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Abstract 

 
Throughout the software evolution, several maintenance actions such as adding new fea- 

tures, fixing problems, improving the design might negatively or positively affect the software 
design quality. Quality degradation, if not handled in the right time, can accumulate and 
cause serious problems for future maintenance effort. Several researchers considered modu- 
larity as one of the success factors of Open Source Software (OSS) Projects. The modularity 
of these systems is influenced by some software metrics such as size, complexity, cohesion, 
and coupling. In this work, we study the modularity evolution of four open-source systems 
by answering two main research questions namely: what measures can be used to measure 
the modularity level of software and secondly, did the modularity level for the selected open 
source software improves over time. By investigating the modularity measures, we have 
identified the main measures that can be used to measure software modularity. Based on 
our analysis, the modularity of these two systems is not improving over time. However, the 
defect density is improving over time. 

 
 
1 Introduction 

 
Software evolve for many reasons that include continuing change, increasing complexity, 

continuing growth and etc. This means that software need to fix problems, to accommodate 
new features, and to improve their quality. All these maintenance activities lie within 
corrective, preventive, adaptive and perfective maintenance that lead to software evolution. 
In order for the software to survive for a long period, it needs to evolve. This paper is an 
extended version of our previous work [1]. In this paper we study the software structures 
quality and investigate more their improvement opportunities over the evolution of four 
different open source projects. 

Software end-users are usually concerned about the external software quality factors de- 
picted as efficiency, usability, and reliability while developers and software engineers are  
also concerned with the internal quality factors such as evolution and reusability [2]. Soft- 
ware keeps evolving after it has been set in use for the first time. The cost associated with 
software maintenance and evolution is estimated to be 60% to 80% of total costs associated 
with a software system [3]. Software evolution is correlated with software structures and 
complexity [4]; Software structures can be altered via maintenance activities which usually 
introduce new source code changes that may introduces new dependencies among software 
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elements e.g. packages, methods and classes. Most of the software evolution studies high- 
light the changes in statistical techniques by analyzing its evolution measures [5], little effort 
has been carried to comprehend how exactly the structure of these systems evolve [6]. For 
that reason, we focus in this paper on studying software structures’ quality and investigate 
their improvements during software evolution. Our investigation is based on open source 
software systems by considering various object oriented structural software measures. 

Software structures refer to the various program elements (modules)that make up certain 
software. the way these elements are organized in the program defines its structural com- 
plexity [7]. Modularity has great effect on software development and evolution [8][9][10]. 
It plays a central role in the design and production of software artifacts, mainly when 
developing large and complex software [11]. Modularity is one of the maintainability char- 
acteristics of the ISO/IEC SQuaRe quality standard series [12]. According to this standard, 
modularity is defined as a degree to which a system or computer program is composed of 
discrete components such that a change to one component has minimal impact on other 
components [12]. modularization is the process of decomposing a system into logically cohe- 
sive and loosely-coupled modules that hide their implementation from each other and offer 
functionalities to the outside world through a well-defined interface [13, 14]. Maintenance 
activities during software evolution might negatively or positively affect software quality 
including modularity, enhancing software modularity will improve the flexibility and under- 
standability of software systems. As software Modularity increase, its complexity decrease. 
High modularity in open source allows multiple developers to work on the same software en- 
tity, usually in competition, which increases the probability of timely, high-quality solutions 
[15]. 

Modularity is an essential property of quality software. High modularity improves the 
flexibility and understandability of the software system [8], whereas low modularity causes 
costly refactorings and software bugs [10]. Therefore, modularity is usually utilized as an 
essential criterion for evaluating the software design quality [12]. In this paper modularity 
measures are used as means to study the software structures quality and their evolution     
over projects’ releases. 

The remainder of this paper is organized as follows: Section 2 discusses the research 
methodology adopted in this paper.  Section 3 states the measures used in this study.  The  
data collection mechanism is given in Section 4. Data analysis and results are presented in 
Section 5. Threat to validity are discussed in Section 6. Section 7 discusses related work. 
Conclusions are presented in Section  8. 

