
DECOBA: Utilizing Developers Communities in
Bug Assignment

Shadi Banitaan
Department of Mathematics, Computer

Science and Software Engineering

University of Detroit Mercy

Detroit, MI 48221, USA

banitash@udmercy.edu

Mamdouh Alenezi
Department of Computer Science

North Dakota State University

Fargo, ND 58108, USA

mamdouh.alenezi@ndsu.edu

Abstract—Bug Tracking System (BTS) is publically accessible
which enables geographically distributed developers to follow
the work of each other and contribute in bug fixing. Developer
interactions through commenting on bug reports generate a
developer social network that can be used to improve software
development and maintenance activities. In large scale complex
software projects, software maintenance requires larger groups
to participate in its activities. Most previous bug assignments
approaches assign only one developer to new bugs. However,
bug fixing is a collaborative effort between several developers
(i.e., many developers contribute their experience in fixing a bug
report). In this work, we build developers social networks based
on developers comments on bug reports and detect developers
communities. We also assign a relevant community to each newly
committed bug report. Moreover, we rank developers in each
community based on their experience. An experimental evaluation
is conducted on three open source projects namely NetBeans,
Freedesktop, and Mandriva. The results show that the detected
communities are significantly connected with high density. They
also show that the proposed approach achieves feasible accuracy
of bug assignment.

Keywords—Developers Social Network, Community Detection,
Bug Report Assignment, Developer Ranking

I. INTRODUCTION

One of the important parts of the software development
process is bug discovery and fixing. Bug tracking system
(BTS) services as the main core for developers communica-
tion and coordination about development issues. Bug tracking
systems such as Bugzilla offers a unified platform for both
developers and non-developers to cooperate with each other.
In this platform, they are able to submit bug reports, comment
on them, track their statuses, and fix them. Such collaboration
between developers and non-developers plays an important
role towards producing more robust software systems. BTS
is enormously useful in software development, and it is used
extensively by open source software projects.

Many bug reports are received daily in most open source
software projects. These reports have to be triaged and as-
signed to developers with relevant experience to handle them.
Bug triaging is usually performed manually which is an
error-prone time-consuming process. Keeping track of active
developers and their expertise is not an easy task. Many bug
reports get assigned to irrelevant developers which results in
delaying the fixing time of these bugs. Many approaches were

proposed to automate the bug triaging process. Most of these
approaches predict only one developer to fix a newly coming
report. Even though, bug fixing is a collaborative effort (i.e.,
many developers contribute their experience in fixing a bug
report). Therefore, new approaches that recognize these efforts
are in need.

Developers are able to contribute their thoughts in the
form of comments over bug reports in a BTS. These com-
ments reflect their interest and experience about bug reports.
Developers usually discuss about the best ways to fixing a
bug [1]. Most large software development teams work in
a geographically distributed development environment where
their discussions are commonly reflected as comments on bug
reports. Developers’ comments play a very important role in
the life-cycle of a bug report, and most of them are relevant
with how to fix the bug. Those developers, who commented
on the bug, are often equipped with the relevant expertise in
resolving the bug.

Social networks have been used in mining open source
software repositories. Begel et. al. [2] presented the codebook
framework which builds a directed graph that captures the rela-
tionships between people, code, bugs, specification, and other
work artifacts. Their approach is customizable and collects
data from different sources. Their aim was to build a general
framework that can be used to answer inter-team coordination
information. Robertsa et. al. [3] found that the core developers
in Apache HTTP Server project are self-organized into sub-
groups that communicate repeatedly in completing the task on
hand. They also observed that a few experienced developers are
centrally located in the network and driving communications
within the project. Hong et. al. [4] analyzed contributors social
network formed by comments of Mozilla bug reports. Their
results indicated a strong evidence of the community structure
within developer social networks.

