
Towards Cross Project Vulnerability Prediction in Open
Source Web Applications

Ibrahim Abunadi
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia
iabunadi@psu.edu.sa

Mamdouh Alenezi
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia
malenezi@psu.edu.sa

ABSTRACT
Building secure software is challenging, time-consuming, and
expensive. Software vulnerability prediction models that
identify vulnerable software components are usually used to
focus security efforts, with the aim of helping to reduce the
time and effort needed to secure software. Existing vulnera-
bility prediction models use process or product metrics and
machine learning techniques to identify vulnerable software
components. Cross project vulnerability prediction plays a
significant role in appraising the most likely vulnerable soft-
ware components, specifically for new or inactive projects.
Little effort has been spent to deliver clear guidelines on how
to choose the training data for project vulnerability predic-
tion. In this work, we present an empirical study aiming at
clarifying how useful cross project prediction techniques in
predicting software vulnerabilities. Our study employs the
classification provided by different machine learning tech-
niques to improve the detection of vulnerable components.
We have elaborately compared the prediction performance
of five well-known classifiers. The study is conducted on a
publicly available dataset of several PHP open source web
applications and in the context of cross project vulnerability
prediction, which represents one of the main challenges in
the vulnerability prediction field.

CCS Concepts
•General and reference → Empirical studies; Mea-
surement; •Information systems→Data mining; •Security
and privacy → Vulnerability management; Web ap-
plication security;

Keywords
Cross-project vulnerability prediction; Software security; Soft-
ware quality; Data mining.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICEMIS ’15, September 24-26, 2015, Istanbul, Turkey
c© 2015 ACM. ISBN 978-1-4503-3418-1/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2832987.2833051

Software development and engineering is a very complex
endeavor that contends with limited resources [5] potentially
causing software to behave in an unexpected manner. One
essential reason for the insecurity of web applications is the
fact that most developers donâĂŹt have the appropriate
knowledge about secure coding [9].

Software is a competitive business that changes rapidly
and responds to changes in markets, hardware, and software
platforms. New projects are born and aged ones are rewrit-
ten creating a challenge for vulnerability prediction models
that rely on historical vulnerability data to predict future
vulnerability proneness. Because many new projects do not
have enough historical data to train prediction models, we
can use models estimated from any training data available
on other projects.

Software Security Vulnerability Prediction (SSVP) is a re-
search field that utilizes effective methods for predicting the
vulnerability in a given software component. These methods
help security tester engineers allocate their limited resources
to the most vulnerable systems. The process of building
secure software systems is expensive, difficult, and time-
consuming. Building and distributing vulnerability predic-
tion models can cause quality assurance teams to focus their
time and resources on the vulnerable parts of their code base.
Researchers on the other hand usually build vulnerability
prediction models that use metrics and vulnerability data.
Known as supervised learning approaches in machine learn-
ing fields, these models implement different types of learning
algorithms.

Finding and solving vulnerabilities in the early stages of
software composition is an important step. Software vul-
nerability prediction is a quality assurance technique that
includes inspection and testing within the Software Quality
Engineering discipline [17]. However, such quality assur-
ance is best done by engineers who are specially trained in
software security [8]. Methods and techniques that identify
components that are more likely to contain vulnerabilities
can provide significant aid to the security engineers who fo-
cus their attention on higher risk components.

The security of most systems and networks depends on
the security of the software running on them. Most of the
attacks on these systems occur because of exploiting vulner-
abilities found in these software applications [15]. Security
failures in software are common and growing [3]. A vul-
nerability in the software is considered a flaw that can be
exploited to cause a security failure. It is very challenging to
find vulnerabilities before they manifest themselves as secu-
rity failures while the software is operating, because security

concerns are usually not sufficiently known at early stages
of the software development life cycle. Therefore, it is essen-
tial to know in advance the characteristics of software files
that can indicate vulnerabilities. These indications would
help software security testers and managers take proactive
action against potential vulnerabilities. Security testing is
an important requirement of software security [4] even if
they are very resource-intensive. Security testing activities
need to be guided. The most worrying class of these faults
is the ones that can be exploited by attackers. These faults
are considered security vulnerability [2] that are recurrent,
causing companies to struggle to allocate resources for their
management [11].

