
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-8, June 2020

449

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: H6508069820/2020©BEIESP

DOI: 10.35940/ijitee.H6508.069820



Abstract: Software quality aims at having quality as part of all

aspects of the developed software. Design smells are considered

enemies of the software source code quality. There are verities of

design problems with different terminologies. Researchers and

practitioners accept it as true that whenever there is a design

smell, there is a security issue or concern. In this work, we want to

explore the connection between design smells and security

vulnerabilities. This work provides experimental evidence about

this connection. We conducted an empirical study to explore the

connection between design smells and security issues by

evaluating four C# open-source systems. We found interesting

results that show classes with design smells have more chances of

having security issues.

Keywords: Design Smell, Empirical Study, Software Evolution.

I. INTRODUCTION

Software systems are continually evolving, requiring

constant maintenance and development. In this context, many

e-services have been made to find approaches that can detect

source code fragments that are difficult to maintain or are

more likely to have security issues. Source code fragments

that contain design smells usually hurt the quality attributes

such as maintainability and flexibility [6].
Finding security vulnerabilities is a very important task where

researchers have tried different techniques and examined

different correlations to make the task more efficient. Security

is a software property just as correctness or efficiency.

However, correctness and efficiency can be easily measured

whereas it is very difficult to measure security directly.

Design smells have been found to be strong symptoms of poor

design and implementation decisions [6]. These smells are

indicators for refactoring needs, which can serve as a proxy

for design quality. The investigation of connections between

code smells and vulnerabilities can shed light on our

understanding of vulnerabilities and their causes.

Design smells or code smells [6] in the source code that can

give indications of problems in the design can be solved by

refactoring [6]. Design smells represent principles of

violations design, making the software difficult to understand,

maintain, and evolve [3]. Although the concept of design

smells is used to assess the software design, there is little

Revised Manuscript Received on May 20, 2020.

* Correspondence Author

Mamdouh Alenezi, College of Computer and Information Sciences,

Prince Sultan University, Riyadh, Saudi Arabia. E-mail:

malenezi@psu.edu.sa

Mohammed Akour*, Al Yamamah University, Riyadh, Saudi Arabia,

Yarmouk University, Irbid, Jordan. E-mail: mohammed.akour@yu.edu.jo

empirical evidence relating design smells with important

software quality attributes, such as maintenance effort and

security issues [9]. One of the pieces of evidence was given by

D'Ambros et al. [3] by showing the emergence of design

smells classes of software systems over the cycle contributed

to generate security issues.

Li and Shatnawi [9] have also studied the relationship

between design smells and the likelihood of security issues.

Some design smells were positively associated with the

likelihood of security issues in classes. However, some other

studies have refuted the idea of accepting the design smells

indicators of potential problems as the design [1, 18, 21].

Olbrich et al. [13] For example, evaluated the effect of two

design smells (God Class and brain class) with security issues.

The authors concluded that design smells are not necessarily

harmful. Most studies are studied a few designs smells, such

as God Class and Brain Class, while other design smells have

not been studied much [23]. Therefore, it is necessary to

conduct more studies on the impact of design smells from a

security perspective.

The overall goal of our work is to explore the connection

between design smells and security issues. We conducted an

experimental study of four C# open-source projects. The

article is organized as follows: Section 2 discusses related

work. Section 3 discusses the aim of the study and research

questions. Section 4 discusses the results. Section 5 concludes

the paper.

II. RELATED WORKS

Researchers have studied Design smells and how they can be

detected. Design smells are potential causes of future

problems. The term was first used by Fowler [6] in his

prominent work of refactoring where he cataloged potential

problems in designing software that caused long-term

problems. The author called these pieces of software as points

of immediate refactoring. It is worth mentioning that these

refactoring should be made so that the internal structure of the

system is improved, however, without any external change,

and consequently the functionalities are changed. They can be

identified through the use of rules-based software as a means

of quality intrigues, known as detection strategies [7, 11].

Mumtaz et al. [8] studied the lifespan of code smells in seven

open-source systems. They have found that smells are

removed because of maintenance requests. The commits that

changed these smells are not specifically for these smells.

This shows that smells can last for a long time in software

systems. Palomba et al. [10] tried to improve bug-predication

by studying the intensity of smells.

Exploring the Connection between Design

Smells and Security Vulnerabilities

Mamdouh Alenezi, Mohammed Akour

Exploring the Connection between Design Smells and Security Vulnerabilities

450

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: H6508069820/2020©BEIESP

DOI: 10.35940/ijitee.H6508.069820

Javid et al. [28] studied the relationship between complexity

and software vulnerabilities, and their experiment reveals a

strong connection between these two factors. The

experiments are conducted by utilizing multiple classifiers

and multiple feature selection algorithms. Moreover, they

addressed the factors that might make the software more

vulnerable

Akour and Alsmadi [29] and Alrawais et al. [30] assure the

importance of conducting vulnerability assessment in a

frequent matter. As their studies reveal how a large number of

applications suffer from a wide variety of attacks which lead

to financial losses. In their works a security-testing framework

for web applications, networks, and computer infrastructure is

proposed with an argument that the security of an application

should be tested at every stage of the software development

life cycle (SDLC).

