
A Comparison Study of Available Software Security Ontologies
Mamdouh Alenezi

College of Computer and Information Sciences
Prince Sultan University
Riyadh, Saudi Arabia
malenezi@psu.edu.sa

Hamid Abdul Basit
College of Computer and Information Sciences

Prince Sultan University
Riyadh, Saudi Arabia
hbasit@psu.edu.sa

Faraz Idris Khan
Security Engineering Lab (SEL)

Prince Sultan University
Riyadh, Saudi Arabia
fikhan@psu.edu.sa

Maham Anwar Beg
Independent Researcher

Lahore, Pakistan
maham.a.beg@gmail.com

ABSTRACT
A rising number of software and services malfunctioning due to se-
curity flaws has increased the importance of software security and
resulted in numerous knowledge sources of the domain. Building
secure software systems require the understanding and extraction
of the available knowledge, and a standard knowledge management
platform is needed. Ontologies form an integral part of knowledge
management platforms as they capture and structure the given
knowledge. Various software security ontologies have been pro-
posed previously, either stand-alone or as part of some bigger on-
tology like a computer or information security. However, these
ontologies do not cover the entire domain and cannot be used as a
standard ontology for software security in its current form. In this
paper, we have identified and evaluated the existing ontologies that
specifically capture software security knowledge, both qualitatively
and quantitatively with the help of ontology evaluation tools, in
order to select the best ontology that can be extended to prepare
the standard ontology for the software security domain.

CCS CONCEPTS
• Software Security → Security Ontology; Software Security
KnowledgeManagement; SoftwareQuality Assurance; Context based
software security ontology.

KEYWORDS
Software Security, Software Security Knowledge Management, Se-
curity Ontology, Software Quality Assurance, Software Quality
Management

ACM Reference Format:
Mamdouh Alenezi, Hamid Abdul Basit, Faraz Idris Khan, andMahamAnwar
Beg. 2020. A Comparison Study of Available Software Security Ontologies.
In Evaluation and Assessment in Software Engineering (EASE 2020), April

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7731-7/20/04. . . $15.00
https://doi.org/10.1145/3383219.3383292

15–17, 2020, Trondheim, Norway. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3383219.3383292

1 INTRODUCTION
The recent explosion of internet-based applications and services has
increased reliance of businesses over them. Internet-based applica-
tions and services are frequently attacked by hackers or malicious
users. Such attacks result in malfunctioning of the application or
service [2]. Also, most of the time the attack affects the availability
of the application or service. There are two ways such attacks can
be tackled, one is after the attack has occurred which is a reactive
approach [16]. The other way is to engineer security into the soft-
ware, whether its an application or service, which is a preventive
approach. Hence, we see an emerging field of software security
where researchers are struggling to engineer security into the soft-
ware being developed. The struggle has led to novel innovations
that improve software engineers’ capability to develop secure soft-
ware and protecting the applications. Software security is improved
by equipping software engineers with the knowledge and skills to
ensure security in the software development life cycle. As a result
security attacks can be resisted and security errors can be handled
efficiently. Security committees and a group of experts identify vul-
nerability patterns i.e. CVE (Common Vulnerabilities Exposure) 1
and CWE (Common Weakness Enumeration) 2 managed by MITRE
cooperation [4]. CVE is the list of entries where each entry con-
tains an identification number, description and one public reference
for publicly known vulnerabilities. CWE is a list developed by a
community of common software weaknesses. It acts as a common
language and baseline for weakness identification, mitigation and
prevention efforts. It also acts as a measuring ruler for software
security tools. Apart from these, standards and guidelines for secure
software development have been developed, which accumulates
the knowledge and experiences of various software development
organizations. Some of the latest efforts in software security can be
found in [1, 3, 20].