Within-project vulnerability prediction is built from a part
of a project and evaluated on the remainder of the project.
Cross-project vulnerability prediction is done when new projects
donâĂŹt have enough vulnerability data to build a predic-
tion model. In this case, we use data from other projects to
build a prediction model. Several companies and projects
might not yet have attained historical information about
vulnerabilities in order to build prediction models. As a re-
sult, the ability of several metrics collected from software
files are evaluated in this work. These files are used to pre-
dict vulnerabilities in a project by using other projectsâĂŹ
datasets (cross project). In this paper, the vulnerability
prediction of three open source web applications has been
studied through a thorough empirical study.

The rest of this paper is organized as follows: Section 2
describes the proposed approach, Section 3 is a case study
with its experimental evaluation, Section 4 discusses the re-
sults obtained in this study, Section 5 discusses some threats
to validity, Section 6 discusses related work, and Section 7
concludes the paper.

2. APPROACH
We formulate the vulnerability prediction as a classifica-

tion problem by predicting if a PHP file is vulnerable or not.
In this study, we present a framework for how cross project
vulnerability prediction can be used to automatically predict
vulnerable files in new projects. The proposed approach is
illustrated in Figure 1. Based on the source code metrics
of the PHP files of two projects and their class labels (vul-
nerable or not), we train the prediction model founded on
the data of two different PHP projects. After running the
model on this training dataset, we test this model on a third
project and evaluate the effectiveness of this model in pre-
dicting vulnerabilities of another project (cross project pre-
diction). Cross-project vulnerability prediction models are
trained on data from one or more projects for which pre-
dictors (e.g., product metrics) and actual vulnerabilities are
available. Then, machine learning techniques (classifiers)
are used to build prediction models to predict the vulnera-
bilities software files of a new project.

3. CASE STUDY

3.1 Data Set
In this study, we used a dataset collected by [16]. The

dataset were collected and analyzed in the previous study.
The data contains several software metrics and vulnerability
information about their php files. The applications in the
dataset are Drupal, Moodle, and PHPMyAdmin. Drupal

is a well-known content management system. Moodle is an
open source learning management system. PHPMyAdmin is
a web based management tool for the MySQL database. Re-
garding the software metrics in this data, the following met-
rics were collected for this dataset: Lines of code, Lines of
code (non-HTML), Number of functions, Cyclomatic com-

plexity, Maximum nesting complexity, HalsteadâĂŹs vol-
ume, Total external calls, Fan-in, Fan-out, Internal functions
or methods called, External functions or methods called, and
External calls to functions or method. Table 1 shows a de-
scriptive statistics about the dataset.

Table 1: Descriptive Statistics about the Dataset

System Version Vulnerable Files Total Files
Drupal 6.0 62 202
Moodle 2.0.0 24 2942

PHPMyAdmin 3.3.0 27 322

3.2 Experimental Design
We applied five well-known and mostly used classifiers

for building vulnerability prediction models of the available
dataset in terms of evaluation measures. We further ex-
plored which of these systems would a good candidate to be
the training dataset.

3.3 Classifiers
In this study, we used five popular classifiers namely, Naive

Bayes (NB), Logistic Regression (LR), Support Vector Ma-
chine (SVM), J48, and Random Forest (RF). All these clas-
sification algorithms are implemented in Weka. The Weka
default settings of these algorithms were used in this study
[7].

Naive Bayes (NB) is a probabilistic classifier that assumes
that all features are independent. It finds the class with
maximum probability given a set of features values using
the Bayes theorem.

