
Architectural Stability Evolution in Open-Source Systems

Mamdouh Alenezi
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia
malenezi@psu.edu.sa

Fakhry Khellah
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia
fkhellah@psu.edu.sa

ABSTRACT
Open-source software systems are becoming progressively
vital these days. Since open-source softwares are usually
developed in a different management style, the quality of
their architectures needs to be studied. ISO/IEC SQuaRe
quality standard characterized stability as one of the sub-
characteristics of maintainability. Unstable software archi-
tecture could cause the software to require high maintenance
cost and effort. Almost all stability related studies target the
package level. To our knowledge, there has been no proposed
work in literature that addresses the stability at the system
architecture level.

In this work, we propose a simple, yet efficient, technique
that is based on carefully aggregating the package level sta-
bility in order to measure the change in the architecture
level stability as the architecture evolution happens. The
proposed method can be used to further study the cause be-
hind the positive or negative architecture stability changes.

CCS Concepts
•Software and its engineering → Software system
structures; Software evolution; •General and refer-
ence → Empirical studies; Measurement;

Keywords
Software Quality; Software Evolution; Stability; Software
Metrics; Open Source; Package Structure.

1. INTRODUCTION
Software evolution is the vigorous activities of software

systems while they are improved and maintained over their
lifespans [11, 6, 1]. Software systems change and evolve
throughout their life cycle to accommodate new features
and to improve their quality. Software needs to evolve in
order to survive for a lengthy period. The changes that
software undergo lie within corrective, preventive, adaptive
and perfective maintenance that lead to software evolution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICEMIS ’15, September 24-26, 2015, Istanbul, Turkey
c© 2015 ACM. ISBN 978-1-4503-3418-1/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2832987.2833014

A major characteristic of software evolution is architecture
evolution. While a specific system is evolving, its architec-
ture is affected. In opposition, having a plan for how an
architecture should evolve is a powerful mechanism to plan
and guide software evolution.

Software Architecture is defined in the IEEE standards
[8] as ”fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in
the principles of its design and evolution”. One desired qual-
ity of the software architecture is stability. Stability is one of
the maintainability characteristics of the ISO/IEC SQuaRe
quality standard [7]. According to this standard, stability
is defined as the degree to which the software product can
avoid unexpected effects from modifications of the software.
[7].

Abundant research studies addressed the software evolu-
tion of open-source systems, with more than one hundred
research papers referenced in recent systematic literature re-
views [2, 15]. Although there are abundant research studies
that investigated the evolution of these softwares, very little
effort targeted the architecture in general and no work ad-
dressed the architectural stability of these systems. Almost
all stability related studies target the package level stability
by using various metrics. In this work, we concentrate on
the most frequently used metric for assessing the package
stability which is defined as [13]:

InstabilityI =
Ce

(Ce + Ca)
(1)

The I metric for a package is defined as the ratio of effer-
ent coupling Ce to total coupling Ce + Ca for the package.
The Ca denotes the number of other packages that depend
upon classes within the package (fan-in). It measures the in-
coming dependencies. The Ce denotes the number of other
packages that the classes in the package depend upon (fan-
out). It measures and counts the outgoing dependencies.
The I metric indicates how a flexible a package is to change.
The metric ranges from zero to one, one indicates a com-
pletely unstable package whereas zero indicates a completely
stable package. Martin [13] suggests that some packages
are easier to change than others. Easy to change packages
should depend on less easy to change packages. Depending
on packages make a package less stable, as changes affecting
depended-upon packages propagate to the depending pack-
age. Having other packages depend on a certain package
make that package more stable, as more effort is needed to
merge changes with all dependent packages. The I metric
shows how easy a package is to change.

Due to system evolution, the overall system stability is

affected. This is due to mainly changes in the currently ex-
isting packages and the instability incurred due to the added
new packages. It is very important for system architect to
monitor the overall system instability due to various main-
tenance task such as adding and removing packages, hence,
changing the packages dependency relationships. However,
calculating an aggregate value that shows the overall system
stability due to evolution has not been addressed in litera-
ture.

