
Modularity Measurement and Evolution in Object-Oriented
Open-Source Projects

Mamdouh Alenezi
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia
malenezi@psu.edu.sa

Mohammad Zarour
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia
mzarour@psu.edu.sa

ABSTRACT
Throughout the software evolution, several maintenance ac-
tions such as adding new features, fixing problems, improv-
ing the design might negatively or positively affect the soft-
ware design quality. Quality degradation, if not handled in
the right time, can accumulate and cause serious problems
for future maintenance effort. In this work, we study the
modularity evolution of two open-source systems by answer-
ing two main research questions namely: what measures can
be used to measure the modularity level of software and sec-
ondly, did the modularity level for the selected open source
software improves over time. By investigating the modular-
ity measures, we have identified the main measures that can
be used to measure software modularity. Based on our anal-
ysis, the modularity of these two systems is not improving
over time.

CCS Concepts
•General and reference → Empirical studies; Mea-
surement; Experimentation; •Software and its engi-
neering → Object oriented architectures; Modules
/ packages;

Keywords
Software Quality; Software Modularity; Software Evolution;
Software measures; Open source.

1. INTRODUCTION
Software evolution is the dynamic behavior of software

systems while they are maintained and improved over their
lifetimes [12]. Software systems usually evolve to fix prob-
lems, to accommodate new features, and to improve their
quality. Hence, the changes that software undergo lie within
corrective, preventive, adaptive and perfective maintenance
that lead to software evolution. In order for the software to
survive for a long period, it needs to evolve. Most software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICEMIS ’15, September 24-26, 2015, Istanbul, Turkey
c© 2015 ACM. ISBN 978-1-4503-3418-1/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2832987.2833013

evolution studies highlight the changes in statistical tech-
niques by analyzing its evolution measures [12], little effort
has been carried to comprehend how exactly the structure of
these systems evolve [17]. For that reason, we focus in this
paper on studying the structure of open source software sys-
tems by considering various object oriented structural soft-
ware measures.

Controlling and monitoring the evolution quality is very
essential for efficient software maintenance. The mainte-
nance activities might negatively or positively affect software
quality including modularity, enhancing software modular-
ity will improve the flexibility and understandability of soft-
ware systems. Modularity is a key concept that developers
exercise to decrease the complexity of software systems. A
recurrent issue in software products is that, as their size and
functionality increases, they become harder to code, test and
maintain. Even the smallest change would be a very hard
task in time and cost due to the system’s complexity. To
tackle this problem and keep the system simple, software
should be modularized properly during their design.

Modularization is the process of decomposing a system
into logically cohesive and loosely-coupled modules that hide
their implementation from each other and offer functionali-
ties to the outside world through a well-defined interface [5,
6]. Modularity is one of the maintainability characteristics
of the ISO/IEC SQuaRe quality standard series [14]. Ac-
cording to this standard, modularity is defined as a degree
to which a system or computer program is composed of dis-
crete components such that a change to one component has
minimal impact on other components [14]. High modular-
ity in open source allows multiple developers to work on the
same software entity, usually in competition, which increases
the probability of timely, high-quality solutions [1].

In practice, modularization parallels to finding the correct
decomposition of a problem. Organizing the modules of the
source code with favoring cohesion (within-module connec-
tions) over coupling (between-module connections) is con-
sidered a good practice. Modularity is an essential property
of quality software. High modularity improves the flexibility
and understandability of the software system [13], whereas
low modularity causes costly refactorings and software bugs
[27]. Therefore, modularity is usually utilized as an essen-
tial criterion for evaluating the software design quality [14].
In this paper, the modularity evolution two object-oriented
open software systems has been studied through a thorough
empirical study.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 discusses the re-
search methodology adopted in this paper. Section 4 states
the measures used in this study. The data collection mech-
anism is given in Section 5. Data analysis and results are
presented in Section 6. Conclusions are presented in Section
7.

