adversaries/hackers, are absent from the whole

scene of software development.

3. The use of the term ‘abuse/misuse case’ is misleading by

itself. It gives the indication that vulnerabilities will be

abused/misused by users, remember that the concept of use

Software Security Specifications and Design EASE 2020, April 15–17, 2020, Trondheim, Norway

cases is traditionally linked to the possible uses of the system

by users. Therefore, when drawing the abuse/misuse cases,

the most important actor, i.e. the adversary/hacker, remains

unavailable. This means that the identified threats via abuse

cases can be explored only indirectly and, at best, specified

partially [49].

4. Thereafter, the term threat modeling and its corresponding

practices seem to be more suitable to be used rather than the

term abuse/misuse cases. Note that threat models are useful

for designers more than requirement engineers to motivate

security needs and provide indirect design guidance [49].

5. Developers are expected to be aware of various security

threats and possible vulnerabilities in their code. This

requires the developers to conduct threat analysis and look

for possible vulnerabilities, then develop code that refrains

the attacks. Overloading developers, who are busy in building

software functionalities, with this extra analysis activates will

make them the weakest link and make them tend to develop

vulnerability-prone code. One of the common practices for

developing secure code adopted by developers is to search

the web for reusable code to handle an identified vulnerability

then copy and paste that code into their own program [18].

This behavior has been shown to often lead to operational but

insecure code [18]. Several researchers have proposed some

tools and guidance to help developers completing this task

properly, see for example [10], [16], [18], [20], [51], [52].

Software architect usually receives vague, incomplete and

missed NFR requirements from requirement engineers and

hence, consider themselves the real expert to define the NFR

[53]. Accordingly, we believe that developers should

implement the detailed requirements delivered to them in the

design document that should encompass the detailed security

requirements as part of the NFR requirements. Keep in mind

that when it comes to secure software development, we may

think of discussing security design issues even before

conducting the requirement engineering phase [54]. This

issue needs more investigation and future research.

6. Most of the research done in the security software

development view the process in a linear, top-down, waterfall

style. This approach seems to be ineffective for many types

of projects and is more ineffective when it comes to

developing secure software, [55], [56]. Software process

engineers should think of new models or extend existing agile

concepts to cope with security requirements, see for example
[37].

4 Handling Security in the Requirements

Engineering Phase

Introducing security-awareness programs for the development

team and stakeholders who will specify requirements is not proved

to be effective in specifying security requirements. This is because

the key players in breaking the security, e.g. adversaries/hackers,

are unavailable during the development process. Researchers and

practitioners should be careful when introducing new practices or

milestones to the requirements process in order not to ruin the

whole development process and make it delayed more.

The question is, are the users and customers interested in knowing

the details of how their system can be abused/misused and how to

protect it? Users and customers in the requirements engineering

phase will raise their security concerns at a high level of

abstraction, usually at the system level, without bothering

themselves in how to implement them. A good requirement

engineer can follow the guidelines presented in [22] to map the

system’s NFR to software FUR, see Figure 1. These software FURs

are still high-level requirements and can be used by the

designer/architect to develop the detailed technical requirements of

the proposed solution. These high-level system NFRs and their

corresponding FUR represent the security goals in Turpe’s model

of security needs dimensions [49], see Figure 2.

This is aligned with our discussion in this regard where we suggest

that in the requirement engineering phase, stakeholder should state

their security goals as NFR high-level requirements. Involving

stakeholders in security-awareness programs, writing abuse/misuse

cases or discussing design issues will result in naïve security

requirements elicitation process that may end up with incomplete

and unrealistic requirements which will be reworked by the

designer/architect, hence increase the security debt.

5 Handling Security in the Design Phase

Specifying security needs is not a straightforward process rather it

is hard to achieve. While much effort is invested to integrate

security and software engineering activities, there has been little

work describing how design techniques can be applied to designing

secure systems [54].

Designing secure software is a three-variable problem, as shown in

Figure 3 [49], security goals, security design, and threats. Any

change in one dimension may entail changes or new questions in

the remaining two [49]. The intersection between every two

variables generates an analysis task, see Figure 3. For more details,

you are encouraged to read [49]. Note that the risk analysis can be

specified via the what-if scenarios during the requirements

engineering phase as the effect of technology is minor. CORAS

[57], [58] can be used to conduct the risk analysis. Security design

analysis looks for possible unmitigated vulnerabilities that allow

Figure 1: System and software security requirements [22]

EASE 2020, April 15–17, 2020, Trondheim, Norway M. Zarour et al.

attacks to succeed [49]. As the security design analysis depends on

adopted technology, it should be done during the design phase,

specifically architectural design. STRIDE threat analysis model

and Data-Flow-Diagrams DFD can be used to conduct this analysis.

CAPEC model [59] can also be used in this regard.