In this work, we propose the DECOBA (utilizing
DEvelopers COmmunities in Bug Assignment) approach to
build developers social network and detect developers commu-
nities in open source projects. DECOBA also assigns a relevant
community to a newly reported bug report in order to be fixed.
To summarize, we make the following key contributions in this
work:

• We construct developers social networks based on
developers contributions in fixing bug reports.

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $26.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.107

66

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $31.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.107

66

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $31.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.107

66

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $31.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.107

66

• We apply a community detection algorithm to detect
developers communities.

• We assign a relevant community for each newly
coming bug report to handle it. This will give more
developers who have an experience in solving bugs.

• We rank developers in each community based on their
expertise. The ranking also allows to redistribute the
load between developers.

• We perform experimental evaluation using three open
source projects. The results show that the detected
communities are very dense which show a clear evi-
dence of the community structure in developers social
networks. They also show that the approach achieves
a reasonable accuracy of bug assignment.

The rest of the paper is organized as follows: Section II
describes the proposed approach. Section III briefly introduces
the evaluation metrics used in this work. The experimental
evaluation and discussion are presented in Section IV. Section
V discusses related work. Section VI concludes the paper.

II. THE DECOBA APPROACH

DECOBA is divided into five main steps. The first step
is to create the bug term matrix of bug reports where each
bug report is represented as a vector and each word in
the bug report represents a feature. The second step is to
build the active developers adjacency matrix where both rows
and columns represent active developers, values represent
the collaborative effort between developers (e.g., how much
developers commented on each other). The third step is to
convert the adjacency matrix into a network of developers
where each node represents a developer, an undirected edge
is added between two developers if they have collaborated
work on bug reports. The edge is weighted by the number
of collaborations between them. The forth step is to detect
developers communities by applying a community detection
algorithm. The fifth step is to build a predictive model in order
to assign a community of developers to a newly coming bug
report. The main premise is that fixing a bug is a collaborative
effort between developers. Even though a bug is assigned
to one developer, many developers are contributing towards
fixing it. Therefore, we are predicting a group of candidate
developers who are experienced in solving similar bug reports.
The following sections explain these steps in detail.

A. Constructing The Vector Space Model

We use the summary of bug reports as the textual represen-
tation. The first step in DECOBA is to construct a vector space
representation of bug reports. We have a collection of bug
reports, B =

{
b1, · · · , b|B|

}
. Each bug report has a collection

of terms, T =
{
t1, · · · , t|T |

}
. A weight is assigned to each

term in a bug report. The weight represents the number of
occurrences of the term in the bug report. This weighting
scheme is known as TF. We filter out unnecessary terms which
include stop-words, punctuation, white-spaces and numbers.
We then apply the chi-square (X2) feature selection method
to reduce the dimensionality of the vector space and to achieve
better classification results. For X2, we select 30% as the ratio
of the final number of words in the corpus [5], [6]. We select

X2 since it outperforms other feature selection methods in text
classification [5].

B. Building The Adjacency Matrix

After constructing the vector space model, DECOBA ex-
tracts the collaborative efforts between active developers and
saves the results in Developer-Developer Collaborative Matrix
(DDCM). The DDCM matrix is a square d× d matrix, where
d represents the number of active developers. The value of
DDCM[i,j] is defined as follows:

DDCM [i, j] = Comments(i, j) + Comments(j, i) +
CC(i, j)

where Comments(i, j) represents the number of com-
ments made by developer i on developer j bug reports,
Comments(j, i) represents the number of comments made
by developer j on developer i bug reports, and CC(i, j)
represents the number of bug reports that both developer i and
j commented on and do not belong to them. The main premise
is that both developers have experience in solving similar bug
reports if they wrote many comments on same bug reports and
if they commented on each other bug reports.

C. Creating The Developers Network

After building the developers adjacency matrix, DECOBA
creates a network of active developers from the DDCM matrix.
Each node represents an active developer and an edge is added
between two nodes (developers) if there is a collaborative
effort between them. Each edge is weighted by the degree
of collaboration between developers as mentioned in Section
II-B.