 
2 Research  Methodology 

 
In this research work we are applying various modularity measures to empirical data 

taken from open source software. The data are collected from PROMISE, the software 
engineering repository. Nowadays, open source software repositories provide researchers 
with the possibility to access large amount of publicly available data for analysis to produce 
new studies and results. In our study, we will investigate the relationship among various 
design measures and software modularity. Modularity forms our dependent variable to be 
studied while the various design measures form the independent variables. Our empirical 
study focuses on the following research questions: 

1. What measure(s) can be used to measure the modularity of OO software programs? 
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2. Did the modularity of the OO programs studied in this research work improve over 
the various versions? 

To answer these questions, we will follow the following  steps: 

1.Identify the applicable set of measures related to the modularity (Section 4) 

2.Identify the set of open source software systems to be used in this research work 

and collect necessary data pieces from PROMISE repository needed to calculate the 
specified measures (Section 5) 

3.Analyze and report findings (Section   6) 

 

3 Measures in This Study 
 

Various measures are used to measure the quality of modularization. Although deciding 
which measures can be adopted in experiments on object oriented software modularity is 
a hard task [16], we decided to consider coupling, cohesion and complexity as measures 
to be considered in this study. According to [16] measures related to these three inter- 
nal attributes are among the most adopted measures by experts in the domain. Coupling  
is the degree of interdependence between modules, whereas cohesion is the intra-modular 
functional relatedness which describes how tightly bound the internal elements of a mod- 
ule are to one another [14]. An excessive coupling between a system modules affects its 
modularity but promoting encapsulation and reducing coupling improve modularity [17]. 
Complexity is also revealed by both cohesion and coupling. Higher cohesion indicates lower 
complexity, when coupling increases, the complexity also increases. Coupling, cohesion, 
and complexity relate strongly to the maintenance effort [18]. Moreover, Defect Density is 
used as a measure of software product quality to investigate if the defect level is improving 
over successive releases. 

This section presents the definition of the measures used in the study. For more detailed 
definition about these measures refer to [19]. Modularity measures assess the degree to 
which a system or computer program is composed of discrete components such that a 
change to one component has minimal impact on other components. SQuaRE standard 
defined two basic modularity measures: 

• Coupling of components: How strong is the coupling between the components in a 
system or computer programs? basically two measures are used for coupling measure: 
Coupling between object classes (CBO) and Response for a Class (RFC). 

• Cyclomatic complexity: How many software modules have the acceptable cyclomatic 
complexity? The cyclomatic complexity is measured by two main measures namely: 
Weighted Methods per Class (WMC), and McCabe’s Cyclomatic Complexity   (CC). 

We observe the modularity of open source software systems by measuring coupling, cohe- 
sion, and complexity measures. While major emphasis has been on object oriented measures 
proposed by Chidamber and Kemerer [20], we have also considered other relevant measures 
related to coupling and cohesions as shown in the following sub-sections. 

 

3.1 Coupling 
 

Beside the two basic coupling measures given above, we have also chosen other measures 
that measure the interconnection of software modules.  this includes:  Afferent  couplings 
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(Ca), Efferent couplings (Ce), Coupling Between Methods (CBM). These coupling measures 
are well-known and were excessively studied in the literature. Accordingly the selected 
coupling measures include: 

• Coupling between object classes (CBO): It represents the number of other classes 
that are coupled to the current class. This coupling can occur through method calls, 
field accesses, inheritance, arguments, return types, and exceptions. 

• Response for a Class (RFC): RFC is the measure of number of methods that can be 
invoked in response to a message received by an object of the class. Ideally, RFC 
should measure the transitive closure of the call graph for each method. 

• Afferent couplings (Ca): It represents the number of classes from other packages 
depending on classes in this package. This describes the packages responsibility. Ca 
is the number of other packages depending on one package. A high number indicates 
bad design, or that the package is used for crosscutting concerns. 