Software security knowledge can extensively be found in various
sources [12]. Examples of these sources are checklists, standards
and best practices in books, literature, and the world wide web.
The existing knowledge is not only highly complex but also very

1https://cve.mitre.org//
2https://cwe.mitre.org/

https://doi.org/10.1145/3383219.3383292
https://doi.org/10.1145/3383219.3383292
https://doi.org/10.1145/3383219.3383292
https://cve.mitre.org//
https://cwe.mitre.org/

EASE 2020, April 15–17, 2020, Trondheim, Norway Alenezi, M., Basit, H.A.,Khan, F.I., and Beg, M.A.

context-specific. Such heterogeneous and a wide variety of sources
make it difficult for a software development team to gather all the
knowledge and apply it correctly in their own application-specific
situation during SDLC.

Most recently [8] the above-mentioned problem have motivated
researchers to organize software security knowledge. The knowl-
edge is organized in a manner that will assist the software devel-
opment team to relate the security knowledge in an application-
specific situation. To effectively utilize the software security knowl-
edge and make it practically feasible in software development prac-
tices, knowledge management is considered the best fit. Within
knowledge management, ontology is considered the best approach
to categorically organize the domain knowledge of information and
software security. Security concepts which include attacks, vulner-
abilities, and prevention mechanisms are systematically classified.
Not only security information is classified and categorized, but ad-
ditional contextual features are also incorporated. Such efforts help
to capture contextualized security knowledge within the ontology
[8].

A number of software security ontologies can be found in liter-
ature [8, 10, 13, 21, 28–30, 32]. The objective of developing these
ontologies is to provide support for software developers and knowl-
edge users. This will help them to utilize the security knowledge
and appropriately apply in a current working context. The ontolo-
gies capture the context of the application and domain knowledge
regarding security, and provides contextualized knowledge. This
helps the knowledge users to perform contextual inquiry through
heterogeneous software use cases. Until now in literature no com-
parison and analysis of available software security ontologies can
be found. Motivated with this fact, in this paper we compare and
analyze the available software security ontologies. By looking at
the shortcomings we encounter in the available software security
ontologies, we are interested in constructing an improved and com-
prehensive software security ontology. The contribution of our
work is as follows.

• Selecting available software security ontologies in the litera-
ture

• Comparing and analyzing the selected software security
ontologies

The paper is organized as follows: In section 2, we discuss the
related studies. The adopted methodology is presented in Section 3.
Section 4 discusses the quantitative evaluation results of selected
software security ontologies with the selected tools, while Section
5 gives a qualitative analysis of the ontologies for the purpose at
hand. We conclude the paper in section 6.

2 LITERATURE REVIEW
In this section, we discuss the related work in the area of software
security, software security knowledge management, and software
security ontologies. A comprehensive literature review in the area
of software security in open source development can be found in
[31]. The authors expressed a need for reconsideration of software
security studies as it helps to understand security practices and
weaknesses. Motivated with this, a systematic literature review is
conducted to extract software security studies.

Software changes are deployed frequently by following DevOps
practices. Most recently, these changes are acting as a medium
of injecting vulnerabilities in the software. Hence, there is a dire
need for best security practices. Rahman and Williams [26] pro-
posed security practices that can be incorporated in the DevOps
practices. The software can be made more secure by incorporat-
ing security practices within the software development lifecycle.
Khaim et al. [14] performed a literature review of security issues
in agile software development. These issues arise due to the lack
of involvement of security experts in the software development
phases. The authors have discussed the roles and responsibilities
of a security expert during the development lifecycle.

Software security concerns are not only raised for internet-based
applications and software. They are also found in other application
domains such as the Internet of things (IoT). Koivu et al. [15] an-
alyzed heterogeneous security solutions for IoT and put forward
appropriate techniques to implement them. Software security vul-
nerabilities find their way into software often during runtime of
software application. One such work can be found in [9] where
the filers of the patent proposed a runtime analysis framework for
identifying software security vulnerabilities.

Ramachandran [27] identified key methods and techniques of
software security requirements engineering for developing secure
cloud services. Implementing best security practices within soft-
ware life cycle can be found in [18]. Mohaddes et al. [19] discussed
software security challenges and issues in software development
lifecycle. Techniques of knowledge management are extensively
used for capturing software security knowledge. Due to critical need
for security knowledge to be structured, we can find various efforts
of managing them. We discuss these efforts below. Such efforts
can be found in [25]. Premchaiswadi et al. stressed for managing
software security knowledge by software engineering knowledge
management techniques. Nunes et al. [23] discussed techniques to
include security relevant information within software engineering
artifacts. This is supported by a knowledge management environ-
ment.

