
Efficient Bug Triaging Using Text Mining
Mamdouh Alenezi, Kenneth Magel, and Shadi Banitaan

Department of Computer Science
North Dakota State University

Fargo, ND 58108, USA
mamdouh.alenezi, shadi.banitaan, kenneth.magel@ndsu.edu

Abstract—Large open source software projects receive abun-
dant rates of submitted bug reports. Triaging these incoming
reports manually is error-prone and time consuming. The goal
of bug triaging is to assign potentially experienced developers
to new-coming bug reports. To reduce time and cost of bug
triaging, we present an automatic approach to predict a developer
with relevant experience to solve the new coming report. In this
paper, we investigate the use of five term selection methods on
the accuracy of bug assignment. In addition, we re-balance the
load between developers by clustering similar bug reports and
ranking developers in each cluster based on their experience.
We conduct experiments on four real datasets. The experimental
results show that by selecting a small number of discriminating
terms, the F-score can be significantly improved.

Index Terms—Bug triage, term selection method, text classifi-
cation, mining bug repositories

I. INTRODUCTION

Software repositories, such as version control systems and
bug tracking systems, comprise valuable information about
software projects. This information can help to manage the
progress of these projects. In the last decade, practitioners
have analyzed and mined these software repositories to
support software development and evolution (i.e., improve
design, refactoring, and maintenance). One of the important
software repositories is the bug tracking system (BTS). Many
open source software projects have an open bug repository
that allows both developers and users to submit defects or
issues in the software, suggest possible enhancements, and
comment on existing bug reports (e.g., Mozilla, Eclipse,
Netbeans, and Apache).

For open source large-scale software projects, the number
of daily bugs is so large which makes the triaging process
very difficult and challenging. Bug fixing is a tedious and
time-consuming process in software maintenance [1]. Many
software projects use BTS to manage bug reports submitted
by users, testers, and developers [2]. Each new reported bug
must be triaged to determine if it describes a meaningful new
problem or enhancement, and if it does, it must be assigned
to an appropriate developer to fix it. Bug triage is an essential
step in bug resolution where a relevant developer is assigned
to a new bug.

Most triaging tasks, including bug assignment, rely heavily
on manual effort, which is labor intensive and potentially error
prone [3]. In practice, due to the frequent changes of software

development teams, it is difficult to identify a correct developer
who has some experience in fixing similar bugs using manual
triage process [1]. For the Eclipse project, Anvik reports that
an average of 37 bugs per day are submitted to the BTS and
3 person-hours per day are required for the manual triage [4];
the empirical study by Jeong et al. shows that 44% of bugs
have been assigned to the wrong developer after the first as-
signment [3]. To solve these problems, some machine learning
algorithms are employed to conduct automatic bug triage [1],
[3], [4], [5], [6]. Most of the bug triage approaches are based
on text categorization [1]. However, these approaches suffer
from low-quality bug reports which may mislead the triage
approach to assign bugs to wrong developers [6], [7]. These
approaches also suffer from low recall values [1], [4].
In this paper, we present an approach for bug assignment using
both classification and clustering techniques. In this approach,
classification is used to build a predictive model which can be
used to assign a developer to a newly coming bug report. Five
term selection methods are used to reduce the dimensionality
of terms and improve accuracy. In this approach, clustering is
used to re-balance developers’ loads by grouping similar bug
reports and ranking developers in each group based on their
experience.
To summarize, we make the following key contributions in
this work:

• We conduct a comprehensive study on using different
term selection methods to evaluate their effectiveness on
improving the accuracy of bug assignment.

• We propose an approach to reduce time and cost of bug
triaging. The approach has two main steps: 1) Build a
classification model using the reduced terms to predict
an experienced developer to fix a new reported bug.
2) Cluster similar bug reports based on the best terms
obtained from the term selection methods and then rank
the developers in each cluster based on their experience.
Finally, redistribute the load of overloaded developers to
other non-overloaded experienced developers.

• We perform experimental evaluation using four bug re-
ports corpora obtained from real projects.

The rest of the paper is organized as follows: Section II
discusses related work. Section III describes the proposed
approach. The experimental evaluation and discussion are
presented in Section IV. Section V concludes the paper.