Logistic Regression (LR) is probability model used to pre-
dict a response based on one or more features. It is used as
a function of the of the predictors using a logistic function
to estimate the class label.

Support Vector Machine (SVM) is a classifier that finds
the optimal hyper-plane, which maximally separates sam-
ples in two different classes. SVM represents the examples
as points in the space to divide them by a clear gap so the
new examples can be mapped into the same predicated cat-
egory.

J48 is an implementation of the decision tree algorithm in
Weka. This algorithm uses a divide and conquer approach
to growing decision trees. It forms a tree structure and de-
cides the dependent value of a new sample based on diverse
attribute values of the existing data.

Random Forests (RF) is an ensemble learning method that
generates several decision trees at training time. Each tree
gives a class label. The Random Forests classifier selects
the class label that has the mode of the classes output by
individual trees.

3.4 Evaluation Metrics
We evaluate the classification algorithms based on Preci-

sion, Recall, and F-measure. Precision measures how many
of the vulnerable instances returned by a model are actu-
ally vulnerable. The higher the precision is, the fewer false

Applications Dataset

 Application

Metrics

Extraction

Specify

Class Label

Model

Construction

Vulnerable

Non-Vulnerable

Figure 1: The Proposed Approach.

Table 2: Classification results.

System Classifier Precision Recall F-Measure

Drupal

NB 0.739 0.752 0.745

LR 0.721 0.733 0.727

SVM 0.746 0.748 0.747

J48 0.754 0.748 0.751

RF 0.747 0.757 0.752

Moodle

NB 0.986 0.933 0.959

LR 0.986 0.991 0.988

SVM 0.984 0.992 0.988

J48 0.987 0.994 0.990

RF 0.987 0.995 0.991

PHPMyAdmin

NB 0.878 0.854 0.866

LR 0.888 0.916 0.902

SVM 0.839 0.916 0.876

J48 0.886 0.91 0.898

RF 0.905 0.922 0.913

positives exist. Recall measures how many of the vulnerable
instances are actually returned by a model. The higher the
recall is, the fewer false negatives exist. F-Measure is the
harmonic mean of Precision and Recall. In this study, we
adopt a binary classifier, which makes two possible errors:
false positive (FP) and false negative (FN). A correctly clas-
sified vulnerable class is a true positive (TP) and a correctly
classified non-vulnerable class is a true negative (TN). The
prediction performance measures used in our experiments
are described as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure = 2× Precision× Recall

Precision + Recall

3.5 Results
Table 2 shows some interesting results. The J48 and RF

classifiers outperform the other classifiers as a whole, indi-
cated by Precision, Recall, and F-measure. For example,
the F-measure value of the Drupal dataset in case of J48 is
0.751 and RF is 752 while LR is only 0.727.

Table 3: The results of two Kruskal-Wallis tests for J48 and
RF

F-measure
chi-squared 2

degree of freedom 2
p-value 0.3679

To investigate whether the difference between J48 and
RF in building predictive models is significant or not, the
Kruskal-Wallis test is executed. The Kruskal-Wallis test [14]
is a nonparametric alternative to the one-way analysis of
variance (ANOVA). The Kruskal-Wallis’s test was executed
individually for F-measure values (see Table 3). Since the
p-value is large, which indicates that the difference between
the F-measure values is statistically insignificant.

Table 4: Cross Project Prediction Results

Classifier Precision Recall F-Measure
J48 0.985 0.967 0.976
RF 0.984 0.959 0.971

We trained the model on two of the dataset, Drupal and
PHPMyAdmin since their vulnerability distribution more
than the Moodel dataset. These results of the cross project
prediction is shown in Table 4. The results are very high
considering that the prediction models have predicted suc-
cessfully if the files are vulnerable or not even though it is a
new project to the prediction model.