2. RELATED WORK
One of the metrics’ categories developed by [11] to assess

object oriented software maintainability is the license type,
e.g. open source and proprietary software. Open-source sys-
tems are usually developed by distributed teams, without
frequently meeting face-to-face, and communicating only by
electronic means. Achieving high modularity in open source
allows multiple developers to work on the same software
entity without issues [1]. This new structure is totally un-
like the common software engineering practices during the
times of Lehman’s software evolution laws [12]. Lehman
et al. have built the well-known research on the evolution
of large software systems. LehmanâĂŹs laws are based on
case studies of several large software systems, suggest that
as systems grow in size, it becomes increasingly difficult to
add new code unless clear steps are taken to restructure the
overall design.

Koch found differences in the evolution of open-source
software projects of different sizes [16]. He found that small
open-source software projects fulfill some of the laws. How-
ever, large software projects do not follow them at all. These
projects have a large number of participants and an unbal-
anced workload among participants. One of the essential
characteristics of software systems is evolution. Several re-
search studies aimed at explaining and understanding the
evolution in open source software projects. Breivold et al. [7]
conducted a systematic literature review of enormous stud-
ies, which investigated the evolution of open source software
systems. Another direction has emphasized how software
measures can be applied to software evolution [21] where
they provided ways in how software measures have been
and can be used to analyze software evolution. They sug-
gested that measures are good candidates to understand the
quality evolution of a software system by considering its
successive releases. Particularly, measures can be used to
measure whether the quality of a software has improved or
degraded between two releases. Lee et al. [19] provided a
case study of one open source software, JFreeChart, evolu-
tion with software measures. They studied the evolution in
terms of size, coupling and cohesion, and discussed its qual-
ity change based on the Lehman’s laws of evolution [12]. Xie
et al. [28] conducted an empirical analysis on the evolution

of seven open source systems and investigated LehmanâĂŹs
evolution laws.

MacCormack et al. [20] employed Design Structure Ma-
trix (DSM) [24] to compare and contrast the design struc-
tures of two software systems, Linux kernel and Mozilla web
browser. They used a clustering algorithm to measure de-
pendencies by different parts of the system and calculated
marginal changes in cost rather than the total cost of the ma-
trix. However, the comparison between these two systems
critically depends on selecting versions of the systems that
are comparable in terms of number of source files. One moti-
vation of our work was to remove this restriction, and to al-
low the comparison of code bases of different size. LaMantia
et al. [18] examined the evolution over time of two software

systems, Apache Tomcat and another closed source server
product. They introduced a rough measure that mimics the
change ratio between the consecutive versions in the soft-
ware evolution. The authors concluded that DSM could, to
some extent, explain how modularization allow for different
rates of evolution to occur in different modules.

In this paper, we study the modularity evolution of 2
open-source systems. The focus of this study is not the
Lehman’s Law but the modularity using coupling, cohesion,
and complexity measures.

3. RESEARCH METHODOLOGY
In this research work we are applying various modularity

measures to empirical data related to open source software.
The data are collected from PROMISE1, the software engi-
neering repository. Nowadays, open source software reposi-
tories provide researchers with the possibility to access large
amount of publicly available data for analysis to produce
new studies and results. In our study, we will investigate
the relationship among various design measures and soft-
ware modularity. Modularity forms our dependent variable
to be studied while the various design measures form the
independent variables. Our empirical study focuses on the
following research questions:

1. What measure(s) can be used to measure the modu-
larity of OO software programs?

2. Did the modularity of the OO programs studied in this
research work improve over the various versions?

To answer these questions, we will follow the following
steps:

1. Identify the applicable set of measures related to the
modularity (Section 4)

2. Identify the set of open source software systems to be
used in this research work and collect necessary data
pieces from PROMISE repository needed to calculate
the specified measures (Section 5)

3. Analyze and report findings (Section 6)

4. MEASURES IN THIS STUDY
Various measures are used to measure the quality of mod-

ularization. Although deciding which measures can be adopted
in experiments on object oriented software modularity is
a hard task [11], we decided to consider coupling, cohe-
sion and complexity as measures to be considered in this
study. According to [11] measures related to these three in-
ternal attributes are among the most adopted measures by
experts in the domain. Coupling is the degree of interde-
pendence between modules, whereas cohesion is the intra-
modular functional relatedness which describes how tightly
bound the internal elements of a module are to one another
[6]. An excessive coupling between a system modules affects
its modularity but promoting encapsulation and reducing
coupling improve modularity [4]. Complexity is also revealed
by both cohesion and coupling. Higher cohesion indicates
lower complexity, when coupling increases, the complexity
also increases. Coupling, cohesion, and complexity relate
strongly to the maintenance effort [10, 2].