II. RELATED WORK

Text categorization dominates the existing bug triage ap-
proaches. The first work of bug triage is a supervised text
categorization approach using Naive Bayes [2]. Čubranić et
al., evaluated their approach using bug reports from the Eclipse
project. Their approach achieved 30% accuracy. Anvik et al.
[1] extended the work of [2] with a recommendation list,
other supervised learning algorithms, and labeling heuristic.
They reached precision levels of 57% and 64% on Eclipse and
Firefox respectivley. Matter et al. [5] used a vocabulary based
expertise model of developers to improve bug triage. Their
approach compared vocabulary found in the developers source
code with vocabulary found in bug reports. They achieved
33.6% top-1 precision and 71.0% top-10 recall using eight
years of the Eclipse project.

Xuan et al. [6] proposed a semi-supervised learning ap-
proach with a weighted recommendation list for bug triage
to solve the problem of the low quality of bug reports. Their
approach improved the classification accuracy of bug triage by
up to 6% on the Eclipse project. Park et al. [8] proposed a bug
triaging approach which incorporated collaborative filtering
and topic modeling to reduce the sparseness of the training
data and enhance the quality of the triaging recommendation.
Other approaches also address the problem of bug triaging
such as the training set reduction approach [9] and the fuzzy-
set approach [10].

III. APPROACH

To reduce the time spent triaging, we present an approach
for automatic triaging by recommending one experienced
developer for each new bug report. Our approach uses a
machine learning algorithm to recommend a developer who
may be appropriate for resolving the bug. We formulate the
bug triaging process as a classification task where instances
represent bug reports, features represent the terms of the
report, and the class label represents the developer who fixed
this report. This approach can help the triage process in
two ways: 1) it may allow a triager to process a bug more
quickly, and 2) it may allow a triager with less knowledge
about systems and developers to perform bug assignments
more accurately. Our approach requires a project to have had
an open bug repository for some period of time in which the
patterns of who solves what kinds of bugs can be learned.

Figure 1 shows a high level description of our proposed
approach. Bug reports are unstructured data which may con-
tain irrelevant words. Therefore, we apply the traditional
text processing approach to transform the text data into a
meaningful representation. We use the summary of bug reports
as a description of bugs. The text processing includes white-
spaces, punctuation, numbers, and stopwords removal. After
that, the approach constructs a bug-term matrix weighted by
term frequency.

Then, different term selection methods are applied to reduce
both the dimentionality and the sparseness of data. The next
step is to build a classifier using the Naive Bayes approach, a

Bug reportsBug reports
A new bug report

Bug-term
matrix

Reduced Bug-
term matrix

Learn

Classifier

Text processing

Strip whitespaces

Remove punctuation

Remove numbers

Remove stopwords

Predictive

Model

Assign a
developer

Term selection
methods

Text processing

Strip whitespaces

Remove punctuation

Remove numbers

Remove stopwords

Bug-term
matrix

Reduced Bug-
term matrix

Term selection
methods

Fig. 1. Our Classification Approach.

simple and effective classification approach. The classifier is
trained using the training data set (bug reports). When a new
report arrives, it follows the same steps to produce the reduced
bug-term vector, and then it is assigned to a developer using
the predictive model.

A. Representation framework

We have a collection of bug reports, B =
{
b1, · · · , b|B|

}
.

Each bug report has a collection of terms, T =
{
t1, · · · , t|T |

}
,

and a class label (developer), c ∈ C =
{
c1, · · · , c|C|

}
. Figure

2 shows a simple bug-term matrix (Corpus) representation.

1 0 0 1

0 0 1 1

1 1 1 0

1 1 0 0

1 0 1 0

b1

b2

b3

b4

b5

t1 t2 t3 t4

c1

c2

c3

c1

c1

label

Fig. 2. A toy example of a bug-term matrix.

B. Term Selection Methods

Term selection methods are used to reduce the high dimen-
sionality of term space by selecting the most discriminating

terms for the classification task. The methods give a weight
for each term inwhich terms with higher weights are assumed
to contribute more for the classification task than terms with
lower weights.

In this work, we use five term selection methods. A short
description of these methods appears below.

