
Paper—Methodical Software Testing Course in Higher Education

Methodical Software Testing Course in Higher Education

https://doi.org/10.3991/ijep.v12i1.26111

Mamdouh Alenezi1(), Mohammad Akour1,2
1 Computer Science Department, Prince Sultan University, Riyadh, Saudi Arabia

2 Information Systems Department, Yarmouk University, Irbid, Jordan

malenezi@psu.edu.sa

Abstract—Software testing plays a significant role in developing high-

quality software. Over Years, too many companies report that more than 50%

of software development cost goes for testing. The main problem here is not

about how much testing is conducted to guarantee the quality, the main factor

of successful testing is who is doing the testing and how are they conducting the

testing. Moreover, testing skills might be started and enriched during under-

graduate study. During undergraduate study, students can take very basic skills

in testing, their experience will be conducted on a few sets of testing tools and

very small software. Many articles and reports highlighted how many recent

computer science and software engineering undergraduate students often face

obstacles when they start their professional jobs. The reasons are most likely

because of the misalignment of the earned skills during their academic school

education with what is needed in the industry. In this paper, the authors aim to

reduce the gap between what skills are needed in the market and what software

testing course is covered in our university. Software testing course is designed

and developed for undergraduate students in our university as work on progress,

as we believe university-level courses should be updated to match both the

well-known standards and the market needs. Moreover, this article summarizes

the findings and the lesson learned of using the designed course as a real exper-

iment in university education.

Keywords—engineering education, software testing, ABET, higher education

1 Introduction

Software testing is a major part of teaching software engineering students. Howev-

er, it is a very challenging topic to be taught from an educational perspective [1]. In

teaching software testing, students need to learn different testing levels and tech-

niques, can choose the right technique to apply, assess the quality of their test suites,

and write maintainable test code. Moreover, most universities focus on teaching stu-

dents how to build software, not how break it [2]. A course’s setup as mostly deliv-

ered lectures can make testing both as a concept and a practice can be very difficult to

teach. Software testing in universities needs to have a more practical industry-relevant

focus [2].

iJEP ‒ Vol. 12, No. 1, 2022 51

https://doi.org/10.3991/ijep.v12i1.26111
mailto:malenezi@psu.edu.sa

Paper—Methodical Software Testing Course in Higher Education

Educating students on the art of software testing is challenging, for both students

and instructors. From the instructors’ perspective, it is challenging to keep an up-to-

date course with the advances in the field as well as realistic activities and assign-

ments [3]. The other challenge for instructors is the fact that some testing topics are

not conceptually straightforward, not easy to demonstrate and generalize, and are not

all available in a single textbook [4]. Students on the other hand are more excited

about building things, rather than testing them [5]. This lack of motivation in students

can be also attributed to the inconsistency between practical and theoretical contents,

contents that are taught in the classroom are not the same that are required in the in-

dustry, and students have difficulties in understanding the processes and the stages of

tests [12].

Software engineers should be aware of the consequences of bugs and defects in

software systems and their impact on our society. One of the main responsibilities of

software engineers is to make sure that the software works. Software testing has be-

come one of the important skills in software engineers [1, 12, 15]. Inspecting and

going through large and complex code bases to find bugs is not an easy task. It needs

a deep understanding of manual testing to advanced automated testing techniques. Big

tech companies take testing very seriously [1] and require their engineers to master

such techniques. Based on the findings of an empirical analysis of knowledge gaps in

software engineers, the authors recommend that educators should include more mate-

rials on software testing in the SE curriculum [6].

An essential part of any Software Engineering Program is software testing [7, 8, 9].

Clarke et al. [5] highlighted that because there are a lot of topics to be covered in a

software engineering program and only a little attention is paid to software testing [7].

Lemos et al. [8] discussed that university instructors do not possess the right skills and

expertise to teach students to create more reliable code. Jones [10] proposes as part of

the educational experience that each core course in the curriculum should include one

or more testing experiences.

Several researchers address the quality improvement of the developed software by

undergraduate students from different perspectives. Segura and Staubits [17,18] con-

centrate on improving students’ skills in two specific areas: software usability and

programming level respectively. They employed their proposing enhancements as a

case study by including a few exercises in the selected curriculum at your universities.

