
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

4854

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number C6888098319/2019©BEIESP

DOI: 10.35940/ijrte.C6888.098319



Abstract: Despite the big number of software process models

currently available which have been used and practiced for many

years, we could not till now totally solve the problem of projects’

late submissions! Meanwhile Software have constantly become

bigger, more complex, and require high quality. A recently

developed model, called DevOps, aims at producing fast and

high-quality releases by bringing the development and operation

team to work together. Unfortunately, DevOps is still lacking a

clear definition as well as empirical studies that document the

experience in implementing and enhancing it. Maturity models

are used as a tool to assess the effectiveness of an organizational

processes on adopting certain practices and identify what

capabilities they need to acquire next in order to improve their

performance and reach higher maturity level. However, there are

few DevOps maturity models which have been emerged as means

to assess DevOps adopted practices. This research aims to identify

and benchmark the DevOps maturity models available in

literature. We were able to identify several maturity models and

compare among them.

Index Terms: DevOps, Comparison, Maturity Model, Process

Model.

I. INTRODUCTION

Despite the big number of software process models

currently available which have been used and practiced for

many years, we still could not totally solve the problem of

projects’ late submissions! Meanwhile Software have

constantly become bigger, more complex, and require high

quality. A recently developed model, called DevOps, aims at

producing fast delivery to customers by bringing the

development and operation team to work together.

DevOps is the new software process that extends the agility

practices within the collaborative culture to enhance the

process of software development and delivery. DevOps is

concerned with improving the collaboration between the

development and operation teams to achieve fast high-quality

releases. Although DevOps is in use now for several years, but

it is still in its infancy period [1] where this new philosophy to

develop software is still lacking a clear definition [2], [3] as

well as empirical studies that document the experience of its

implementation worldwide.

Despite the increasing adoption of DevOps where

Revised Manuscript Received on September 19, 2019.
Mohammad Zarour, College of Computer and Information Sciences,

Prince Sultan University , Rafha Street, Riyadh, Saudi Arabia, E-Mail:

mzarour@psu.edu.sa

Norah Alhammad, College of Computer and Information Sciences,

Prince Sultan University , Rafha Street, Riyadh, Saudi Arabia, E-Mail:

norah.a.alhammad@psu.edu.sa

Mamdouh Alenezi, College of Computer and Information Sciences,

Prince Sultan University , Rafha Street, Riyadh, Saudi Arabia, E-Mail:

malenzi@psu.edu.sa

Khalid Alsarayrah, College of Computer and Information Sciences,

Prince Sultan University , Rafha Street, Riyadh, Saudi Arabia, E-Mail:

khalidtorki@psu.edu.sa

organizations have different motivations to adopt it, DevOps

requires further investigation in assisting the quality of the

adoption, as there is few DevOps maturity model that gauges

the maturity. Recently, few DevOps maturity models have

been emerged as means to assess DevOps adopted practices.

However, the reported experience on using these maturity

models for DevOps in literature is scarce. Same thing applies

for the assessment methods for these DevOps maturity models

where the literature lacks detailed description of these

methods that prescribe how to assess the DevOps adoption for

organizations to improve their maturity incrementally.

This research will study the available maturity models of

DevOps that are documented in the literature, compare

between them to identify the strengths and weaknesses of each

one, check the assessment methods available based on these

maturity models. Such study is crucial for process assessors to

know the various maturity models available and decide which

one to be uses for the proposed process assessment initiative.

II. DEVOPS MATURITY MODELS

Since the nineties of the previous century, software

organizations have shown growing interest in assessing and

improving their software process using various

well-established maturity models that includes CMM, CMMI

and ISO/IEC 15504 [4]. It is observed that the maturity

assessment is an expensive and arduous activity for

organizations and more work is needed to automate this

process [5]. While researchers and practitioners are working

to better understand the software processes, their best

practices and ways to assessing them, new software process

models emerge with their own practices. This would increase

the burden on software process engineers to define and

practice the maturity models for the new emerged process

models.

Note that this paper’s focus is not to conduct a systematic

literature review as the DevOps concept is new and the

maturity models related to it are few. Hence neither the

systematic literature review nor the mapping studies are used

in this research. A simple search in the main databases that

includes IEEE, ACM, Springer, and google scalar is enough

and serve our purposes. Unpublished work or thesis work is

excluded.