The main contribution of this work is two-fold. First,
proposing a simple, yet efficient, technique that is based on
carefully aggregating the package level stability in order to
measure the change in the architecture level stability as the
architecture evolution happens. Second, empirically apply-
ing the proposed method on two open source systems.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the used methodology. The experimental
evaluation is given in Section 3. Some threats to validity
are presented in Section 4. Section 5 discusses related work.
Conclusions of the research are presented in Section 6.

2. APPROACH
In order to monitor the stability change of a given system

as new releases are developed, the stabilities of two consec-
utive releases should be compared. This would give more
insight and clarify if the change is positive or negative and
if the current system instability is dominated by the effect of
the newly added packages or due to changes in the currently
existing packages or to both.

Suppose that the instabilities of two consecutive system
releases v−1 and v are computed using (1) and given by Iv−1

and Iv, then the average amount of change in the system
stability ∆I is obtained as:

∆I =
1

K

∑
p

(Iv−1 − Iv)p (2)

Where p is the package and (v) is the release and K is the
number of common packages in the two consecutive releases.
A straight forward approach to compute the Aggregate Sys-
tem Instability (ASI) of a certain release (v) of a system can
be done by averaging over all release(v) packages instabili-
ties (I) computed using (1).

ASI(v) =
1

N

∑
p

Ip (3)

Where N is the number of packages in release (v), and Ip is
the instability for package p.

However, due to the average mixing effect, computing the
system stability change ∆I using ASI(v) plainly as given in
Equation 3 is misleading and will lead to incorrect interpre-
tations and, hence, decisions. To illustrate the drawback of
using the average to compute the overall system stability,
consider the toy system given in Table 1. The system has
two releases where the first release has two packages P1,P2

and a new package P3 was added in the second release. The
table shows the computed instabilities for all the packages
for the two consecutive releases. In the second release there
has been improvement in the instabilities of packages P1 and
P2. However, the instability for the newly added package
P3 is high (0.7) which would naturally cancels the obtained
improvement. By looking at the ASI values for the two

releases, one would see that the second release has better
stability (I = 0.63) in comparison to the previous release
(I = 0.85). In addition, the instability change ∆I is (-0.22)
as computed using (2). One would incorrectly conclude that
there has been improvement in the system stability in the
second release as the change is negative. This incorrect con-
clusion is due to the mixing effect of the averaging used to
compute ASI for both releases.

Our approach to reflect the instability change due to evo-
lution is based on expressing the aggregate system instability
change for a certain release v as being composed of the av-
erage of two main components: the change due to updates
in the common packages of the two consecutive releases ∆I
given in (2) and the ASI for the current release but computed
only for the newly added packages. This would be expressed
as:

Aggregate System Instability change (v) =
(∆I + ASI(v))

2
(4)

Where ∆I is the aggregate overall change of instability for
all common packages in the two consecutive releases (i.e.,
v − 1 and v) that have a change in their instability metric
due to the evolution, and ASI(v) is computed as in 3, where
N would be the number of newly added packages only. The
range of the aggregate system instability change is between
-1 and 1.

To clarify the approach, assume that the lists of packages
of two consecutive releases (v − 1), and (v) of a certain sys-
tem are {P1, P2, . . . , Pn}, and {P1, P2, . . . , Pn, Pn+1, Pn+2},
respectively. Assume that in release (v), two new packages
were added: Pn+1, Pn+2. Let us also assume that instabil-
ity changes happen in only L common packages, (i.e., the
computed change (Iv−1− Iv)p 6= 0). Then, in order to com-
pute the aggregate system instability change for release (v),
as given in (4), we start by computing ∆I using (2) with
K = L. ASI(v) is then computed using (3) with N = 2,
since only two new packages are added to release (v).

To illustrate how such approach correctly reflects the sta-
bility change, we refer back to the toy system given in Ta-
ble 1. The corrected stability change is computed using (4)
as 0.23. This tells us that there has been reduction in the
stability in the second release not improvement. This does
make more sense as the computed instability for the newly
added package P3 (0.7) exceeds the improvement happened
to the two existing packages: P1 and P2, (i.e., -0.5 in total).

3. EXPERIMENTAL EVALUATION

Table 2: Selected Software Systems

System Versions LOC Packages
jEdit 3.0.0-4.2.0 43382-94656 11-16

PDFBox 1.5.0-1.8.7 102242-133959 26-31

In order to evaluate the proposed approach, we select
open-source applications implemented in Java. To select
the systems for the empirical analysis, three selection crite-
ria have been used.

