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Abstract—Large open source bug tracking systems receives
large number of bug reports daily. Managing these huge numbers
of incoming bug reports is a challenging task. Dealing with these
reports manually consumes time and resources which leads to
delaying the resolution of important bugs which are crucial
and need to be identified and resolved earlier. Bug triaging is
an important process in software maintenance. Some bugs are
important and need to be fixed right away, whereas others are
minor and their fixes could be postponed until resources are
available. Most automatic bug assignment approaches do not
take the priority of bug reports in their consideration. Assigning
bug reports based on their priority may play an important
role in enhancing the bug triaging process. In this paper, we
present an approach to predict the priority of a reported bug
using different machine learning algorithms namely Naive Bayes,
Decision Trees, and Random Forest. We also investigate the
effect of using two feature sets on the classification accuracy.
We conduct experimental evaluation using open-source projects
namely Eclipse and Firefox. The experimental evaluation shows
that the proposed approach is feasible in predicting the priority
of bug reports. It also shows that feature-set-2 outperforms
feature-set-1. Moreover, both Random Forests and Decision Trees
outperform Naive Bayes.

Keywords—bug triaging, text classification, predictive model,
bug priority

I. INTRODUCTION

Most open source software projects contain a bug tracking
system (BTS) to collect and manage bug reports. BTS allows
users from different geographical areas to report their error
findings in a unified environment. BTS helps developers to
track and communicate about bug reports and development
issues which results in fixing bug reports in reasonable time.
These bug reports are usually used to guide several software
maintenance activities in order to produce more reliable soft-
ware systems. One of the important software maintenance
activities is bug triaging. The triager examine the new filed
bug report to determine if it is valid and assigns a potential
developer to fix it.

When a bug tracking system receives a new filed bug
report, the triager makes decisions about several characteris-
tics of bug reports such as priority and severity levels. The
bug priority level indicates the importance of that bug from
business perspective. It gives an indication of the order in
which bug reports should be fixed. Developers usually use
the value of this feature to prioritize their work by fixing

the highly important bugs first. The values of this field range
from P1 to P5 where P1 represents the highest priority while
P5 represents the lowest priority. Bug prioritization process
usually performed manually which makes it error-prone and
labor intensive. It relies heavily on the triager judgment and
experience. Many bug reports have been assigned incorrect
priority levels and many of them are usually left blank since
bug prioritization needs a deep knowledge of bug reports.
Wrong assignments of priority levels may lead to utilizing
resources ineffectively (e.g., wasting time and effort by fixing
unimportant bugs first). In this work, we present an approach to
solve the aforementioned problems by automatically prioritize
bug reports.

Machine learning techniques such as Naive Bayes and
Support Vector Machines are used to build predictive models
to categorize instances into different class labels based on
historical data. These techniques have been previously used to
automate the bug triaging process [1], [2], [3]. Even though,
little work has been done to predict other characteristics such
as severity and priority of bug reports. In this paper, we
investigate whether we can accurately predict the priority of
a reported bug by using several features such as the textual
description of bug reports or other meta-data features such as
the severity level.

The contributions of this paper include the following:

• We investigate the effectiveness of applying several
machine learning techniques namely Naive Bayes, De-
cision Trees, and Random Forests on the classification
performance.

• We evaluate the impacts of using different feature sets
to build the predictive model. The first feature set is
based on the textual contents of bug reports while the
second feature set is based on meta data information
of bug reports.

• We conduct experimental evaluation using two bug
reports datasets namely Eclipse and Firefox obtained
from open source projects.

The rest of the paper is organized as follows: Section
II presents some background information about bug reports.
Section III describes the proposed approach. The experimental
evaluation and discussion are presented in Section IV. Section
VI discusses some threats to validity. Section V discusses
related work and Section VII concludes the paper.
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II. BACKGROUND

We provide some necessary background information about
bug reports in Section II-A. The life-cycle of a bug report is
presented briefly in Section II-B.