Research can be found in literature [1] where Abu-Taieh et al.
proposed a cyber security body of knowledge useful for knowl-
edge management. Modeling software security knowledge can be
found in [7]. Jens et al. used ontologies to manage system-specific
and security knowledge. An owl based ontology to model security
knowledge can be found in [13]. Security information is classi-
fied with the help of ontology in [21]. Vorobiev et al. proposed an
ontology-driven approach to capture information security knowl-
edge [30]. In another effort, the authors proposed a common body
of knowledge for securing software and services. One such work
can be found in [28]. Schwittek et al. proposed an ontology-based
approach for mapping security requirements to solutions i.e. se-
curity patterns in [10]. A comprehensive security ontology called
SecAOnto [8] is an OWL-based model used for security assessment.

An ontology extending the vulnerability concepts provided by
the National Institute of Standards and Technology (NIST) can be
found in [29]. The ontology can be used to reason, manage, and
analyze vulnerabilities. A context-based ontology for managing
software security knowledge can be found in [32]. An ontology
capturing security knowledge from available repositories and spe-
cialized vulnerability databases can be found in [5].

A Comparison Study of Available Software Security Ontologies EASE 2020, April 15–17, 2020, Trondheim, Norway

3 METHODOLOGY
In this section, we discuss the methodology adopted in this work.

First of all, we searched for the available software security on-
tologies in the published literature. As software security is part of
computer and information security, we looked into those domains
as well. The selection criteria for software security ontologies are
threefold; the ontology has to be published in a peer-reviewed av-
enue between 2005 and 2019, the ontology has to be specific to
software security, and ontologies that only discuss information or
computer security in general are excluded.

Next, we looked for ontology evaluation tools that can give us
quantitative results for the selected ontologies. Several tools are
available for ontology evaluation with respect to various criteria
[11], but our focus is on ontology design and syntactic correctness,
so we selected the tools accordingly. The selection criteria for tools
are availability, popularity, features, supported input, ease of use,
significant insights provided, and ease of installation of the tools.

In addition to collecting and analyzing various quantitative met-
rics for the selected ontologies from the selected tools, we also
manually analyzed the ontologies to find their fitness for purpose
at hand.

Table 1: Software Security Ontologies Dataset

SN Software Security Ontology Year

1 Herzog et al. [13] 2007
2 Mourad et al. [21] 2008
3 Vorobiev et al. [30] 2010
4 Schwittek et al. [28] 2012
5 Guan et al. [10] 2016
6 Wen et al. [32] 2018
7 Syed et al. [29] 2018
8 De Franco Rosa et al. [8] 2018

From here onward, we will refer to the ontologies with their
serial number as give in Table 1.

4 RESULTS AND DISCUSSION
We evaluated the selected ontologies presented in Table 1. We used
Protégé [22] to convert the conceptual models presented in Table 1
into OWL ontologies. The evaluation results are presented below.

4.1 OntoCheck Evaluation Results
OntoCheck3 is a plugin for one of the most widely used open-source
ontology tools Protégé. OntoCheck allows performing clean-up
checks on OWL Ontologies. It reports violations and inconsisten-
cies in naming conventions. Naming conventions are crucial in
ontology engineering. They allow ontologies to be human and
machine-readable, reduce heterogeneity, and ease the process of in-
tegration and mapping of OWL ontologies. We evaluate the results
of violations in most common naming convention practices using
OntoCheck in Table 3. The numbers in Table 3 represent a violation
of a naming convention in percentage for a given ontology.

