

Does Software Structures Quality Improve over Software
Evolution? Evidences from Open-Source Projects

Mamdouh Alenezi and Mohammad Zarour
College of Computer & Information Sciences
Prince Sultan University, Riyadh 11586

Saudi Arabia

Abstract

Throughout the software evolution, several maintenance actions such as adding new fea-

tures, fixing problems, improving the design might negatively or positively affect the software
design quality. Quality degradation, if not handled in the right time, can accumulate and
cause serious problems for future maintenance effort. Several researchers considered modu-
larity as one of the success factors of Open Source Software (OSS) Projects. The modularity
of these systems is influenced by some software metrics such as size, complexity, cohesion,
and coupling. In this work, we study the modularity evolution of four open-source systems
by answering two main research questions namely: what measures can be used to measure
the modularity level of software and secondly, did the modularity level for the selected open
source software improves over time. By investigating the modularity measures, we have
identified the main measures that can be used to measure software modularity. Based on
our analysis, the modularity of these two systems is not improving over time. However, the
defect density is improving over time.

1 Introduction

Software evolve for many reasons that include continuing change, increasing complexity,

continuing growth and etc. This means that software need to fix problems, to accommodate
new features, and to improve their quality. All these maintenance activities lie within
corrective, preventive, adaptive and perfective maintenance that lead to software evolution.
In order for the software to survive for a long period, it needs to evolve. This paper is an
extended version of our previous work [1]. In this paper we study the software structures
quality and investigate more their improvement opportunities over the evolution of four
different open source projects.

Software end-users are usually concerned about the external software quality factors de-
picted as efficiency, usability, and reliability while developers and software engineers are
also concerned with the internal quality factors such as evolution and reusability [2]. Soft-
ware keeps evolving after it has been set in use for the first time. The cost associated with
software maintenance and evolution is estimated to be 60% to 80% of total costs associated
with a software system [3]. Software evolution is correlated with software structures and
complexity [4]; Software structures can be altered via maintenance activities which usually
introduce new source code changes that may introduces new dependencies among software

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

61 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

elements e.g. packages, methods and classes. Most of the software evolution studies high-
light the changes in statistical techniques by analyzing its evolution measures [5], little effort
has been carried to comprehend how exactly the structure of these systems evolve [6]. For
that reason, we focus in this paper on studying software structures’ quality and investigate
their improvements during software evolution. Our investigation is based on open source
software systems by considering various object oriented structural software measures.

Software structures refer to the various program elements (modules)that make up certain
software. the way these elements are organized in the program defines its structural com-
plexity [7]. Modularity has great effect on software development and evolution [8][9][10].
It plays a central role in the design and production of software artifacts, mainly when
developing large and complex software [11]. Modularity is one of the maintainability char-
acteristics of the ISO/IEC SQuaRe quality standard series [12]. According to this standard,
modularity is defined as a degree to which a system or computer program is composed of
discrete components such that a change to one component has minimal impact on other
components [12]. modularization is the process of decomposing a system into logically cohe-
sive and loosely-coupled modules that hide their implementation from each other and offer
functionalities to the outside world through a well-defined interface [13, 14]. Maintenance
activities during software evolution might negatively or positively affect software quality
including modularity, enhancing software modularity will improve the flexibility and under-
standability of software systems. As software Modularity increase, its complexity decrease.
High modularity in open source allows multiple developers to work on the same software en-
tity, usually in competition, which increases the probability of timely, high-quality solutions
[15].

Modularity is an essential property of quality software. High modularity improves the
flexibility and understandability of the software system [8], whereas low modularity causes
costly refactorings and software bugs [10]. Therefore, modularity is usually utilized as an
essential criterion for evaluating the software design quality [12]. In this paper modularity
measures are used as means to study the software structures quality and their evolution
over projects’ releases.

The remainder of this paper is organized as follows: Section 2 discusses the research
methodology adopted in this paper. Section 3 states the measures used in this study. The
data collection mechanism is given in Section 4. Data analysis and results are presented in
Section 5. Threat to validity are discussed in Section 6. Section 7 discusses related work.
Conclusions are presented in Section 8.