1https://code.google.com/p/promisedata/

This section presents the definition of the measures used
in the study. For more detailed definition about these mea-
sures refer to [15]. Modularity measures assess the degree
to which a system or computer program is composed of dis-
crete components such that a change to one component has
minimal impact on other components. SQuaRE standard
defined two basic modularity measures:

• Coupling of components: How strong is the coupling
between the components in a system or computer pro-
grams? basically two measures are used for coupling
measure: Coupling between object classes (CBO) and
Response for a Class (RFC).

• Cyclomatic complexity: How many software modules
have the acceptable cyclomatic complexity? The cy-
clomatic complexity is measured by two main mea-
sures namely: Weighted Methods per Class (WMC),
and McCabe’s Cyclomatic Complexity (CC).

We observe the modularity of open source software systems
by measuring coupling, cohesion, and complexity measures.
While major emphasis has been on object oriented mea-
sures proposed by Chidamber and Kemerer [9], we have also
considered other relevant measures related to coupling and
cohesions as shown in the following sub-sections.

4.1 Coupling
Beside the two basic coupling measures given above, we

have also chosen other measures that measure the intercon-
nection of software modules. this includes: Afferent cou-
plings (Ca), Efferent couplings (Ce), Coupling Between Meth-
ods (CBM). These coupling measures are well-known and
were excessively studied in the literature. Accordingly the
selected coupling measures include:

• Coupling between object classes (CBO): It represents
the number of other classes that are coupled to the
current class. This coupling can occur through method
calls, field accesses, inheritance, arguments, return types,
and exceptions.

• Response for a Class (RFC): RFC is the measure of
number of methods that can be invoked in response to
a message received by an object of the class. Ideally,
RFC should measure the transitive closure of the call
graph for each method.

• Afferent couplings (Ca): It represents the number of
classes from other packages depending on classes in
this package. This describes the packages responsibil-
ity. Ca is the number of other packages depending on
one package. A high number indicates bad design, or
that the package is used for crosscutting concerns.

• Efferent Couplings (Ce): It represents the number of
packages the classes of this package depend upon. This
describes the packages independence. This can be used
to point out non-adherence to the design if certain
packages have an unreasonable high number of efferent
couplings.

• Coupling Between Methods (CBM): It represents the
total number of new/redefined methods to which all
the inherited methods are coupled. An inherited method

is coupled to a new/redefined method if it is function-
ally dependent on a new/redefined method in the class.
Therefore, the number of new/redefined methods to
which an inherited method is coupled can be measured.

4.2 Cohesion
To study software systems cohesion, we have chosen dif-

ferent measures that measure the cohesion of software mod-
ules. These cohesion measures are well-known and were ex-
cessively studied in the literature. We selected the following
cohesion measures:

• Lack of cohesion in methods (LCOM): It counts the
sets of methods in a class that are not related through
the sharing of some of the class fields. It is calculated
by subtracting from the number of method pairs that
do not share a field access the number of method pairs
that do.

• Lack of cohesion in methods (LCOM3): It is an im-
proved variation of the LCOM measure. It calculates
the cohesion of the class by considering the effective
usage of the class attributes.

• Cohesion Among Methods of Class (CAM): It com-
putes the relatedness among methods of a class based
upon the parameter list of the methods. It sums the
number of different types of method parameters in ev-
ery method and divides it by a multiplication of num-
ber of different method parameter types in whole class
and number of methods.

4.3 Complexity
To study software system’s cohesion, we used different

complexity measures which are well-known and excessively
studied in the literature. These measures include:

• Weighted Methods per Class (WMC): It is the sum of
the complexities of all class methods.