1) Log Odds Ratio (LOR): Log Odds Ratio measures the
odds of the word occurring in the positive class normalized
by the negative class. The idea is that the distribution of terms
on the relevant documents is different from the distribution of
terms on the non-relevant documents. It is defined as follows
[11]:

LOR(t, ci) = log
P (t|c)[1− P (t|c̄i)]
[1− P (t|ci)]P (t|c̄i)

where t and ci represent a term and a class respectively.

2) Chi-Square (X2): In statistics, the x2 test is used to
examine independence of two events. The events, X and Y,
are assumed to be independent if P(XY) = P(X)P(Y). In term
selection, the two events are the occurrence of the term and
the occurrence of the class. Terms are ranked with respect to
the following equation [12]:

CHI2(t, c) =
∑

t∈{0,1}

∑
c

(Nt,c − Et,c)
2

Et,c

where N is the observed frequency and E is the expected
frequency for each state of term t and class c. CHI2 is a
measure of how much expected counts E and observed counts
N deviate from each other.

3) Term Frequency Relevance Frequency (TFRF): The ba-
sic idea behind the TFRF method is that the more high fre-
quency for a term in the positive category than in the negative
category, the more contributions it makes in selecting the
positive instances from the negative instances. The equation
for the TFRF method is computed as follows [13]:

TFRF = tf ∗ log2(2 +
a

max(1, c)
)

where a is the number of documents in the positive category
which contain the term, c is the number of documents in the
negative category which contain the term, and tf is the term
frequency. The value 2 is added to the equation to prevent
giving a zero weight for a number of other terms.

4) Mutual Information (MI): Mutual information measures
the mutual dependence of two random variables. MI computes
X(t, c) as the mutual information (MI) of term t and class c.
MI measures how much the presence and the absence of a
term contributes to making the correct classification decision
on c using this equation [12]:

I(U ;R) =
∑

et∈{1,0}

∑
ec∈{1,0}

P (U = et, R = ec) ∗W

W = log2
P (U = et, R = ec)

P (U = et)P (R = ec)′

where U is a random variable that takes values et = 1 if
the document contains term t and et = 0 if the document does
not contain t. R is a random variable that takes values ec =
1 if the document is in class c and ec = 0 if the document is
not in class c.

5) Distinguishing Feature Selector (DFS): DFS is a new
novel term selection method. It provides global discriminatory
powers of the features over the entire text collection rather
than being class specific. DFS considers the following require-
ments: 1) a term that occurs frequently in a single class and
not in other classes is distinctive, 2) a term that rarely occurs
in a single class and not in other classes is irrelevant, 3) a term
that occurs frequently in all classes is irrelevant, and 4) a term
that occurs in some of the classes is relatively distinctive. DFS
assigns scores to the features between 0.5 (least discriminative)
and 1.0 (most discriminative). It can be formally calculated as
[14]:

DFS(t) =

M∑
i=0

P (ci|t)
P (t̄|ci) + P (t|c̄i) + 1

where M is the number of classes and P (t|c̄i) is the
conditional probability of term t given the classes other than
ci.

C. What about cost?

According to our approach, some developers could be
overloaded (i.e., the approach may assign a large number of
bug reports to one developer while assigning a small number
of reports to another developer). This scenario will increase
the cost of the bug triaging process. A direct approach to solve
this problem is to predict three developers (class labels) for
each new bug report. The approach assigns a bug report to the
second developer if the first developer is overloaded and so on.
This can be done by modifying the Naive Bayes algorithm.
In Naive Bayes, the class label of a bug report is predicted
as class c1 inwhich P(c1 |report) is the highest P(ci |report)
where P(ci |report) is the probability of class ci given the bug
report and ci ∈ C. In our modified Naive Bayes, the three
class labels of a bug report are predicted as classes c1, c2, and
c3 which have the highest P(ci |report).

We also propose another approach based on clustering to
reduce the cost of the bug triaging process. The approach is
divided into the following steps:
• Represent bug reports using sub-profiles induced by the

best term selection method.
• Cluster bug reports using K-means clustering algorithm.
• Determine the developers who fixed the bug reports in

each cluster.
• Rank the developers on each cluster based on their

experience.