2 Research Methodology

In this research work we are applying various modularity measures to empirical data

taken from open source software. The data are collected from PROMISE, the software
engineering repository. Nowadays, open source software repositories provide researchers
with the possibility to access large amount of publicly available data for analysis to produce
new studies and results. In our study, we will investigate the relationship among various
design measures and software modularity. Modularity forms our dependent variable to be
studied while the various design measures form the independent variables. Our empirical
study focuses on the following research questions:

1. What measure(s) can be used to measure the modularity of OO software programs?

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

62 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

2. Did the modularity of the OO programs studied in this research work improve over
the various versions?

To answer these questions, we will follow the following steps:

1.Identify the applicable set of measures related to the modularity (Section 4)

2.Identify the set of open source software systems to be used in this research work

and collect necessary data pieces from PROMISE repository needed to calculate the
specified measures (Section 5)

3.Analyze and report findings (Section 6)

3 Measures in This Study

Various measures are used to measure the quality of modularization. Although deciding
which measures can be adopted in experiments on object oriented software modularity is
a hard task [16], we decided to consider coupling, cohesion and complexity as measures
to be considered in this study. According to [16] measures related to these three inter-
nal attributes are among the most adopted measures by experts in the domain. Coupling
is the degree of interdependence between modules, whereas cohesion is the intra-modular
functional relatedness which describes how tightly bound the internal elements of a mod-
ule are to one another [14]. An excessive coupling between a system modules affects its
modularity but promoting encapsulation and reducing coupling improve modularity [17].
Complexity is also revealed by both cohesion and coupling. Higher cohesion indicates lower
complexity, when coupling increases, the complexity also increases. Coupling, cohesion,
and complexity relate strongly to the maintenance effort [18]. Moreover, Defect Density is
used as a measure of software product quality to investigate if the defect level is improving
over successive releases.

This section presents the definition of the measures used in the study. For more detailed
definition about these measures refer to [19]. Modularity measures assess the degree to
which a system or computer program is composed of discrete components such that a
change to one component has minimal impact on other components. SQuaRE standard
defined two basic modularity measures:

• Coupling of components: How strong is the coupling between the components in a
system or computer programs? basically two measures are used for coupling measure:
Coupling between object classes (CBO) and Response for a Class (RFC).

• Cyclomatic complexity: How many software modules have the acceptable cyclomatic
complexity? The cyclomatic complexity is measured by two main measures namely:
Weighted Methods per Class (WMC), and McCabe’s Cyclomatic Complexity (CC).

We observe the modularity of open source software systems by measuring coupling, cohe-
sion, and complexity measures. While major emphasis has been on object oriented measures
proposed by Chidamber and Kemerer [20], we have also considered other relevant measures
related to coupling and cohesions as shown in the following sub-sections.

3.1 Coupling

Beside the two basic coupling measures given above, we have also chosen other measures
that measure the interconnection of software modules. this includes: Afferent couplings

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

63 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(Ca), Efferent couplings (Ce), Coupling Between Methods (CBM). These coupling measures
are well-known and were excessively studied in the literature. Accordingly the selected
coupling measures include:

• Coupling between object classes (CBO): It represents the number of other classes
that are coupled to the current class. This coupling can occur through method calls,
field accesses, inheritance, arguments, return types, and exceptions.

• Response for a Class (RFC): RFC is the measure of number of methods that can be
invoked in response to a message received by an object of the class. Ideally, RFC
should measure the transitive closure of the call graph for each method.

• Afferent couplings (Ca): It represents the number of classes from other packages
depending on classes in this package. This describes the packages responsibility. Ca
is the number of other packages depending on one package. A high number indicates
bad design, or that the package is used for crosscutting concerns.

• Efferent Couplings (Ce): It represents the number of packages the classes of this
package depend upon. This describes the packages independence. This can be used
to point out non-adherence to the design if certain packages have an unreasonable
high number of efferent couplings.

• Coupling Between Methods (CBM): It represents the total number of new/redefined
methods to which all the inherited methods are coupled. An inherited method is
coupled to a new/redefined method if it is functionally dependent on a new/redefined
method in the class. Therefore, the number of new/redefined methods to which an
inherited method is coupled can be measured.

3.2 Cohesion

To study software systems cohesion, we have chosen different measures that measure the
cohesion of software modules. These cohesion measures are well-known and were excessively
studied in the literature. We selected the following cohesion measures:

• Lack of cohesion in methods (LCOM): It counts the sets of methods in a class that
are not related through the sharing of some of the class fields. It is calculated by
subtracting from the number of method pairs that do not share a field access the
number of method pairs that do.

• Lack of cohesion in methods (LCOM3): It is an improved variation of the LCOM
measure. It calculates the cohesion of the class by considering the effective usage of
the class attributes.

• Cohesion Among Methods of Class (CAM): It computes the relatedness among meth-
ods of a class based upon the parameter list of the methods. It sums the number of
different types of method parameters in every method and divides it by a multipli-
cation of number of different method parameter types in whole class and number of
methods.

3.3 Complexity

To study software system’s cohesion, we used different complexity measures which are
well-known and excessively studied in the literature. These measures include:

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

64 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

• Weighted Methods per Class (WMC): It is the sum of the complexities of all class
methods.

• McCabe’s Cyclomatic Complexity (CC): It is equal to the number of different paths
(decision points) in a method plus one. We report Avg(CC) which is the arithmetic
mean of the CC value in the investigated class.