D. Detecting Developers Communities

In this step, DECOBA applies the greedy optimization of
Clauset et al. [7] algorithm to discover developers communities
from the developers network. The greedy optimization algo-
rithm detects dense sub-graphs, also knows as communities
through optimizing a modularity score. Modularity measures
the strength of community structure and it ranges from 0 to 1.
Higher the value of the modularity, stronger is the community
structure in the network. This algorithm is considered one of
the best algorithms to detect communities in large networks.
Each community represents a different aspect of systems
knowledge (i.e., developers in each community have experi-
ence in resolving bug reports that have the same technical
concern). All community members share the same experience
since they have collaborated in each others bug reports. Since
developers are free to comment on any bug in Bugzilla,
the bug comments reflect developers’ interest. Communities
constructed based on comments reveal the communication
structure between them.

E. Building A Predictive Model

After detecting developers communities, DECOBA builds
a predictive model that predicts a community to solve a newly
reported bug. The bug assignment is formulated as a classi-
fication task where instances represent bug reports, features
represent the distinctive terms of the report, and the class
label represents the community that collaborates in solving

67676767

this report. It is noteworthy that Bugzilla records the assignee
as one developer who fix the bug. Since DECOBA discov-
ered dense communities in the developer network, DECOBA
replaces each developer by his/her community. As mentioned
before, the fixing process is a collaborative effort. Grouping
developers into communities allow us to distribute the load
between them and rank their experience.

For building the predictive model, DECOBA uses two
widely used machine learning techniques namely Naive Bayes
and Random Forests. The Naive Bayes algorithm is a proba-
bilistic classifier that assumes that all features are independent
and it finds the class with maximum probability given a set of
features values using the Bayes theorem. The Random Forests
algorithm generates many decision trees such that each tree
predicts a class label and it selects the class label that has the
majority votes.

After assigning a community to resolve a new bug report,
DECOBA ranks developers in that community to find the most
appropriate developers to fix the new bug. The developers are
ranked based on their experience. DECOBA gives a weight
for each developers in each community based on the following
formula:

weight(Di|Cj) =
Fixed(Di|Cj)

∑N
k=1 Fixed(Dk|Cj)

+
Bet(Di|Cj)

∑N
k=1 Bet(Dk|Cj)

where Fixed(Di|Cj) represents the number of bugs fixed
by developer Di in community Cj , Bet(Di|Cj) represents
the betweenness of developer Di in community Cj , the de-
nominators are used to get a normalized weight. The idea
is that DECOBA gives more weight to developers who have
fixed more bugs in his/her community and who are the most
influential in the community.

F. Illustrative Example of DECOBA

This Section illustrates the DECOBA approach using a
simple toy example as shown in Figure 1. The textual summary
of each bug report is converted into a vector space model
then the most distinctive terms are selected by X2. Figure
1 (a) represents this step where each row represents a vector
space model for each bug, each report is represented as five
distinctive terms t1, · · · , t5 and an initial class label that
represent a developer who is assigned to fix it. Then, the
developers adjacency matrix, DDCM, is constructed from bug
reports. Figure 1 (b) shows an example of adjacency matrix of
seven developers (we just show non-zero values). Each entry in
the matrix represents the summation of three different values
as aforementioned. For example, DDCM[D3,D4]=14 where 14
represents the summation of three values as follows: 1) the
number of comments made by developer 3 on developer 4
bug reports; 2) the number of comments made by developer 4
on developer 3 bug reports; and 3) the number of bug reports
that assigned to other developers that both developer 3 and 4
commented on. After that, the adjacency matrix is converted
to a weighted undirected graph as shown in Figure 1 (c). For
example, an edge is added between developer (node) 3 and
developer 4 with a weight of 14. Next, the community detec-
tion algorithm is applied to discover developers communities
as appear in Figure 1 (d). It detects two communities where
developers 1, 2, 5, and 6 belong to the first community (C1)

while developers 3, 4, and 7 belong to the second community
(C2). Then, as shown in Figure 1 (e), each developer (initial
class label) is replaced by his/her community in the training
data. Afterwards, a predictive model is built on the training
data. When a new reported bug (testing instance) is received
by the tracking system, the predictive model can predict a
community to handle it as shown in Figure 1 (f).