We were able to identify seven maturity models, namely:

[6]–[12]. Note that four out of the seven identified maturity

models are documented as white papers which raises a threat

to this study hence their validity and applicability are

questionable. At the same time, we believe that this is a strong

driver for more theoretical and empirical research related to

A Research on DevOps Maturity Models

Mohammad Zarour, Norah Alhammad, Mamdouh Alenezi, Khalid Alsarayrah

A Research on DevOps Maturity Models

4855

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number C6888098319/2019©BEIESP

DOI: 10.35940/ijrte.C6888.098319

DevOps concepts and adoption that should follow this

research work.

2.1 IBM DevOps Maturity Model

Bahrs, P form IBM [6], provided a thorough analysis on the

adoption of IBM DevOps approach for promoting continuous

delivery of software. The author identified four dimensions in

adopting or implementing continuous software growth within

an organization. These dimensions include Planning and

measuring, Developing and testing, Releasing and deploying,

and Monitoring and optimizing. The IBM DevOps maturity

model is a practice-based and reflects a wider context within

the adoption framework of an organization. It focuses on

defining the best practices to be applied in the adoption of

new software solutions iteratively.

A well-articulated approach for assessing current DevOps

practices within an organization is also provided in [6]. It also

helps in defining a clear roadmap for DevOps

implementation. Furthermore, the mentioned research work

provided its readers with a high-quality approach for

measuring the improvement made by an organization in

implementing the IBM DevOps approach. Most importantly,

this DevOps maturity provides a clear set of steps for

preparing, piloting and releasing system improvements within

an organization.

It is important to note that his model does not specify the

applicability of the IBM DevOps approach in other software

platforms that do not run on IBM software. Another limitation

is that it does not provide a clear justification on the

investment strategy for achieving DevOps maturity. IBM

DevOps maturity model has 4 levels, as follows, See Fig. 1:

Level-1 is “Practiced”: At this level, the enterprise

standards are not defined, inconsistent automation, and teams

may perform some activities associated with the practice

inconsistently.

Level-2 is “Consistent”: The enterprise standards at this

level are defined, automation follows the standards, and teams

perform activities associated with the practice according to

the standards.

Level-3 is “Reliable”: At this level, enterprise’s standards

are being followed, an exist mechanisms to assist adoption, a

mentor team is available to assist in adopting the best

practices.

Level-4 is “Scaled”: At this level, institutionalized

practices are defined for the adoption across the enterprise,

matured core team is formulated, and feedback process is

established for the standards improvement.

Fig.1. IBM DevOps Maturity Model [6]

2.2 MOHAMED DEVOPS MATURITY MODEL

Mohamed, S [12], has introduced a new DevOps maturity

model and then assessed how the model can affect the existing

global software engineering practices and processes. The

proposed DevOps maturity model is based on the Capability

Maturity Model Integration (CMMI) and it is composed of

five maturity levels against four dimensions that include

quality, automation, collaboration and governance.

Mohamed, S clarified that the implementation of the

CMMI based DevOps maturity model helps in improving

operational efficiency, increase visibility and mitigating

significant risks such as downtime during implementation.

The strength of this model is that, using techniques of the

CMMI model helps in identifying the capability of the

DevOps model at each level of its maturity. It also provides a

clear transformation framework as the DevOps model

matures from one phase to another. The maturity model is

defined as follows, See Fig. 2:

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

4856

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number C6888098319/2019©BEIESP

DOI: 10.35940/ijrte.C6888.098319

Level-1 is “Initial”: At this level, ad-hoc communication

with no clear process, no automation implemented,

uncontrolled governance/process where the outcome of any

service is not predictable, and no quality standards exist. The

whole activities are done based on the process owner

objectives.

Level-2 is “Managed”: At this level, communications are

controlled but not shared between teams, documented

automation process but not executed, executed governance

but not standardized, and ad-hoc quality management is in

place.

Level-3 is “Defined”: At this level, the communication,

automation, and governance are standardized. Quality

standard exists.

Level-4 is “Measured”: At this level, the communication

metrics, automation metrics, and governance metrics, quality

metrics exist for improvement and measurement.

Level-5 is “Optimized”: At this level, constructive

communication environment, tools and processes are

adopted, smart automation to maximize throughput,

optimized governance self-adaption, and continuous quality

improvement.