3.4 Defect Density Evolution

Defect Density is post-release defects per thousand lines of delivered code [21]. Defect
Density is used here to measure the quality of the software product. It gives an indication
of quality improvement achievements in successive releases of certain software. The lower
the number of defect density, the better the software quality is. Defect density can be
computed using equation 1 as follows:

Defect Density =
Number of Defects

KLOC
(1)

Defect density is correlated with number of developers and software size jointly [22].
similar results are obtained in [21], where projects size is found to be an affecting factor
(large projects are found to have lower defect density). Development mode is found to be
another factor that affects defect density rate (open source projects are found to have a
lower defect density).

4 Data Collection

We conducted the empirical study on four open source systems. In selecting the sub-

jected systems, we used several criteria. First, we want well-known systems that are used
very widely. Second, systems had to be sizable, so we can understand the issues that ap-
pear in the evolution of realistic, multi-developer software. Third, the systems had to be
actively maintained. Finally, the data of these systems had to be publicly available. Public
availability of the data used for empirical studies is crucial. A theory of software evolution
must be based on empirical results, verifiable and repeatable [5]. Characteristics of the
selected software systems are listed in Table 1. An overview of each system is provided in
the following paragraphs.

Table 1. Selected Software Systems
System Versions LOC
Camel 1.0-1.6 3594-113055

jEdit 4.0-4.3 144803-202363

POI 1.5-3.0 55428-129327

Xerces 1.0-1.4 90718-141180

Apache Camel is a powerful open source integration framework based on known Enter-
prise Integration Patterns with powerful Bean Integration. jEdit is a mature programmer’s
text editor with hundreds (counting the time developing plugins) of person-years of develop-
ment behind it. It is written in Java and runs on any operating system with Java support,
including Windows, Linux, Mac OS X, and BSD. The POI project consists of APIs for

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

65 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

manipulating various file formats based upon Microsoft’s OLE 2 Compound Document for-
mat, and Office OpenXML format, using pure Java. Xerces is a parser that supports the
XML 1.0 recommendation and contains advanced parser functionality, such as support for
XML Schema 1.0, DOM level 2 and SAX version 2.

The data for this study were collected by [19] and are available online at the PROMISE
repository. This data was widely used in the software engineering literature for different
purposes [23, 24, 25]. The collected measures’ data for the four systems are added up
correspondingly into one data set along with the relevant values for coupling, cohesion, and
complexity measures. Descriptive statistics (Min, Max, Median, Std. dev.) defined the
minimum, maximum, median, and standard deviation measures. Table 2 shows descriptive
statistics about the selected measures.

Table 2. Descriptive Statistics of the Measures

Measures Min Max Med σ
CBO 0 187 9.8 15.20

RFC 0 498 27.72 39.8

Ca 0 184 5.33 13.79

Ce 0 95 5.24 6.75

CBM 0 25 1.59 3

LCOM 0 41719 116.3 933.3

LCOM3 0 2 1.14 0.67

CAM 0 1 0.47 0.25

WMC 0 409 10 18.8

Avg(CC) 0 25.14 1.28 1.3

5 Data Analysis and Results

In order to answer the first question, we need to know which aspects of coupling is
measured by any of the chosen coupling measures. Same thing holds for cohesion. To
achieve that, we use the well-known Principal Component Analysis (PCA) which is a stan-
dard statistical procedure that uses orthogonal transformation to identify the underlying,
orthogonal dimensions that explain relations between the variables in the data set. We
conducted the experiments using the R statistical software (version 3.1.1) and we used R’s
Procomp procedure to our data to produce principal components. The analysis is done on
the entire data set of the considered measures.

The objectives of principal component analysis are to discover or reduce the dimension-
ality of the data set and identify new meaningful underlying variables. PCA is a de facto
technique for uncovering the underlying orthogonal dimension that explains variables rela-
tions in a dataset. PCA is used in our case to identify measures (i.e, groups of independent
variables) that measure the same underlying dimension (i.e., mechanism that defines cou-
pling and cohesion among classes). Principal Components (PCs) are linear combinations of
independent variables. The number of PCs is less than or equal to the number of original
variables. PCs are interpreted as follows. Each new PC is orthogonal to all previously
calculated PCs and captures a maximum variance under these conditions.

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

66 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

5.1 Coupling Evolution Analysis & Results

In this section we apply the PCA approach to the coupling measures to specify any
correlations among them. If a group of coupling measures are strongly correlated, these
measure are likely to measure the same underlying dimension (i.e., class property) of the
object to be measured.

