
Open Source Web Application Security: A Static
Analysis Approach

Mamdouh Alenezi
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia

malenezi@psu.edu.sa

Yasir Javed
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia

yjaved@psu.edu.sa

Abstract— In this paper, we have tested several open source
web applications against common security vulnerabilities. These
vulnerabilities spans from unnecessary data member declaration
to leaving gaps for SQL injection. The static security
vulnerabilities testing was done in three categories (1) Dodgy
code vulnerabilities (2) Malicious code vulnerabilities (3) Security
code vulnerabilities on seven (7) different web applications built
in Java. It is evident from the obtained results that almost all
selected applications have similar kind of vulnerabilities that
might have been introduced due to hasty programming or lack of
developer knowledge against security vulnerabilities. We
recommend to create an intelligent development framework that
can provide suggestions for secure development by overcoming
common vulnerabilities, can add missing code and can learn
from expert developer’s practices to overcome the security
vulnerabilities.

Keywords— Open source; Web application;, Source code;
Security; Static analysis

I. INTRODUCTION
The open source software security is a major concern for

organizations that implements them as part of their software
solutions, predominantly if it will be a major component of
their ecosystems. Open source is no inferior or better than
proprietary software when it comes to security. Since open
source code is open for the public to look at, its security will
have been exposed to larger and additional worthwhile
scrutiny. The practice of building secure software that
functions properly under unwanted attacks is called software
security.

Web applications are the most vital communication
channels among different kinds of service providers and
clients. As their importance increased, the negative impact of
their security flaws has grown as well. These web applications
accomplish mission-critical jobs and handle sensitive
information. Vulnerabilities that might lead to the compromise
of sensitive information are being reported continuously. The
main reason for this phenomenon [22] is the lack of security
awareness on part of the developers.

Security weaknesses found late in the software
development cycle are more costly to rectify than the ones
found early [24]. Consequently, developers have a duty to
attempt to discover weaknesses as early as possible. However,
the size and complexity of the code bases and shortage of

1developers experience may complicate software weaknesses
discoveries. Finding vulnerabilities in web applications can be
done by code auditing (code inspection or reviews), static
Analysis, dynamic analysis, and security testing [1],[4].

The National Vulnerability Database (NVD), in only 2015,
recorded 6,488 new vulnerabilities, and the NVD reports a sum
of 74,885 software vulnerabilities revealed during 1988-2016.
Static analysis tools inspect code for faults which might lead to
software security vulnerabilities, and generate warnings of the
location of the purported flaw in the source code, the nature of
the flaw, and often additional contextual information. The main
purpose of static analysis tools is to find coding errors before
they can be exploited. Static analysis is predominantly a good
fit to security since several security issues happen in places that
hard to reach and difficult to exercise by running the code.

Detecting vulnerabilities and finding precarious flaws in
code can be classified in two main approaches: white-box
analysis and black-box testing [2]. White-box analysis
examines the code without the need of executing it. This can be
done manually through code inspection and reviews or
automatically through security static analysis [2]. Static
analysis is an automated process to assess code without
executing it. Code review methods, both manual and
automated, try to find security issues before releasing the
software. Black-box testing analyzes program execution
externally. In other words, it compares the software execution
outcome with expected results.

Code review needs knowledge of code as practitioners,
with slight experience will not do a good job during a code
review. The code review should be done by experienced senior
developers while equipping them with modern source code
analysis tools. There is no silver bullet solution to ensure
secure coding. However, code review provides great insights in
finding security irregularities. The remainder of the paper is
organized as follows: Section 2 discusses the related work,
Section 3 discusses the collected data, Section 4 explores the
results and discussions, Section 5 explains the suggested
framework, and Section 6 concludes the paper.