Fig. 2. Mohammed’s DevOps Maturity Model [12]

2.3 CAPGEMINI DEVOPS MATURITY MODEL

G. Menzel and A. Macaulay [11] from Capgemini,

designed DevOps maturity model that enables businesses to

identify the current maturity level. This model has five levels

of maturity that measure three dimensions which are people,

process and tools. It is defined as follows, See Fig. 3:

Level-1 is “Basic”: at this level, the strategy, design,

development, and testing are separated. Teams focus on their

goals and objectives, ad-hoc process, all activities are manual,

no automation tools, and no integration and sharing.

Level-2 is “Emerging”: teams are separate, developers

focus on functional and less focus on the non-functional

requirements, establish a managed process that is restricted to

a specific environment, and automatic scripts are developed

for some environments such a development environment.

Level-3 is “Co-ordinated”: here, operational team are

engaged in the first phases. There are joint processes for the

development and operational aspects. The environment setup

and characteristics are partially understood and automated

Level-4 is “Enhanced”: The entire solution lifecycle from

design, build, test to run has been covered by the joint team.

There is a single process for the entire solution lifecycle. The

environment setup and characteristics are clear and most of

the setups for development, testing and operation are

automated.

A Research on DevOps Maturity Models

4857

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number C6888098319/2019©BEIESP

DOI: 10.35940/ijrte.C6888.098319

Level-5 is “Top level”: One collaborative team with full

knowledge sharing. There is a single process that cover the

entire solution lifecycle and organization strategy. Setup for

all environments are automated from one single repository.

Fig. 3. Capgemini’s DevOps Maturity Model [11]

2.4 Hewlett Packard Enterprise DevOps Maturity Model

Inbar et al. [10] from Hewlett Packard Enterprise (HPE),

developed a new maturity model that is aligned with the

CMMI maturity model to measure DevOps adoption. This

model is designed to cover the entire lifecycle of an

application for large organizations. It is applied to measure

the process, automation, and collaboration dimensions. The

maturity model is defined as follows, see Fig. 4:

Level-1 is “Initial”: The collaboration is poor, ad-hoc team

communication, and independent stakeholders’ decisions, no

automation processes, and unrepeatable processes.

Level-2 is “Managed”: The collaboration is managed,

communication and coordination are managed, the process is

partially automated and documented and is not standardized

across projects

Level-3 is “Defined”: The collaboration is established

between the teams, central automated infrastructure,

automation is tailored for application and environments.

processes are characterized and standardized across projects.

Level-4 is “Measured”: The collaboration is measured

based on processes communication to identify bottlenecks,

the process is automated, measured, and controlled. The

process is visible and predictable of entire process.

Level-5 is “Optimized”: The collaboration is optimized

and effective knowledge sharing and individual

empowerment. Continuous improvement for the automated

process, continuous assessment for the entire process, and

minimize risk and cost for the business objectives.

Fig.4. Hewlett Packard Enterprise’s DevOps Maturity Model [10]

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

4858

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number C6888098319/2019©BEIESP

DOI: 10.35940/ijrte.C6888.098319

2.5 Bucena DevOps Maturity Model

Bucena and Kirikova [12], have developed a DevOps

maturity model based on CMM approach, which consist of

five maturity levels. Each of these levels has four dimensions

which are technology, process, people and culture. It is

defined as follows, See Fig. 5:

Level-1 is "Initial": The environments, tests, data

migration, and deployment are performed manually. The

delivery process and project management are inconsistent,

ad-hoc approaches for learning. Communication is restricted,

and lack of awareness as how the culture impacts day to day

business.

Level-2 is “Repeatable”: The environments configurations

are externalized and versioned, the delivery process is

scheduled, project and requirement are managed, requirement

is based on testing, development documents are up-to-date,

scrum development, and managed processes but not

standardized, the team organized around deliveries, In the

culture dimension, the communication among internal team

are rapid.

Level-3 is “Defined”: Environments virtualization is

adopted. The delivery process is automated, and integrated.

The team is organized around projects, the communication

between teams are rapid, clear project requirements, active

collaboration, and identified culture traits.

Level-4 is “Managed”: The environments are managed

effectively, smoked tests shared with operation team,

production deployment is automated. The process delivers

frequently, visible and predictable. The team organized

around products, frequent collaboration and communication,

clear product requirements, and culture viewed as asset to be

managed.