Table 3. Rotated Components of Coupling measures

 PC1 PC2 PC3 PC4
Proportion 39% 22% 20% 19%

Cumulative 38% 60% 80% 100%

CBO 0.92 0.34 -0.02 0.20
RFC 0.21 0.39 0.11 0.89

Ca 0.99 0.00 -0.03 0.10

Ce 0.18 0.91 0.04 0.37

CBM -0.03 0.04 1.00 0.08

By analyzing the coefficients associated with every coupling measure within each rotated
component given in Table 3, we interpret the identified PCs as the following:

• PC1 (39%): CBO and Ca measures count inbound coupling through method invoca-
tions. The correlation betweeen the two measures is high. We can use one of them
rather than using both. Apparently, the afferent couplings measure is the contributing
measure as it has higher PC value.

• PC2 (22%): Ce captures outbound coupling through method invocations.

• PC3 (20%): CBM captures coupling between inherited and redefined methods.

• PC4 (19%): RFC counts the number of accessible methods.

5.2 Cohesion Evolution Analysis & Results

We also conducted PCA analysis on the selected cohesion measures. We want to see if
any correlations exists between these measures.

Table 4. Rotated Components of Cohesion measures

 PC1 PC2 PC3
Proportion 33% 33% 33%

Cumulative 33% 67% 100%

LCOM 1 -0.01 -0.07
LCOM3 -0.01 0.98 0.20

CAM -0.08 0.21 0.98

By analyzing the coefficients associated with every cohesion measure within each rotated
component given in Table 4, we found that the identified PCs as each on of these cohesion
measures is unique and does not overlap with the others.

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

67 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

POI
7

6

5

4

3

2

1

0
1 2 3 4

5.3 Defect Density Evolution

We measured the defect density of each version of the adopted open source software in
order to investigate if the evolution of each software reduces the defect density or increases
it over the different releases. Figure 1 shows how defect density evolved in the selected
systems. The defect density is shown to improve for each of the tested software over the
successive releases.

(a) (b)

(c) (d)

Figure 1. The Evolution of Defect Density in the Selected Systems.

5.4 Discussion

According to our PCA analysis, the coupling measures that can be used to measure the
system’s modularity are Ca, Ce, CBM and RFC. The CBO measure has been excluded
as the Ca measures the same dimension. The cohesion measures that can be used to measure
the system’s modularity are LCOM, LCOM3, and CAM. These measures along with the
complexity measures WMC and CC measures altogether are the set of measures that
measure the Modularity of a system or software program. This answers the first research
question.

Table 5 shows the coupling, cohesion, and complexity evolution of the four selected
systems. There are three notions which characterize good and bad things about mod-
ules, coupling (we want low coupling between modules), cohesion (we want highly cohesive
modules), and complexity (we want modules that have low complexity) [2]. Modularity
is a concept in which a software is decomposed of several distinct and logically cohesive
sub-units, offering services through a well-defined interface [13]. Excessive inter-module

Camel
9

8

7

6

5

4

3

2

1

0
1 2 3 4

jEdit
1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
1 2 3 4

Xerces
12

10

8

6

4

2

0
1 2 3 4

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

68 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Table 5. Modularity Evolution of the Selected Systems

 Ver. 1 Ver. 2 Ver. 3 Ver. 4

Camel

Coupling

Ca 4.99 5.02 5.11 5.27
Ce 5.69 5.62 6.33 6.43

CBM 0.56 0.64 0.61 0.91
RFC 19.63 20.23 21.2 21.42

Cohesion

LCOM 53.65 61.24 73.42 79.33
LCOM3 0.99 1.08 1.11 1.1
CAM 0.48 0.5 0.49 0.49

Complexity
WMC 8.07 8.31 8.52 8.57

Avg(CC) 0.94 0.93 0.94 0.96

jEdit

Coupling

Ca 7.51 7.93 8.62 8.74
Ce 6.43 6.63 7.16 7.1

CBM 1.61 1.59 1.55 1.5
RFC 38.24 39.87 40.98 39.85

Cohesion

LCOM 197.38 187.89 310.76 259.91
LCOM3 1.05 1 0.99 1.09
CAM 0.47 0.45 0.44 0.46

Complexity
WMC 12.88 13.13 13.16 12.35

Avg(CC) 1.79 1.87 1.92 1.83

POI

Coupling

Ca 4.36 4.51 4.7 5.23
Ce 4.31 4.48 4.68 5.22

CBM 2.78 2.62 2.7 1.95
RFC 27.56 29.65 30.9 30.35

Cohesion

LCOM 92.87 103.76 107.12 100.46
LCOM3 1.02 0.97 0.98 1
CAM 0.44 0.42 0.43 0.38

Complexity
WMC 13.39 14.3 14.26 13.51

Avg(CC) 1.09 1.15 1.16 1.19

Xerces

Coupling

Ca 3.33 2.52 2.67 3.35
Ce 3.38 2.68 2.75 3.27

CBM 1.93 1.41 1.38 1.43
RFC 23.33 21.23 21.7 19.24

Cohesion

LCOM 139.48 91 94.52 75.49
LCOM3 1.22 1.49 1.47 1.47
CAM 0.52 0.51 0.5 0.52

Complexity
WMC 11.43 11.28 11.38 9.94

Avg(CC) 1.26 1.22 1.24 1.4

dependencies has been acknowledged to be an indicator of poor design and decrease the
comprehending of components in isolation [26].