• Efferent Couplings (Ce): It represents the number of packages the classes of this 
package depend upon. This describes the packages independence. This can be used 
to point out non-adherence to the design if certain packages have an unreasonable 
high number of efferent couplings. 

• Coupling Between Methods (CBM): It represents the total number of new/redefined 
methods to which all the inherited methods are coupled. An inherited method is 
coupled to a new/redefined method if it is functionally dependent on a new/redefined 
method in the class. Therefore, the number of new/redefined methods to which an 
inherited method is coupled can be measured. 

 

3.2 Cohesion 
 

To study software systems cohesion, we have chosen different measures that measure the 
cohesion of software modules. These cohesion measures are well-known and were excessively 
studied in the literature. We selected the following cohesion measures: 

• Lack of cohesion in methods (LCOM): It counts the sets of methods in a class that 
are not related through the sharing of some of the class fields. It is calculated by 
subtracting from the number of method pairs that do not share a field access the 
number of method pairs that do. 

• Lack of cohesion in methods (LCOM3): It is an improved variation of the LCOM 
measure. It calculates the cohesion of the class by considering the effective usage of 
the class attributes. 

• Cohesion Among Methods of Class (CAM): It computes the relatedness among meth- 
ods of a class based upon the parameter list of the methods. It sums the number of 
different types of method parameters in every method and divides it by a multipli- 
cation of number of different method parameter types in whole class and number of 
methods. 

 

3.3 Complexity 
 

To study software system’s cohesion, we used different complexity measures which are 
well-known and excessively studied in the literature.  These measures   include: 

 

 

Special issue on “Computing Applications and Data Mining” 
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016 

64 https://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



  

 

 

• Weighted Methods per Class (WMC): It is the sum of the complexities of all class 
methods. 

• McCabe’s Cyclomatic Complexity (CC): It is equal to the number of different paths 
(decision points) in a method plus one. We report Avg(CC) which is the arithmetic 
mean of the CC value in the investigated class. 

 

3.4 Defect Density Evolution 
 

Defect Density is post-release defects per thousand lines of delivered code [21]. Defect 
Density is used here to measure the quality of the software product. It gives an indication 
of quality improvement achievements in successive releases of certain software. The lower 
the number of defect density, the better the software quality is. Defect density can be 
computed using equation 1 as follows: 

 

Defect Density = 
Number of Defects 

KLOC 
(1) 

Defect density is correlated with number of developers and software size jointly [22]. 
similar results are obtained in [21], where projects size is found to be an affecting factor 
(large projects are found to have lower defect density). Development mode is found to be 
another factor that affects defect density rate (open source projects are found to have a 
lower defect density). 

 
4 Data Collection 

 
We conducted the empirical study on four open source systems. In selecting the sub- 

jected systems, we used several criteria. First, we want well-known systems that are used 
very widely. Second, systems had to be sizable, so we can understand the issues that ap- 
pear in the evolution of realistic, multi-developer software. Third, the systems had to be 
actively maintained. Finally, the data of these systems had to be publicly available. Public 
availability of the data used for empirical studies is crucial. A theory of software evolution 
must be based on empirical results, verifiable and repeatable [5]. Characteristics of the 
selected software systems are listed in Table 1. An overview of each system is provided in 
the following paragraphs. 

 
Table 1. Selected Software Systems 
System Versions LOC 
Camel 1.0-1.6 3594-113055 

jEdit 4.0-4.3 144803-202363 

POI 1.5-3.0 55428-129327 

Xerces 1.0-1.4 90718-141180 
 

Apache Camel is a powerful open source integration framework based on known Enter- 
prise Integration Patterns with powerful Bean Integration. jEdit is a mature programmer’s 
text editor with hundreds (counting the time developing plugins) of person-years of develop- 
ment behind it. It is written in Java and runs on any operating system with Java support, 
including Windows, Linux, Mac OS X, and BSD. The POI project consists of APIs for 
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manipulating various file formats based upon Microsoft’s OLE 2 Compound Document for- 
mat, and Office OpenXML format, using pure Java. Xerces is a parser that supports the 
XML 1.0 recommendation and contains advanced parser functionality, such as support for 
XML Schema 1.0, DOM level 2 and SAX version 2. 