3http://www2.imbi.uni-freiburg.de/ontology/OntoCheck

Table 2: Quality Metrics and Criteria Metrics [17]

Quality Metrics Criteria Metrics

Accuracy

Attribute Richness
Inheritance Richness
Relationship Richness

Average Depth
Max Depth

Average Breadth
Max Depth

Class Inheritance Richness
Class Relationship Richness

Understandability

Absolute Leaf Cardinality
Absolute Depth
Average Depth
Maximum Depth
Absolute Breadth
Average Breadth
Maximum Breadth
Class Readability

Cohesion Absolute Root Cardinality
Absolute Leaf Cardinality

Computational Efficiency Tangledness

Conciseness Average Population
Class Richness

Table 3: OntoCheck Software Security Ontology Evaluation.
Results report naming convention violations in percentage.

Naming Convention ∥Ontoloдies : 1 2 3 4 5 6 7 8
All Capital Case 94.4 87.5 92.8 94.4 94.7 95.4 93.9 97
All Lower Case 94.4 87.5 45.2 94.4 94.7 95.4 96.9 26.4
Upper Case Start 27.7 0 2.3 50 57.8 98.9 51.5 26.4

Camel Case 0 0 0 0 5.2 98.9 0 0
Camel Hump 94.4 87.5 95.2 94.4 94.7 96.4 96.9 97

The results in Table 3 shows that most conceptual models uses
the camel case naming conventions while ontology by Wen [32]
does not follow any naming convention and has high violation
percentage in all commonly used naming conventions.

4.2 RDF Triple Checker Evaluation Results
RDF Triple checker 4 identifies common errors found in RDF data.
The tool verifies the use of RDF Schema5 in a given OWL ontology
and points out accuracy and errors. RDF tripple checker provides
more insight to RDF syntax than OWL Manchester 6. Evaluation
by RDF Triple checker shows that all software security ontologies

4http://graphite.ecs.soton.ac.uk/checker/
5https://www.w3.org/TR/rdf-schema/
6http://visualdataweb.de/validator/

http://www2.imbi.uni-freiburg.de/ontology/OntoCheck
http://graphite.ecs.soton.ac.uk/checker/
https://www.w3.org/TR/rdf-schema/
http://visualdataweb.de/validator/

EASE 2020, April 15–17, 2020, Trondheim, Norway Alenezi, M., Basit, H.A.,Khan, F.I., and Beg, M.A.

commonly use schema elements Type, Domain, Range, Ontology,
objectProperty, and Class. These elements are defined correctly and
are indicated as "OK" by tool. Ontologies 3 and 8 use an additional
schema element SubclassOf which is defined correctly aswell and
indicated as "OK". The results indicate that all the ontologies are
conceptually valid for further processing of RDF schema based
queries.

4.3 Ontology Pitfall Scanner Evaluation
Results

OOPS! 7 is a widely used web-based ontology evaluation tool with
high availability. OOPS! examines ontologies against 33 common
pitfalls. It reports additional pitfalls detected by many existing
tools[24].

From the Table 4, we find that Ontologies 3, 4, and 7 have most
number of pitfall cases, while Ontology 6 has the least number of
pitfall cases. ‘Missing annotations’ is the most common type of
pitfall, followed by ‘Inverse relationship not explicitly declared’.

4.4 OntoMetric Evaluation Results
A framework for metrics in the wider area of ontology engineering
is provided by web-based ontology evaluation tool OntoMetric8.
The provided quality metrics help with processes or methodologies
for the design of ontologies and in the selection of the best ontology
among several. We use OntoMetrics to evaluate to which extent
and how good methodologies, practices, and guidelines have been
followed by the selected software security ontologies. The tool
calculates base metrics, graph metrics, and schema metrics. Base
metrics show the number of various ontology elements. Schema
metrics assess the design of ontologies, while graph metrics analyze
the structure of ontologies. In the base metrics DL expressivity, the
expressivity is encoded in the label for logic using AL (Attributive
Language) and ALH (Attributive Language Role Hierarchy).

We evaluate the quality of the software security ontologies with
the help of the Base Metrics (Table 5), Graph Metrics (Table 6),
Schema Metrics (Table 7), Quality and Criteria metrics (Table 2)
proposed in [17]. From Table 2, with respect to ontology accuracy
and understandability, we find ontologies 3,7, and 8 to bemoderately
accurate and understandable. Ontologies 1, 2, and 4 are found to
be less accurate and understandable. Ontology 6 is found to be
relatively better than other ontologies in terms of accuracy and
understandability. When looking at computational efficiency, all
of the ontologies except 5 were found be to be computationally
efficient. Ontologies 4, 7 and 8 have high cohesion, Ontologies 5
and 6 have moderate, while Ontologies 1 and 2 have low cohesion.
All of the available software security ontologies were found to be
concise.