Fig. 2 Dimensions of security needs [49]

Moreover, the design process of a system translates security goals

into design choices. This model is found to be the most appropriate

model documented in the literature that describes the core activities

in the design phase. Note that design process to develop the design

and security design analysis to identify possible threats are done in

the design phase while the risk analysis and goals identification are

more suitable for the requirement engineering phase where the

security requirements are collected as high-level non-functional

requirements [22]. This model needs more work to specify in detail

the practices to follow in each part of it. Wrapping up, we suggest

that requirements engineers and developers not to mix practices

among the two phases in a way that put the cart before the horse.

Such behavior will make the specified requirements vague,

incomplete and will give hard time for designers to do their tasks.

Table 1 illustrates the main security-related tasks in both the

requirement and design phases of the development process.

6 Limitations

As mentioned in the literature review section, developing security

conscious software to face the increasing amount and quality of

cyber-attacks is still lacking maturity and the research in this

domain is still in its infancy phase. Such immaturity forced us to

conduct an ordinary literature review. We think a more rigorous

literature review is needed in the future. Normally, conducting an

ordinary literature review affects the validity of the conducted

research but in this research, and due to the relative novelty of the

discussed topic, a systematic literature review is unachievable.

7 Conclusion and Future Work

Various researchers and practitioners are mixing some practices

and deliverables up when they specify the security requirements

during the analysis and design phases. This makes secure software

development vague and introduces flaws in the development

process itself. The discussions presented in this research shed light

on what has been achieved when talking about secure software

analysis and design and what problems and mistakes both

researchers and practitioners have committed. We suggested some

corrective actions to fix these mixed-up activities and the proposed

flow of practices in the two phases that conform to the basics of the

requirement and design concepts. The suggested modifications

should amend the currently available secure software processes.

We believe that further research is still needed to improve the

software analysis and design phases aiming to make the final

software less vulnerability prone. Starting the secure development

process with design rather than requirement then iterate between

the two phases, accordingly, needs more investigation as well.

Fig. 3 Analysis tasks. Each pair of dimensions leads to a distinct

perspective [49].

Table 1: Tasks to build the security requirement into the system

REFERENCES
[1] B. Russell, “IoT Cyber Security,” in In Intelligent Internet of Things, 2020, pp.

473–512.

[2] R. L. Nord, Ipek Ozkaya, and Forrest Shull., “Software vulnerabilities, defects,

and design flaws: A technical debt perspective,” in In Fourteenth Annual

Acquisition Research Symposium, 2017.

[3] M. Linares-Vásquez, Gabriele Bavota, and Camilo Escobar-Velásquez, “An

Phase Task Comments and Tools

Requirement Identify Security

Goals

Use the systems and

software security

requirement framework

as depicted in [22]

Use the what-if

scenarios for risk

analyses when

developing normal use-

cases.

Use CORAS for Risk

analysis

Translate security

goals into non-

functional security

req.

Mapp NFR security

req. into functional

user req.

Conduct Risk

Analysis

Design Design the system

taking the security

FUR into

consideration

Develop secure

architecture

Develop secure detailed

design

 Security Design

Analysis

STRIDE and DFD

Software Security Specifications and Design EASE 2020, April 15–17, 2020, Trondheim, Norway

empirical study on android-related vulnerabilities,” in IEEE/ACM 14th

International Conference on Mining Software Repositories (MSR), 2017, pp. 2–

13.

[4] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for software

security testing and quality assurance. Artech House, 2018.

[5] Microsoft, “Security Development Lifecycle.” [Online]. Available:

https://www.microsoft.com/en-us/securityengineering/sdl/. [Accessed: 10-

Aug-2019].

[6] G. McGraw, S. Migues, and B. Chess, “The Building Security In Maturity

Model (BSIMM),” 2009. [Online]. Available: https://www.bsimm.com/.

[Accessed: 12-Aug-2019].

[7] ISO/IEC JTC 1/SC 27 Technical Committee, “ISO/IEC 27034-1:2011 -

Information technology -- Security techniques -- Application security -- Part 1:

Overview and concepts,” 2011.

[8] J. Smith, B. Johnson, E. Murphy-Hill, B.-T. Chu, and H. Richter, “How

Developers Diagnose Potential Security Vulnerabilities with a Static Analysis

Tool,” IEEE Trans. Softw. Eng., pp. 1–21, 2018.

[9] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi, “Efficient and

Flexible Discovery of PHP Application Vulnerabilities,” in 2017 IEEE

European Symposium on Security and Privacy (EuroS&P), 2017, pp. 334–349.

[10] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi, “Efficient and

Flexible Discovery of PHP Application Vulnerabilities,” in 2017 IEEE

European Symposium on Security and Privacy (EuroS&P), 2017, pp. 334–349.