The results of their experiments reveal a noticeable appropriation of the knowledge of

the group of students who participated in the study. However, in this paper, we ad-

dress the quality of the developing software from testing perspectives. The authors

focus on enhancing the testing course in order to develop the software with high qual-

ity, in addition to reducing the gap with the needed industry tester skills. Our testing

course has always been designed to be experiential, whereby students applied class-

room topics on software systems. Each semester the course was updated to include

new topics, new tools, new techniques, new assignments, new activities, and new

research results. There are several sources of updates happening to the course includ-

ing research results, industry practitioners’ feedback, and students’ feedback. These

updates are centered on improving student learning perspectives. The main contribu-

tions of this article are providing the details of:

52 http://www.i-jep.org

Paper—Methodical Software Testing Course in Higher Education

 An undergraduate software testing course structure (topics, activities, and assign-

ments) that has matured over several offerings

 Our experiences structuring the courses around SWEBOK v3, and several feed-

backs from the involved students and instructors.

 Design of a course that meets ABET criteria for SE courses.

2 Methodology

The course is designed following the methodology presented in Figure 1. We de-

signed the course based on the educational standards (SWEBOK) and Accreditation

body (ABET). Each semester, we take into account the feedback from students, indus-

try experts, and new technologies to improve the content of the course.

Fig. 1. Methodology to develop and improve the course

The Computer Science program at Prince Sultan University (PSU) is accredited by

ABET, and at the current time, we are preparing to submit the ABET readiness doc-

ument for the SE program. Therefore, the authors designed the course in such a way

that matches the Accreditation body (ABET), in addition to following the educational

standards (SWEBOK). Each semester, we take into account the feedback from stu-

dents, industry experts, and new technologies to improve the content of the course.

As shown in Figure 1, four main factors are addressed to make sure the designed

course is covering the most important needs from both academic and industry per-

spectives. For example, the SWEBOK and the ABET criteria and standards are fol-

lowed to make sure the course is matching a well-known and specialized agency in

Software Engineering courses. While the current needs and the lack of required skills

are collected from students and industry experts. Authors strive to have a comprehen-

sive view of the best practices in SWEBOK and ABET, and the current/future needed

skills from the industry.

iJEP ‒ Vol. 12, No. 1, 2022 53

Paper—Methodical Software Testing Course in Higher Education

2.1 Course details

The undergraduate-level Software Testing course introduces students to the disci-

pline of software testing and quality assurance. The course involves occasional as-

signments, activities, and a semester-long project. The assignments and activities

offer a chance for students to reinforce their understanding of the material from class.

The project has small student groups testing an open-source software and applying

techniques and tools learned in class to that software.

At PSU, instructors have been teaching a standalone course on software testing for

more than 4 years. During all these years, our instructors strived to monitor the en-

gagement of the students, the weaknesses, and the strengths to finalize the content to

cope the state of the art testing field. In the designed course, instructors aimed to im-

prove students’ attitudes towards testing and make them feel enthusiastic about stud-

ied topics. Figure 2 shows the functional dimensional limits of the software testing

course. The course website and resources can be accessed at https://malenezi.

github.io/malenezi/SE401/. After completing this course, the students will be able to:

1. Recognize software quality assurance and testing as an essential element in the

software development life cycle

2. Describe the phases of software quality assurance and testing

3. Develop test plans, identify test conditions, and design test cases

4. Apply a wide variety of testing techniques at various testing levels

5. Compute various metrics from the testing data and interpret them to identify prob-

lems in software testing

6. Adequately test a medium software project in a group setting

Fig. 2. Dimensions of software testing [11]

54 http://www.i-jep.org

https://malenezi.github.io/malenezi/SE401/
https://malenezi.github.io/malenezi/SE401/

Paper—Methodical Software Testing Course in Higher Education

The main learning modules taught within the course are:

1. Introduction

2. Software Quality

3. Software Testing Life Cycle

4. Software Testing Plans and Test cases

5. Unit Testing and Junit

6. Black Box Testing

7. White Box Testing

8. Integration, System and Regression Testing

9. Testing Metrics

10. Web and Mobile Testing

2.2 Course assignment and activities

To make sure that the designed course is more than theory-oriented content, the

class has several assignments and activities. These tasks are distributed among the

course topics. This course requires both a conceptual/theoretical understanding of the

main foundations of software testing and the practical aspects which are covered by

the activities. Table 1 shows the course organization with regards to topics, assign-

ments, and activities.