• McCabe’s Cyclomatic Complexity (CC): It is equal to
the number of different paths (decision points) in a
method plus one. We report Avg(CC) which is the
arithmetic mean of the CC value in the investigated
class.

5. DATA COLLECTION
We conducted the empirical study on two open source

systems. In selecting the subjected systems, we used several
criteria. First, we want well-known systems that are used
very widely. Second, systems had to be sizable, so we can
understand the issues that appear in the evolution of real-
istic, multi-developer software. Third, the systems had to
be actively maintained. Finally, the data of these systems
had to be publicly available. Public availability of the data
used for empirical studies is crucial. A theory of software
evolution must be based on empirical results, verifiable and
repeatable [12]. Characteristics of the selected software sys-
tems are listed in Table 1. An overview of each system is
provided in the following paragraphs.

Camel (http://camel.apache.org/). Apache Camel is a
powerful open source integration framework based on known
Enterprise Integration Patterns with powerful Bean Inte-
gration. POI (http://poi.apache.org/). The POI project

Table 1: Selected Software Systems

System Versions LOC
Camel 1.0-1.6 3594-113055
POI 1.5-3.0 55428-129327

consists of APIs for manipulating various file formats based
upon Microsoft’s OLE 2 Compound Document format, and
Office OpenXML format, using pure Java.

The data for this study were collected by [15] and are
available online at the PROMISE repository. This data was
widely used in the software engineering literature for differ-
ent purposes [22, 26, 3]. The collected measures’ data for
the two systems are added up correspondingly into one data
set along with the relevant values for coupling, cohesion, and
complexity measures. Descriptive statistics (Min, Max, Me-
dian, Std. dev.) defined the minimum, maximum, median,
and standard deviation measures.

Table 2: Descriptive Statistics of the Measures

Measures Min Max Med σ
CBO 0 185 9.7 15.20
RFC 0 494 27.64 39.8
Ca 0 184 5.33 13.79
Ce 0 93 5.24 6.75

CBM 0 25 1.59 3
LCOM 0 41713 116.3 933.3
LCOM3 0 2 1.14 0.67

CAM 0 1 0.47 0.25
WMC 0 407 10 18.8

Avg(CC) 0 25.14 1.28 1.3

Table 2 shows descriptive statistics about the selected
measures.

6. DATA ANALYSIS AND RESULTS
In order to answer the first question, we need to know

which aspects of coupling is measured by any of the cho-
sen coupling measures. Same thing holds for cohesion. To
achieve that, we use the well-known Principal Component
Analysis (PCA). The principal component analysis (PCA) is
a standard statistical procedure that uses orthogonal trans-
formation to identify the underlying, orthogonal dimensions
that explain relations between the variables in the data set.
We conducted the experiments using the R statistical soft-
ware (version 3.1.1) and we used Rs Procomp2 procedure to
our data to produce principal components. The analysis is
done on the entire data set of the considered measures.

The objectives of principal component analysis are to dis-
cover or reduce the dimensionality of the data set and iden-
tify new meaningful underlying variables. PCA is a de facto
technique for uncovering the underlying orthogonal dimen-
sion that explains variables relations in a dataset. PCA is
used in our case to identify measures (i.e, groups of indepen-
dent variables) that measure the same underlying dimension
(i.e., mechanism that defines coupling and cohesion among
classes). Principal Components (PCs) are linear combina-
tions of independent variables. The number of PCs is less

2https://stat.ethz.ch/R-manual/R-
patched/library/stats/html/prcomp.html

than or equal to the number of original variables. PCs are
interpreted as follows. Each new PC is orthogonal to all
previously calculated PCs and captures a maximum vari-
ance under these conditions.

6.1 Coupling Evolution Analysis & Results
In this section we apply the PCA approach to the coupling

measures to specify any correlations among them. If a group
of coupling measures are strongly correlated, these measure
are likely to measure the same underlying dimension (i.e.,
class property) of the object to be measured.