III. PURPOSE AND RESEARCH ISSUES

This work aims to study the relationship between design

smells and the occurrence of security issues in software

systems. Therefore, a general question of research that aims to

achieve this goal has been defined as follows:

• RQ: The relationship between design smells and security

issues?

Design smells are used to identify optical problematic classes

in object-oriented systems. Some studies [3, 9] show that

feature classes that design smells They are more likely to

contain security issues, other classes. However, Olbrich et al.

[13] concluded that design smells not necessarily are harmful.

Therefore, from this research question, we evaluate the

existence of this relationship, comparing the occurrence of

security issues into classes design smells and classes without

design smells.

Zhang et al. [24] For example, investigated the relationship

between six design smells Fowler [6] (Duplicated Code, Data

Clumps, Switch Statements, Speculative generality, Message

Chains, and Middle Man) and security issues software. The

study results showed that the source codes containing

Duplicated Code. They are more associated with more

security issues the other design smells evaluated. However,

this result is considered a small group of design smells and

despises other recurring software systems such as God Class

and Feature Envy. Therefore, from this research question, we

identified the design smell with a higher incidence of security

issues, comparing the ratio of security issues in classes

affected by each type of design smell under study. The result

of this analysis might be used to help developers prioritize

refactoring.

Description of selected software systems, with name and

structural size information in terms of a number of lines of

code (LOC), methods, and classes are in Table 1.

Table 1. Selected open-source C# software systems
System Version # of

Classes

of Methods LOC

ConfigR 1.0.0 125 608 1560

Shadowsock

s

4.0.6 117 759 1124

1

Wexflow 2.0 86 302 6177

Scripty 0.7.4 59 432 4856

Design smells are design system structures, which indicate the

compromise of fundamental design principles. They are

indicators of poor design quality, which negatively affect

design quality [25]. Designite [26] is a software quality

assessment tool that comprehensive support detecting

architectural and design smells. The tool used in our empirical

analysis [26] can detect nineteen design smells. The

connection between security and software design has been

highlighted in recent years [27]. There is a still need to

investigate this relation empirically on real systems.

1. Results

In this section, we discuss the results of our

experiments. We report the relationship between design

smells and security issues. The following tables report

the design smells frequency along with the frequency of

security issues.
Table 2. Results of the ConfigR system

Smell Frequency Security

Issues

Duplicate Abstraction 45 3

Imperative Abstraction 28 1

Unnecessary Abstraction 3 0

Unutilized Abstraction 53 0

Broken Modularization 1 0

Insufficient Modularization 8 0

Rebellious Hierarchy 6 3

Wide Hierarchy 2 0

Table 2 shows the results of the ConfigR system. Security

issues are related to ‘Duplicate Abstraction’ and ‘Rebellious

Hierarchy’. We found only six security issues that are not part

of any of the studied design smells.

Table 3. Results of the Scripty system
Smell Frequency Security

Issues

Imperative Abstraction 3 0

Unnecessary Abstraction 11 1

Deficient Encapsulation 3 2

Broken Modularization 9 3

Rebellious Hierarchy 4 2

Cyclic Hierarchy 1 1

Broken Hierarchy 1 0

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-8, June 2020

451

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: H6508069820/2020©BEIESP

DOI: 10.35940/ijitee.H6508.069820

Table 3 shows the results of the Scripty system. Security

issues are related to ‘Deficient Encapsulation’, ‘Broken

Modularization’, and ‘Rebellious Hierarchy’. We found only

two security issues that are not part of any of the studied

design smells.

Table 4. Results of the Shadowsocks system
Smell Frequency Security Issues

Duplicate Abstraction 2 0

Imperative Abstraction 6 0

Unnecessary Abstraction 12 2

Unutilized Abstraction 9 1

Deficient Encapsulation 44 9

Broken Modularization 5 1

Cyclically-dependent

Modularization

8 3

Insufficient Modularization 5 0

Broken Hierarchy 1 0

Rebellious Hierarchy 7 2

Unfactored Hierarchy 4 0

Table 4 shows the results of the Shadowsocks system. We

found only three security issues that are not part of any of the

studied design smells.