978-1-5090-5579-1/16/$31.00 ©2016 IEEE

II. RELATED WORK
A collective criticism against static analysis tools the fact

that they produce many false positives [6]. Nevertheless,
several research results have demonstrated that statis analysis
tools generate reliable warnings to some extent. Walden and
Doyle [18] showed that Fortify SCA tool warnings are strongly
correlated to NVD vulnerabilities. Gegick et al. [19],[20]
showed statistically significant correlation between static
analysis warnings and vulnerabilities. Zheng et al. [21]
showed, based on an industrial large-scale study, that static
analysis is an effective technique for checking faults that have
the potential to cause security vulnerabilities. We conclude
from previous studies that static analysis tool can be used to
give some insights about the source code problems. The
analysis results should be investigated in order to educate
software developers and managers.

Previous research evaluated different techniques and their
capabilities in detecting vulnerabilities [3],[6]. Finifter and
Wagner [3] compared the effectiveness of black-box testing
and manual code review for web applications, they found that
they complement each other, and manual analysis found more
vulnerabilities, but took much more time. Austin and Williams
[6] compared the effectiveness of systematic and exploratory
manual penetration testing, static analysis, and automated
penetration testing. They reported that no one technique was
capable of discovering every type of vulnerability. Their
findings showed that very rare vulnerabilities are found by
multiple techniques and automated penetration testing was
found to be the most effective in terms of hours, followed by
static analysis. Clark et al. [10] conducted a vulnerability study
focusing on early existence of vulnerabilities in software
products where the reused legacy code is a major player of
these vulnerabilities.

III. COLLECTED DATA
We conducted an empirical study on the source code of

seven open source software system, namely, Crawler4j,
Elasticsearch, WebGoat, Friki, Gestcv, Jfinal, and Jpetstore.
Here is some information about these systems. Find Security
Bugs version 1.4.6 was used to find security problems. This
plugin was integrated with NetBeans. It is a FindBugs plugin
for security audits of Java web applications. It can detect 86
different vulnerability types with over 200 unique signatures
with extensive references for each bug patterns with references
to OWASP Top 10 and CWE.

Crawler4j [11] is an open source application for web-
crawling that can crawl the web in few minutes using multi-
threading. It is able to crawl almost 200 Wikipedia pages per
second and waiting for 200 milliseconds between each steps. It
is also possible to do resume-able crawling.

Elasticsearch [12] is a distributed search engine built for
cloud using RESTful web services. It supports multiple
indexing and multiple tenant cloud. It has real time search and
analytical capabilities. It can allow full text search as well as
persistent where each document changes are recorded. It has
JSON based document store.

WebGoat [13] is a deliberately designed web application
for security testing maintained by OWASP. It is also designed
to teach security and penetration testing system and common
security flaws. It can train in cross-site scripting, access
control, parameter manipulation, blind SQL injection, web
services, numeric SQL injection using realistic teaching
environment. It is platform independent environment that uses
Java VM. When you run the webgoat it is highly probable that
your machine may be hacked.

Friki [14] is a wiki like application built using Java and can
be deployed on any modern servlet. It has some common
features like wiki and its common markup tag support. It offers
an easy customizable solution that can be loaded dynamically
without the need of restarting the server again.

Gestcv [15] is a java based application used to manage
Curriculum Vitae. It allows creation of CV and allows
searching of its contents. It is also based on Struts, Spring and
Hibernate. It is built on MVC architecture. It uses MySQL
database, and allows persistent development.

JFinal [16] is a complete framework written in Java
language and it uses RESTful web services. It allows easy
development without writing large amount of code for writing
RESTful web services. It’s built on MVC architecture and
require no configurations as uses XML. Java development and
deployment doesn’t need server to be restarted and is
automatically loaded. Plugins can be scaled and provide struts
support as well as supports multi-view.

JpetStore [17] is completely re-written web application pet
store that was originally made by Microsoft. It is written in
Java and overcomes the shortcoming of its original version. It
is based on Struts with color coding conventions to ease
programmer for writing codes. Presentation later is based on
MVC architecture and there is HTML in database making it
completely independent.