4. DISCUSSION
In this section, we discuss the results achieved in this

study. One question rises is âĂIJare different classifiers
equivalent to each other when applied to cross-project de-
fect prediction?âĂİ. We first analyzed the performance of
the different machine learning techniques to test whether
one technique provides better prediction accuracy than the
others. We first computed precision, recall, and f-measure
metrics obtained by the different techniques. The five ex-
perimented machine learning techniques are not equivalent

to each others. RF in case of the F-measure in all datasets
obtained the best prediction performance. After a thorough
analysis and statistical tests, we found that the best clas-
sifiers in within project prediction are J48 and RF, which
is completely consistent with the conclusions drawn in the
literature [6]. We tested the ability of these two classifiers in
cross project prediction and found that J48 achieved better
than RF but in a minimum margin.

5. THREATS TO VALIDITY
In this section, we discuss the threats to construct, con-

clusion, and external validity that affect the validity of our
proposed approach.

Construct validity. This type of threats is primarily re-
lated to the dataset explored in this study. The dataset were
collected by [16]. Since the dataset is publicly available, we
believe that our results are credible and can be reproduced.
The impact of data preprocessing on prediction performance
is also an interesting problem that needs further investiga-
tion.

Conclusion validity. This type of threats considers issues
that affect the validity of statistical inferences. We mitigate
this threat by using standard techniques for our statistics
and modeling, and we used a well-recognized tool for these
purposes (Weka).

External validity. Since we only explored PHP web appli-
cation, our results might be specific to them. Even though,
the selected applications are open source and from different
domains. Future studies with a broader set of web appli-
cations, including both commercial and open source appli-
cations, would be needed to generalize the results to the
entire class of PHP web applications. Also, in order to gen-
eralize the results other web applications written in other
languages or to other types of software, such as desktop or
mobile applications should be explored.

6. RELATED WORK
One related research field to our study is predicting fault-

prone components [1]. Fault prediction models are usually
built using software metrics and previously collected fault
data. These models are then utilized to guide decision-
making in the course of development. For vulnerability pre-
diction, several researchers explored vulnerability prediction
but their studies suffered from several limitations namely
they used only reported vulnerabilities to label vulnerable
components, limited classification techniques were used, and
all of them investigated within-project vulnerability predic-
tion.

Shin and Williams [13] studied the correlation between
complexity metrics and vulnerabilities. Their experimen-
tal analysis was based on the Mozilla JavaScript Engine.
Their results showed weak correlation between complexity
metrics and security problems. They advised that their re-
sults is weak because they designated any function that was
changed to fix a vulnerability as âĂŸvulnerableâĂŹ. Shin
et al. [12] studied how useful complexity, code churn and
developer activity metrics in finding vulnerable files. Their
experimental analysis on Firefox and the Linux Kernel re-
vealed that in the best cases they were able to predict about
70% of vulnerable files with precision lower than 5%.

Neguyen and Tran [10] studied the dependency graphs
as predictors of software vulnerabilities. Their study was

also based on the Mozilla JavaScript Engine. The average
precision of their study was 68%. Chowdhury and Zulker-
nine used several source code metrics such as complexity,
coupling and cohesion to predict vulnerabilities [3]. They
conducted a study on 52 releases of Mozilla Firefox and
built vulnerability predictive models using: C4.5 Decision
Tree, Random Forests, Logistic Regression and Naive Bayes.
Their models were able to predict almost 75% of the vulner-
able files, with a false positive rate of below 30% and an
overall prediction accuracy of about 74%.

Walden et al. [16] provided a public dataset that contains
223 vulnerabilities found in three PHP web applications and
compared text mining vulnerability prediction models with
source code metrics prediction models.

To the best of our knowledge, we are the first to investi-
gate the feasibility of cross project vulnerability prediction
in open source web applications.