Table 5. Results of the Wexflow system
Smell Frequency Security Issues

Duplicate Abstraction 1 0

Imperative Abstraction 4 0

Unnecessary Abstraction 2 0

Unutilized Abstraction 7 1

Deficient Encapsulation 4 2

Unexploited Encapsulation 4 2

Cyclically-dependent Modularization 2 2

Insufficient Modularization 2 0

Wide Hierarchy 1 0

Table 5 shows the results of the Wexflow system. We found

only three security issues that are not part of any of the studied

design smells. We can see from the previous tables that there

is an obvious connection between design smells and security

issues. The number of security issues that are not associated

with design smells is very small compared to the number of

security issues that are associated with security issues. This

shows some evidence that there is a great relationship

between design smells (low code design quality) with security

issues in the software system. The most recurring design

smells that have connections with security issues are

‘Deficient Encapsulation’, ‘Duplicate Abstraction’,

‘Rebellious Hierarchy’, and ‘Cyclically-dependent

Modularization’.

IV. CONCLUSION

In this paper, we discuss the connection between design

smells and security issues. In literature, there are very few

studies that discuss the impact of design smells on software

qualities especially security. Hence, identifying the research

gap we conducted experiments to investigate the impact of

design smells and security issues. For this purpose, in this

work, we selected four open-source C# systems. The tool that

we used to investigate the design smells was able to identify

nineteen design smells within the open-source software

system.

REFERENCES

1. Anda, B. (2007, October). Assessing software system maintainability

using structural measures and expert assessments. In 2007 IEEE

International Conference on Software Maintenance (pp. 204-213).

IEEE.

2. Cohen, J. (2013). Statistical power analysis for the behavioral

sciences. Routledge.

3. D'Ambros, M., Bacchelli, A., & Lanza, M. (2010, July). On the impact

of design flaws on software defects. In 2010 10th International

Conference on Quality Software (pp. 23-31). IEEE.

4. D'Ambros, M., Lanza, M., & Pinzger, M. (2007, June). " A Bug's Life"

Visualizing a Bug Database. In 2007 4th IEEE International

Workshop on Visualizing Software for Understanding and

Analysis (pp. 113-120). IEEE.

5. Fontana, F. A., Braione, P., & Zanoni, M. (2012). Automatic detection

of bad smells in code: An experimental assessment. Journal of Object

Technology, 11(2), 5-1.

6. Fowler, M. (2018). Refactoring: improving the design of existing

code. Addison-Wesley Professional.

7. Khomh, F., Di Penta, M., & Gueheneuc, Y. G. (2009, October). An

exploratory study of the impact of code smells on software

change-proneness. In 2009 16th Working Conference on Reverse

Engineering (pp. 75-84). IEEE.

8. Mumtaz, Haris, Mohammad Alshayeb, Sajjad Mahmood, and

Mahmood Niazi. "An empirical study to improve software security

through the application of code refactoring." Information and Software

Technology 96 (2018): 112-125.

9. Li, W., & Shatnawi, R. (2007). An empirical study of the bad smells

and class error probability in the post-release object-oriented system

evolution. Journal of systems and software, 80(7), 1120-1128.

10. Palomba, Fabio, Marco Zanoni, Francesca Arcelli Fontana, Andrea De

Lucia, and Rocco Oliveto. "Smells like teen spirit: Improving bug

prediction performance using the intensity of code smells." In 2016

IEEE International Conference on Software Maintenance and

Evolution (ICSME), pp. 244-255. IEEE, 2016.

11. Marinescu, R. (2004, September). Detection strategies: Metrics-based

rules for detecting design flaws. In 20th IEEE International

Conference on Software Maintenance, 2004. Proceedings. (pp.

350-359). IEEE.

12. Moha, N., Gueheneuc, Y. G., Duchien, L., & Le Meur, A. F. (2009).

Decor: A method for the specification and detection of code and design

smells. IEEE Transactions on Software Engineering, 36(1), 20-36.

13. Olbrich, S. M., Cruzes, D. S., & Sjøberg, D. I. (2010, September). Are

all code smells harmful? A study of God Classes and Brain Classes in

the evolution of three open source systems. In 2010 IEEE International

Conference on Software Maintenance (pp. 1-10). IEEE.

14. Rahman, F., Bird, C., & Devanbu, P. (2012). Clones: What is that

smell?. Empirical Software Engineering, 17(4-5), 503-530.

Exploring the Connection between Design Smells and Security Vulnerabilities

452

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: H6508069820/2020©BEIESP

DOI: 10.35940/ijitee.H6508.069820

15. Schumacher, J., Zazworka, N., Shull, F., Seaman, C., & Shaw, M.

(2010, September). Building empirical support for automated code

smell detection. In Proceedings of the 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement (p.

8). ACM.

16. Silva, A. L., Garcia, A., Reioli, E. J., & De Lucena, C. J. P. (2013,

October). Are domain-specific detection strategies for code anomalies

reusable? An industry multi-project study. In 2013 27th Brazilian

Symposium on Software Engineering (pp. 79-88). IEEE.