III. EVALUATION METRICS

In this Section, we briefly introduce the evaluation metrics
used in DECOBA. Section III-A presents some metrics to
perform network analysis and to measure the quality of the
detected communities. Section III-B presents the metrics used
to evaluate the classification results.

A. Network Metrics

1) Centralization: The centralization of a network calcu-
lates a graph-level centrality index based on node-level central-
ity measure. Centrality measures allow to find developers who
are extensively indulged in relationships with other network
developers.

2) Betweenness Centrality: Betweenness centrality is de-
fined by the number of shortest paths going through a node
[8]. It is a useful measure of the load and importance of a
node. A node with high betweenness has great influence over
other nodes in the network.

3) Average Degree: The average degree of a network is
computed as the average internal degree of all nodes in the
network. The degree of a node is the number of its adjacent
edges. It somehow shows how much nodes are interconnected.

4) Density: The density of a network is defined as the num-
ber of the edges present in the network divided by maximum
possible edges excluding self loops in the network. Community
discovery algorithms strive for dense sub-networks where the
higher the density of these sub-networks, the better the quality.

5) Average Community Size: The average community size
refers to the average number of nodes within each community.
The average community size is a key quantitative characteristic
of community structure in a network as it indicates if commu-
nities are disparate or uniform in their division of a network
[9].

B. Classification Metrics

In this Section, we present the widely used classification
metrics namely Precision, Recall, and F-Measure. Precision is
the percentage of suggested developers who actually worked
toward fixing the bug. Recall is the percentage of developers
who worked on the bug who were actually suggested. F-
Measure is the harmonic mean of Precision and Recall.

IV. EXPERIMENTS AND DISCUSSION

A. Datasets and Prepossessing

1) Datasets: We evaluate DECOBA on bug repositories
of NetBeans, Freedesktop, and Mandriva. We collect the bug
reports that have the status of Closed, Verified, and Resolved
and the resolution of Fixed. For each bug report, we extract

68686868

6

5
4

14

2

12

5

8

2

1

5

3
4

7

6

6

5
4

14

2

12

5

8

2

1

5

3
4

7

6

0 0 1 0 0 D5

0 0 0 1 0 D5

0 0 2 0 0 D6

1 2 0 0 0 D7

0 0 0 2 0 D3

0 2 0 0 0 D3

0 0 0 3 0 D4

0 2 0 0 0 D4

0 0 0 0 1 D1

0 0 1 0 0 D1

0 1 0 0 0 D2

0 0 1 0 0 D2

14 2

6 12 2

5

5 4

8 6 5

8 12

14

4

5
b9

b10

b11

b12

b5

b6

b7

b8

b1

b2

b3

b4

C1

C1

C1

C2

C2

C2

C2

C2

C1

C1

C1

C1

b9

b10

b11

b12

b5

b6

b7

b8

b1

b2

b3

b4

D5

D6

D7

D1

D2

D3

D4

D1 D2 D3 D4 D5 D6 D7

(a)

(b)

(c)

(d)

(e)

t1 t2 t3 t4 t5 class

0 0 1 0 0

0 0 0 1 0

0 0 2 0 0

1 2 0 0 0

0 0 0 2 0

0 2 0 0 0

0 0 0 3 0

0 2 0 0 0

0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 0 1 0 0

Predictive Model

New Bug Report

Assign a
Community

(f)

Fig. 1. A toy example of the DECOBA Approach. (a) shows a bug-term matrix reduced by X2 where class represents the developer who is assigned to fix the
bug. (b) represents developers adjacency matrix, DDCM where DDCM[D1,D2] = 8 represents the collaborative effort between developer D1 and developer D2.
(c) represents the developers network. (d) shows the results of applying the community detection algorithm. (e) shows the bug-term matrix where the developer
is replaced by his/her community. After creating the training data that appears in (e), a predictive model is built and then used to predict a community to a new
bug report as shown in (f).