The data for this study were collected by [19] and are available online at the PROMISE 
repository. This data was widely used in the software engineering literature for different 
purposes [23, 24, 25]. The collected measures’ data for the four systems are added up 
correspondingly into one data set along with the relevant values for coupling, cohesion, and 
complexity measures. Descriptive statistics (Min, Max, Median, Std. dev.) defined the 
minimum, maximum, median, and standard deviation measures. Table 2 shows descriptive 
statistics  about  the  selected measures. 

 
Table 2. Descriptive Statistics of the Measures 

Measures Min Max Med σ
CBO 0 187 9.8 15.20 

RFC 0 498 27.72 39.8 

Ca 0 184 5.33 13.79 

Ce 0 95 5.24 6.75 

CBM 0 25 1.59 3 

LCOM 0 41719 116.3 933.3 

LCOM3 0 2 1.14 0.67 

CAM 0 1 0.47 0.25 

WMC 0 409 10 18.8 

Avg(CC) 0 25.14 1.28 1.3 

 
 

5 Data Analysis and Results 
 

In order to answer the first question, we need to know which aspects of coupling is 
measured by any of the chosen coupling measures. Same thing holds for cohesion. To 
achieve that, we use the well-known Principal Component Analysis (PCA) which is a stan- 
dard statistical procedure that uses orthogonal transformation to identify the underlying, 
orthogonal dimensions that explain relations between the variables in the data set. We 
conducted the experiments using the R statistical software (version 3.1.1) and we used R’s 
Procomp procedure to our data to produce principal components. The analysis is done on 
the entire data set of the considered measures. 

The objectives of principal component analysis are to discover or reduce the dimension- 
ality of the data set and identify new meaningful underlying variables. PCA is a de facto 
technique for uncovering the underlying orthogonal dimension that explains variables rela- 
tions in a dataset. PCA is used in our case to identify measures (i.e, groups of independent 
variables) that measure the same underlying dimension (i.e., mechanism that defines cou- 
pling and cohesion among classes). Principal Components (PCs) are linear combinations of 
independent variables. The number of PCs is less than or equal to the number of original 
variables. PCs are interpreted as follows. Each new PC is orthogonal to all previously 
calculated PCs and captures a maximum variance under these conditions. 
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5.1 Coupling Evolution Analysis & Results 
 

In this section we apply the PCA approach to the coupling measures to specify any 
correlations among them. If a group of coupling measures are strongly correlated, these 
measure are likely to measure the same underlying dimension (i.e., class property) of the 
object to be measured. 

 
Table 3. Rotated Components of Coupling measures 

  PC1 PC2 PC3 PC4 
Proportion 39% 22% 20% 19% 

Cumulative 38% 60% 80% 100% 

CBO 0.92 0.34 -0.02 0.20 
RFC 0.21 0.39 0.11 0.89 

Ca 0.99 0.00 -0.03 0.10 

Ce 0.18 0.91 0.04 0.37 

CBM -0.03 0.04 1.00 0.08 
 

By analyzing the coefficients associated with every coupling measure within each rotated 
component given in Table 3, we interpret the identified PCs as the following: 

• PC1 (39%): CBO and Ca measures count inbound coupling through method invoca- 
tions. The correlation betweeen the two measures is high. We can use one of them 
rather than using both. Apparently, the afferent couplings measure is the contributing 
measure as it has higher PC value. 

• PC2 (22%): Ce captures outbound coupling through method invocations. 

• PC3 (20%): CBM captures coupling between inherited and redefined methods. 

• PC4 (19%): RFC counts the number of accessible methods. 

 

5.2 Cohesion Evolution Analysis & Results 
 

We also conducted PCA analysis on the selected cohesion measures. We want to see if 
any correlations exists between these measures. 