17. Silva, L. L., Valente, M. T., & Maia, M. D. A. (2014, April). Assessing

modularity using co-change clusters. In Proceedings of the 13th

international conference on Modularity (pp. 49-60). ACM.

18. Sjøberg, D. I., Yamashita, A., Anda, B. C., Mockus, A., & Dybå, T.

(2012). Quantifying the effect of code smells on maintenance

effort. IEEE Transactions on Software Engineering, 39(8),

1144-1156.

19. Walker, R. J., Rawal, S., & Sillito, J. (2012, November). Do

crosscutting concerns cause modularity problems?. In Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering (p. 49). ACM.

20. Wu, R., Zhang, H., Kim, S., & Cheung, S. C. (2011, September).

Relink: recovering links between bugs and changes. In Proceedings of

the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering (pp. 15-25).

ACM.

21. Yamashita, A., & Moonen, L. (2012, September). Do code smells

reflect important maintainability aspects?. In 2012 28th IEEE

international conference on software maintenance (ICSM) (pp.

306-315). IEEE.

22. Zazworka, N., Shaw, M. A., Shull, F., & Seaman, C. (2011, May).

Investigating the impact of design debt on software quality.

In Proceedings of the 2nd Workshop on Managing Technical

Debt (pp. 17-23). ACM.

23. Zhang, M., Hall, T., & Baddoo, N. (2011). Code bad smells: a review

of current knowledge. Journal of Software Maintenance and

Evolution: research and practice, 23(3), 179-202.

24. Zhang, M., Hall, T., Baddoo, N., & Wernick, P. (2008, July). Do bad

smells indicate trouble in code?. In Proceedings of the 2008 workshop

on Defects in large software systems (pp. 43-44). ACM.

25. Suryanarayana, G., Samarthyam, G., & Sharma, T.

(2014). Refactoring for software design smells: managing technical

debt. Morgan Kaufmann.

26. Sharma, T., Mishra, P., & Tiwari, R. (2016, May). Designite: a

software design quality assessment tool. In Proceedings of the 1st

International Workshop on Bringing Architectural Design Thinking

into Developers' Daily Activities (pp. 1-4). ACM.

27. Feng, Q., Kazman, R., Cai, Y., Mo, R., & Xiao, L. (2016, April).

Towards an architecture-centric approach to security analysis. In 2016

13th Working IEEE/IFIP Conference on Software Architecture

(WICSA) (pp. 221-230). IEEE.

28. Yasir Javed, Mamdouh Alenezi, Mohammed Akour, Ahmad Alzyod.

Discovering The Relationship Between Software Complexity And

Software Vulnerabilities, Journal of Theoretical and Applied

Information Technology 31st July 2018. Vol.96. No 14

29. Akour, Mohammed, and Izzat Alsmadi. "Vulnerability assessments: a

case study of Jordanian universities." 2015 International Conference

on Open Source Software Computing (OSSCOM). IEEE, 2015.

30. Alrawais, Layla Mohammed, Mamdouh Alenezi, and Mohammad

Akour. "Security Testing Framework for Web

Applications." International Journal of Software Innovation (IJSI) 6.3

(2018): 93-117.

AUTHORS PROFILE

 Dr. Mamdouh Alenezi is currently the Dean of

Educational Services at Prince Sultan University. Dr.

Alenezi received his MS and Ph.D. degrees from

DePaul University and North Dakota State University

in 2011 and 2014, respectively. He has extensive

experience in data mining and machine learning

where he applied several data mining techniques to solve several Software

Engineering problems. He conducted several research areas and

development of predictive models using machine learning to predict

fault-prone classes, comprehend source code, and predict the appropriate

developer to be assigned to a new bug.

Dr. Mohammed Akour is an associate Professor of

Software Engineering at Al Yamamah University

(YU). He got his Bachelor's (2006) and Master's

(2008) degree from Yarmouk University in Computer

Information Systems with Honor. He joined Yarmouk

University as a Lecturer in August 2008 after

graduating with his master's in Computer Information Systems. In August

2009, He left Yarmouk University to pursue his Ph.D. in Software

Engineering at North Dakota State University (NDSU). He joined Yarmouk

University again in April 2013 after graduating with his Ph.D. in Software

Engineering from NDSU with Honor. He serves as Keynote Speaker,

Organizer, a Co-chair and publicity Chair for several IEEE conferences, and

as ERB for more than 10 ISI indexed prestigious journals. He is a member of

the International Association of Engineers (IAENG). Dr. Akour at Yarmouk

University served as Head of accreditation and Quality assurance and then

was hired as director of computer and Information Center. In 2018, Dr.

Akour has been hired as Vice Dean of Student Affairs at Yarmouk

University. In 2019, Dr. Akour joins Al Yamamah University -Riyadh Saudi

Arabia- as an associate professor in Software Engineering.