A. Bug Report

Bug reports in Bugzilla consist of predefined fields, text
description, attachments and dependencies. Predefined fields
represent attributes of a bug. Some attributes are unchangeable
such as creation date and the reporter who filed the bug.
Other attributes maybe changed over bug lifetime such as
product, component, priority and severity. Some attributes
maybe frequently modified such as the assignee, the current
state and the final resolution. The text description of a bug
report refers to the natural language contents, including the
title of the bug report and a full description of the bug. Figure
1 shows an example of a bug report.

Fig. 1. An example of a bug report.

B. Bug Life-cycle

There are different states inwhich a bug report can experi-
ence in its life-cycle. Figure 2 depicts the life-cycle of bugs in
Bugzilla-based projects. When a new bug report is filed, it is
assigned a NEW state. Once it has been triaged and assigned
to a developer, its state is then changed to ASSIGNED. After
closing this bug, its state is set to RESOLVED, VERIFIED or
CLOSED. The resolution to this bug is marked in several ways;
the resolution status in the report is used to record how the
report was resolved. If the resolution results in changing code
base, this bug is marked as FIXED. When a bug is considered
as a duplicate to other bugs, it is set to DUPLICATE. If a bug
will not be fixed, or it is not an actual bug, it will be set to
WONTFIX or INVALID respectively. If a bug was resolved
but has been reopened, it is marked as REOPENED [4].

III. THE APPROACH

In this Section, we present an approach for predicting the
priority of each newly coming bug report using bug reports
history obtained from BTS. We formulate the problem as a
classification task. Three class labels are used to categorize
bug reports namely High, Medium, and Low. High represents
both P1 and P2, Medium represents P3, and Low represents
P4 and P5. This representation aims at helping developers on
fixing high priority bug reports first. We start by describing the
feature sets under investigation. Then, we present the machine
learning algorithms used in this study. Finally, we present the
evaluation metrics which are used to evaluate the approach.

NEW

ASSIGNED

RESOLVED

REOPEN VERIFIED

CLOSED

Fig. 2. Bug Report Life-cycle.

A. Feature-Set-1

In this set, we only use the textual description of bug
reports. The textual description of a bug report is available in
two fields namely summary (title) and description. We consider
the summary only as the textual data since the description
of bug reports holds many terms that are unrelated to the
functionality of bug reports [5].

The summary of bug reports is unstructured data that needs
a pre-processing step in order to convert it into structured data.
Therefore, we apply the traditional text processing approach
to transform the text data into a meaningful representation as
follows:

• Tokenization and filtering: the first step is to split the
summary of each bug report into tokens (terms). Then,
filter out unnecessary terms which include stop-words,
punctuations, white-spaces and numbers.

• Vector space representation: each bug report is repre-
sented as a vector where each word in the bug report
represents a feature. We use the Term Frequency (TF)
of the word to get the value of each word feature.

B. Feature-Set-2

We would like to investigate the usage of other features
than the textual content of bug reports on the effectiveness of
classification accuracy. In this set, we use the following meta-
data features:

• Component: it represents the component in which the
bug belongs to.

• Operating system: it represents the operating system
the bug was observed on.

• Severity: it represents the degree of severity of the
bug.

We use these fields as features because they contain useful
information that may help in discriminating between priority
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levels. Other available fields in BTS such as Bug id and
Changed (when the bug was last updated) do not contain useful
information. Moreover, some fields like Keywords can not be
used because it is optional (i.e., most bug reports have empty
values for these fields).

C. Machine Learning Techniques

In this section, we briefly present the machine learning
techniques used in this work.

1) Naive Bayes Classifier: Naive Bayes is a probabilistic
classifier which assumes that all features are independent.
It finds the class with maximum probability given a set of
features values using the Bayes theorem.