Figure 2 shows the evolution of coupling, cohesion, complexity measures of the selected
systems over four different releases for each system. The X-axis represents the release num-
ber while the Y-axis represents the measures data. As can be seen from figure 2 a, d and
g, we can see that there is a minor change in the Ca, Ce and CBM coupling measures.
But there is slightly more increase in the RFC measure in Camel, jEdit and POI while the
RFC slightly decrease for Xerces. Hence, coupling is slightly increasing while the software
is evolving, this indicates that the modularity is not improving over time.
Figure 2 b show that the LCOM and LCOM3 are increasing over the various releases of
Camel. Figure 2 e shows that for jEdit, the cohesion level indicated some improvement
in the second release but lost it in the third release then again made some progress in the
forth release but still not as good as in the first release which meanins that overall the

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

69 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

(a) Camel (b) Camel (c) Camel

(d) jEdit (e) jEdit (f) jEdit

(g) POI (h) POI (i) POI

(j) Xerces (k) Xerces (l) Xerces

Figure 2. Modularity Evolution of the Selected Systems.

cohesion is not improving significantly in jEdit. Figure 2 h shows cohesion of the POI
software. overall the cohesion measures indicate that the cohesion is not improving till the
third release, then the cohesion started improving in the fourth release but still not good as
in the first release. Xerces is in better situation that the other software where the LCOM
is improving over the various successive releases, LCOM3 and CAM are kept in a steady
level. Accordingly, we can notice that the cohesion measures shows that the Camel jEdit
and POI software are not improving while evolving.
Regarding the complexity measure, Figure 1 c shows that the Camel software complexity is
increasing over the various releases. This indicates that there is no restructuring activities
is done in these four versions. jEdit software shows some improvement over its successive
releases. This means that some restructuring activities have took place but did not signifi-
cantly improve the jEdit complexity. POI software complexity has increased in the second
release, but started to decrease in the following releases but still the complexity is slightly
more than that of the first release. For Xerces software complexity shows a noticeably im-
provement in WMC measure and some improvement in the avg(CC) measure in the fourth

14

12

10

8

6

4

2

0
1 2 3 4

 WMC Avg(CC)

160

140

120

100

80

60

40

20

0
1 2 3 4

 LCOM LCOM3 CAM

25

20

15

10

5

0
1 2 3 4

 Ca Ce CBM RFC

Complexity
16

15.5

15

14.5

14

13.5

13

12.5

12
1 2 3 4

 WMC Avg(CC)

Cohesion
110

106

102

98

94

90

1 2 3 4

 LCOM LCOM3 CAM

Coupling
50

40

30

20

10

0

1 2 3 4

 Ca Ce CBM RFC

14

12

10

8

6

4

2

0

1 2 3 4

 WMC Avg(CC)

350

300

250

200

150

100

50

0

1 2 3 4

 LCOM LCOM3 CAM

45

40

35

30

25

20

15

10

5

0
1 2 3 4

 Ca Ce CBM RFC

Complexity
10

9.5

9

8.5

8

7.5

7
1 2 3 4

 WMC Avg(CC)

Cohesion
84
80
76
72
68
64
60
56
52
48
44

1 2 3 4

 LCOM LCOM3 CAM

Coupling
40

35

30

25

20

15

10

5

0
1 2 3 4

 Ca Ce CBM RFC

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

70 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Table 6. Spearman correlation coefficient of Modularity measures and Bugs
 Ca Ce CBM RFC LCOM LCOM3 CAM WMC avg(CC)
Bugs 0.14 .19 .12 .38 0.40 0.22 0.15 0.32 0.36

release.

Accordingly, the various measures of coupling, cohesion and complexity of Camel jEdit
and POI software show that the modularity of three of the software is not improving overall!
Xerces software is in a better situation where its measures showed some improvements.
This means that modularity is not improving significantly, hence we can not say that an
effective restructuring has took place, although defect density is improved. This means that
designers and developers where concerned with solving bugs and problems without paying
enough attention to restructuring that aims to improve software structures quality. Hence,
we believe that restructuring is needed in the coming releases to improve software quality.
This answers the second research question.

Moreover, to test the relationship between the modularity measures and the number of
bugs in a software version, we have conducted a correlation analysis. Correlation analysis
studies the degree to which changes in the value of an attribute (one of the modularity
measures) are associated with changes in another attribute (number of faults in a version).
The Spearman correlation is preferred instead of Pearson correlation because the former
ignores any assumptions about the data distribution [27].