[11] H. Assal, S. Chiasson, and R. Biddle, “Cesar: Visual representation of source

code vulnerabilities,” in 2016 IEEE Symposium on Visualization for Cyber

Security (VizSec), 2016, pp. 1–8.

[12] G. McGraw, “From the ground up: the DIMACS software security workshop,”

IEEE Secur. Priv., vol. 1, no. 2, pp. 59–66, Mar. 2003.

[13] G. Mcgraw, “Software security,” IEEE Secur. Priv. Mag., vol. 2, no. 2, pp. 80–

83, Mar. 2004.

[14] H. Assal and S. Chiasson, “Motivations and Amotivations for Software

Security,” in SOUPS Workshop on Security Information Workers (WSIW), 2018,

pp. 1–4.

[15] H. Assal and S. Chiasson, “Think secure from the beginning,” in Proceedings

of the 2019 CHI Conference on Human Factors in Computing Systems - CHI

’19, 2019, pp. 1–13.

[16] M. Green and M. Smith, “Developers are not the enemy!: The need for usable

security apis,” IEEE Secur. Priv. , vol. 14, no. 5, pp. 40–46, 2016.

[17] H. Assal and S. Chiasson, “Security in the software development lifecycle,” in

Fourteenth Symposium on Usable Privacy and Security ({SOUPS}, 2018, pp.

281–296.

[18] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl,

“Developers Need Support, Too: A Survey of Security Advice for Software

Developers,” in 2017 IEEE Cybersecurity Development (SecDev), 2017, pp. 22–

26.

[19] Y. Acar et al., “Comparing the Usability of Cryptographic APIs,” in 2017 IEEE

Symposium on Security and Privacy (SP), 2017, pp. 154–171.

[20] G. Wurster and P. C. van Oorschot, “The developer is the enemy,” in

Proceedings of the 2008 workshop on New security paradigms - NSPW ’08,

2008, pp. 89–97.

[21] Jeremy Dick, Elizabeth Hull, and Ken Jackson, Requirements Engineering, 4th

Edition. Springer, 2017.

[22] K. Meridji, K. Al-Sarayreh, A. Abran, and S. Trudel, “System security

requirements: A framework for early identification, specification and

measurement of related software requirements,” Comput. Stand. Interfaces, vol.

66, p. 103346, Oct. 2019.

[23] O. Tettero, D. J. Out, H. M. Franken, and J. Schot, “Information security

embedded in the design of telematics systems,” Comput. Secur., vol. 16, no. 2,

pp. 145–164, Jan. 1997.

[24] J. McDermott and C. Fox, “Using abuse case models for security requirements

analysis,” in Proceedings 15th Annual Computer Security Applications

Conference (ACSAC’99), 1999, pp. 55–64.

[25] X. Yuan, E. Nuakoh, I. Williams, H. Y.- JSw, and undefined 2015, “Developing

Abuse Cases Based on Threat Modeling and Attack Patterns.,” J. Softw., vol.

10, no. 4, pp. 491–498, 2015.

[26] T. Srivatanakul, J. A. Clark, and F. Polack, “Effective Security Requirements

Analysis: HAZOP and Use Cases,” in International Conference on Information

Security, 2004, pp. 416–427.

[27] I. Alexander, “Misuse cases: use cases with hostile intent,” IEEE Softw., vol. 20,

no. 1, pp. 58–66, Jan. 2003.

[28] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse

cases,” Requir. Eng., vol. 10, no. 1, pp. 34–44, Jan. 2005.

[29] P. X. Mai, A. Goknil, L. K. Shar, F. Pastore, L. C. Briand, and S. Shaame,

“Modeling Security and Privacy Requirements: a Use Case-Driven Approach,”

Inf. Softw. Technol., vol. 100, pp. 165–182, Aug. 2018.

[30] G. Sindre, “Mal-Activity Diagrams for Capturing Attacks on Business

Processes,” in International Working Conference on Requirements

Engineering: Foundation for Software Quality, 2007, pp. 355–366.

[31] C. Schmitt and Liggesmeyer P, “A Model for Structuring and Reusing Security

Requirements Sources and Security Requirements.,” in REFSQ Workshops,

2015, pp. 34–43.

[32] K. Fletcher and X. Liu, “Security requirements analysis, specification,

prioritization and policy development in cyber-physical systems,” in Fifth

International Conference on Secure Software Integration and Reliability

Improvement-Companion, 2011, pp. 106–113.

[33] Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao, “Towards an Architecture-

Centric Approach to Security Analysis,” in 13th Working IEEE/IFIP

Conference on Software Architecture (WICSA), 2016, pp. 221–230.

[34] Z. Ahmad, M. Asif, M. Shahid, and A. Rauf, “Implementation of Secure

Software Design and their impact on Application,” Int. J. Comput. Appl., vol.