• The selected systems had to be well-known systems
that are very widely used.

Package I1 I2
P1 0.7 0.5
P2 1 0.7

P3(new release 2)only - 0.7
ASI 0.85 0.63

ASI Based Instability Change -0.22
Proposed Instability Change 0.23

Table 1: Toy System Example

• The systems had to be sizable, so the systems can be
realistic and have multi-developers.

• The systems had to be actively maintained.

Characteristics of the selected software systems are listed
in Table 2. jEdit6 is a medium-sized, text editor. It fo-
cuses on providing different features for developers, includ-
ing macro scripting, syntax highlighting, and a comprehen-
sive plug-in environment. We have collected 12 versions from
jEdit which represent 4 years of evolution and development.
Table 3 shows the evolution behavior of the jEdit system.
The size of jEdit started at 43382 LOC and stopped at 94656
LOC. The number of packages started at 11 and stopped
at 16. This continuous increase of the number of package
shows that new features are actually reflected in increasing
the number of packages. It also shows that no restructur-
ing has happened in these releases. Usually restructuring
results in decreasing the number of packages. The Ce met-
ric average shows that even though there is increase in the
number of packages, the responsibilities of these packages
are increasing.

PDFBox is a Java open-source tool that can ease working
with PDF files. Through the tool, one can create, manipu-
late, extract content in PDF documents. We have collected
12 versions from PDFBox which represent 3 years of evo-
lution and development. Table 4 shows the evolution be-
havior of the PDFBox system. The size of PDFBox started
at 102242 LOC and stopped at 133959 LOC. The number
of packages started at 31 and stopped at 26 which means
that system has restructured to reduce the number of pack-
ages. The Ce metric average shows that even though there
is increase in the number of packages, the responsibilities of
these packages are increasing.

Figure 1 shows the architectural stability evolution of the
selected systems. For each system, we report ASI, The in-
stability change ∆I based on ASI only, and the proposed
aggregate system instability change. The goal to show how
these measures actually reveal the difference in stability be-
tween releases. For both systems, looking at Figures 1(a,d),
it is established that average values of instabilities do not
give any insight about the effect of evolution on the system
stability.

In addition, the computed ∆I based on ASI only, depicted
in Figures 1(b,e), incorrectly reflect the actual change in the
instabilities. To establish the validity of the above, we will
correlate the computed change in instability to the actual
changes in the instability due to evolution. In case of jEdit
system, the correct change in the stability for the fifth re-
leases, as computed by the proposed method Figure 1(c), is
(0.49). On the other hand, the computed change based on
averaging alone is almost negligible (0.025). To validate the
correctness of the obtained insatiability based on the pro-

posed method, we investigate the actual change happened
to the system in the fifth release in comparison with the pre-
vious release. In the fifth release new package with I = 1
was added. The computed instability change based on ASI
alone (0.025) does not reflect such added instability due to
the new package.

The strength of the proposed method in computing the
instability can be clearly seen in case of the PDFBox sys-
tem. The system started by 31 packages. In the third release
number of packages was reduced to 26. The computed sta-
bility change based on averaging alone Figure 1(e) shows
that stability improves in the third release (the computed
change is negative (-0.075)) then stabilizes. This actually
is incorrect as in the third release new package was added
with I = 0.33. In addition, the average ∆I for the remaining
packages is positive (0.04)). This means that there is degra-
dation in the instability due to evolution not improvement
as mistakenly computed by averaging alone. This supports
the correctness of the computed instability (0.19) based on
the proposed method Figure 1(f).

4. THREATS TO VALIDITY
Threat to validity is very common in empirical studies.

The validity of the results obtained in this work is con-
strained by a number of aspects. We have conducted the
study on only two Java-based open-source systems which
limits the generalization of the results. We can generalize
the results to same-size Java-based systems that are open-
source. We have selected two systems with different sizes
in order to see the effect of the size on our findings. These
two systems were studied before in the literature. Extract-
ing the data from the source code was another threat to
the validity. We have developed our own R script to collect
these metrics from the source code. In developing this script,
we have validated the results in parts of these two systems
manually to make sure that we are getting the right results.
We have studied the system level architecture on our study.
Since there is no clear idea about the relationship between
the behavior observed at the system level and the behavior
observed at the subsystem level.