 
Table 4. Rotated Components of Cohesion measures 

  PC1 PC2 PC3 
Proportion 33% 33% 33% 

Cumulative 33% 67% 100% 

LCOM 1 -0.01 -0.07 
LCOM3 -0.01 0.98 0.20 

CAM -0.08 0.21 0.98 
 

By analyzing the coefficients associated with every cohesion measure within each rotated 
component given in Table 4, we found that the identified PCs as each on of these cohesion 
measures is unique and does not overlap with the others. 
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5.3 Defect Density Evolution 
 

We measured the defect density of each version of the adopted open source software in 
order to investigate if the evolution of each software reduces the defect density or increases 
it over the different releases. Figure 1 shows how defect density evolved in the selected 
systems. The defect density is shown to improve for each of the tested software over the 
successive releases. 

 

(a) (b) 

 

(c) (d) 
 

Figure 1. The Evolution of Defect Density in the Selected Systems. 
 
 

5.4 Discussion 
 

According to our PCA analysis, the coupling measures that can be used to measure the 
system’s modularity are Ca,  Ce,  CBM and RFC. The CBO measure has been excluded    
as the Ca measures the same dimension. The cohesion measures that can be used to measure 
the system’s modularity are LCOM, LCOM3, and CAM. These measures along with the 
complexity measures WMC and CC measures altogether are the set of measures  that 
measure the Modularity of a system or software program. This  answers  the  first research 
question. 

Table 5 shows the coupling, cohesion, and complexity evolution of the four selected 
systems. There are three notions which characterize good and bad things about mod- 
ules, coupling (we want low coupling between modules), cohesion (we want highly cohesive 
modules), and complexity (we want modules that have low complexity) [2]. Modularity  
is a concept in which a software is decomposed of several distinct and logically cohesive 
sub-units, offering services through a well-defined interface [13].  Excessive inter-module 
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Table 5. Modularity Evolution of the Selected Systems 
 

  Ver. 1 Ver. 2 Ver. 3 Ver. 4
 
 
 
 
 

Camel 

 
 

Coupling 

Ca 4.99 5.02 5.11 5.27 
Ce 5.69 5.62 6.33 6.43 

CBM 0.56 0.64 0.61 0.91 
RFC 19.63 20.23 21.2 21.42 

 
Cohesion 

LCOM 53.65 61.24 73.42 79.33 
LCOM3 0.99 1.08 1.11 1.1 
CAM 0.48 0.5 0.49 0.49 

Complexity 
WMC 8.07 8.31 8.52 8.57 

Avg(CC) 0.94 0.93 0.94 0.96 
 
 
 
 
 

jEdit 

 
 

Coupling 

Ca 7.51 7.93 8.62 8.74 
Ce 6.43 6.63 7.16 7.1 

CBM 1.61 1.59 1.55 1.5 
RFC 38.24 39.87 40.98 39.85 

 
Cohesion 

LCOM 197.38 187.89 310.76 259.91 
LCOM3 1.05 1 0.99 1.09 
CAM 0.47 0.45 0.44 0.46 

Complexity 
WMC 12.88 13.13 13.16 12.35 

Avg(CC) 1.79 1.87 1.92 1.83 
 
 
 
 
 

POI 

 
 

Coupling 

Ca 4.36 4.51 4.7 5.23 
Ce 4.31 4.48 4.68 5.22 

CBM 2.78 2.62 2.7 1.95 
RFC 27.56 29.65 30.9 30.35 

 
Cohesion 

LCOM 92.87 103.76 107.12 100.46 
LCOM3 1.02 0.97 0.98 1 
CAM 0.44 0.42 0.43 0.38 

Complexity 
WMC 13.39 14.3 14.26 13.51 

Avg(CC) 1.09 1.15 1.16 1.19 
 
 
 
 
 

Xerces 

 
 

Coupling 

Ca 3.33 2.52 2.67 3.35 
Ce 3.38 2.68 2.75 3.27 

CBM 1.93 1.41 1.38 1.43 
RFC 23.33 21.23 21.7 19.24 

 
Cohesion 

LCOM 139.48 91 94.52 75.49 
LCOM3 1.22 1.49 1.47 1.47 
CAM 0.52 0.51 0.5 0.52 

Complexity 
WMC 11.43 11.28 11.38 9.94 

Avg(CC) 1.26 1.22 1.24 1.4 

 

dependencies has been acknowledged to be an indicator of poor design and decrease the 
comprehending of components in isolation  [26]. 