Table 3: Rotated Components of Coupling measures

PC1 PC2 PC3 PC4
Proportion 38% 22% 20% 20%
Cumulative 38% 60% 80% 100%

CBO 0.92 0.34 -0.02 0.20
RFC 0.21 0.39 0.11 0.89
Ca 0.99 0.00 -0.03 0.10
Ce 0.18 0.91 0.04 0.37

CBM -0.03 0.04 1.00 0.08

By analyzing the coefficients associated with every cou-
pling measure within each rotated component given in Table
3, we interpret the identified PCs as the following:

• PC1 (38%): CBO and Ca measures count inbound
coupling through method invocations. The correlation
betweeen the two measures is high. We can use one of
them rather than using both. Apparently, the afferent
couplings measure is the contributing measure as it has
higher PC value.

• PC2 (22%): Ce captures outbound coupling through
method invocations.

• PC3 (20%): CBM captures coupling between inherited
and redefined methods.

• PC4 (20%): RFC counts the number of accessible meth-
ods.

6.2 Cohesion Evolution Analysis & Results
We also conducted PCA on the selected cohesion mea-

sures. We want to see if any correlations exists between
these measures.

Table 4: Rotated Components of Cohesion measures

PC1 PC2 PC3
Proportion 33% 33% 33%
Cumulative 33% 67% 100%

LCOM 1 -0.01 -0.07
LCOM3 -0.01 0.98 0.20

CAM -0.08 0.21 0.98

By analyzing the coefficients associated with every cohe-
sion measure within each rotated component given in Table
4, we found that the identified PCs as each on of these co-
hesion measures is unique and does not overlap with the
others.

Table 5: Modularity Evolution of the Selected Systems

 Ver. 1 Ver. 2 Ver. 3 Ver. 4

Camel

Coupling

Ca 4.99 5.02 5.11 5.27

Ce 5.69 5.62 6.33 6.43

CBM 0.56 0.64 0.61 0.91

RFC 19.63 20.23 21.2 21.42

Cohesion

LCOM 53.65 61.24 73.42 79.33

LCOM3 0.99 1.08 1.11 1.1

CAM 0.48 0.5 0.49 0.49

Complexity
WMC 8.07 8.31 8.52 8.57

Avg(CC) 0.94 0.93 0.94 0.96

POI

Coupling

Ca 4.36 4.51 4.7 5.23

Ce 4.31 4.48 4.68 5.22

CBM 2.78 2.62 2.7 1.95

RFC 27.56 29.65 30.9 30.35

Cohesion

LCOM 92.87 103.76 107.12 100.46

LCOM3 1.02 0.97 0.98 1

CAM 0.44 0.42 0.43 0.38

Complexity
WMC 13.39 14.3 14.26 13.51

Avg(CC) 1.09 1.15 1.16 1.19

6.3 Discussion
According to our PCA analysis, the coupling measures

that can be used to measure the system’s modularity are Ca,
Ce, CBM and RFC. The CBO measure has been excluded
as the Ca measures the same dimension. The cohesion mea-
sures that can be used to measure the system’s modularity
are LCOM, LCOM3, and CAM. These measures along with
the complexity measures WMC and CC measures altogether
are the set of measures that measure the Modularity of a
system or software program. This answers the first research
question.

Table 5 shows the coupling, cohesion, and complexity evo-
lution of the two selected systems. There are three notions
which characterize good and bad things about modules, cou-
pling (we want low coupling between modules), cohesion (we
want highly cohesive modules), and complexity (we want
modules that have low complexity) [23, 25]. Modularity is a
concept in which a software is decomposed of several distinct
and logically cohesive sub-units, offering services through a
well-defined interface [5]. Excessive inter-module dependen-
cies has been acknowledged to be an indicator of poor design
and decrease the comprehending of components in isolation
[8].