Ifthe measuretends to increase whenthe number of bugs increases, the Spearman corre-
lation coefficient is positive. Ifthe measuretends to decrease whenthe number of faultsin-
creases, the Spearman correlation coefficient is negative. Table 6 shows that RFC, LCOM,
WMC, and Avg CC have a moderate correlation with number of faults. These results
are very similar to Johari and Kaur study [28]. Accordingly, our data shows that there
is a moderate relation between modularity measures and number of faults in our software
sample.

6 Threats to Validity

The conducted research in this paper is exposed to possible validity threats which are

defined and discussed in [29]:

• Construct Validity: The various measures we used (coupling measures, cohesion mea-
sures, complexity measures, defect measures and correlation measures) are well doc-
umented in literature. The data are collected for four open source software which are
public ally available.

• External Validity: Our data set is collected from the software engineering repository
PROMISE. We have collected data for four open source software over four successive
releases for each. Results obtained based on this data set should be relevant and valid
for other releases of the studied software as well as other ones.

• Internal Validity: All the needed data pieces in this study have been collected by the
researchers from the mentioned data repository. missing data could be there but has
minimal effect of the conducted analysis and conclusion.

• Conclusion Validity: Our analysis have been conducted based on the collected data

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

71 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

set. A threat to the conclusion validity is can be related to how the data is reported
in the repository; e.g what is considered a fault or bug for example when a certain
incident occur in the system would it be considered as a fault or change request.
As we are talking about open source software, the developers and designers skills
participating in the four project from different locations with different experience
skills may form a threat. The number of projects used in this research may also form
a kind of threats. We have used data sets for four software projects. Although we
believe the results can be generalized for other open source projects, enlarging the
data set by adding more projects may provide more reliable results.

7 Related Work

Open-source systems are usually developed by distributed teams, without frequently

meeting face-to-face, and communicating only by electronic means. Achieving high modu-
larity in open source allows multiple developers to work on the same software entity without
issues [15]. This new structure is totally unlike the common software engineering practices
during the times of Lehman’s software evolution laws [5]. Lehman et al. have built the
well-known research on the evolution of large software systems. Lehman’s laws are based
on case studies of several large software systems, suggest that as systems grow in size, it
becomes increasingly difficult to add new code unless clear steps are taken to restructure
the overall design.

MacCormack et al. [30] employed Design Structure Matrix (DSM) to compare and con-
trast the design structures of two software systems, Linux kernel and Mozilla web browser.
They used a clustering algorithm to measure dependencies by different parts of the system
and calculated marginal changes in cost rather than the total cost of the matrix. However,
the comparison between these two systems critically depends on selecting versions of the
systems that are comparable in terms of number of source files. One motivation of our work
was to remove this restriction, and to allow the comparison of code bases of different size.
LaMantia et al. [31] examined the evolution over time of two software systems, Apache
Tomcat and another closed source server product. They introduced a rough measure that
mimics the change ratio between the consecutive versions in the software evolution. The
authors concluded that DSM could, to some extent, explain how modularization allow for
different rates of evolution to occur in different modules.

Koch found differences in the evolution of open-source software projects of different sizes
[32]. He found that small open-source software projects fulfill some of the laws. However,
large software projects do not follow them at all. These projects have a large number of
participants and an unbalanced workload among participants. One of the essential char-
acteristics of software systems is evolution. Several research studies aimed at explaining
and understanding the evolution in open source software projects. Breivold et al. [33] con-
ducted a systematic literature review of enormous studies, which investigated the evolution
of open source software systems. Another direction has emphasized how software mea-
sures can be applied to software evolution [34] where they provided ways in how software
measures have been and can be used to analyze software evolution. They suggested that
measures are good candidates to understand the quality evolution of a software system by
considering its successive releases. Particularly, measures can be used to measure whether
the quality of a software has improved or degraded between two releases. Lee et al. [35]

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

72 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

provided a case study of one open source software, JFreeChart, evolution with software
measures. They studied the evolution in terms of size, coupling and cohesion, and dis-

cussed its quality change based on the Lehman’s laws of evolution [5]. Neamtiu et al. [36]
conducted an empirical analysis on the evolution of nine popular open-source programs and
investigated Lehman’s evolution laws where their study confirmed that continuing change
and continuing growth are still applicable to the evolution of today’s open-source software.

Neamtiu et al. [36] used source code measures with project defect information to analyze
software growth, characterize software changes, and assess software quality. Murgia et al.
[37] focused their study on software quality evolution in open source projects using agile
practices. They used several OO measures to study how bug distribution relates to software
evolution. They found that there is no a single metric that is able to explain the bug

distribution during the systems evolution. Eski et al. [38] investigated the relationship
between OO measures and changes in open source software systems and proposed a metric-
based approach to predict change-prone classes.