Figure 2 shows the evolution of coupling, cohesion, complexity measures of the selected 
systems over four different releases for each system. The X-axis represents the release num- 
ber while the Y-axis represents the measures data.  As can be seen from figure 2 a, d and     
g,  we  can see that there is a minor change in the Ca,  Ce and CBM coupling measures.     
But there is slightly more increase in the RFC measure in Camel, jEdit and POI while the 
RFC slightly decrease for Xerces. Hence, coupling is slightly increasing while the software  
is evolving, this indicates that the modularity is not improving over time. 
Figure 2 b show that the LCOM and LCOM3 are increasing over the various releases of 
Camel. Figure 2 e shows that for jEdit, the cohesion level indicated some improvement 
in the second release but lost it in the third release then again made some progress in the 
forth release but still not as good as in the first release which meanins that overall the 
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(a) Camel (b) Camel (c) Camel 

 

   
(d) jEdit (e) jEdit (f) jEdit 

 

   
(g) POI (h) POI (i) POI 

 

   
(j) Xerces (k) Xerces (l) Xerces 

 

Figure 2. Modularity Evolution of the Selected Systems. 
 
cohesion is not improving significantly in jEdit. Figure 2 h shows cohesion of the POI 
software. overall the cohesion measures indicate that the cohesion is not improving till the 
third release, then the cohesion started improving in the fourth release but still not good as   
in the first release.  Xerces is in better situation that the other software where the LCOM       
is improving over the various successive releases, LCOM3 and CAM are kept in a steady 
level.  Accordingly, we can notice that the cohesion measures shows that the Camel jEdit   
and POI software are not improving while   evolving. 
Regarding the complexity measure, Figure 1 c shows that the Camel software complexity is 
increasing over the various releases. This indicates that there is no restructuring activities 
is done in these four versions. jEdit software shows some improvement over its successive 
releases. This means that some restructuring activities have took place but did not signifi- 
cantly improve the jEdit complexity. POI software complexity has increased in the second 
release, but started to decrease in the following releases but still the complexity is slightly 
more than that of the first release. For Xerces software complexity shows a noticeably im- 
provement in WMC measure and some improvement in the avg(CC) measure in the fourth 

14
 
12
 
10

8

6

4

2

0
1 2 3 4

        WMC  Avg(CC) 

160
 

140
 

120
 

100
 

80
 

60
 

40
 

20
 

0
1 2 3 4

       LCOM LCOM3            CAM

25 
 
 
20 
 
 
15 
 
 
10 

5

0
1 2 3 4

          Ca  Ce             CBM            RFC 

Complexity 
16      

15.5 

15      

14.5 

14      

13.5   

13        

12.5   

12   
1 2 3 4

        WMC  Avg(CC) 

Cohesion
110      
 
106   

102 

98     
 
94 

 
90   

1 2 3 4

       LCOM LCOM3            CAM

Coupling
50      
 
40      
 
30      
 
20      
 
10 
 
0      

1 2 3 4

          Ca  Ce             CBM            RFC 

14
 
12
 
10

8
 
6
 
4
 
2
 
0

1 2 3 4

        WMC  Avg(CC) 

350
 
300
 
250
 
200
 
150
 
100
 
50

 
0

1 2 3 4

       LCOM LCOM3            CAM

45 

40 

35 

30 

25 

20 

15 

10 

5

0
1 2 3 4

          Ca  Ce             CBM            RFC 

Complexity 
10      

 

9.5 
 

9 
 

8.5      

8

7.5    

7   
1 2 3  4

        WMC  Avg(CC) 

Cohesion
84      
80 
76      
72 
68      
64      
60      
56      
52      
48      
44      

1 2 3 4

       LCOM LCOM3            CAM

Coupling
40      

35      

30      

25      

20      

15      

10 

5     

0      
1 2 3 4

          Ca  Ce             CBM            RFC 

Special issue on “Computing Applications and Data Mining” 
International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 S1, February 2016 

70 https://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



 

 

 

 

Table 6. Spearman correlation coefficient of Modularity measures and Bugs 
  Ca Ce CBM RFC LCOM LCOM3 CAM WMC avg(CC) 
Bugs 0.14 .19 .12 .38 0.40 0.22 0.15 0.32 0.36 

 
release. 