• Redistribute the extra bug reports of each overloaded
developer to non-overloaded developer as follows:

– Assign each extra bug report to a cluster.
– Assign the bug report to the top-ranked developer

if not overloaded. Otherwise, it is assigned to the
second top-ranked developer and so on.

In our work, a developer is considered overloaded if the
number of assigned bugs for a developer is greater than the
average number of assigned bugs for all developers. To cluster
bug reports, we use one of the most commonly used clustering
algorithms (K-means). K-means aims to partition data into K
clusters in which each instance belongs to the cluster with the
nearest mean. In K-means, the number of clusters (K) needs
to be specified in advance. To specify the number of clusters
(K), we use the following equation [15]:

K =
m× n

t

where m is the number of bug reports, n is the number of
terms, and t is the number of non-zero entries in the bug-term
matrix. The idea here is that if the number of nonzero entries is
increased, the similarity among bug reports is increased which
leads to smaller number of clusters.

IV. EXPERIMENTAL EVALUATION

In this Section, we report the results of our proposed
approach on real datasets. A description of the datasets that are
used is first shown then an analysis of the results is provided.

A. Dataset

We evaluate our approach based on bug repositories of
Eclipse1, NetBeans2, and Maemo3. In our work, we collect
the bug reports that have the status of [Closed, Verified, and
Resolved] and the resolution of [Fixed]. For each bug report,
we extract the bug ID, the assignee, opened, changed, and the
summary fields.
For Eclipse, we choose all bug reports for SWT component
(7685). We also choose all bug reports for UI component from
June 1st, 2009 until October 27th, 2012 (7688). For NetBeans,
we choose (11974) bug reports from June 1st, 2011 until
October 27th, 2012. For Maemo, we choose all bug reports
(4505).

We want to refine the training set further to remove reports
that are assigned to inactive developers (i.e., developers who
no longer work on the project or developers who have only
fixed a small number of bugs). To determine active developers,
other work considered only developers who have fixed a
minimum number of bug reports as a threshold. This approach
is not accurate (i.e., software teams usually change overtime)
which may lead to assigning a new reported bug to a developer
who no longer available. Thus, we consider developers who
have fixed at least 25 bug reports in the last year. Table I shows
a summary of the refined datasets.

1https://bugs.eclipse.org/bugs/
2http://netbeans.org/bugzilla/
3https://bugs.maemo.org

TABLE I
A SUMMARY OF BUG REPORTS.

Name # of bug reports # of terms # of developers
Eclipse-SWT 7561 6560 21
Eclipse-UI 6791 6104 58
NetBeans 11311 9284 56
Maemo 3505 4659 33

B. Results and Discussion

We use the Naive Bayes classifier in our bug triaging
approach and we recommend one developer for each new bug
report to the triager. We apply each of the five term selection
methods, LOR, X2, TFRF, MI, and DFS on four datasets
described in the previous section. Term selection methods are
implemented using R language version 2.15.1. The WEKA
tool is used for classification task4. The corpus for each dataset
is created using the tm package5. Precision, recall, and F-score
are used to evaluate the efficacy of applying different term
selection methods on the classification task. Precision is the
number of correct recommendations divided by the number
of recommendations made. Recall is the number of correct
recommendations divided by the number of possible relevant
developers. F-score is the harmonic mean of precision and
recall.

For term selection methods, we apply different percentages
of the terms (1% to 10%) to investigate the effect of using
different number of terms on the accuracy of classification.
It is important to note that the number of selected terms will
be less than or equal to the percentage of selected terms (i.e.,
we may have some selected terms for two developers that
are common and these terms will be counted once). For the
baseline approach, we consider all the terms (after processing)
in the bug summary weighted by term frequency. The class
label for a bug report is represented as the developer who
have fixed that bug report.