Other researchers have conducted similar empirical studies and prosed some new met-
rics, for instance Li et. al. [39] studied the evolution of an object-oriented system using
the OO metrics suggested by Chidamber and Kemerer to measure the class-level design
and proposed three new metrics to study OO system evolution (System Design Instabil-
ity (SDI), Class Implementation Instability (CII), and System Implementation Instability
(SII)). Drowin [40] analyzed empirically the quality evolution of an open source software
using a control flow based metric (Quality Assurance Indicator - Qi) which they claimed
that Qi metric reflects properly the quality evolution of the system.

In this paper, we study the modularity evolution of four open-source systems. The focus
of this study is not the Lehman’s Law but the modularity using coupling, cohesion, and
complexity measures.

8 Conclusion

Enhancing our ability to understand and capture software evolution is essential for better

software quality and easier software maintenance process. one of the vital features that
reflects the software quality is its structures quality. structures quality has relationship with
software modularity. We have used modularity measures to give indications about software
structures quality. In this research work, we have used empirical data related to four OO
open source programs to answer two main research questions namely: what measures can
be used to measure the modularity level of software and secondly, did the modularity level
for the selected open source software and their structures quality improve over time? By
investigating the modularity measures as mentioned in the SQuaRE standard and various
other coupling and cohesion measures, we have identified the main measures that can be
used to measure software modularity. Based on our analysis, the modularity of these four
systems did not show a significant improvement in their modularity and structures quality
over time. However, the defect density is improving over time.

References

[1]Mamdouh Alenezi and Mohammad Zarour. Modularity measurement and evolution in object-oriented

open-source projects. In International Conference on Engineering & MIS 2015 (ICEMIS’15). ACM,
2015.

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

73 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

[2]Frank F Tsui. Essentials of software engineering. Jones & Bartlett Publishers, 2013.

[3]Edward E. Ogheneovo. Development of a software maintenance cost estimation model: 4th gl perspec-
tive. Journal of Computer and Communications, 2:1–16, 2014.

[4]Ana Filipa Nogueira. Predicting software complexity by means of evolutionary testing. In Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering, pages 402–405.
ACM, 2012.

[5]Michael W Godfrey and Daniel M German. On the evolution of lehman’s laws. Journal of Software:
Evolution and Process, 26:613619, 2013.

[6]Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Giuliano Antoniol, and Yann-Ga¨el Gu éh éneuc.
Studying software evolution of large object-oriented software systems using an etgm algorithm. Journal
of Software: Evolution and Process, 25(2):139–163, 2013.

[7]Narasimhaiah Gorla and Ravi Ramakrishnan. Effect of software structure attributes on software de-
velopment productivity. Journal of Systems and Software, 36(2):191–199, 1997.

[8]Sunny Huynh, Yuanfang Cai, Yuanyuan Song, and Kevin Sullivan. Automatic modularity conformance
checking. In ACM/IEEE 30th International Conference on Software Engineering, 2008. ICSE’08.,
pages 411–420. IEEE, 2008.

[9]David Lorge Parnas. On the criteria to be used in decomposing systems into modules. Communications
of the ACM, 15(12):1053–1058, 1972.

[10]Sunny Wong, Yuanfang Cai, Miryung Kim, and Michael Dalton. Detecting software modularity vio-
lations. In Proceedings of the 33rd International Conference on Software Engineering, pages 411–420.
ACM, 2011.

[11]Alessandro Rossi and Alessandro Narduzzo. Modular design and the development of complex artifact
lesson fron free open source software. Technical report, Department of Computer and Management
Sciences, University of Trento, Italy, 2003.

[12]ISO/IEC. Systems and software engineering - systems and software quality requirements and evaluation
(square). ISO/IEC 25010 - System and software quality models, 2011.

[13]Carliss Young Baldwin and Kim B Clark. Design rules: The power of modularity, volume 1. MIT
press, 2000.

[14]Grady Booch, Robert A Maksimchuk, Michael W Engel, Bobbi J Young, Jim Conallen, and Kelli A
Houston. Object-oriented analysis and design with applications, volume 3. Addison-Wesley, 2008.

[15]Mark Aberdour. Achieving quality in open-source software. IEEE Software, 24(1):58–64, 2007.

[16]Juliana de AG Saraiva, Micael S de Fran ça, S´ergio CB Soares, JCL Fernando Filho, and Renata MCR
de Souza. Classifying metrics for assessing object-oriented software maintainability: A family of metrics’
catalogs. Journal of Systems and Software, 103:85–101, 2015.

[17]Mourad Badri, Linda Badri, and Fadel Touŕ e. Empirical analysis of object-oriented design metrics: To-
wards a new metric using control flow paths and probabilities. Journal of Object Technology, 8(6):123–
142, 2009.

