
International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

 ISSN: 2278-3075, Volume-9 Issue-1, November, 2019 

2737 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  
Retrieval Number: A4967119119/2019©BEIESP 

DOI: 10.35940/ijitee.A4967.119119 

 

Abstract: The software system evolves and changes with the 

time, so the test suite must be maintained according to code 

changes. Maintaining test cases manually is an expensive and 

time-consuming activity, especially for large test suites, which has 

motivated the recent development of automated test-repair 

techniques. Several researchers indicate that software evolution 

shows a direct impact on test suites evolution, as they have strong 

relationships and they should be evolved concurrently. This article 

aims to provide statistical evidence of having this significant 

relationship between the code production and its associated test 

suites. Seven systems along with releases are collected and eight 

metrics were calculated to be used in this study. The result shows 

how the systems under study are evolving and have a high impact 

on their test suites, although two metrics provide a negative 

significant relationship. 

 
Keywords: Software Testing, Software evolution, complexity, 

size.  

I. INTRODUCTION 

Software testing is an important and essential step to 

identify the correctness and quality of the software systems. 

In the software testing process, the tester should write one test 

case or more to check each function of the system. The test 

case is the smallest meaningful unit of the tests. The result of 

each test case is either pass or fail. .If test cases are passed 

(i.e., the actual results = the expected results), then the 

functionality of a software system corresponding to these 

passed test cases are working correctly. The test suite is a 

collection of test cases to test system functionalities. Any 

software system (S) is divided into two parts: program (P) 

and test suite (T). All system test cases (Tc) are stored in (T). 

These test cases are used to check the correctness of all parts 

of P. The new version of the software system (S') should have 

a different program (P') and test suite (T'). Software evolution 

is one of the essential and normal issues required for most 

existence software throughout their lifetime. The software 

requirements changes may come from business needs, 

competitions, changes in government rules, and environment. 

These changes in requirements are offset by a set of changes 

in the software code. Accordingly, the current test suite 

becomes obsolete for the new version of the software  [1],[2].  

 
Revised Manuscript Received on November 10, 2019. 

* Correspondence Author 

Mamdouh Alenezi*, College of Computer and Information Sciences, 
Prince Sultan University, Riyadh, Saudi Arabia. E-mail: 

malenezi@psu.edu.sa 

Mohammed Akour, Al Yamamah University, Riyadh, Saudi Arabia, 
Yarmouk University, Irbid, Jordan. E-mail: mohammed.akour@yu.edu.jo 

Hiba Al Sghaier, Yarmouk University, Irbid, Jordan. E-mail: 

hibaal_sghaier@yahoo.com 

 

Therefore, the tester must revise all changes on the code to 

repair the corresponding test cases in the test suite. While the 

code evolution may happen frequently, it is very hard for the 

tester to follow all these code evolutions and to make the 

correct decisions by creating, deleting, and updating test 

cases. Previous research indicates that software evolution 

shows a direct impact on test suites evolution, as they have 

strong relationships and they should be evolved concurrently. 

In this paper, authors try to provide statistical evidence of this 

impact in terms of size and complexity metric across several 

versions of diverse software systems. 

II.  RELATED WORK 

Several researchers studied the nature of the co-evolution 

between code and test (i.e. synchronously or phased) [3], [4] 

and [5]. In [3], Lubsen et al. used two case studies: the 

open-source system and industrial software system, as they 

used association rule mining to study the natural of 

co-evolution. They concluded that within an open-source 

system the development and testing are separate activities, 

wherein the industrial software system, the developer used a 

test-driven development strategy. In [4] and [5], the 

researchers proposed three views which are: change history 

view, growth history view, and test coverage evolution view 

to study the nature of the co-evolution. In study number [4], 

the researchers used two open-source projects, while in [5], 

they used two open-source projects and one industrial 

software project. They concluded that the nature of 

co-evolution depends on the development style that is used to 

develop a project.  

Several metrics are used to determine the size of production 

code or tests, such as the number of classes, Line of Code 

(LOC), number of methods, and number of packages. The 

software complexity focuses on how a piece of code interacts 

with other pieces. One of the most popular measurements of 

software complexity is the McCabe metric or Cyclomatic 

complexity metric. The Cyclomatic complexity per method 

metric is the maximum number of linearly independent paths 

within the method [6]. In [7], the authors experimented to 

find a good technique to evaluate the effectiveness of test 

cases for finding defects in open source systems. 