Figure 1 shows the evolution of coupling, cohesion, com-
plexity measures of the selected systems over four different
releases for each system. The X-axis represents the release
number while the Y-axis represents the measures data. As
can be seen from figure 1 a and d, we can see that there is
a minor change in the Ca, Ce and CBM coupling measures.
But there is slightly more increase in the RFC measure.
Hence, coupling is slightly increasing while the software is
evolving, this indicates that the modularity is not improving
over time.
As can be seen from figure 1 b, we can see that the LCOM
and LCOM3 are increasing over the various releases which
means that the lack of cohesion in methods increase, while
the cohesion among methods is increasing. Hence, two of
the cohesion measures shows that the Camel software is not
improving while evolving. Figure 1 e shows cohesion of the
POI software. overall the cohesion measures indicate that

the cohesion is not improving till the third release, then the
cohesion started improving in the fourth release but still not
good as in the first release.
With regard to the complexity, Figure 1 c shows that the
Camel software complexity is increasing over the various re-
leases. This indicates that there is no restructuring activi-
ties is done in these four versions. POI software complexity
has increased in the second release, but started to decrease
in the following releases but still the complexity is slightly
more than that of the first release. Accordingly, the various
measures of coupling, cohesion and complexity of Camel and
POI software show that the modularity of the two software
is not improving overall! This means that restructuring is
needed in the coming releases. This answers the second re-
search question.

7. CONCLUSION
Enhancing our ability to understand and capture software

evolution is essential for better software quality and easier
software maintenance process. One of the software charac-
teristics that helps in achieving this is software modularity.
Modularity is one of the sub-characteristics of maintainabil-
ity which is one of the software product quality factors. In
this research work, we have used empirical data related to
two OO open source programs to answer two main research
questions namely: what measures can be used to measure
the modularity level of software and secondly, did the mod-
ularity level for the selected open source software improves
over time. By investigating the modularity measures as
mentioned in the SQuaRE standard and various other cou-
pling and cohesion measures, we have identified the main
measures that can be used to measure software modularity.
Based on our analysis, the modularity of these two systems
is not improving over time.

8. REFERENCES
[1] M. Aberdour. Achieving quality in open-source

software. IEEE Software, 24(1):58–64, 2007.

[2] M. Alenezi and K. Almustafa. Empirical analysis of
the complexity evolution in open-source software
systems. International Journal of Hybrid Information
Technology, 8(2):257–266, 2015.

[3] M. Alenezi, S. Banitaan, and Q. Obeidat.
Fault-proneness of open source systems: An empirical
analysis. In International Arab Conference on
Information Technology (ACIT2014), pages 164–169,
2014.

[4] M. Badri, L. Badri, and F. Touré. Empirical analysis
of object-oriented design metrics: Towards a new
metric using control flow paths and probabilities.
Journal of Object Technology, 8(6):123–142, 2009.

[5] C. Y. Baldwin and K. B. Clark. Design rules: The
power of modularity, volume 1. MIT press, 2000.

[6] G. Booch, R. A. Maksimchuk, M. W. Engel, B. J.
Young, J. Conallen, and K. A. Houston.
Object-oriented analysis and design with applications,
volume 3. Addison-Wesley, 2008.

[7] H. P. Breivold, M. A. Chauhan, and M. A. Babar. A
systematic review of studies of open source software
evolution. In 17th Asia Pacific Software Engineering
Conference (APSEC), 2010, pages 356–365. IEEE,
2010.

0

5

10

15

20

25

30

35

40

1 2 3 4

Coupling

Ca Ce CBM RFC

(a) Camel

44

48

52

56

60

64

68

72

76

80

84

1 2 3 4

Cohesion

LCOM LCOM3 CAM

(b) Camel

7

7.5

8

8.5

9

9.5

10

1 2 3 4

Complexity

WMC Avg(CC)

(c) Camel

0

10

20

30

40

50

1 2 3 4

Coupling

Ca Ce CBM RFC

(d) POI

90

94

98

102

106

110

1 2 3 4

Cohesion

LCOM LCOM3 CAM

(e) POI

12

12.5

13

13.5

14

14.5

15

15.5

16

1 2 3 4

Complexity

WMC Avg(CC)

(f) POI

Figure 1: Modularity Evolution of the Selected Systems.