5 QUALITATIVE ANALYSIS
In this section, we qualitatively analyze the selected ontologies
for the purpose of knowledge management of software security
domain and comment on their suitability. Ontology 1 is an informa-
tion security ontology with more generic terms and covers some
aspects of software security. However, the terminology used is not
7http://oops.linkeddata.es/response.jsp
8https://ontometrics.informatik.uni-rostock.de/ontologymetrics/

Table 4: Ontology Pitfall Scanner (OOPS) Checker Software
Security Ontology Evaluation

Ontology Pitfalls Cases

1 Creating unconnected ontology elements 1
Missing annotations 32
Missing disjointness 1
Inverse relationship not explicitly declared 16
No License declared 1

2 Creating unconnected ontology elements 12
Missing annotations 1
Missing disjointness 6
Inverse relationship not explicitly declared 1
No License declared 1

3 Using "is" instead of "rdfs:subClassOf"
or "rdf:type" or "owl:sameAs" 1

Missing annotations 94
Missing disjointness 1
Inverse relationship not explicitly declared 55
Using different naming conventions in ontology 1
Equivalent classes not explicitly declared 2
No License declared 1

4 Creating unconnected ontology elements 2
Missing annotations 47
Missing disjointness 1
Inverse relationship not explicitly declared 27
No License declared 1

5 Missing annotations 37
Missing disjointness 1
Inverse relationship not explicitly declared 20
No license declared 1

6 Creating unconnected ontology elements 2
Missing annotations 32
disjointess 1
Inverse relationship not declared 12
No License declared 1

7 Creating unconnected ontology elements 1
Missing annotations 61
Missing disjointness 1
Inverse relationship not explicitly declared 30
No License declared 1

8 Creating unconnected ontology elements 10
Missing annotations 46
Missing disjointness 1
Inverse relationship not explicitly declared 14
Equivalent classes not explicitly declared 2
No License declared 1

http://oops.linkeddata.es/response.jsp
https://ontometrics.informatik.uni-rostock.de/ontologymetrics/

A Comparison Study of Available Software Security Ontologies EASE 2020, April 15–17, 2020, Trondheim, Norway

Table 5: Base Metrics

Metrics ∥Ontoloдies : 1 2 3 4 5 6 7 8

Axioms 71 24 203 101 77 112 121 101
Logical Axiom Counts 39 12 109 54 40 48 60 54

Class Count 16 6 40 20 17 20 31 20
Total Classes Count 16 6 40 20 17 20 31 20

Object Property Count 16 6 55 27 20 13 30 27
Total Object Properties Count 16 6 55 27 20 13 30 27

Data Property Count 0 0 0 0 0 0 0 0
Total Data Properties Count 0 0 0 0 0 0 0 0

Properties Count 16 6 55 27 20 13 30 27
Individual Count 0 0 0 0 0 0 0 0
Total Individuals 0 0 0 0 0 0 0 0
DL expressivity AL AL ALH AL AL ALH AL AL

Table 6: Graph Metrics

Metrics ∥Ontoloдies : 1 2 3 4 5 6 7 8

Absolute root cardinality 9 6 9 20 17 8 40 20
Absolute leaf cardinality 13 6 13 20 17 15 40 20

Absolute sibling cardinality 16 6 16 20 17 20 40 20
Absolute depth 23 6 23 20 17 32 40 20
Average depth 1.4375 1 1.4375 1 1 1.6 1 1
Maximal depth 2 1 2 1 1 2 1 1
Absolute breadth 16 6 16 20 17 20 40 20
Average breadth 4 6 4 20 17 3.33 40 20
Maximal breadth 9 6 9 20 17 8 40 20

Ratio of leaf fan-outness 0.8125 1 0.8125 1 1 0.75 1 1
Ratio of sibling fan-outness 1 1 1 1 1 1 1 1