TABLE I. STATISTICS ABOUT THE DATASETS

Name # bugs From to
NetBeans 14861 Apr, 01, 2011 Dec 25, 2012

Freedesktop 9981 Jan, 01, 2011 Dec 25, 2012

Mandriva 9199 Apr, 01, 2008 Dec 25, 2012

the bug ID, the assignee, the summary, and the commenters.
Table I shows a statistics about the selected datasets.

To consider only active developers, reports that are as-
signed to inactive developers (i.e., developers who no longer
work on the project or developers who have only fixed a small
number of bugs) are removed. In addition, developers who
have fixed at least 15 bug reports in the dataset are considered
active. Table II shows a summary of the refined datasets.

TABLE II. SUMMARY OF THE DATASETS

Name # of Bug Reports # developers
NetBeans 14354 72

Freedesktop 8730 117

Mandriva 8582 103

B. Results

1) Developers Communities Results: Table IV presents
some analysis measures of the constructed networks. where

Centrality represents the graph level centrality index, Between-
ness represents the average betweenness of all nodes, and De-
gree represents the average degree of all nodes. Table IV shows
that Freedesktop has more influential developers than other
projects (the average betwenness of all developers is 77.67). It
also shows that NetBeans has the highest connectivity between
developers (the average degree is 43.19).

TABLE IV. ANALYSIS OF DEVELOPERS NETWORK

Name Centrality Betweenness Degree
NetBeans 0.35 43.62 43.19

Freedesktop 0.33 77.67 15.06

Mandriva 0.34 42.77 37.63

In order to measure the quality of the detected communi-
ties, we calculate several metrics namely NOC, ACS, Density,
and AD. Table V shows the results where NOC denotes the
number of communities, ACS denotes the average community
size, Density represents the average density of all communities,
and AD denotes the average internal degree of nodes in all
communities. It is clear from Table V that the average density
of communities are high which indicates strong interconnected
communities. NetBeans has the highest average density (0.82)
while Freedesktop has the lowest average density (0.59). De-
tected communities in all developers networks share a similar
average internal degree of nodes (around 8).

69696969

TABLE III. COMMUNITIES ANALYSIS

Name Community Density Max Betweenness Developer

NetBeans

C1 0.76 144 pgebauer
C2 0.80 127 AlyonaStashkova
C3 0.67 147 av-nb
C4 0.85 162 jsedek
C5 1 38 jkovalsky
C6 0.83 174 vkvashin

Freedesktop

C1 0.35 622 daniel
C2 0.35 285 will.thompson
C3 0.48 484 tfheen
C4 0.86 145 mesa-dev
C5 0.91 288 programming

Mandriva

C1 0.59 318 supp
C2 0.66 148 tpg
C3 0.90 91 tmb
C4 0.73 69 jvictor
C5 0.53 53 andreas

TABLE V. COMMUNITIES RESULTS

Name NOC ACS Density AD
NetBeans 6 12 0.82 8.80

Freedesktop 5 15.8 0.59 8.30

Mandriva 5 12.8 0.68 8.53

Table III shows some interesting findings about the detected
communities. For each detected community, we report its
density, maximum betweeness value, and the most influential
developer (i.e., the developer who has the highest betweenness
in that community). The most influential developer in each
community will be used later to rank developers in each
community. For NetBeans, community C5 has a density value
of one which forms a clique (i.e., every two nodes are
connected by an edge). The lowest density (0.67) is observed
in community C3. For Freedesktop, community C5 has the
highest density (0.91) while both C1 and C2 have the lowest
density (0.35). For Mandariva, community C3 has the highest
density (0.90) while C5 has the lowest density (0.53).