III.  RESEARCH METHODOLOGY 

The main idea behind this research paper is to understand and 

identify how the test cases evolve during the code changes 

(releases) in terms of size and 

complexity and if the code 

evolution has a statistically 

The Impact of Co-evolution of Code Production 

and Test Suites through Software Releases in 

Open Source Software Systems 

Mamdouh Alenezi, Mohammed Akour, Hiba Al Sghaier 



 

The Impact of Co-evolution of Code Production and Test Suites through Software Releases in Open Source Software 

Systems 

2738 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: A4967119119/2019©BEIESP 

DOI: 10.35940/ijitee.A4967.119119 

impact on the test suite evolution.  

2.1 Research hypotheses   

To properly address the impact of the code evolution on 

test suite evolution, authors address the following 

hypotheses: 

H0: There is no statistical relationship between the code 

and test evolution in terms of size and complexity 

H1: There is a high statistical relationship between the 

code and test evolution in terms of size and complexity. 

2.2 Experimental   Setup  

The main goal of this study is to understand how the test 

suite evolves over time. Thus, to achieve this goal, several 

versions of 8 open-source Java systems with their test suits 

were used to investigate different aspects of test-suite 

evolution. These systems were selected according to many 

criteria, which are popular, system size, each system has at 

least 5 versions, and each version has a JUnit test suite. The 7 

open-source Java systems used in our empirical study are 

selected from GitHub (https://github.com/). Table 1 lists the 

systems and their versions.  

 

Table 1: Software systems used in the empirical study  
 Program  Description  Number 

of 

versions  

Gson It is a library to serialize and deserialize Java 

objects to JSON 

12 

IzPack It is a widely used library for packaging 

applications on the Java™ platform 

12 

JodaTime It is the de facto standard date and time library 

for Java 

12 

PMD It is a static source code analyzer that reports on 

issues found within the application code. 

12 

OGNL It is an expression language for Java, which using 

the simpler expression than the Java language.  

12  

Biojava It is an open-source project for manipulating and 

processing biological data in Java language.  

12  

Struts It is a web application framework for developing 

Java EE web applications. 

12  

 

All the previous researches have studied the relationship 

between the code and the test suite generally and provided 

general information about the relationship between the code 

and the test suite. However, in the current investigation, the 

authors studied the relationship between code and test suite 

evolution impact in terms of size and complexity.   

 2.3 Software Metrics 

In this study, several metrics were calculated for the software 

under study as input to the intended experiments. These 

metrics are associated with software size and complexity as 

follows: 

• Number of Classes (NOC): This metric count the 

number of classes in a system. 

• Number of Attributes (NOA): This metric count the total 

number of attributes defined in a class. 

• Average Nested Block Depth per Method  

• Line of code (LOC): This metric counts the lines of code 

in a system. 

• Weighted Method per class (WMC): This metric counts 

the sum of complexities of all methods in a class. 

• Number of Methods (NOM): This metric count the 

number of methods in a system. 

• Number of Packages (NOP): This metric count the 

number of packages in a system. 

• Cyclomatic Complexity per Method: This metric 

measures the cyclomatic complexity of methods. It 

measures whether individual methods are more or less 

complex. 

• The main tools used in this study are 

• Code Metrics: 

https://marketplace.eclipse.org/content/eclipse-metrics 

• Code Coverage: http://www.eclemma.org/ 

• Mutation Testing: 

https://marketplace.eclipse.org/content/pitclipse 

IV. RESULT AND DISCUSSION 

The test suite is changing and evolving during its lifetime 

according to the code changes. Therefore, the relationship 

between the code and its test suite must be investigated. 

Accordingly, this paper studied the relationship between the 

code and test suite in terms of size and complexity. IBM 

SPSS [12] statistics version 22 tool is used to find the P-value 

based on linear regression, the above table shows the 

comparison between CODE and TEST based on seven 

projects and eight metrics. Table 2 presented that how 

different metrics expose different relationship impacts 

between code and test evolutions.   