[8] H. P. Breivold, I. Crnkovic, and M. Larsson. Software
architecture evolution through evolvability analysis.
Journal of Systems and Software, 85(11):2574–2592,
2012.

[9] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493, 1994.

[10] D. P. Darcy, S. L. Daniel, and K. J. Stewart.
Exploring complexity in open source software:
Evolutionary patterns, antecedents, and outcomes. In
System Sciences (HICSS), 2010 43rd Hawaii
International Conference on, pages 1–11. IEEE, 2010.

[11] J. de AG Saraiva, M. S. de França, S. C. Soares,
J. Fernando Filho, and R. M. de Souza. Classifying
metrics for assessing object-oriented software
maintainability: A family of metrics’ catalogs. Journal
of Systems and Software, 103:85–101, 2015.

[12] M. W. Godfrey and D. M. German. On the evolution
of lehman’s laws. Journal of Software: Evolution and
Process, 2013.

[13] S. Huynh, Y. Cai, Y. Song, and K. Sullivan.
Automatic modularity conformance checking. In
ACM/IEEE 30th International Conference on
Software Engineering, 2008. ICSE’08., pages 411–420.
IEEE, 2008.

[14] ISO/IEC. Systems and software engineering - systems
and software quality requirements and evaluation
(square). ISO/IEC 25010 - System and software
quality models, 2011.

[15] M. Jureczko and D. Spinellis. Using object-oriented
design metrics to predict software defects. Models and
Methods of System Dependability. Oficyna
Wydawnicza Politechniki Wroc lawskiej, pages 69–81,
2010.

[16] S. Koch. Software evolution in open source
projects̈ı£¡a large-scale investigation. Journal of
Software Maintenance and Evolution: Research and

Practice, 19(6):361–382, 2007.

[17] S. Kpodjedo, F. Ricca, P. Galinier, G. Antoniol, and
Y.-G. Guéhéneuc. Studying software evolution of large
object-oriented software systems using an etgm
algorithm. Journal of Software: Evolution and
Process, 25(2):139–163, 2013.

[18] M. J. LaMantia, Y. Cai, A. D. MacCormack, and
J. Rusnak. Analyzing the evolution of large-scale
software systems using design structure matrices and
design rule theory: Two exploratory cases. In Software
Architecture, 2008. WICSA 2008. Seventh Working
IEEE/IFIP Conference on, pages 83–92. IEEE, 2008.

[19] Y. Lee, J. Yang, and K. H. Chang. Metrics and
evolution in open source software. In Seventh
International Conference on Quality Software, 2007.
QSIC’07., pages 191–197. IEEE, 2007.

[20] A. MacCormack, J. Rusnak, and C. Y. Baldwin.
Exploring the structure of complex software designs:
An empirical study of open source and proprietary
code. Management Science, 52(7):1015–1030, 2006.

[21] T. Mens and S. Demeyer. Future trends in software
evolution metrics. In Proceedings of the 4th
international workshop on Principles of software
evolution, pages 83–86. ACM, 2001.

[22] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies.
Class level fault prediction using software clustering.
In IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE), pages
640–645. IEEE, 2013.

[23] I. Sommerville. Software Engineering. Addison-Wesley,
9 edition, 2010.

[24] D. V. Steward. The design structure system: a
method for managing the design of complex systems.
IEEE transactions on Engineering Management,
(EM-28), 1981.

[25] F. F. Tsui. Essentials of software engineering. Jones &
Bartlett Publishers, 2013.

[26] B. Turhan, A. T. Mısırlı, and A. Bener. Empirical
evaluation of the effects of mixed project data on
learning defect predictors. Information and Software
Technology, 55(6):1101–1118, 2013.

[27] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting
software modularity violations. In Proceedings of the
33rd International Conference on Software

Engineering, pages 411–420. ACM, 2011.

[28] G. Xie, J. Chen, and I. Neamtiu. Towards a better
understanding of software evolution: An empirical
study on open source software. In IEEE International
Conference on Software Maintenance, 2009. ICSM

2009, pages 51–60. IEEE, 2009.