1

3

2

50

82

4 7

17

5

90

17

24

8

41

2

3

29

134

haihao.xiang

kenneth

brianp

mesa−dev

chad.versace

idr

eric

Fig. 2. One of the communities in the Freedesktop project. The density is
0.86, the average betweenness is 2.86 and the average degree is 5.14.

Figure 2 shows an example of one of the communities
(C4) in the Freedesktop project. It also shows high weights
of many of the connection between developers. For instance,
the weight of the connection between eric and idr is 134
which indicates a high volume of collaboration. After a deep
analysis of this community, we notice that developers in
this community fix bugs belong to common products and
components. The developers in this community have a high
number of connections between each other. The developer,
mesa-dev, is the most influential developer in this community

with a betweenness value of 145.

2) Classification Results: For evaluation, we use two pop-
ular machine learning techniques namely Naive Bayes and
Random Forests. The dataset is divided into training and test-
ing sets. To obtain unbiased evaluation results, we perform a
10-fold cross-validation. Figure 3 (a) shows Precision, Recall,
and F-measure with Naive Bayes. The lowest F-measure is
obtained for NetBeans (0.43) while the highest F-measure is
obtained for Freedesktop (0.56). Figure 3 (b) shows Precision,
Recall, and F-measure with Random Forests. The lowest F-
measure is obtained for Mandriva (0.49) while the highest F-
measure is obtained for Freedesktop (0.69). It is clear from
Figure 3 that Random Forests is slightly better than Naive
Bayes in all projects.

V. RELATED WORK

Recently, developers’ social networks have been used to
support several software activities. Nodes in these networks
represent developers while edges represent the interaction
among them. These interactions can represent several relation-
ships such as contribution of fixing same bugs, communication
through emails, and changing the same artifact. Bird et al. [10]
built a social network of email correspondents (developers and
non-developers). One of their important findings is that social
network measures such as in-degree, out-degree and between-
ness show that developers who actually commit changes, play
important roles in the email community than non-developers.
In later study [11] they analyzed the email communication of
open source projects and found that sub-communities manifest
most strongly in technical discussions, and are considerably
connected with collaboration behavior. Hong et al. [4] studied
the evolution of developers’ social networks of Mozilla. They
found that while most social networks demonstrate power law
degree distributions, developers’ social networks do not. They
also found strong community structure in them. Crowston et
al. [12] studied large number of open source teams interactions
for their communications centralization. They found that there
is no common pattern of communication centralization of
these projects where some projects are highly cantered on
one developer while others are not. In this paper, DECOBA
constructs developers social networks based on their comments
in bug reports.

Many approaches adopted both machine learning and in-
formation retrieval techniques to solve the bug assignment

70707070

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mandriva Freedesktop NetBeans

Precision

Recall

F-measure

(a) NaiveBayes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mandriva Freedesktop NetBeans

Precision

Recall

F-measure

(b) Random Forest

Fig. 3. Classification results using Naive Bayes and Random Forests.

problem. Čubranić et al. [13] were the first to formulate the bug
assignment problem as a text classification. Anvik et al. [14]
enhanced the approach proposed by Čubranić et al. by 1) re-
moving inactive developers; 2) using project-specific heuristics
to label bug reports; and 3) applying different machine learning
techniques namely SVM, Naive Bayes and Decision Trees.
Zou et al. [6] proposed an enhancement to bug assignment
problem by using both feature selection and instance selection
techniques. They evaluated their approach on the Eclipse
project and showed that the combinations of feature selection
and instance selection achieved better accuracy. Aljarah et al.
[15] investigated the effect of some term selection approaches
on the classification effectiveness. Their results indicated that
Log Odds Ratio outperforms Latent Semantic Analysis and
Information Gain. Banitaan and Alenezi [16] proposed TRAM,
an approach to raise the prediction accuracy of bug triage
by using the most distinguished terms of bug reports, the
components in which the bugs belong to, and the reporter
who filed the bug. Their experimental evaluation showed that
TRAM outperforms many existing machine learning-based
approaches in terms of classification accuracy. Alenezi et al.
[5] investigated which of five state-of-the-art term selection
method is better to use in bug assignment. Their experimental
evaluation showed that X2 term selection method achieved the
best results a cross five different open source projects. In this
work, DECOBA builds a predictive model using 30% of the
textual corpus and predicts a community to handle a new bug
report instead of one developer.