7. CONCLUSION
Software vulnerability prediction is considered as an im-

portant phase in enhancing the software quality. These pre-
dictions help security engineers to forecast the future, i.e. to
identify the software components, which are likely to have
flaws. Data mining techniques were used to identify vulner-
abilities in complete and new projects with no enough data
using machine learning. Detection techniques using reliable
classifiers were conducted for complete projects. As an out-
come of this phase vulnerability models were created and
tested on incomplete projects leading to accurately predict-
ing vulnerability flaws in these inactive projects. Overall,
this provides a great help to the software project manage-
ment team to deal with those areas in the project on a timely
basis and with sufficient effort. This paper has shown and
analyzed how cross project vulnerability predication can be
done. Our future work will focus mainly on two aspects:
collecting more open-source projects vulnerabilities to vali-
date the generality of the proposed approach and considering
these predictions in developing a rule-based firewall accord-
ing the classification rules to filter vulnerable requests. This
firewall will be able to distinguish vulnerable requests after
evaluating some of the features of the PHP file

8. REFERENCES
[1] M. Alenezi, S. Banitaan, and Q. Obeidat.

Fault-proneness of open source systems: An empirical
analysis. In International Arab Conference on
Information Technology (ACIT 2014), pages 164–169,
2014.

[2] M. Bishop. Introduction to computer security.
Addison-Wesley Boston, MA, 2005.

[3] I. Chowdhury and M. Zulkernine. Using complexity,
coupling, and cohesion metrics as early indicators of
vulnerabilities. Journal of Systems Architecture,
57(3):294–313, 2011.

[4] E. Damiani, C. A. Ardagna, and N. El Ioini. Open
source systems security certification. Springer Science
& Business Media, 2008.

[5] N. Fenton and J. Bieman. Software metrics: a
rigorous and practical approach. CRC Press, 2014.

[6] M. Fernández-Delgado, E. Cernadas, S. Barro, and
D. Amorim. Do we need hundreds of classifiers to

solve real world classification problems? The Journal
of Machine Learning Research, 15(1):3133–3181, 2014.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[8] G. McGraw. Software security: building security in,
volume 1. Addison-Wesley Professional, 2006.

[9] I. Medeiros, N. F. Neves, and M. Correia. Automatic
detection and correction of web application
vulnerabilities using data mining to predict false
positives. In Proceedings of the 23rd international
conference on World wide web, pages 63–74. ACM,
2014.

[10] V. H. Nguyen and L. M. S. Tran. Predicting
vulnerable software components with dependency
graphs. In Proceedings of the 6th International
Workshop on Security Measurements and Metrics,
page 3. ACM, 2010.

[11] M. Nyanchama. Enterprise vulnerability management
and its role in information security management.
Information Systems Security, 14(3):29–56, 2005.

[12] Y. Shin, A. Meneely, L. Williams, J. Osborne, et al.
Evaluating complexity, code churn, and developer
activity metrics as indicators of software

vulnerabilities. IEEE Transactions on Software
Engineering, 37(6):772–787, 2011.

[13] Y. Shin and L. Williams. An empirical model to
predict security vulnerabilities using code complexity
metrics. In Proceedings of the Second ACM-IEEE
international symposium on Empirical software
engineering and measurement, pages 315–317. ACM,
2008.

[14] P. Sprent and N. C. Smeeton. Applied nonparametric
statistical methods. Chapman & Hall/CRC Texts in
Statistical Science. CRC Press, Boca Raton, FL, 4th
edition, 2007.

[15] J. Walden, M. Doyle, R. Lenhof, and J. Murray. Idea:
java vs. php: security implications of language choice
for web applications. In Engineering Secure Software
and Systems, pages 61–69. Springer, 2010.

[16] J. Walden, J. Stuckman, and R. Scandariato.
Predicting vulnerable components: Software metrics
vs text mining. In IEEE 25th International
Symposium on Software Reliability Engineering
(ISSRE), pages 23–33. IEEE, 2014.

[17] S. Zhang, D. Caragea, and X. Ou. An empirical study
on using the national vulnerability database to predict
software vulnerabilities. In Database and Expert

Systems Applications, pages 217–231. Springer, 2011.