2) Decision Trees Classifier: Decision Tree is a classifier
in the form of a tree structure. It is a predictive model that
decides the dependent value of a new sample based on diverse
attribute values of the existing data. Each internal node in the
tree represents a single attribute while leaf nodes represent
class labels. Decision trees classify each instances by starting
at the root of the tree and moving through it until a leaf node.

3) Random Forests Classifier: Random Forests is an en-
semble learning method that generates several decision trees
at training time. Each tree gives a class label. The Random
Forests classifier selects the class label that has the mode of
the classes output by individual trees.

D. Evaluation Metrics

We evaluate the approach using widely used metrics in
classification and information retrieval namely Precision, Re-
call, and F-measure as follows:

Precision =
Number of correctly classified

Number of classifications made

Recall =
Number of correctly classified

Number of possible relevant classifications

F-measure = 2× Precision × Recall

Precision + Recall

IV. EXPERIMENTAL EVALUATION

In this Section, details of the datasets used in our experi-
mental evaluation are shown in Section IV-A. The results and
discussion are presented in Section IV-B.

A. Datasets

We choose bug reports from two different projects namely
Eclipse and Firefox. We choose only bug reports that are
marked as RESOLVED, CLOSED or VERIFIED because the
priorities of such reports have been confirmed. We extract bug
reports dated between January 1st, 2010 and December 31st,
2012. Table I shows a summary of the datasets.

As mentioned before, there are three class labels namely
High, Medium, and Low. Table II shows the distribution of
these priority levels in bug reports. It is clear from Table II that
the data is imbalanced (e.g, 67742 bug reports are labeled as
Medium while 553 bug reports are labeled as Low in Eclipse).

TABLE I. SUMMARY OF THE DATASETS

Project # of Bugs From To
Eclipse 74183 Jan 01, 2010 Dec 31, 2012

Firefox 7284 Jan 01, 2010 Dec 31, 2012

TABLE II. PRIORITY DISTRIBUTION

Project High Medium Low
Eclipse 5888 67742 553

Firefox 1142 6009 133

1) Imbalanced Data: A training dataset is considered im-
balanced if one or more of the class labels are represented by
significantly less number of instances compared to other class
labels. This problem leads to skewed data distribution between
classes which is known to hinder the learning performance of
classification. Weiss and Provost [6] indicated in their study
that balancing the dataset usually achieves better classification
results. On the same hand, it is generally more important to
correctly classify the smaller class instances. Therefore, we
re-balanced the distribution of the class labels by randomly
selecting equally representative instances of each class label.

B. Results and Discussion

Since all class labels are important, we present the classi-
fication results for each class label to investigate whether we
can predict each one of them accurately using the two feature
sets. Table III shows number of features in each Feature set. It
is clear from Table III that feature-set-2 has significantly less
dimensions.

TABLE III. NUMBER OF FEATURES

Project Feature-set-1 Feature-set-2
Eclipse 3259 287

Firefox 1097 45

Figure 3 shows the classification results for Eclipse and
Firefox. For Eclipse, feature-set-2 outperforms feature-set-1
dramatically for all priority levels using the three classifiers in
terms of Precision, Recall, and F-measure.For instance, the F-
measure of the Low class label is 0.639 and 0.282 for feature-
set-2 and feature-set-1 respectively using Decision Tree (i.e.,
feature-set-2 improves the F-measure by 35.7% over feature-
set-1). The average F-measure of feature-set-1 is 0.421, 0.364,
and 0.434 for Naive Bayes, Decision Trees, and Random
Forest respectively. For feature-set-2, the average F-measure is
0.593, 0.603, and 0.611 for Naive Bayes, Decision Trees, and
Random Forest respectively. We can conclude that Random
Forest outperforms both Naive Bayes and Decision Trees in
both feature sets.