TABLE I. SELECTED PROJECTS

Name Ver. # Files LOC

Crawler4j 4.2 43 7114

Elasticsearch 6.0.1 3865 616000

Webgoat 7.0.1 35 8474

Friki 2.1.1 21 1843

Gestcv 1.0.0 119 11524

Jfinal 2 24 2379

JpetStore 6 116 25820

The above table represents the projects selected along with
the version that was used for evaluation. It is also shown how
many files were evaluated along with the number of lines of
code that is been evaluated. Only java files are been tested
against code vulnerabilities. Tested vulnerabilities are
categorized into following three categories.

• Dodgy code vulnerabilities

• Malicious code vulnerabilities

• Security code vulnerabilities

Dodgy code is a code that is confusing, unclear, irregular,
or written in a way that leads to errors. These characteristics
make the code less transparent and robust. Examples of some
of the most occurring dodgy codes are (1) Loading the values
that known to be null (2) public protected fields are defined but
not read (3) Fields should be defined as protected or public but
not defined, (4) Computation of values and storing it in local
variable that are never used.

Malicious code vulnerability is a code that can be altered or
exploited by other code. It can be in form of worms, viruses,
Trojan horses or other programs that can exploit other security
parameters. There are numerous Malicious code vulnerabilities
like (1) exposing internal representation to reference object that
pose a threat to security if that object is accessed through
different purpose, (2) Usually the field that has last results
should be declared is final but is missed and poses a threat of
being used by malicious code to change the value. (3)
Returning the mutable object as reference poses a serious
security threat and can be used by malicious code, (4) A field is
defined as static but not protected can be accessed by malicious
code and can be changed.

Security code gaps means finding errors that might impact
the application security by exploiting security vulnerabilities. It
can be in form of malicious data injection or manipulating the
applications using malicious data. There are couple of security
categories that should be checked as these provide open threats
to any web application. Most common security threats are (1)
Carriage return and line feed or HTTP response splitting is a
usual way programmers adapt to work on response returned but
if hacker can plunge the response through injections it can be
used to control how web functions will act. (2) Use of
predictable random generator to calculate the random number
may result in finding the predicted number and can be used to
find the password sent or any other secret value, (3) Usually a
file is opened to read or write where filename is sent as input
and can result in revealing the full path of location of file (4)
Usually programmer pass JDBC connection string as prepared
statement unsafely can result in SQL injection attack, (5) Use
of regular expression in a variable unprotected will result in
plugging a big regular expression to compile and will result in
Denial of service as program will get busy in parsing the
variable for large amount of time.

IV. RESULTS AND DISCUSSION
Most common dodgy code problem found in the selected

packages are explained in following table that is a data is stored
in a variable but is not used almost occurring 522 times in
Elasticsearch project while a field is declared but contains a
null value. These kind of vulnerabilities doesn’t pose a threat
but decrease the performance of application as well as
consuming the memory on unnecessary data stores. Following
figure shows the ten most common dodgy code vulnerabilities
found in the selected seven projects.

Fig. 1. Number of most common dodgy code vulnerabilities

Malicious code vulnerabilities poses a threat which make
them interesting and may result in security violation. Like code
containing a mutable object, which may be accessed by
untrusted code, and if so will compromise the security or a
field declared as static, which can be changed by mutable
object or malicious code inserted and thus should be defined as
protected. Among the project most common vulnerabilities are
that field is used as static but not as protected or final almost 99
times in Elasticsearch project and it is a common problem in all
projects.

Fig. 2. Number of most common malicious code vulnerabilities

Security code vulnerabilities are common threats, which
may result in data loss, application failure or account loss.
Most common attack is CRLF injection that means carriage
return and line feed, it is used at an end of file sequence or
HTTP stream to identify the discrete elements or end of data. If
a new CRLF is inserted in-between the original CRLF it will
result in malicious code being inserted into to application and
will compromise integrity, hijacking client sessions and web
browser poisoning. CRLF injection attack is done at
Application layer. HTTP request if contain CR and LF
characters will be responded by two responses both as HTTP
responses. It is possible that second response can be plugged
into as attacker plunging the cross site scripting or cache
poisoning attacks or cross user defacement. Also if a random
number generator that is used and the number patterns can be
easily detected, it will result in security exploitation like Cross
site request forgery attack or account hack. The most common
security attack done is potential CRLF attack possible 17 times
in crawler4j application and potential path traversal attack.