For evaluation, the dataset is divided into training and
testing sets. To obtain unbiased evaluation results, we perform
a 10-fold cross-validation. Table II shows the precision and the
recall for the datasets when different term selection methods
are applied. P denotes precision while R denotes recall.
For Eclipse-SWT, the precision and recall for the baseline
approach are 0.290 and 0.270 respectively. The best precision
and recall for Eclipse-SWT is obtained using X2 when the
percentage of terms is 2%. For Eclipse-UI, the precision
and recall for the baseline approach are 0.014 and 0.014
respectively. The best precision for Eclipse-UI is obtained
using X2 when the percentage of terms is 1% while the
best recall is also obtained using X2 when the percentage
of terms is 8%. For NetBeans, the precision and recall for
the baseline approach are 0.014 and 0.015 respectively. The
best precision for NetBeans is obtained using X2 when the
percentage of terms is 1% while the best recall is obtained
using MI when the percentage of terms is 10%. For Maemo,

4http://www.cs.waikato.ac.nz/ml/weka/
5http://cran.r-project.org/web/packages/tm/index.html

TABLE II
PRECISION AND RECALL OF CLASSIFICATION USING DISCRMINATING TERMS ON FOUR DATASETS.

Method Dataset
Percentage of selected terms

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
P-R P-R P-R P-R P-R P-R P-R P-R P-R P-R

LOR

Eclipse-SWT

0.347-0.295 0.314-0.290 0.301-0.282 0.300-0.277 0.299-0.278 0.292-0.276 0.293-0.277 0.293-0.276 0.290-0.272 0.291-0.272
X2 0.380-0.300 0.386-0.306 0.372-0.306 0.372-0.304 0.362-0.303 0.362-0.303 0.343-0.301 0.344-0.301 0.344-0.301 0.336-0.298

TFRF 0.235-0.244 0.253-0.249 0.2680.256 0.276-0.262 0.276-0.261 0.283-0.265 0.284-0.266 0.287-0.266 0.286-0.266 0.287-0.267
MI 0.367-0.291 0.353-0.297 0.320-0.290 0.318-0.287 0.315-0.285 0.309-0.283 0.303-0.281 0.303-0.282 0.300-0.280 0.301-0.279

DFS 0.320-0.277 0.385-0.294 0.351-0.300 0.353-0.300 0.342-0.302 0.342-0.302 0.332-0.299 0.320-0.293 0.321-0.294 0.314-0.290
LOR

Eclipse-UI

0.445-0.278 0.437-0.310 0.395-0.323 0.376-0.331 0.375-0.337 0.366-0.340 0.366-0.344 0.36-0.345 0.359-0.344 0.357-0.343
X2 0.509-0.272 0.498-0.301 0.479-0.325 0.454-0.335 0.456-0.344 0.451-0.349 0.447-0.356 0.432-0.358 0.429-0.358 0.413-0.353

TFRF 0.197-0.191 0.226-0.215 0.249-0.233 0.258-0.245 0.272-0.262 0.278-0.268 0.286-0.273 0.289-0.277 0.296-0.283 0.301-0.289
MI 0.441-0.271 0.419-0.301 0.382-0.315 0.36-0.322 0.354-0.328 0.356-0.332 0.353-0.331 0.352-0.331 0.356-0.335 0.348-0.333

DFS 0.437-0.288 0.428-0.323 0.407-0.342 0.395-0.346 0.393-0.352 0.392-0.353 0.399-0.353 0.394-0.351 0.387-0.353 0.38-0.351
LOR

NetBeans

0.385-0.132 0.356-0.186 0.351-0.193 0.324-0.212 0.319-0.218 0.315-0.218 0.303-0.217 0.291-0.219 0.286-0.220 0.274-0.220
X2 0.503-0.128 0.488-0.181 0.471-0.191 0.456-0.202 0.419-0.208 0.412-0.210 0.387-0.212 0.377-0.212 0.377-0.213 0.373-0.215

TFRF 0.105-0.095 0.158-0.132 0.166-0.145 0.186-0.155 0.205-0.170 0.208-0.176 0.228-0.180 0.234-0.193 0.241-0.198 0.244-0.200
MI 0.426-0.134 0.372-0.188 0.35-0.194 0.333-0.204 0.321-0.209 0.316-0.212 0.312-0.219 0.305-0.223 0.3-0.222 0.301-0.224

DFS 0.343-0.170 0.352-0.184 0.344-0.189 0.377-0.196 0.326-0.207 0.320-0.211 0.317-0.211 0.306-0.213 0.301-0.214 0.303-0.215
LOR