120, no. 10, 2015.

[35] M. T. J. Ansari, D. Pandey, and M. Alenezi, “STORE: Security Threat Oriented

Requirements Engineering Methodology,” J. King Saud Univ. - Comput. Inf.

Sci., p. In Press., Dec. 2018.

[36] C. Dougherty, K. Sayre, R. Seacord, and D. Svoboda, “Secure design patterns

(No. CMU/SEI-2009-TR-010),” 2009.

[37] H. El-Hadary, S. E.-K.-J. of advanced research, and undefined 2014,

“Capturing security requirements for software systems,” J. Adv. Res., vol. 5, no.

4, pp. 463–472, 2014.

[38] S. Faily, “Engaging stakeholders during late stage security design with

assumption personas,” Inf. Comput. Secur., vol. 23, no. 4, pp. 435–446, Oct.

2015.

[39] E. Fernandez, “A Methodology for Secure Software Design.,” in Software

Engineering Research and Practice, 2004, pp. 130–136.

[40] Ş. Şentürk, H. Yaşar, and İ. Soğukpınar, “Model Driven Security in a Mobile

Banking Application Context,” in Proceedings of the 14th International

Conference on Availability, Reliability and Security - ARES ’19, 2019, pp. 1–

7.

[41] J. Jürjens, Secure Systems Development with UML. Springer, 2005.

[42] J. Jürjens, “UMLsec: Extending UML for Secure Systems Development,” in

International Conference on the Unified Modeling Language, 2002, pp. 412–

425.

[43] T. Koch, “Towards Scenario-Based Security Requirements Engineering for

Cyber-Physical Systems,” in International Conferences on Software

Technologies: Applications and Foundations, 2018, pp. 633–643.

[44] J. Jürjens and P. Shabalin, “Tools for secure systems development with UML,”

Int. J. Softw. Tools Technol. Transf., vol. 9, no. 5–6, pp. 527–544, Oct. 2007.

[45] M. Shin and H. Gomaa, “Software requirements and architecture modeling for

evolving non-secure applications into secure applications,” Sci. Comput.

Program., vol. 66, no. 1, pp. 60–70, Apr. 2007.

[46] K. Lano, “Design Patterns: Applications and Open Issues,” in Cyberpatterns,

2014, pp. 37–45.

[47] Theodor Richardson and C. Thies, Secure Software Design, 1 edition. Jones &

Bartlett Learning, 2013.

[48] K. Rindell, K. Bernsmed, and M. G. Jaatun, “Managing Security in Software,”

in Proceedings of the 14th International Conference on Availability, Reliability

and Security - ARES ’19, 2019, pp. 1–8.

[49] S. Türpe, “The trouble with security requirements,” in 25th International

Requirements Engineering Conference (RE), 2017, pp. 122–133.

[50] J. Geismann, C. Gerking, and E. Bodden, “Towards ensuring security by design

in cyber-physical systems engineering processes,” in International Conference

on Software and System Process, 2018, pp. 123–127.

[51] Jing Xie, H. R. Lipford, and Bill Chu, “Why do programmers make security

errors?,” in 2011 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), 2011, pp. 161–164.

[52] M. Yoshizawa, H. Washizaki, Y. Fukazawa, T. Okubo, H. Kaiya, and N.

Yoshioka, “Implementation Support of Security Design Patterns Using Test

Templates,” Information, vol. 7, no. 2, p. 34, Jun. 2016.

[53] D. Ameller, C. Ayala, J. Cabot, and X. Franch, “Non-functional Requirements

in Architectural Decision Making,” IEEE Softw., vol. 30, no. 2, pp. 61–67, Mar.

2013.

[54] S. Faily, “Why Designing for Usability and Security is Hard,” in Designing

Usable and Secure Software with IRIS and CAIRIS, Cham: Springer

International Publishing, 2018, pp. 3–8.

[55] B. Nuseibeh, “Weaving together requirements and architectures,” Computer

(Long. Beach. Calif)., vol. 34, no. 3, pp. 115–119, Mar. 2001.

[56] T. Heyman, K. Yskout, R. Scandariato, H. Schmidt, and Y. Yu, “The Security

Twin Peaks,” in International Symposium on Engineering Secure Software and

Systems, 2011, pp. 167–180.

[57] B. Solhaug and K. Stølen, “The CORAS Language – why it is designed the way

it is,” in 11th International Conference on Structural Safety and Reliability

(ICOSSAR’13), 2013, pp. 3155–3162.

[58] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis: The

CORAS Approach. Oslo, Norway: Springer, 2011.

[59] “Common attack pattern enumeration and classification (CAPEC).” [Online].

Available: http://capec.mitre.org/. [Accessed: 18-Aug-2019].