Level-5 is “Optimized”:

The environments fully automated, continuous work on

process improvement for better visibility and faster feedback,

continuous delivery process, and the collaboration between

operation and development teams to manage risks and reduce

cycle time. Teams are organized around KPIs. Fig.5

illustrates a sample of this maturity model.

Fig. 5. Sample of Bucena’s DevOps Maturity Model [7]

Eficode Maturity Model

Eficode’s maturity model [9], see Fig. 6, has five

dimensions which are: organization and culture,

environments and release, builds and continuous integration,

quality assurance, and visibility and reporting. The model

defines four maturity levels. At the first level, DevOps

practices are not used. At the second and third level,

organization has started to implement some DevOps

practices, but they are in their early stages and there are room

for improvement. The last level in Eficode’s model focuses on

the use of metrics for continuous improvement to achieve

efficiency and quality where the DevOps practices become in

an ideal state.

A Research on DevOps Maturity Models

4859

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number C6888098319/2019©BEIESP

DOI: 10.35940/ijrte.C6888.098319

Fig.6. Eficode DevOps Maturity Model [9]

2.7 Feijter Maturity Model

Feijter DevOps maturity model [8], shown in Table-1,

includes focus areas that enables software production

organizations to mature in a fine grain manner. The model is

dedicated to be used by software product organizations (SPO)

that produces software to be used by several customers but not

a customized software for specific customer. Feijter model

includes sixty-three capabilities (represented as letters in the

model) and are distributed over ten capability levels. A case

study was carried out, at Centric organization, to experience

the maturity model in practice. The model consists of three

main dimensions namely: culture and collaboration, product

and process quality, and foundation.

III. COMPARISON AND DISCUSSION OF THE

DEVOPS MATURITY MODELS & RESULTS

The comparison among DevOps maturity models is based

on three factors which are:

Maturity models’ levels names.

Maturity models’ number of levels, publication year,

number of dimensions, and application

Maturity models’ dimensions

The result of this comparison and the following discussion

are informative to identify the strengths and weaknesses of the

existing maturity models and to decide which maturity model

to use in any DevOps process assessment activity.

Table 1. Feijter et al. DevOps Maturity Model [8]

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

4860

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number C6888098319/2019©BEIESP

DOI: 10.35940/ijrte.C6888.098319

3.1 Maturity Models’ Levels Names

From our investigation of the DevOps maturity models, we

have noticed that, see Table 2:

There are two similar models which are: Mohamed’s

model, and Inbar’s model because both of them comply with

CMMI.

There are three similarities in the levels’ names between

Mohamed’s model, Inbar’s model, and Bucena’s model

which are level 1,3, and 5.

The level names are different from one maturity model to

another but their meanings, may have some similarities and

differences. For instance, the first level (initialization) for

Bahrs’s model is named “Practiced” while in Menzel’s model

it is named “Basic”, and the others name it “Initial”.

Eficode and Feijter models used numbers to name the

maturity levels

The fourth level has different names, e.g. scaled, managed,

enhanced or measured, but they all reflect the same meaning

of having a managed process:

Level 1: A level for the starting point for use of the new

process (Initial).

Level 2: A level where the process is at least documented

sufficiently (Managed).

Level 3: A level where the process is defined as a standard

process (Defined).

Level 4: A level where the process is managed in

accordance metrics (Measured).

Level 5: A level where the process managed efficiently

(Optimized)

Table 2. Maturity Models’ Levels

Maturity

model

Level 1 Level 2 Level 3 Level 4 Level 5

Bahrs’s model Practiced Consistent Reliable Scaled NA

Mohamed’sm

odel
Initial Managed Defined Measured Optimized

Menzel’s

model
Basic Emerging Co-ordinated Enhanced Top level

Inbar model Initial Managed Defined Measured Optimized

Bucena model Initial Repeatable Defined Managed Optimized

Eficode’s

model
1 2 3 4 NA

Feijter model Differ than other models with 10 maturity levels

3.2 Maturity Models’ Number of Levels, Publication Year,

Number of Dimensions, and Application

From Table 3, we noticed that the maturity models have

different number of levels:

Two maturity models have four levels, Bahrs’s and

Eficode’s models.

Four maturity models have five levels, which are:

Mohamed’s model, Inbar’s model, Menzel’s model and

Bucena’s model.

One odd model has 10 maturity models that is Feijter

model.