As mentioned previously, P-value is calculated for all 

releases between code and test suites in terms of size and 

complexity metrics. If P-value turns out to be less than the 

significance level (0.05), that means we reject the null 

hypothesis and accept the alternative hypothesis.  

From the results that are presented in Table 2, we can 

conclude that Hypothesis 0 can be rejected for almost 6 

metrics out of 8 as the P-value is less than 0.05. Although 

these metrics have one p-value that is higher than 0.05 still, in 

general, they have a significant evolution relationship for the 

software under study.  In more detail, the null hypothesis is 

accepted for the Number of Packages,(NOP), Number of 

Methods (NOM), Number of Attributes (NOA) and Number 

of Classes (NOC)  for 4 experiments out of 42 (i.e. IzPack, 

GSON, and OGNL respectively). 

From the results that are presented in table 2, we can 

conclude that Hypothesis 1 can be rejected for Average 

Nested Block Depth per Method and Cyclomatic Complexity 

per Method metrics as the P-value is higher than 0.05. Still, 

there are 4 experiments out of 14 produce P-values less than 

0.05 which means hypothesis 1 can be acted for this one but 

in general, these two metrics assure the null hypothesis. 

 

 

 

 

 

 

 

 

 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

 ISSN: 2278-3075, Volume-9 Issue-1, November, 2019 

2739 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  
Retrieval Number: A4967119119/2019©BEIESP 

DOI: 10.35940/ijitee.A4967.119119 

 

 

 

Table 2: P-value results 

P-Value 

/ Metrics 

Cyclomati

c 

Complexit

y   per 

Method 

Average 

Nested 

Block 

Depth per 

Method 

Number of 

Packages 

(NOP) 

Number of 

Methods 

(NOM) 

Weighted 

Method 

per class 

(WMC) 

Line of 

Code 

(LOC) 

Number of 

Attributes 

(NOA) 

Number of 

Classes 

(NOC) 

GSON 0.004902 0.016856 0.001782 0.769104 0.000942 0.000222 0.307459 0.601492 

IzPack 0.000009 0.000003 0.100170 0.000 0.000 0.000 0.002723 0.000002 

JodaTime 0.087440 0.158083 0.000 0.000 0.000 0.000 0.012147 0.019981 

PMD 0.119745 0.226645 0.000066 0.000 .000 0.000 0.000 0.000 

OGNL 0.026443 0.166401 0.000 0.000 0.006880 0.000593 0.000 0.076325 

Biojava 0.001186 0.054976 0.000 0.000 0.000 0.000 0.000 0.000 

Struts 0.567880 0.091219 0.000 0.000 0.000 0.000 0.000 0.000 

 

V. CONCLUSION AND FUTURE WORKS 

In this study, the authors aim to provide statistical evidence of 

having a high impact of co-evolution between the code 

production and their associated test suites. The study 

calculates 8 size and complexity associated metrics for 7 

open software systems along with 12 releases for each 

project. The result shows how to code production has a strong 

impact on co-evolution with their test suites for 44 

experiments out of 56 were most of the low significant results 

are solely in two metrics out of 8 metrics under study. In the 

future, we are planning to study the effectiveness of test cases 

and how they evolve over time. 

REFERENCES 

1. Rwemalika, R., Kintis, M., Papadakis, M., Le Traon, Y. and Lorrach, 

P., 2019, April. On the Evolution of Keyword-Driven Test Suites. In 

2019 12th IEEE Conference on Software Testing, Validation and 

Verification (ICST) (pp. 335-345). IEEE. 
2. S. Levin and A. Yehudai, “The co-evolution of test maintenance and 

code maintenance through the lens of fine-grained semantic changes,” 

in 2017 IEEE International Conference on Software Maintenance and 
Evolution (ICSME), Sept 2017, pp. 35–46. 

3. Z. Lubsen, A. Zaidman, and M. Pinzger, „Using association rules to 

study the co-evolution of production #x00026; test code‟, in 2009 6th 
IEEE International Working Conference on Mining Software 

Repositories, 2009, pp. 151–154. 