Maemo

0.486-0.424 0.420-0.430 0.417-0.440 0.411-0.437 0.395-0.430 0.389-0.425 0.390-0.424 0.377-0.409 0.376-0.407 0.272-0.401
X2 0.507-0.447 0.473-0.468 0.419-0.468 0.433-0.466 0.427-0.465 0.421-0.462 0.422-0.463 0.420-0.463 0.419-0.458 0.418-0.453

TFRF 0.220-0.334 0.240-0.307 0.259-0.302 0.275-0.305 0.274-0.303 0.279-0.305 0.296-0.316 0.299-0.318 0.301-0.322 0.306-0.325
MI 0.452-0.418 0.425-0.423 0.381-0.417 0.383-0.420 0.376-0.415 0.373-0.413 0.374-0.413 0.368-0.406 0.366-0.404 0.360-0.399

DFS 0.467-0.464 0.417-0.468 0.407-0.470 0.411-0.472 0.411-0.472 0.402-0.467 0.423-0.461 0.420-0.459 0.420-0.460 0.420-0.460

the precision and recall for the baseline approach are 0.344 and
0.365 respectively. The best precision for Maemo is obtained
using X2 when the percentage of terms is 1% while the best
recall is obtained using DFS when the percentage of terms
is 4%. The results show that using term selection methods
improve precision and recall over the baseline approach by up
to 50% and 35% respectively.

Figure 3 shows the F-score of classification after applying
the term selection methods. The x-axis represents the percent-
age of selected terms and the y-axis represents the F-score
measure. For the Eclipse-SWT dataset, the best F-score for
LOR (0.319) is achieved when the percentage of terms is 1%
(the number of selected terms is 46). The best F-score for
X2 (0.341) is achieved when the percentage of terms is 2%
(the number of selected terms is 111). The best F-score for
TFRF (0.277) is achieved when the percentage of terms is
10% (the number of selected terms is 333). The best F-score
for MI (0.325) is achieved when the percentage of terms is
1% (the number of selected terms is 41). The best F-score
for DFS (0.333) is achieved when the percentage of terms is
2% (the number of selected terms is 131). It is clear that X2

achieves the best F-score while the number of selected terms
is small (46). The baseline F-score for Eclipse-SWT is 0.280
and the number of terms is 6560. Therefore, X2 achieves
6.1% improvement over the baseline approach with only 111
selected terms. Moreover, the X2 method outperforms other
selection methods for all of the selected terms (0.01 to 0.1).

For the Eclipse-UI dataset, X2 achieves the best F-score
and TFRF achieves the lowest F-score. The baseline F-score
for Eclipse-UI is 0.014 and the number of terms is 6104. The
X2 method achieves 38.2% improvement over the baseline
approach with only 381 selected terms.

For the NetBeans dataset, X2 achieves the best F-score
when the percentage of selected terms is at least 2% and TFRF
achieves the lowest F-score. The baseline F-score for Eclipse-
UI is 0.014 and the number of terms is 9284. The X2 method

achieves 26.6% improvement over the baseline approach with
only 312 selected terms.

For the Maemo dataset, X2 achieves the best F-score when
the percentage of selected terms is at least 1% and TFRF
achieves the lowest F-score. The baseline F-score for Maemo
is 0.354 and the number of terms is 4659. The X2 method
achieves 12.1% improvement over the baseline approach with
only 33 selected terms.

TABLE III
RESULTS OF K-MEANS CLUSTERING

Project K TW BE ACS ADC
Eclipse-SWT 203 335 4356 37 3
Eclipse-UI 364 1640 7041 18 4
NetBeans 458 1423 7345 24 4
Maemo 416 67 2077 8 2