[18]Mamdouh Alenezi and Khaled Almustafa. Empirical analysis of the complexity evolution in open-source
software systems. International Journal of Hybrid Information Technology, 8(2):257–266, 2015.

[19]Marian Jureczko and Diomidis Spinellis. Using object-oriented design metrics to predict software defects.
Models and Methods of System Dependability. Oficyna Wydawnicza Politechniki Wroc~lawskiej, pages
69–81, 2010.

[20]Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design. IEEE Trans-
actions on Software Engineering, 20(6):476–493, 1994.

[21]Syed Muhammad Ali Shah, Maurizio Morisio, and Marco Torchiano. An overview of software defect
density: A scoping study. In 19th Asia-Pacific Software Engineering Conference (APSEC), volume 1,
pages 406–415. IEEE, 2012.

[22]Cobra Rahmani and Deepak Khazanchi. A study on defect density of open source software. In
IEEE/ACIS 9th International Conference on Computer and Information Science (ICIS), pages 679–
683. IEEE, 2010.

[23]Giuseppe Scanniello, Carmine Gravino, Andrian Marcus, and Tim Menzies. Class level fault predic-
tion using software clustering. In IEEE/ACM 28th International Conference on Automated Software
Engineering (ASE), pages 640–645. IEEE, 2013.

[24]Burak Turhan, Ay̧ se Tosun Mısırlı, and Ay̧ se Bener. Empirical evaluation of the effects of mixed project
data on learning defect predictors. Information and Software Technology, 55(6):1101–1118, 2013.

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

74 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

[25]Mamdouh Alenezi, Shadi Banitaan, and Qasem Obeidat. Fault-proneness of open source systems: An
empirical analysis. In International Arab Conference on Information Technology (ACIT2014), pages
164–169, 2014.

[26]Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. Software architecture evolution through
evolvability analysis. Journal of Systems and Software, 85(11):2574–2592, 2012.

[27]Jay Devore. Probability and Statistics for Engineering and the Sciences. Cengage Learning, 2015.

[28]Kalpana Johari and Arvinder Kaur. Validation of object oriented metrics using open source software
system: an empirical study. ACM SIGSOFT Software Engineering Notes, 37(1):1–4, 2012.

[29]Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén.
Experimentation in software engineering. Springer Science & Business Media, 2012.

[30]Alan MacCormack, John Rusnak, and Carliss Y Baldwin. Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Management Science, 52(7):1015–
1030, 2006.

[31]Matthew J LaMantia, Yuanfang Cai, Alan D MacCormack, and John Rusnak. Analyzing the evolution
of large-scale software systems using design structure matrices and design rule theory: Two exploratory
cases. In Seventh Working IEEE/IFIP Conference on Software Architecture, pages 83–92. IEEE, 2008.

[32]Stefan Koch. Software evolution in open source projectsa large-scale investigation. Journal of Software
Maintenance and Evolution: Research and Practice, 19(6):361–382, 2007.

[33]Hongyu Pei Breivold, Muhammad Aufeef Chauhan, and Muhammad Ali Babar. A systematic review
of studies of open source software evolution. In 17th Asia Pacific Software Engineering Conference
(APSEC), 2010, pages 356–365. IEEE, 2010.

[34]Tom Mens and Serge Demeyer. Future trends in software evolution metrics. In Proceedings of the 4th
international workshop on Principles of software evolution, pages 83–86. ACM, 2001.

[35]Young Lee, Jeong Yang, and Kai H Chang. Metrics and evolution in open source software. In Seventh
International Conference on Quality Software, 2007. QSIC’07., pages 191–197. IEEE, 2007.

[36]Iuan Neamtiu, Guowu Xie, and Jianbo Chen. Towards a better understanding of software evolution: an
empirical study on open-source software. Journal of Software: Evolution and Process, 25(3):193–218,
2013.

[37]Alessandro Murgia, Giulio Concas, Roberto Tonelli, and Ivana Turnu. Empirical study of software qual-
ity evolution in open source projects using agile practices. In Proc. of the 1st International Symposium
on Emerging Trends in Software Metrics, page 11, 2009.

[38]Sinan Eski and Feza Buzluca. An empirical study on object-oriented metrics and software evolution
in order to reduce testing costs by predicting change-prone classes. In IEEE Fourth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW), pages 566–571.
IEEE, 2011.

[39]Wei Li, L Etzkorn, C Davis, and J Talburt. An empirical study of object-oriented system evolution.
Information and Software Technology, 42(6):373–381, 2000.

[40]Nicholas Drouin, Mourad Badri, and Fadel Touŕ e. Metrics and software quality evolution: A case study
on open source software. In Proceedings of the 5th International Conference on Computer Science and
Information Technology, Hong Kong, 2012.

Special issue on “Computing Applications and Data Mining”
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016

75 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