Tangledness 0 0 0 0 0 0 0 0
Total Number of Paths 16 6 16 20 17 20 40 20

Average Number of Paths 8 6 8 20 17 10 40 20

Table 7: Schema Metrics

Metrics ∥Ontoloдies : 1 2 3 4 5 6 7 8

Attribute richness 0 0 0 0 0 0 0 0
Inheritance richness 0.5 0 0 0 0 0.6 0.5625 0
Relationship richness 0.4838 1 1 1 1 0.52 0.4375 1
Attribute class ratio 0 0 0 0 0 0 0 0
Equivalence ratio 0 0 0 0 0 0 0 0
Axiom/Class ratio 2.9 4 5.075 5.05 4.529 5.6 2.875 3.9

Inverse relations ratio 0 0 0 0 0 0 0 0
Class/relation ratio 1.03 1 0.72 0.74 0.85 0.8 1 1.03

enough to cover software security knowledge management. On-
tology 2 is focused on the hardening and patching of open-source
software systems. It does not address all relevant software develop-
ment phases. Ontology 3 is a general information security ontology.
It is too complicated with lots of terms and layers and only ad-
dresses some relevant terms of software security. Ontology 4 is
dedicated to a common body of knowledge for engineering secure
software and services. The ontology lacks several integral parts of
software security knowledge management terms such as attacks,
vulnerabilities, and countermeasures. Ontology 5 is more focused
on security pattern selection. It helps practitioners to select the
appropriate security patterns for a specific situation. Ontology 6 is
the only ontology that is specific to software security knowledge

management. It is an initial work that is not yet mature. The authors
decided to separate the ontology into two contexts - application
and domain model. The ontology lacks several main concepts about
software security knowledge management. It focuses on the imple-
mentation level of the software development lifecycle. Ontology 7
focuses more on vulnerabilities management which is only a sub-
set of software security. Ontology 8 is more focused on security
assessments. It covers aspects of how to assess the software system
with regard to security. It lacks several integral parts of software
security knowledge management terms.

6 THREATS TO VALIDITY
For our study, we took measures to mitigate potential threats to
validity which can be internal validity and conclusion validity [6].
The threat to internal validity in this study could lie in the selec-
tion bias (i.e. available software security ontologies were selected
for analysis). While shortlisting the available software security on-
tologies, we made sure to include ontologies only available in the
software security domain. We excluded the ontologies available
in the domain of information security and computer security. We
believe the selection bias is mitigated. Conclusion validity deals
with the correctness of the conclusion reached in the study. We
mitigated the threat to conclusion validity as we used standard and
popular tools for evaluating the available ontologies.

7 CONCLUSION
An increasing number of cyber attacks on internet-based applica-
tions and services due to softwareweaknesses demands for software
security knowledge management. Efforts have been made to orga-
nize security knowledge using knowledge management techniques
such as ontologies. Hence, this has resulted in numerous security
ontologies in literature. Ontologies for organizing software security
knowledge and their analysis is least researched upon. Therefore in
this paper, we have identified software security ontologies available
in the literature and the tools that can analyze various aspects of
these ontologies. We have analyzed and evaluated eight ontologies
using four popular tools i.e. OntoCheck, OntoMetrics, OOPS, and
RDF Tripple Checker tools. Moreover, we have discussed these
results and also provided a qualitative assessment of the selected
ontologies. The ontology proposed by Wen [32] was found to be
reasonably accurate, cohesive, computationally efficient, and con-
cise. It also has the least number of pitfall cases when evaluated
by OOPS. We believe that this ontology can be used as the basis
for creating the standard ontology of the software security domain,
which will also cover the areas of the domain not yet captured
by the existing ontologies. As part of future work, this standard
software security ontology will be used to develop the standard
software security knowledge management platform for software
practitioners.

8 ACKNOWLEDGEMENT
The authors are grateful to Prince Sultan University for supporting
this work.

EASE 2020, April 15–17, 2020, Trondheim, Norway Alenezi, M., Basit, H.A.,Khan, F.I., and Beg, M.A.