4. A. Zaidman, B. V. Rompaey, S. Demeyer, and A. v Deursen, „Mining 
Software Repositories to Study Co-Evolution of Production #x00026; 

Test Code‟, in and Validation 2008 1st International Conference on 

Software Testing, Verification, 2008, pp. 220–229. 
5. A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer, 

„Studying the co-evolution of production and test code in open source 

and industrial developer test processes through repository mining‟, 
Empir. Softw. Eng., vol. 16, no. 3, pp. 325–364, Jun. 2011. 

6. G. K. Gill and C. F. Kemerer, „Cyclomatic complexity density and 

software maintenance productivity‟, IEEE Trans. Softw. Eng., vol. 17, 

no. 12, pp. 1284–1288, Dec. 1991. 

7. Alenezi, M., Akour, M., Hussien, A. and Al-Saad, M.Z., 2016, 
December. Test suite effectiveness: an indicator for open source 

software quality. In 2016 2nd International Conference on Open 

Source Software Computing (OSSCOM) (pp. 1-5). IEEE. 
8. D. Franke and C. Weise, „Providing a Software Quality Framework for 

Testing of Mobile Applications‟, in Verification and Validation 2011 

Fourth IEEE International Conference on Software Testing, 2011, pp. 
431–434. 

9. Shalini and S. I. Hassan, „An empirical evaluation of the impact of 

aspectization of cross-cutting concerns in a Smart-phone based 
application‟, in 2014 International Conference on Computing for 

Sustainable Global Development (INDIACom), 2014, pp. 448–454. 

10. J. Hernandez, A. Kubo, H. Washizaki, and F. Yoshiaki, „Selection of 
metrics for predicting the appropriate application of design patterns‟, 

2011, pp. 1–4. 

11.   T. Pessoa, F. Brito, M. P. Monteiro, and S. Bryton, „An Eclipse Plugin 

to Support Code Smells Detection‟, p. 12. 
12.   IBM Corp. Released in 2013. IBM SPSS Statistics for Windows, 

Version 22.0. Armonk, NY: IBM Corp. 

AUTHORS PROFILE 

 

 Dr. Mamdouh Alenezi is currently the Dean of 

Educational Services at Prince Sultan University. Dr. 
Alenezi received his MS and Ph.D. degrees from DePaul 

University and North Dakota State University in 2011 

and 2014, respectively. He has extensive experience in 
data mining and machine learning where he applied 

several data mining techniques to solve several Software Engineering 

problems. He conducted several research areas and development of 
predictive models using machine learning to predict fault-prone classes, 

comprehend source code, and predict the appropriate developer to be 

assigned to a new bug. 
 

 

Dr. Mohammed Akour is an associate Professor of 

Software Engineering at Al Yamamah University (YU). 

He got his Bachelor's (2006) and Master's (2008) degree 

from Yarmouk University in Computer Information 
Systems with Honor. He joined Yarmouk University as a 

Lecturer in August 2008 after graduating with his 

master's in Computer Information Systems. In August 2009, He left 
Yarmouk University to pursue his Ph.D. in Software Engineering at North 

Dakota State University (NDSU). He joined Yarmouk University again in 

April 2013 after graduating with his Ph.D. in Software Engineering from 
NDSU with Honor. He serves as Keynote Speaker, Organizer, a Co-chair 

and publicity Chair for several IEEE conferences, and as ERB for more than 
10 ISI indexed prestigious journals. He is a member of the International 

Association of Engineers (IAENG). Dr. Akour at Yarmouk University 

served as Head of accreditation and Quality assurance and then was hired as 
director of computer and Information Center. In 2018, Dr. Akour has been 

hired as Vice Dean of Student Affairs at Yarmouk University. In 2019, Dr. 

Akour joins Al Yamamah University -Riyadh Saudi Arabia- as an associate 
professor in Software Engineering. 

 

Hiba Alsghaier got her Master's degree in Computer 
Information Systems from the Faculty of Information 

Technology and Computer Sciences, Yarmouk 

University. She worked at Jordan University of Science 
Technology as a teaching assistant for a few years, and 

now she is a web designer and a member in statistical 

consulting center advisory board at JUST, Alsghaier has many publications 
in the fields of software engineering, big data analytics, and software fault 

prediction and currently she is working on other fields 