Table 1. Software testing course organization

Chapter Module Assignment Activity

1 Introduction Fundamentals

2 Software Quality Quality Engineering

3 Software Testing Life Cycle
Testing Process and

Life Cycle

4 Software Testing Plans and Test cases Test Plan and Specification

5 Unit Testing and Junit
JUnit and Ant

JUnit and Coverage Testing

6 Black Box Testing

Black Box Testing

Equivalence class and

boundary value

7 White Box Testing

White Box Testing

SpotBugs
Complexity analysis and

visualization

8 Integration, System and Regression Testing Integration Testing

9 Testing Metrics Code Coverage Analysis

10 Web and Mobile Testing Web Testing

2.3 Course project

The embedded project aims to allow students to apply the software testing process

to a real software product. Since open-source software systems are available to be

iJEP ‒ Vol. 12, No. 1, 2022 55

Paper—Methodical Software Testing Course in Higher Education

downloaded, and some of them have enough technical details, several open-source

applications are collected and shared with the students for experimental works. Stu-

dents work on the project as groups of a maximum of 5 students. The number of stu-

dents depends on two main factors: the number of students in the course and the size

of the software under test. The project is designed to be built incrementally. There are

four main phases in the project. The first phase is about test planning where students

prepare a test plan to adequately test the software system. The second phase is about

test cases where students are required to design and prepare detailed test cases for all

the types of tests that have been previously planned: Unit Testing, Integration Testing,

and System Testing. The third phase is about executing the test cases that were de-

signed in the previous phase. The last phase is about presenting the reports and analy-

sis in front of the class. Detailed rubrics were developed to assess each phase of the

project.

2.4 Software engineering body of knowledge (SWEBOK)

IEEE developed the SWEBOK, which is a guide for the body of knowledge in

Software Engineering, to promote the professionalization of Software Engineering.

The latest version of the Software Engineering Body of Knowledge (SWEBOK v3)

classifies the SE knowledge into 12 Knowledge Areas (KAs), which are themselves

broken down into 67 subareas (sub-KAs) in total. Software Testing is chapter number

4 in the SWEBOK. According to SWEBOK v3.0, the software testing topics are the

following:

1. Software Testing Fundamentals

2. Test Levels

3. Test Techniques

4. Test-Related Measures

5. Test Process

6. Software Testing Tools

A mapping between SWEBOK v3.0 and the course topics was done to ensure con-

sistency and is presented in Table 2. Each covered topic is mapped to its correspond-

ing one in the SWEBOK.

Table 2. Mapping course topics to SWEBOK v3.0

SWEBOK v3.0 Our Course

1. Software Testing Fundamentals
1. Introduction

2. Software Quality

2. Test Levels 8. Integration, System, and Regression Testing

3. Test Techniques

5. Unit Testing and Junit

6. Black Box Testing
7. White Box Testing

4. Test-Related Measures 9. Testing Metrics

5. Test Process
3. Software Testing Life Cycle
4. Software Testing Plans and Test cases

3. Software Testing Tools Assignments, Activities, and Project

56 http://www.i-jep.org

Paper—Methodical Software Testing Course in Higher Education

2.5 ABET

According to the ABET Criteria for Accrediting Engineering Programs (2021 –

2022), Criterion 3 is concerning Student Outcomes. This criterion states that the pro-

gram must have documented student outcomes that support the program's educational

objectives [13, 16]. Attainment of these outcomes prepares graduates to enter the

professional practice of engineering. There are seven student outcomes as follows:

1. an ability to identify, formulate, and solve complex engineering problems by ap-

plying principles of engineering, science, and mathematics

2. an ability to apply engineering design to produce solutions that meet specified

needs with consideration of public health, safety, and welfare, as well as global,

cultural, social, environmental, and economic factors

3. an ability to communicate effectively with a range of audiences

4. an ability to recognize ethical and professional responsibilities in engineering situa-

tions and make informed judgments, which must consider the impact of engineer-

ing solutions in global, economic, environmental, and societal contexts

5. an ability to function effectively on a team whose members together provide lead-

ership, create a collaborative and inclusive environment, establish goals, plan tasks,

and meet objectives

6. an ability to develop and conduct appropriate experimentation, analyze and inter-

pret data, and use engineering judgment to draw conclusions

7. an ability to acquire and apply new knowledge as needed, using appropriate learn-

ing strategies.