REFERENCES
[1] E. M. O. Abu-Taieh. 2017. Cyber Security Body of Knowledge. In 2017 IEEE 7th

International Symposium on Cloud and Service Computing (SC2). IEEE, 104–111.
https://doi.org/10.1109/SC2.2017.23

[2] Alka Agrawal, Mamdouh Alenezi, Rajeev Kumar, and Raees Ahmad Khan. 2019. A
source code perspective framework to produce secure web applications. Computer
Fraud & Security 2019, 10 (2019), 11–18.

[3] Mamdouh Alenezi and Ibrahim Abunadi. 2015. Evaluating software metrics as
predictors of software vulnerabilities. International Journal of Security and Its
Applications 9, 10 (2015), 231–240.

[4] Mamdouh Alenezi and Yasir Javed. 2016. Developer companion: A framework to
produce secure web applications. International Journal of Computer Science and
Information Security 14, 7 (2016), 12.

[5] Sultan S Alqahtani, Ellis E Eghan, and Juergen Rilling. 2016. Tracing known secu-
rity vulnerabilities in software repositories–A Semantic Web enabled modeling
approach. Science of Computer Programming 121 (2016), 153–175.

[6] V. R. Basili, R. W. Selby, and D. H. Hutchens. 1986. Experimentation in software
engineering. IEEE Transactions on Software Engineering SE-12, 7 (July 1986),
733–743. https://doi.org/10.1109/TSE.1986.6312975

[7] Jens Bürger, Daniel Strüber, Stefan Gärtner, Thomas Ruhroth, Jan Jürjens, and
Kurt Schneider. 2018. A framework for semi-automated co-evolution of security
knowledge and system models. Journal of Systems and Software 139 (2018),
142–160.

[8] Ferrucio de Franco Rosa, Mario Jino, and Rodrigo Bonacin. 2018. Towards an On-
tology of Security Assessment: a core model proposal. In Information Technology-
New Generations. Springer, 75–80.

[9] Sergey Gorbaty, Travis Safford, Xiaoran Wang, and Yoel Gluck. 2018. Runtime
analysis of software security vulnerabilities. US Patent 10,140,456.

[10] Hui Guan, Hongji Yang, and Jun Wang. 2016. An ontology-based approach to
security pattern selection. International Journal of Automation and Computing
13, 2 (2016), 168–182.

[11] Amelie Gyrard, Soumya Kanti Datta, and Christian Bonnet. 2018. A survey and
analysis of ontology-based software tools for semantic interoperability in IoT
and WoT landscapes. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT).
IEEE, 86–91.

[12] Atsuo Hazeyama, Hironori Washizaki, Nobukazu Yoshioka, Haruhiko Kaiya, and
Takao Okubo. 2016. Literature survey on technologies for developing privacy-
aware software. In 2016 IEEE 24th International Requirements Engineering Confer-
ence Workshops (REW). IEEE, 86–91.

[13] Almut Herzog, Nahid Shahmehri, and Claudiu Duma. 2007. An ontology of
information security. International Journal of Information Security and Privacy
(IJISP) 1, 4 (2007), 1–23.

[14] Raja Khaim, Saba Naz, Fakhar Abbas, Naila Iqbal, Memoona Hamayun, and
Rawalpindi Pakistan. 2016. A review of security integration technique in agile
software development. Int. J. Softw. Eng. Appl 7, 3 (2016), 49–68.

[15] A. Koivu, L. Koivunen, S. Hosseinzadeh, S. Laurén, S. Hyrynsalmi, S. Rauti,
and V. Leppänen. 2016. Software Security Considerations for IoT. In 2016 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). 392–397. https://doi.org/10.1109/
iThings-GreenCom-CPSCom-SmartData.2016.93

[16] Rajeev Kumar, Mohammad Zarour, Mamdouh Alenezi, Alka Agrawal, and
Raees Ahmad Khan. 2019. Measuring security durability of software through
fuzzy-based decision-making process. International Journal of Computational
Intelligence Systems 12, 2 (2019), 627–642.