Fig. 3. Potential security code vulnerabilities

The following figures represents the results based on
evaluation made on the selected projects. It is observed that
most of projects offers hackers a free ride to hack into the
systems. It also made possible for novice users with tools to
abrupt the smooth execution of programs and a small
vulnerability will result in a bigger threat. It doesn’t means that
smaller number of vulnerabilities pose less amount of threat
but it shows that even a small number of vulnerabilities will
result in application crash and these problems should be fixed
immediately. Most problems of Dodgy code problems occurred
in ElasticSearch, while malicious code problems also occurred
in Elasticsearch. It is seen that Jfinal has got more security
problems making an observation that number of problems in
each project faced are independent of number of lines of code.

Fig. 1. Dodgy code vulnerabilities in selected projects

Fig. 2. Malicious code vulnerabilities in selected projects

Fig. 3. Security code vulnerabilities in selected projects

V. SUGGESTED FRAMEWORK
Several organizations for example MITRE [7], SANS

Institute [8] and OWASP [9] have highlighted the significance
of educating students, developers, managers about security
issues. These organizations do their part by frequently
publishing common programming errors. Our study supports
the intuition that web developers usually fail in securing their
web applications. The outdated approach of testing applications
after they are finished proved to be problematic. We believe
that educating developers and giving them hints while they are
developing the application will result in more secure
applications. Developers and test mangers don’t have to wait
until they finish to find out if there is a security issue or not in
the code. Learning from previous security errors can be a great
aid in preventing them from happening in the future.

Software security researchers have relied in finding
vulnerabilities on both databases of reported vulnerabilities
such as the National Vulnerability Database (NVD) and static
analysis results. In our suggested framework we make use of
both approaches. In Figure 7, we explain our suggested
framework. The framework can be integrated with any
integrated development environment (IDE). The idea is to
enable developers and testers to find security problems in the
code while the system is in implementation [23]. After a piece
of code has been written, the framework will run that code on
several static analysis tools, check the code in two available
databases, Common Weakness Enumeration (CWE) and
National Vulnerability Database (NVD), and eventually give a
recommendation based on the collected data from three
different sources. This will give an instant feedback to the
developer about the written code. It will make him/her
confident about his code. It will also educate him/her in the go
since these recommendations will help him/her learn a lot
about code security problems.

Fig. 3. Suggested framework for secure code design

VI. CONCLUSION
It is observed that selected projects have common

vulnerabilities in all terms that are dodgy code, malicious code
or security code. These common vulnerabilities includes from a
field declared but unused to SQL injection attack, CSRF attack,
cross site scripting attack and web cache poisoning. These all
kind of vulnerabilities are mostly inserted due to developer’s
non awareness or bad programming practice. The
vulnerabilities from selected projects also reveals that most of
the open source code have security and malicious code
vulnerabilities making it more prone to attacks, as open source
projects are mostly used by organization trying to avoid costs
but it also give attackers to look into to the code vulnerabilities
enabling them to do sophistical and bulk attacks. Thus two
suggestions are being made (1) before selection of any open
source web application the analyst should look into types of
web application, its size and attacks that can be done. It should
be then selected with noting the developer expertise if the
errors can be removed then it should be removed else not
selecting the application before running into a bigger problem.
(2) Creation of secure development framework that shouldn’t
allow developers to do hasty programming and adding the
necessary security code to avoid any attacks. It should also
suggest developers about good programming practice and
possible script insertion to avoid potential threats. The
framework should also allow the provision to select old
projects and remove its vulnerabilities in all terms. The
framework should be an intelligently updatable to allow
inclusion of new threats that may arise.