For re-balancing the developers’ loads, we apply K-means
clustering on the selected datasets. For K-means implemen-
tation, we use Hartigan’s clustering method implemented in
R language. The bug reports are represented using the terms
selected by X2. The results of clustering appear in Table III
where K represents the number of clusters, TW represents the
total within-cluster sum of squares, BE represents the between-
cluster sum of squares, ACS denotes the average cluster size,
and ADC denotes the average number of developers per
cluster. It is clear from Table III that TW is small compared to
BE which proves that bug reports in each cluster are similar
while bug reports in different clusters are not.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to automat-
ically assign bug reports to developers with the appropriate
expertise. Our approach used term selection methods to choose
the most discrimniating terms to describe bug reports. We then
built a predictive model using the Naive Bayes classifier to
predict a developer for each newly coming bug report. We also

(a) Eclipse-SWT

(b) Eclipse-UI

(c) NetBeans

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F-
Sc

o
re

Percentage of selected terms

Maemo

LOR

X2

TFRF

MI

DFS

(d) Maemo

Fig. 3. F-Score of classification on four datasets.

incorporated cost in order to redistribute bugs to re-balance the
load between developers by using a clustering-based approach.

Our experimental results showed that the X2 term selection
method outperforms the other selected term selection methods
in terms of the F-score for all datasets. Moreover, X2 im-
proved the F-score over the baseline approach by 6.2%, 38.2%,
26.5%, and 12.1% on Eclipse-SWT, Eclipse-UI, NetBeans,
and Maemo respectively. The experimental results demonstrate
that our proposed approach is very effective for the bug
assignment problem.

In the future, we want to investigate the effect of using other
term selection methods. Furthermore, we want to implement
and validate our modified version of Naive Bayes. We are
also planning to include other factors (such as number of
comments) to rank developers in each cluster.

REFERENCES

[1] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this bug?” in Pro-
ceedings of the 28th international conference on Software engineering.
ACM, 2006, pp. 361–370.

[2] D. Čubranić and G. C. Murphy, “Automatic bug triage using text catego-
rization,” in In SEKE 2004: Proceedings of the Sixteenth International
Conference on Software Engineering. Citeseer, 2004, pp. 92–97.

[3] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2009,
pp. 111–120.

[4] J. Anvik, “Automating bug report assignment,” in Proceedings of the
28th international conference on Software engineering. ACM, 2006,
pp. 937–940.

[5] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using
a vocabulary-based expertise model of developers,” in Mining Software
Repositories, 2009. MSR’09. 6th IEEE International Working Confer-
ence on. IEEE, 2009, pp. 131–140.

[6] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic bug triage
using semi-supervised text classification,” in Proc. Intl. Conf. Software
Engineering & Knowledge Engineering (SEKE 10), 2010, pp. 209–214.

[7] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering. ACM, 2008, pp. 308–318.

[8] J.-W. Park, M.-W. Lee, J. Kim, S. won Hwang, and S. Kim, “Costriage:
A cost-aware triage algorithm for bug reporting systems.” in AAAI,
W. Burgard and D. Roth, Eds. AAAI Press, 2011.

[9] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training set reduction
for bug triage,” in Proceedings of the 2011 IEEE 35th Annual Computer
Software and Applications Conference, ser. COMPSAC ’11. Washing-
ton, DC, USA: IEEE Computer Society, 2011, pp. 576–581.

[10] A. Tamrawi, T. Nguyen, J. Al-Kofahi, and T. Nguyen, “Fuzzy set and
cache-based approach for bug triaging,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. ACM, 2011, pp. 365–375.

[11] D. Mladenic, “Machine learning on non-homogeneous, distributed text
data.” Ph.D. dissertation, University of Ljubljana, Faculty of Computer
and Information Science, 1998.

[12] C. Manning, P. Raghavan, and H. Schütze, Introduction to information
retrieval. Cambridge University Press Cambridge, 2008, vol. 1.

[13] M. Lan, C. L. Tan, J. Su, and Y. Lu, “Supervised and traditional
term weighting methods for automatic text categorization,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 31, no. 4, pp. 721–735, apr 2009.

[14] A. K. Uysal and S. Gunal, “A novel probabilistic feature selection
method for text classification,” Knowledge-Based Systems, vol. 36, no. 0,
pp. 226 – 235, 2012.

[15] F. Can and E. Ozkarahan, “Concepts and effectiveness of the cover-
coefficient-based clustering methodology for text databases,” ACM
Transactions on Database Systems (TODS), vol. 15, no. 4, pp. 483–517,
1990.