5. RELATED WORK
The case of open-source software is an instance of an

emerging domain that has been disregarded in the descrip-
tion of the evolution laws. On the time when these laws
were developed, software systems were developed by co-
located teams that use face-to-face communication. In open
source systems, software usually developed by distributed
teams, and communicating just through electronic mecha-
nisms. This new type of development is very different from
the accepted software engineering practices during the times

Table 3: jEdit Average Metrics for each Version

Metric 1 2 3 4 5 6 7 8 9 10 11 12
LOC 43382 43655 43658 45706 51325 51376 50951 66347 66391 66398 72870 94656

Packages 11 11 11 11 12 12 12 14 14 14 15 16
Ce 4.1 4.1 4.1 4.1 4.15 4.15 4.15 4.65 4.65 4.65 4.8 5.19
I 0.541 0.541 0.541 0.541 0.566 0.566 0.566 0.586 0.586 0.586 0.584 0.580

Table 4: PDFBox Average Metrics for each Version

Metric 1 2 3 4 5 6 7 8 9 10 11 12
LOC 102242 106185 114282 114895 119682 119955 120726 124762 125327 127904 131068 133959

Packages 31 31 26 26 26 26 26 26 26 26 26 26
Ce 6 6.129 6.307 6.307 6.5 6.5 6.5 6.538 6.5 6.538 6.576 6.615
I 0.568 0.568 0.492 0.492 0.489 0.489 0.489 0.490 0.489 0.490 0.490 0.490

of the first versions of the software evolution laws. Koch
established several dissimilarities in the evolution of open-
source software projects of different sizes [9]. He found that
small open-source software projects fulfill to some extent
some of these laws. However, large software projects do not
follow them at all since these projects have unbalanced work-
load among participants and a large number of participants.

D’Ambros and Lanza [4] proposed evolution radar to un-
derstand the package coupling. They used a visualization
mechanism that visualizes classes for architecture recovery
using two measures: package as group criterion and invoca-
tion number for the distance. They used the package level vi-
sualization to enable software engineers to visualize the soft-
ware as connected packages. Ducasse et al. [5] introduced
a visualization technique, which can be utilized to under-
stand, analyze, and visualize the relationships of packages.
They argued that relationships between packages and their
contained classes are key aspects in the decomposition of an
application. They suggested that it is necessary, for the re-
engineering and development of object-oriented systems, to
recognize and investigate both sets of classes and packages.
Wilhelm and Diehl [16] used Martin’s [13] and size metrics
to build a tool that helps to control package dependencies.
Lungu et al. [12] developed a tool called Softwarenaut that
recover several architecture views from the source code.

Capiluppi and Boldyreff [3] proposed a coupling-based ap-
proach to to indicate potentially reusable parts of projects,
which could be reused as independent projects. Their ap-
proach was based on the instability metric [13]. They showed
that low instability modules (i.e. stable modules) are good
candidates to be turned into independent, external modules.

Mens et al. [14] provided guidelines in which how metrics
have been, and can be, used to analyze software evolution.
They contended that metrics can provide a great support
to study software evolution. In order to support a reflec-
tive study, several metrics can be utilized to comprehend
and appreciate the evolution quality of a software system
by examining its successive releases. More specifically, met-
rics can be utilized to measure if the quality of a software
has improved or degraded between two releases. Lee et al.
[10] argued that software metrics can be utilized to evaluate
and judge the quality of evolution of open source systems.
The authors examined the evolution of an open source soft-
ware system with regards to size, coupling and cohesion, and
change quality.

6. CONCLUSION

In this work, we proposed an efficient technique to study
the software architecture stability evolution. The technique
is based on carefully aggregating the package level stability
to measure the change in the stability of the architecture as
the evolution happens. The proposed technique can be used
to further study the cause behind the positive or negative
architecture stability changes. The new proposed approach
clearly showed the variance in the instability between re-
leases. Future research directions include correlating the
results of the proposed metric to other instability related
metrics. In addition, we will use the method as performance
indicator to predict if the proposed changes on various ar-
chitecture levels will have negative or positive impact on
the overall system architecture. We will study, the usage of
the proposed method to investigate the relationship between
packages stability and number of faults in them.