Accordingly, the various measures of coupling, cohesion and complexity of Camel jEdit 
and POI software show that the modularity of three of the software is not improving overall! 
Xerces software is in a better situation where its measures showed some improvements. 
This means that modularity is not improving significantly, hence we can not say that an 
effective restructuring has took place, although defect density is improved. This means that 
designers and developers where concerned with solving bugs and problems without paying 
enough attention to restructuring that aims to improve software structures quality. Hence, 
we believe that restructuring is needed in the coming releases to improve software quality. 
This answers the second research question. 

Moreover, to test the relationship between the modularity measures and the number of 
bugs in a software version, we have conducted a correlation analysis. Correlation analysis 
studies the degree to which changes in the value of an attribute (one of the modularity 
measures) are associated with changes in another attribute (number of faults in a version). 
The Spearman correlation is preferred instead of Pearson correlation because the former 
ignores any assumptions about the data distribution [27]. 

Ifthe measuretends to increase whenthe number of bugs increases, the Spearman corre- 
lation coefficient is positive. Ifthe measuretends to decrease whenthe number of faultsin- 
creases, the Spearman correlation coefficient is negative. Table 6 shows that RFC, LCOM, 
WMC, and Avg CC have a moderate correlation with number of faults. These results 
are very similar to Johari and Kaur study [28].  Accordingly, our data shows that there    
is a moderate relation between modularity measures and number of faults in our software 
sample. 

 
6 Threats to Validity 

 
The conducted research in this paper is exposed to possible validity threats which are 

defined and discussed in [29]: 

• Construct Validity: The various measures we used (coupling measures, cohesion mea- 
sures, complexity measures, defect measures and correlation measures) are well doc- 
umented in literature. The data are collected for four open source software which are 
public ally available. 

• External Validity: Our data set is collected from the software engineering repository 
PROMISE. We have collected data for four open source software over four successive 
releases for each. Results obtained based on this data set should be relevant and valid  
for other releases of the studied software as well as other    ones. 

• Internal Validity: All the needed data pieces in this study have been collected by the 
researchers from the mentioned data repository. missing data could be there but has 
minimal effect of the conducted analysis and conclusion. 

• Conclusion Validity:  Our analysis have been conducted based on the collected data 
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set. A threat to the conclusion validity is can be related to how the data is reported 
in the repository; e.g what is considered a fault or bug for example when a certain 
incident occur in the system would it be considered as a fault or change request.  
As we are talking about open source software, the developers and designers skills 
participating in the four project from different locations with different experience 
skills may form a threat. The number of projects used in this research may also form 
a kind of threats. We have used data sets for four software projects. Although we 
believe the results can be generalized for other open source projects, enlarging the 
data set by adding more projects may provide more reliable results. 

 
7 Related Work 

 
Open-source systems are usually developed by distributed teams, without frequently 

meeting face-to-face, and communicating only by electronic means. Achieving high modu- 
larity in open source allows multiple developers to work on the same software entity without 
issues [15]. This new structure is totally unlike the common software engineering practices 
during the times of Lehman’s software evolution laws [5]. Lehman et al. have built the 
well-known research on the evolution of large software systems. Lehman’s laws are based 
on case studies of several large software systems, suggest that as systems grow in size, it 
becomes increasingly difficult to add new code unless clear steps are taken to restructure 
the overall design. 