REFERENCES
[1] Livshits, V. Benjamin, and Monica S. Lam. "Finding Security

Vulnerabilities in Java Applications with Static Analysis." Usenix
Security. Vol. 2013. 2005.

[2] Antunes, Nuno, and Marco Vieira. "Defending against web application
vulnerabilities." Computer 45.2 (2012): 0066-72.

[3] Finifter, Matthew, and David Wagner. "Exploring the relationship
between Web application development tools and security." USENIX
conference on Web application development. 2011.

[4] Lee, Taeseung, et al. "Detection and Mitigation of Web Application
Vulnerabilities Based on Security Testing." Network and Parallel
Computing. Springer Berlin Heidelberg, 2012. 138-144.

[5] Tripp, Omer, et al. "Andromeda: Accurate and scalable security analysis
of web applications." Fundamental Approaches to Software
Engineering. Springer Berlin Heidelberg, 2013. 210-225.

[6] Austin, Andrew, and Laurie Williams. "One technique is not enough: A
comparison of vulnerability discovery techniques." Empirical Software
Engineering and Measurement (ESEM), 2011 International Symposium
on. IEEE, 2011.

[7] Martin, Bob, et al. "2011 CWE/SANS top 25 most dangerous software
errors." Common Weakness Enumeration 7515 (2011).

[8] Dhamankar, Rohit, et al. "The top cyber security risks." TippingPoint,
Qualys, the Internet Storm Center and the SANS Institute faculty, Tech.
Rep(2009).

[9] OWASP, Top. "10: Ten Most Critical Web Application Security Risks."
(2013).

[10] Clark, Sandy, et al. "Familiarity breeds contempt: The honeymoon effect
and the role of legacy code in zero-day vulnerabilities." Proceedings of
the 26th annual computer security applications conference. ACM, 2010.

[11] Ganjisaffar, Y. "Crawler4j–Open Source Web Crawler for Java." (2012).
[12] Gormley, C., & Tong, Z. (2015). Elasticsearch: The Definitive Guide. "

O'Reilly Media, Inc.".
[13] https://www.owasp.org/index.php/WebGoat_Installation accessed in 5th

May 2016..
[14] https://sourceforge.net/projects/friki/ accessed in 5th May 2016.
[15] http://gestcv.sourceforge.net/ accessed on 5th May 2016.
[16] http://www.jfinal.com/ accessed on 5th May 2016.
[17] https://sourceforge.net/projects/ibatisjpetstore/ accessed on 5th May

2016.
[18] J. Walden and M. Doyle, “SAVI: Static-analysis vulnerability

indicator,” IEEE Security & Privacy, vol. 10, no. 3, pp. 32–39, 2012.
[19] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Prioritizing

software security fortification throughcode-level metrics,” in ACM
Workshop on Quality of Protection (QoP), 2008.

[20] M. Gegick, P. Rotella, and L. Williams, “Predicting attack-prone
components,” in International Conference on Software Testing Verifi-
cation and Validation (ICST), 2009.

[21] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M.
A. Vouk, “On the value of static analysis for fault detection in software,”
IEEE Transactions on Software Engineering, vol. 32, no. 4, pp. 240–
253, 2006.

[22] Jovanovic, N., Kruegel, C., & Kirda, E. (2006, May). Pixy: A static
analysis tool for detecting web application vulnerabilities. In IEEE
Symposium on Security and Privacy, 2006 (pp. 6-pp).

[23] M. Alenezi and Y. Javed, “Developer Companion: A Framework to
Produce Secure Web Applications,” in International Journal of
Computer Science and Information Security, vol 14, no. 7, pp. 12-16,
2016.

[24] Imran, Asif, Shadi Aljawarneh, and Kazi Sakib. "Web Data
Amalgamation for Security Engineering: Digital Forensic Investigation
of Open Source Cloud." Journal of Universal Computer Science 22.4
(2016): 494-520.