VI. CONCLUSIONS

In this paper, we presented DECOBA , an approach that
builds a developers social network based on their collaboration
comments and detects strong developers communities. These
detected communities are then utilized in bug assignment.
Two different machine learning techniques are used to build
predictive models. The predictive model assigns a relevant
community to a newly submitted bug report in order to fix it.
We conducted experimental evaluation on three open source
projects. We have shown the feasibility of the DECOBA
approach and applied it to bug assignment. Our results give
strong evidence of the community structure within developer’s
social network. They also showed that DECOBA achieved
feasible prediction accuracy of bug assignment. Developers
communities built in DECOBA can be used in several ap-
plications such as propagating information to some relevant
communities and studying the evolution of leadership between
developers.

REFERENCES

[1] A. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 2007,
pp. 344–353.

[2] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: discovering
and exploiting relationships in software repositories,” in Software En-
gineering, 2010 ACM/IEEE 32nd International Conference on, vol. 1.
IEEE, 2010, pp. 125–134.

[3] J. Robertsa, I.-H. Hann, and S. Slaughter, “Communication networks in
an open source software project,” Open Source Systems, pp. 297–306,
2006.

[4] Q. Hong, S. Kim, S. Cheung, and C. Bird, “Understanding a developer
social network and its evolution,” in Software Maintenance (ICSM),
2011 27th IEEE International Conference on. IEEE, 2011, pp. 323–
332.

[5] M. Alenezi, K. Magel, and S. Banitaan, “Efficient bug triaging using
text mining,” Journal of Software, vol. 8, no. 9, pp. 2185–2190, 2013.

[6] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training set reduc-
tion for bug triage,” in Proceedings of the 2011 IEEE 35th Annual
Computer Software and Applications Conference, ser. COMPSAC ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 576–581.

[7] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[8] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social networks, vol. 1, no. 3, pp. 215–239, 1979.

[9] S.-Y. Chan, P. Hui, and K. Xu, “Community detection of time-varying
mobile social networks,” Complex Sciences, pp. 1154–1159, 2009.

[10] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Min-
ing email social networks,” in Proceedings of the 2006 international
workshop on Mining software repositories. ACM, 2006, pp. 137–143.

[11] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent
social structure in open source projects,” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering. ACM, 2008, pp. 24–35.

[12] K. Crowston and J. Howison, “The social structure of free and open
source software development,” First Monday, vol. 10, no. 2-7, 2005.

[13] D. Čubranić and G. C. Murphy, “Automatic bug triage using text catego-
rization,” in In SEKE 2004: Proceedings of the Sixteenth International
Conference on Software Engineering. Citeseer, 2004, pp. 92–97.

[14] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 20, no. 3,
p. 10, 2011.

[15] I. Aljarah, S. Banitaan, S. Abufardeh, W. Jin, and S. Salem, “Selecting
discriminating terms for bug assignment: a formal analysis,” in Pro-
ceedings of the 7th International Conference on Predictive Models in
Software Engineering. ACM, 2011, p. 12.

[16] S. Banitaan and M. Alenezi, “Tram: An approach for assigning bug
reports using their metadata,” in Communications and Information
Technology (ICCIT), 2013 Third International Conference on. IEEE,
2013, pp. 215–219.

71717171