Table 3 shows the mapping between our course learning outcomes and the seven

student outcomes. We use different scales to indicate the level of contribution of that

learning outcome. The level scale are (I = Introduction, P = Proficient, A = Ad-

vanced). Direct and indirect assessments are used to measure these learning outcomes.

Direct assessment is according to rubrics to measure students’ deliverables such as

assignments, activities, exams, presentations, and projects. Indirect assessment is

based on the point of view of students and what they learned during the course. Both

types of assessments are based on students’ learning outcomes that are defined for a

specific course. Based on the assessments that are done each semester, some points in

the course are modified according to the results. We use four different levels of course

learning outcomes (CLOs) assessments. These four levels are (Below Expectations,

Developing Expectations, Meeting Expectations, and Above Expectations).

iJEP ‒ Vol. 12, No. 1, 2022 57

Paper—Methodical Software Testing Course in Higher Education

Table 3. The course learning outcomes (CLO) mapped to ABET Student Outcomes (SO)

CLO # SO1 SO2 SO3 SO4 SO5 SO6 SO7

1 P

2 A

3 P P A

4 A

5 I

6 P P

3 Results

To track the success of the course improvement plan, two main assessments are

monitored. The first assessment is considered an indirect assessment where the stu-

dents are asked about the satisfaction of the learning outcomes. An anonymous sur-

vey, course exit survey, is distributed to students through the learning management

systems. The students are asked to evaluate their satisfaction with each one of the

learning outcomes. All enrolled students participated in this survey (105 male stu-

dents). The second assessment is considered a direct assessment where the students'

answers and produced work are evaluated against rubrics [14]. The work includes

assignments, activities, exams, and projects. Another feedback comes from industry

practitioners and experts. Each semester the material is discussed with at least four

experts to seek their feedback about the practicality and usefulness of the materials,

tools, and activities. Their feedback is injected into the continuous improvement cycle

of the course.

Figure 3 shows the results of the indirect assessments over seven semesters. The

results indicate a strong satisfaction of students regarding the course learning out-

comes. It is clear that the improvement to the course is helping students get the right

skills and knowledge needed to master testing. The survey is done before the final

exam to ensure the objectivity of students. All the results are above 75% which is

considered the target at our college.

Figure 4 shows the results of the direct assessments over seven semesters. The re-

sults indicate that the work produced by students is highly acceptable according to the

predefined rubrics. Generally speaking, all learning outcomes are improving over

time. Since most of the feedback is coming from students, the improvements are help-

ing students in improving their knowledge and skills throughout semesters.

58 http://www.i-jep.org

Paper—Methodical Software Testing Course in Higher Education

Fig. 3. The results of the indirect assessments over seven semesters

Fig. 4. The results of the indirect assessments over seven semesters

4 Conclusion

The quick growth of topics, tools, and industry needs for software testing raises the

question of whether the designed testing courses are sufficient to form a modern stu-

dent as a specialist that is capable of professionally testing software systems through-

75%

80%

85%

90%

95%

100%

CLO 1 CLO 2 CLO 3 CLO 4 CLO 5 CLO 6

Indirect Assessment

Semester 1 Semester 2 Semester 3 Semester 4

Semester 5 Semester 6 Semester 7

0%

20%

40%

60%

80%

100%

CLO 1 CLO 2 CLO 3 CLO 4 CLO 5 CLO 6

Direct Assessment

Semester 1 Semester 2 Semester 3 Semester 4

Semester 5 Semester 6 Semester 7

iJEP ‒ Vol. 12, No. 1, 2022 59

Paper—Methodical Software Testing Course in Higher Education

out the software life cycle. To address this question, a software testing course is de-

signed and taught at PSU to contribute to improving PSU students’ position in the

national and international IT market. As a preliminary step, the author sets out the

main visions of software testing, required skills, and national and international quality

standards. Moreover, the challenges and students' perspectives are collected to be one

of the main feedback sources to come up with the targeted course. The course has

evolved according to students’ feedback, industry needs, and new technologies. The

course evolution has been successful based on both indirect and direct assessments.

The industry feedback has been also great since the course graduates are well-

received in the industry.

5 Acknowledgment

The authors would like to acknowledge the support of Prince Sultan University for

paying the Article Processing Charges (APC) of this publication.