Regarding the maturity models’ publishing year, note that

all the models are relatively new and published in the period

of 2013-2018 which justifies the scarce of published work

related to DevOps, which we expect to increase the coming

few years. Furthermore, regarding the number of dimensions,

note that all models have 3-5 possible dimensions, as

discussed in the next section.

Table 3. Maturity Models’ Number of levels, Year

Maturity model
Number

of levels

Pub.

Year

Number of

dimensions

Organizations

Validated the model

Bahrs’s model 4 2013 4 1 (IBM)

Mohamed’s model 5 2015 4 -

Menzel’s model 5 2015 3 -

Inbar’s model 5 2013 3 1 (Hewlett Packard)

Bucena’s model 5 2017 4 1 Anonymous SMEs

Eficode’s model 4 2015 5

Feijter Model 10 2018 3 1 (Centric)

3.3 Maturity Models’ Dimensions

Different DevOps maturity models have different

dimensions, see Table 4:

Four maturity models have Process dimension which are:

Mohamed’s model, Menzel’s model, Inbar’s model, and

Bucena’s model.

In the second dimension (dimension B), Mohamed, S [3],

and Inbar et al. [5] models have automation dimension, where

G. Menzel and A. Macaulay [4] has tool dimension, Bucena

[6] has a technology dimension and Eficode [8] has a

environment and release dimension that contains automation

and tools as sub dimension.

A Research on DevOps Maturity Models

4861

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number C6888098319/2019©BEIESP

DOI: 10.35940/ijrte.C6888.098319

Most of the maturity models have dimension for team

collaboration, as in Mohamed, S [3] and Inbar et al. [5]. G.

Menzel and A. Macaulay [4], Bucena [6] call it people and

differentiate it from the culture dimension, Eficode and

Feijter models call it culture dimension.

Bahrs, P [2] model dimensions revolve on the process

automation

One model has fifth dimension related to visibility and

reporting

Table 4 Maturity Models’ Dimensions

Maturity model
Dimension

A

Dimension

B

Dimension

C

Dimension

D

Dimension

E

Bahrs’s model Plan Develop Release Monitor -

Mohamed’s

model

Collaboration Automation Process /

Governance

Quality -

Menzel’s model People Tool Process - -

Inbar’s model Collaboration Automation Process - -

Bucena’s model People Technology Process Culture -

Eficode’s model Organization

and culture

Environments

and release

Builds and

continuous

integration

Quality

assurance

Visibility &

reporting

Feijter Model
Culture &

Collaboration

Product, Process

& Quality

Foundation - -

IV. CONCLUSION AND FUTURE WORK

To conclude, it is clear from the conducted comparison that

most of the maturity models have 5 levels either following

CMM or CMMI, others have 4 and one exceptional model has

10. Regarding the experiment application two of the models

are applied and validated by the institute that already

developed the mode while other to models are validated by

applying the model in one independent organization. This

means that the usage of the DevOps maturity models is still

very limited and is not yet used by variety of organizations

and this would make the validity of such models questionable.

Accordingly, more research and empirical work is vitally

needed to practice and validate the proposed DevOps

maturity models.

It is also noted that there are large similarities in the

measured dimensions in most of models expect Bucena’s and

Feijter’s models. Both models assist the culture dimension

and both of them have validated their model in one

organization from the industry, i.e. an independent

organization that they do not work for. Moreover, we found

that Bucena’s model is holistic and covers all of DevOps

dimensions while Feijter’s model is dedicated for SPO

organizations. Hence, we believe that Bucena’s and Eficode’s

models are comprehensive and promising models to build on

them and conduct future assessment to assess DevOps

maturity.

Another observation concerning the application of the

various DevOps maturity models, is that none of the

researchers have documented the adopted assessment method

in an academic publication. All of them documented the

model and its applications then discussed the findings and

results. We believe that this is not enough. Developed

assessment method should also be published to be used or

enhanced by other researchers. The next step is to use one of

the recommended models to assess the maturity of Saudi

organization in adopting DevOps via an empirical study.

V. REFERENCES

1. P. Rodríguez et al., “Continuous deployment of software

intensive products and services: A systematic mapping

study,” J. Syst. Softw., vol. 123, pp. 263–291, Jan. 2017.

2. F. M. A. Erich, C. Amrit, and M. Daneva, “A qualitative

study of DevOps usage in practice,” J. Softw. Evol.