[17] Birger Lantow. 2016. OntoMetrics: Putting Metrics into Use for Ontology
Evaluation. In Proceedings of the International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016).
SCITEPRESS - Science and Technology Publications, Lda, Setubal, PRT, 186–191.
https://doi.org/10.5220/0006084601860191

[18] Antoni Lluís Mesquida and Antonia Mas. 2015. Implementing information secu-
rity best practices on software lifecycle processes: The ISO/IEC 15504 Security
Extension. Computers & Security 48 (2015), 19–34.

[19] Hanif Mohaddes Deylami, Iman Ardekani, Ravie Chandren Muniyandi, and
Hossein Sarrafzadeh. 2015. Effects of software security on software development
life cycle and related security issues. (2015).

[20] Nabil M Mohammed, Mahmood Niazi, Mohammad Alshayeb, and Sajjad Mah-
mood. 2017. Exploring software security approaches in software development
lifecycle: A systematic mapping study. Computer Standards & Interfaces 50 (2017),
107–115.

[21] Azzam Mourad, Mourad Debbabi, and Marc-André Laverdiere. 2008. Security
hardening of open source software. (2008).

[22] Natalya F Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W Fergerson,
and Mark A Musen. 2001. Creating semantic web contents with protege-2000.
IEEE intelligent systems 16, 2 (2001), 60–71.

[23] Francisco José Barreto Nunes and Adriano Bessa Albuquerque. 2010. A Secure
Software Development Supported by Knowledge Management. In Innovations

and Advances in Computer Sciences and Engineering, Tarek Sobh (Ed.). Springer
Netherlands, Dordrecht, 291–296.

[24] María Poveda-Villalón, Mari Carmen Suárez-Figueroa, and Asunción Gómez-
Pérez. 2012. Validating ontologies with oops!. In International conference on
knowledge engineering and knowledge management. Springer, 267–281.

[25] Nucharee Premchaiswadi. 2018. Security Management and Knowledge Engineer-
ing. Engineering Journal of Siam University 29 (2018).

[26] Akond Ashfaque Ur Rahman and Laurie Williams. 2016. Software security in
devops: Synthesizing practitioners’ perceptions and practices. In 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery (CSED).
IEEE, 70–76.

[27] Muthu Ramachandran. 2016. Software security requirements management as
an emerging cloud computing service. International Journal of Information
Management 36, 4 (2016), 580–590.

[28] Widura Schwittek, Holger Schmidt, Kristian Beckers, Stefan Eicker, Stephan
Faßbender, and Maritta Heisel. 2012. A common body of knowledge for engi-
neering secure software and services. In 2012 Seventh International Conference on
Availability, Reliability and Security. IEEE, 499–506.

[29] Romilla Syed andHaonan Zhong. 2018. Cybersecurity VulnerabilityManagement:
An Ontology-Based Conceptual Model. (2018).

[30] ArtemVorobiev, Nargiza Bekmamedova, et al. 2010. An ontology-driven approach
applied to information security. Journal of Research and Practice in Information
Technology 42, 1 (2010), 61.

[31] S. Wen. 2017. Software security in open source development: A systematic
literature review. In 2017 21st Conference of Open Innovations Association (FRUCT).
364–373. https://doi.org/10.23919/FRUCT.2017.8250205

[32] Shao-Fang Wen and Basel Katt. 2018. An Ontology-Based Context Model for
Managing Security Knowledge in Software Development. In Proceedings of the
23rd Conference of Open Innovations Association FRUCT. FRUCT Oy, 56.

https://doi.org/10.1109/SC2.2017.23
https://doi.org/10.1109/TSE.1986.6312975
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.93
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.93
https://doi.org/10.5220/0006084601860191
https://doi.org/10.23919/FRUCT.2017.8250205

	Abstract
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Results and Discussion
	4.1 OntoCheck Evaluation Results
	4.2 RDF Triple Checker Evaluation Results
	4.3 Ontology Pitfall Scanner Evaluation Results
	4.4 OntoMetric Evaluation Results

	5 Qualitative Analysis
	6 Threats to Validity
	7 Conclusion
	8 Acknowledgement
	References