6 References

[1] Aniche, Maurício, Felienne Hermans, and Arie Van Deursen. "Pragmatic software testing

education." In Proceedings of the 50th ACM Technical Symposium on Computer Science

Education, pp. 414-420. 2019. https://doi.org/10.1145/3287324.3287461

[2] Krutz, Daniel E., Samuel A. Malachowsky, and Thomas Reichlmayr. "Using a real world

project in a software testing course." In Proceedings of the 45th ACM technical symposi-

um on Computer science education, pp. 49-54. 2014. https://doi.org/10.1145/2538862.253

8955

[3] Garousi, Vahid, and Aditya Mathur. "Current state of the software testing education in

north american academia and some recommendations for the new educators." In 2010 23rd

IEEE Conference on Software Engineering Education and Training, pp. 89-96. IEEE,

2010. https://doi.org/10.1109/CSEET.2010.29

[4] Timoney, Joseph, Stephen Brown, and Deshi Ye. "Experiences in software testing educa-

tion: some observations from an international cooperation." In 2008 The 9th International

Conference for Young Computer Scientists, pp. 2686-2691. IEEE, 2008. https://doi.org/10.

1109/ICYCS.2008.209

[5] Clark, N. "Peer Testing in Software Engineering Projects." In Australasian Computing Ed-

ucation Conference (ACE 2004), vol. 30, pp. 41-48. 2004.

[6] Garousi, Vahid, Gorkem Giray, and Eray Tuzun. "Understanding the knowledge gaps of

software engineers: An empirical analysis based on SWEBOK." ACM Transactions on

Computing Education (TOCE) 20, no. 1 (2019): 1-33. https://doi.org/10.1145/3360497

[7] Clarke, Peter J., Debra Davis, Tariq M. King, Jairo Pava, and Edward L. Jones. "Integrat-

ing testing into software engineering courses supported by a collaborative learning envi-

ronment." ACM Transactions on Computing Education (TOCE) 14, no. 3 (2014): 1-33.

https://doi.org/10.1145/2648787

[8] Lemos, Otávio Augusto Lazzarini, Fábio Fagundes Silveira, Fabiano Cutigi Ferrari, and

Alessandro Garcia. "The impact of Software Testing education on code reliability: An em-

pirical assessment." Journal of Systems and Software 137 (2018): 497-511. https://doi.org/

10.1016/j.jss.2017.02.042

60 http://www.i-jep.org

https://doi.org/10.1145/3287324.3287461
https://doi.org/10.1145/2538862.2538955
https://doi.org/10.1145/2538862.2538955
https://doi.org/10.1109/CSEET.2010.29
https://doi.org/10.1109/ICYCS.2008.209
https://doi.org/10.1109/ICYCS.2008.209
https://doi.org/10.1145/3360497
https://doi.org/10.1145/2648787
https://doi.org/10.1016/j.jss.2017.02.042
https://doi.org/10.1016/j.jss.2017.02.042

Paper—Methodical Software Testing Course in Higher Education

[9] P. Bourque and R. E. Fairley. 2014. Guide to the software engineering body of knowledge

(SWEBOK), version 3.0. IEEE Computer Society Press.

[10] Jones, Edward L. "An experiential approach to incorporating software testing into the

computer science curriculum." In 31st Annual Frontiers in Education Conference. Impact

on Engineering and Science Education. Conference Proceedings (Cat. No. 01CH37193),

vol. 2, pp. F3D-7. IEEE, 2001. https://doi.org/10.1109/fie.2001.963741

[11] Silvis-Cividjian, Natalia. "Awesome Bug Manifesto: Teaching an Engaging and Inspiring

Course on Software Testing (Position Paper)." In 2021 Third International Workshop on

Software Engineering Education for the Next Generation (SEENG), pp. 16-20. IEEE,

2021. https://doi.org/10.1109/SEENG53126.2021.00010

[12] Valle, Pedro Henrique Dias, Armando Maciel Toda, Ellen Francine Barbosa, and José Car-

los Maldonado. "Educational games: A contribution to software testing education." In

2017 IEEE Frontiers in education Conference (FIE), pp. 1-8. IEEE, 2017. https://doi.org/

10.1109/FIE.2017.8190470

[13] Meah, Kala, Donald Hake, and Stephen Drew Wilkerson. "A multidisciplinary capstone

design project to satisfy abet student outcomes." Education Research International 2020

(2020). https://doi.org/10.1155/2020/9563782

[14] Pejcinovic, Branimir. "Design of Rubrics for Student Outcomes in 2019-2020 ABET Cri-

teria." In 2020 43rd International Convention on Information, Communication and Elec-

tronic Technology (MIPRO), pp. 1543-1548. IEEE, 2020. https://doi.org/10.23919/MIPR

O48935.2020.9245228

[15] Sedelmaier, Yvonne, and Dieter Landes. "SWEBOS-The Software Engineering Body of

Skills." International Journal of Engineering Pedagogy 5, no. 1 (2015). https://doi.org/10.