Process, vol. 29, no. 6, p. e1885, Jun. 2017.

3. J. Sharp and J. Babb, “Is Information Systems Late to the

Party? The Current State of DevOps Research in the

Association for Information Systems eLibrary,” in

AMCIS 2018 Proceedings, 2018.

4. J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing

Maturity Models for IT Management,” Bus. Inf. Syst.

Eng., vol. 1, no. 3, pp. 213–222, Jun. 2009.

5. D. Proença and J. Borbinha, “Maturity Models for

Information Systems - A State of the Art,” Procedia

Comput. Sci., vol. 100, pp. 1042–1049, Jan. 2016.

6. P. Bahrs, “Adopting the IBM DevOps approach for

continuous software delivery: Adoption paths and the

DevOps maturity model,” 2013.

7. I. Bucena and M. Kirikova, “Simplifying the devops

adoption process,” CEUR Workshop Proc., vol. 1898,

2017.

8. R. de Feijter, S. Overbeek, R. van Vliet, E. Jagroep, and S.

Brinkkemper, “DevOps Competences and Maturity for

Software Producing Organizations,” in Enterprise,

Business-Process and Information Systems Modeling,

vol. 318, Springer, 2018, pp. 244–259.

9. Eficode Oy, “DevOps Quick Guides,” Helsinki Finland,

2015.

10. S. Inbar, S., Sayers, Y., Pearl, G., Schitzer, E., Shufer, I.,

Kogan, O., & Ravi, “DevOps and OpsDev: How Maturity

Model Works,” Hewlett Packard Enterprise, 2013.

11. G. Menzel and A. Macaulay, “DevOps - The Future of

Application Lifecycle Automation,” Capgemini.Com, p.

24, 2015.

12. S. Mohamed, “DevOps shifting software engineering

strategy-value based perspective,” Int. J. Comput. Eng.,

vol. 17, no. 2, pp. 51–57, 2015.

13. S. I. Mohamed, “DevOps Shifting Software Engineering

Strategy Value Based Perspective,” IOSR J. Comput.

Eng. Ver. IV, 2015.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

4862

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number C6888098319/2019©BEIESP

DOI: 10.35940/ijrte.C6888.098319

AUTHORS PROFILE

Mohammad Zarour

Dr. Zarour holds a Ph.D. in Software

Engineering (2009) from University of Quebec and

master degree in Computer Science (1998) from

University of Jordan. He is currently a faculty

member in college of computer and information

sciences (CCIS) at Prince Sultan University

Riyadh, Saudi Arabia. He has more than 12 years

of teaching experience in university and academic

environment and also has several years of industry

experience in information systems development and project management.

His research interests include software process assessment and

improvement, software quality, cost estimation, and web technologies. He

has many peer-reviewed publications.

Norah Alhammad

Mrs. Norah has a master degree in software engineering from Prince

Sultan University Norah has a Master degree in Software Engineering from

Prince Sultan University. Her work focus in software development and

DevOps. Currently, she is an Information Technology Project Manager in

Semi Government Industry.

Mamdouh Alenezi

Dr. Alenezi is currently the Dean of

Educational Services and the Chief

Information & Technology Officer (CITO) at

Prince Sultan University. Dr. Alenezi

received his MS and Ph.D. degrees from

DePaul University and North Dakota State

University in 2011 and 2014, respectively. He

has extensive experience in data mining and

machine learning where he applied several

data mining techniques to solve several

Software Engineering problems. He conducted several research areas and

development of predictive models using machine learning to predict

fault-prone classes, comprehend source code, and predict the appropriate

developer to be assigned to a new bug.

Khalid Al-Sarayreh

Dr. Al-Sarayreh is an associate professor of

Software Engineering at the Prince Sultan

University in Saudi Arabia. He has a Ph.D.

degree in Software Engineering from the

University of Québec in Canada. He also has a

doctoral degree in Computer Information

Systems, MSc in Computer Engineering

(Embedded Systems) and BS degree in

Computer Science from Jordanian Universities. He served during 25 years in

both national and international institutions. With over 70 publications, his

research interests include Software Quality Engineering, Software Quality

Assurance using international standards, Software Requirements

(Functional and Nonfunctional requirements), Software Measurement,

Software Reuse, Software Engineering Standards (ECSS, IEEE, and ISO).