MacCormack et al. [30] employed Design Structure Matrix (DSM) to compare and con- 
trast the design structures of two software systems, Linux kernel and Mozilla web browser. 
They used a clustering algorithm to measure dependencies by different parts of the system 
and calculated marginal changes in cost rather than the total cost of the matrix. However, 
the comparison between these two systems critically depends on selecting versions of the 
systems that are comparable in terms of number of source files. One motivation of our work 
was to remove this restriction, and to allow the comparison of code bases of different size. 
LaMantia et al. [31] examined the evolution over time of two software systems, Apache 
Tomcat and another closed source server product. They introduced a rough measure that 
mimics the change ratio between the consecutive versions in the software evolution. The 
authors concluded that DSM could, to some extent, explain how modularization allow for 
different rates of evolution to occur in different modules. 

Koch found differences in the evolution of open-source software projects of different sizes 
[32]. He found that small open-source software projects fulfill some of the laws. However, 
large software projects do not follow them at all. These projects have a large number of 
participants and an unbalanced workload among participants. One of the essential char- 
acteristics of software systems is evolution. Several research studies aimed at explaining 
and understanding the evolution in open source software projects. Breivold et al. [33] con- 
ducted a systematic literature review of enormous studies, which investigated the evolution 
of open source software systems. Another direction has emphasized how software mea- 
sures can be applied to software evolution [34] where they provided ways in how software 
measures have been and can be used to analyze software evolution. They suggested that 
measures are good candidates to understand the quality evolution of a software system by 
considering its successive releases. Particularly, measures can be used to measure whether 
the quality of a software has improved or degraded between two releases.  Lee et al.  [35] 
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provided a case study of one open source software, JFreeChart, evolution with software 
measures. They studied the evolution in terms of size, coupling and cohesion, and dis- 

cussed its quality change based on the Lehman’s laws of evolution [5]. Neamtiu et al. [36] 
conducted an empirical analysis on the evolution of nine popular open-source programs and 
investigated Lehman’s evolution laws where their study confirmed that continuing change 
and continuing growth are still applicable to the evolution of today’s open-source software. 

Neamtiu et al. [36] used source code measures with project defect information to analyze 
software growth, characterize software changes, and assess software quality. Murgia et al. 
[37] focused their study on software quality evolution in open source projects using agile 
practices. They used several OO measures to study how bug distribution relates to software 
evolution. They found that there is no a single metric that is able to explain the bug 

distribution during the systems evolution. Eski et al. [38] investigated the relationship 
between OO measures and changes in open source software systems and proposed a metric- 
based approach to predict change-prone classes. 

Other researchers have conducted similar empirical studies and prosed some new met- 
rics, for instance Li et. al. [39] studied the evolution of an object-oriented system using 
the OO metrics suggested by Chidamber and Kemerer to measure the class-level design 
and proposed three new metrics to study OO system evolution (System Design Instabil- 
ity (SDI), Class Implementation Instability (CII), and System Implementation Instability 
(SII)). Drowin [40] analyzed empirically the quality evolution of an open source software 
using a control flow based metric (Quality Assurance Indicator - Qi) which they claimed 
that Qi metric reflects properly the quality evolution of the system. 

In this paper, we study the modularity evolution of four open-source systems.  The focus  
of this study is not the Lehman’s Law but the modularity using coupling, cohesion, and 
complexity measures. 

 
8 Conclusion 

 
Enhancing our ability to understand and capture software evolution is essential for better 

software quality and easier software maintenance process. one of the vital features that 
reflects the software quality is its structures quality. structures quality has relationship with 
software modularity. We have used modularity measures to give indications about software 
structures quality. In this research work, we have used empirical data related to four OO 
open source programs to answer two main research questions namely: what measures can 
be used to measure the modularity level of software and secondly, did the modularity level 
for the selected open source software and their structures quality improve over time? By 
investigating the modularity measures as mentioned in the SQuaRE standard and various 
other coupling and cohesion measures, we have identified the main measures that can be 
used to measure software modularity. Based on our analysis, the modularity of these four 
systems did not show a significant improvement in their modularity and structures quality 
over time. However, the defect density is improving over time. 
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