For Firefox, feature-set-2 outperforms feature-set-1 sig-
nificantly in terms of Precision, Recall, and F-measure. For
instance, the F-measure of the High class label is 0.476 and
0.298 for feature-set-2 and feature-set-1 respectively using
Random Forest (i.e., feature-set-2 improves the F-measure by
17.8% over feature-set-1). The average F-measure of feature-
set-1 is 0.340, 0.355, and 0.356 for Naive Bayes, Decision
Trees, and Random Forest respectively. For feature-set-2, the
average F-measure is 0.460, 0.491, and 0.476 for Naive
Bayes, Decision Trees, and Random Forest respectively. We
can conclude that both Random Forest and Decision Trees
outperform Naive Bayes in both feature sets. To sum up,
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Class Label Feature set 1 Feature set 2 

Precision Recall F-measure Precision Recall F-measure 

N
aï

ve
 B

ay
es

 

High 0.413 0.391 0.402 0.653 0.501 0.567 
Medium 0.394 0.467 0.427 0.507 0.685 0.583 

Low 0.455 0.396 0.423 0.645 0.57 0.605 
avg 0.421 0.418 0.419 0.602 0.585 0.593 

                

De
ci

sio
n 

Tr
ee

 High 0.389 0.199 0.263 0.659 0.535 0.591 
Medium 0.337 0.627 0.438 0.519 0.629 0.569 

Low 0.366 0.23 0.282 0.647 0.631 0.639 

avg 0.364 0.352 0.358 0.608 0.599 0.603 

Ra
nd

om
 F

or
es

t High 0.408 0.519 0.457 0.648 0.624 0.636 
Medium 0.408 0.382 0.395 0.564 0.566 0.565 

Low 0.485 0.385 0.429 0.622 0.644 0.633 

avg 0.434 0.429 0.431 0.612 0.611 0.611 
 

(a) Eclipse

  
Class 
Label 

Feature set 1 Feature set 2 
Precision Recall F-measure Precision Recall F-measure 

N
aï

ve
 B

ay
es

 

High 0.353 0.406 0.378 0.465 0.444 0.454 
Medium 0.303 0.271 0.286 0.366 0.256 0.301 

Low 0.362 0.346 0.354 0.525 0.707 0.603 
avg 0.339 0.341 0.340 0.452 0.469 0.460 

                

De
ci

sio
n 

Tr
ee

 High 0.374 0.368 0.371 0.544 0.466 0.502 
Medium 0.291 0.188 0.228 0.439 0.218 0.291 

Low 0.385 0.526 0.445 0.484 0.797 0.602 

avg 0.35 0.361 0.355 0.489 0.494 0.491 

Ra
nd

om
 F

or
es

t High 0.343 0.263 0.298 0.574 0.406 0.476 
Medium 0.282 0.233 0.255 0.369 0.286 0.322 

Low 0.422 0.594 0.493 0.485 0.737 0.585 

avg 0.349 0.363 0.356 0.476 0.476 0.476 
 

(b) Firefox

Fig. 3. Classification results of Eclipse and Firefox.

feature-set-2 outperforms feature-set-1 dramatically for both
datasets.

Wilcoxon test is a non-parametric statistical hypothesis test
[7]. We use Wilcoxon test to compare the F-measure values
of each feature-sets to find out if feature-set-2 is significantly
better than feature-set-1. The p-value of our test is < 0.001
which means that the classification results of feature-set-2 is
significantly better than feature-set-1. Besides the low results
of feature-set-1 compared to feature-set-2, the vocabulary that
are used to describe bugs may change over time [8] (e.g.,
reporters and developers change overtime). Therefore, we are
recommending to use feature-set-2 since it does not depend
on the textual description of bugs, it gives better classification
results, and it contains much smaller number of features (See
Table III). Regarding the classification techniques, we are
recommending to use Random Forest or Decision Trees since
they both achieve comparable results and outperform Naive
Bayes.