7. REFERENCES
[1] M. Alenezi and K. Almustafa. Empirical analysis of

the complexity evolution in open-source software
systems. International Journal of Hybrid Information
Technology, 8(2):257–266, 2015.

[2] H. P. Breivold, M. A. Chauhan, and M. A. Babar. A
systematic review of studies of open source software
evolution. In 17th Asia Pacific Software Engineering
Conference (APSEC), 2010, pages 356–365. IEEE,
2010.

[3] A. Capiluppi and C. Boldyreff. Coupling patterns in
the effective reuse of open source software. In First
International Workshop on Emerging Trends in
FLOSS Research and Development, 2007. FLOSS’07.,
pages 9–9. IEEE, 2007.

[4] M. D’Ambros and M. Lanza. Reverse engineering with
logical coupling. In 13th Working Conference on
Reverse Engineering, 2006. WCRE’06., pages
189–198. IEEE, 2006.

[5] S. Ducasse, M. Lanza, and L. Ponisio. Butterflies: A
visual approach to characterize packages. In 11th
IEEE International Symposium on Software Metrics,
pages 10–pp. IEEE, 2005.

[6] M. W. Godfrey and D. M. German. On the evolution
of lehman’s laws. Journal of Software: Evolution and
Process, 2013.

[7] ISO/IEC. Systems and software engineering - systems
and software quality requirements and evaluation
(square). ISO/IEC 25010 - System and software
quality models, 2011.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

Version Number

A
ve

ra
ge

 In
st

ab
ili

ty

2 3 4 5 6 7 8 9 10 11 12
−0.005

0

0.005

0.01

0.015

0.02

0.025

Version Number

A
ve

ra
ge

 C
ha

ng
e

2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Version Number

P
ro

po
se

d
A

ve
ra

ge
 C

ha
ng

e

(a) ASI (b) ∆I based on ASI (c) Proposed ASI Change
jEdit System

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

Version Number

A
ve

ra
ge

 In
st

ab
ili

ty

1 2 3 4 5 6 7 8 9 10 11
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Version Number

A
ve

ra
ge

 C
ha

ng
e

1 2 3 4 5 6 7 8 9 10 11
−0.05

0

0.05

0.1

0.15

0.2

Version Number

P
ro

po
se

d
A

ve
ra

ge
 C

ha
ng

e

(d) ASI (e) ∆I based on ASI (f) Proposed ASI Change
PDFBox System

Figure 1: Demonstration of the Proposed method for computing Instability change where figures (left to right) in each row
represent: Aggregate System Instability (ASI), ∆I based on ASI, Proposed ASI Change.

[8] ISO/IEC/IEEE. Systems and software engineering –
architecture description. ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000), pages 1 –46, 1 2011.

[9] S. Koch. Software evolution in open source projectsŮa
large-scale investigation. Journal of Software
Maintenance and Evolution: Research and Practice,
19(6):361–382, 2007.

[10] Y. Lee, J. Yang, and K. H. Chang. Metrics and
evolution in open source software. In Seventh
International Conference on Quality Software, 2007.
QSIC’07., pages 191–197. IEEE, 2007.

[11] M. M. Lehman. On understanding laws, evolution,
and conservation in the large-program life cycle.
Journal of Systems and Software, 1:213–221, 1980.

[12] M. Lungu, M. Lanza, and O. Nierstrasz. Evolutionary

and collaborative software architecture recovery with
softwarenaut. Science of Computer Programming,
79:204–223, 2014.

[13] R. C. Martin. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2003.

[14] T. Mens and S. Demeyer. Future trends in software
evolution metrics. In Proceedings of the 4th
international workshop on Principles of software
evolution, pages 83–86. ACM, 2001.

[15] M. Syeed, I. Hammouda, and T. Syatä. Evolution of
open source software projects: A systematic literature
review. Journal of Software, 8(11):2815–2829, 2013.

[16] M. Wilhelm and S. Diehl. Dependencyviewer-a tool
for visualizing package design quality metrics. In

VISSOFT, pages 125–126, 2005.