3991/ijep.v5i1.4047

[16] Damaj, Issam, Ashraf Zaher, and Jibran Yousafzai. "Assessment and evaluation frame-

work with successful application in ABET accreditation." Int. J. Eng. Pedagog. 7.3 (2017):

73-91. https://doi.org/10.3991/ijep.v7i3.7262

[17] Segura, Josue. "The Teaching of Usability in Software Development: Case Study in the

Computer Engineering Career at the University of Matanzas." Int. J. Eng. Pedagog. 11.1

(2021): 4-15. https://doi.org/10.3991/ijep.v11i1.14837

[18] Staubitz, T., Teusner, R., Meinel, C., & Prakash, N. (2017). Cellular Automata as an Ex-

ample for Advanced Beginners' Level Coding Exercises in a MOOC on Test Driven De-

velopment: Lessons Learned and Suggestions for Improvement. International Journal of

Engineering Pedagogy, 7(2). https://doi.org/10.3991/ijep.v7i2.6969

7 Authors

Mamdouh Alenezi is currently the Dean of Quality Assurance and Development

at Prince Sultan University. Alenezi received his MS and Ph.D. degrees from DePaul

University and North Dakota State University in 2011 and 2014, respectively. Dr.

Alenezi is an associate professor in software engineering with a teaching emphasis on

software engineering and software security. He participates in organizing several

international scientific conferences and editorial boards of well-reputed journals. He

has extensive experience in applying data mining and machine learning techniques to

solve software engineering problems. He published more than 80 papers. He conduct-

ed several research areas and developed predictive models using machine learning to

predict fault-prone classes, comprehend source code, and predict the appropriate de-

iJEP ‒ Vol. 12, No. 1, 2022 61

https://doi.org/10.1109/fie.2001.963741
https://doi.org/10.1109/SEENG53126.2021.00010
https://doi.org/10.1109/FIE.2017.8190470
https://doi.org/10.1109/FIE.2017.8190470
https://doi.org/10.1155/2020/9563782
https://doi.org/10.23919/MIPRO48935.2020.9245228
https://doi.org/10.23919/MIPRO48935.2020.9245228
https://doi.org/10.3991/ijep.v5i1.4047
https://doi.org/10.3991/ijep.v5i1.4047
https://doi.org/10.3991/ijep.v7i3.7262
https://doi.org/10.3991/ijep.v11i1.14837
https://doi.org/10.3991/ijep.v7i2.6969

Paper—Methodical Software Testing Course in Higher Education

veloper to be assigned to a newly reported bug. His research focuses on Software

Engineering, Software Security, Machine Learning, and Open Source Software Sys-

tems. Alenezi served as Chair of the Computer Science Department, the Chief Infor-

mation Technology Officer, and Dean of Educational Services before he was appoint-

ed Dean of Quality Assurance and Development in September 2020.

Mohammad Akour is a Full Professor of Software Engineering at Prince Sultan

University (PSU). He got his Bachelor’s (2006) and Master’s (2008) degree from

Yarmouk University in Computer Information Systems with Honor. He joined Yar-

mouk University as a Lecturer in August 2008 after graduating with his master’s in

Computer Information Systems. In August 2009, He left Yarmouk University to pur-

sue his Ph.D. in Software Engineering at North Dakota State University (NDSU). He

joined Yarmouk University again in April 2013 after graduating with his Ph.D. in

Software Engineering from NDSU with Honor. He serves as Keynote Speaker, Or-

ganizer, Co-chair, and publicity Chair for several IEEE conferences, and as ERB for

more than 10 ISI indexed prestigious journals. He is a member of the International

Association of Engineers (IAENG). Akour at Yarmouk University served as Head of

accreditation and Quality assurance and then was hired as director of computer and

Information Center. In 2018, Akour was hired as Vice Dean of Student Affairs at

Yarmouk University.

Article submitted 2021-08-07. Resubmitted 2021-11-03. Final acceptance 2021-11-08. Final version

published as submitted by the authors.

62 http://www.i-jep.org