V. RELATED WORK

Text mining has been successfully used to predict different
meta-data about bug reports such as severity and security.
Gegick et al. [9] proposed an approach to predict whether a
bug is security related or not using a classification technique.
They have applied their approach on dataset obtained from
a Cisco software project. Their model correctly classified
78% of the security bug reports as validated by security
engineers. Lamkanfi et al. [10] investigated the effectiveness
of using several classification algorithms in predicting the
severity level of each bug report. They applied their approach
on Eclipse, Mozilla, and GNOME projects. Their results are
varied between 0.65 and 0.85. Wang at el., [11] presented a
text classification model using three classifiers to predict the
component label of a new bug report. They used TF-IDF and
Chi-square to construct the vector space. Their experiments on
Eclipse showed that the accuracy of SVM classifier reached up
to 81.21%.

Yu et al. [12] proposed an approach to predict the priority
of defects using Neural Network. They used several features

extracted from the software testing process such as milestone,
workflow, and module. They defined four levels of priority and
evaluated their approach on five international health care prod-
ucts. Their experimental results showed that their approach is
feasible and effective.

Different machine learning techniques have been applied
on open bug repository data to identify duplicate bug reports
[13], assign the most experienced developer to resolve a new
bug automatically [14], [3], estimate the required effort to fix
bug reports [15] and predict the files that have most post-
release defects [16]. In this work, we apply three machine
learning techniques on different feature sets.

VI. THREATS TO VALIDITY

In this section, we discuss the threats that affect the validity
of our proposed approach. First, we only select two open
source projects. Other projects may give different conclusions.
Therefore, we should apply the approach on more projects
in order to generalize the results. Second, we only consider
projects that use Bugzilla as their bug tracking system. Other
bug tracking systems model bug reports in a different way such
as Gnats. Therefore, the proposed approach should be applied
to other bug tracking systems other than Bugzilla.

VII. CONCLUSION

In this paper, we presented an approach to prioritize bug re-
ports using classification. Three classification techniques were
employed namely Naive Bayes, Decision Trees, and Random
Forests. In addition, two feature sets were investigated. The
first feature set is based on the textual description of bug
reports. The second feature set is based on pre-defined meta-
data of bug reports. The experimental results showed that both
Random Forest and Decision Tree gave better classification
results than Naive Bayes. Moreover, the results showed that
feature-set-2 improved the results significantly compared to
feature-set-1 in terms of Precision, Recall, and F-measure.
Future directions include applying the proposed approach on
other projects including close-source projects. We are also
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planning to investigate the effect of using different combina-
tions of features on the classification accuracy.
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[7] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” The Journal of Machine Learning Research, vol. 7, pp. 1–30,
2006.

[8] G. Chrupala, “Learning from evolving data streams: online triage of
bug reports,” in Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics, ser. EACL
’12. Stroudsburg, PA, USA: Association for Computational Linguistics,
2012, pp. 613–622.

[9] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports via
text mining: An industrial case study,” in Mining Software Repositories
(MSR), 2010 7th IEEE Working Conference on. IEEE, 2010, pp. 11–20.

[10] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in
Software Maintenance and Reengineering (CSMR), 2011 15th European
Conference on. IEEE, 2011, pp. 249–258.

[11] D. Wang, H. Zhang, R. Liu, M. Lin, and W. Wu, “Predicting bugs
components via mining bug reports,” Journal of Software, vol. 7, no. 5,
pp. 1149–1154, 2012.

[12] L. Yu, W.-T. Tsai, W. Zhao, and F. Wu, “Predicting defect priority
based on neural networks,” in Proceedings of the 6th international
conference on Advanced data mining and applications - Volume Part II,
ser. ADMA’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 356–
367.

[13] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 461–470.

[14] M. Alenezi, K. Magel, and S. Banitaan, “Efficient bug triaging using
text mining,” Journal of Software, vol. 8, no. 9, pp. 2185–2190, 2013.

[15] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “Predicting effort
to fix software bugs,” Softwaretechnik-Trends, vol. 27, no. 2, 2007.

[16] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the Third International Workshop on Predic-
tor Models in Software Engineering, ser. PROMISE ’07. Washington,
DC, USA: IEEE Computer Society, 2007.

116116116116


