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Abstract 

Analyzing the unstructured information in the source code (that is, the comments and 

identifiers) is based on the idea that the unstructured information reveals, to some extent, 

the concepts of the problem domain of the software. This information adds a new layer of 

source code semantic information and captures the domain semantics of the software. 

Developers use identifiers, method names, and comments to incorporate components of 

the solution domain of the software. Topic models reveal topics from the corpus, which 

embody real world concepts by analyzing words that frequently co-occur. These topics 

have been found to be effective mechanisms for describing the major themes spanning a 

corpus. Recently, software engineering researchers established that topic models can be 

effective in structuring various software artifacts, such as bug reports and requirements 

documents. In this paper, we extract topic models from the textual content of source code 

by conducting a case study on the source code of Java-based open-source systems, 

ArgoUML, Checkstyle, JHotDraw and jEdit. The paper investigates the effectiveness of 

LDA in comprehending large open-source software systems. 
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1. Introduction 

Program comprehension is one of the essential activities during software maintenance 

and evolution [1]. Usually, developers spend around 60% of their time working 

comprehending the system while doing software maintenance tasks [1], especially the 

source code. Understanding and comprehending a small system is usually not a problem 

and does not take much time. However, comprehending a large system is essentially not 

an easy task. Small software can be analyzed by manually examining the code to discover 

its functional architecture. For large-scale system, software engineers rely on source code 

analysis techniques, such as, control and data flow and call graphs [2]. Although these 

techniques are useful and very helpful to understand the system interactions, they don not 

convey any information regarding the functional intent of the system. Structural 

relationships between software entities focus on a very low level of granularity of 

dependencies, such as, function calls. This information does not reveal any underlying 

functional behavior or purpose of the studied system. 

An essential step towards comprehending and understanding the functional behavior of 

any system is to find and recognize business topics that exist in the source code of the 

system. These business domain objects are modeled as high level components and then 

realized in the implementation and transformed into code. For example consider an UML 

modeling application that models UML diagrams and deals with objects, figures, relation-

ships, and cardinality. When a maintainer with no application knowledge wants to add a 

new feature or modify one of the features, will find it very di cult before comprehending 

and understanding the main functionality of the application. Extracting business topics 

from the source code and establishing the relationship between them would be a huge 

sup-port in finding related data structures, methods, classes. This will eventually help the 
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developer or the maintainer productivity, especially when dealing with a large system 

with little documentation. 

One technique to find and discover the source code business topics is to extract the 

semantic information by analyzing the unstructured information in the source code (that 

is, the comments and identifiers) is based on the idea that the unstructured information 

reveals, to some extent, the concepts of the problem domain of the software. Developers 

usually leave trails of the functional behavior of the system in the comments, identifier 

names, method names, data types and so on [3, 4]. This paper introduces a Latent 

Dirichlet Allocation (LDA) based approach for finding source code topics. LDA is a very 

widespread technique in text document classification and extracting topics from textual 

documents. 

The rest of the paper is organized as follows: Section 2 presents some background in-

formation about LDA. Section 3 describes the study methodology. Section 4 presents the 

experimental evaluation and discussions. Section 5 discusses threats to the validity of the 

study. Section 6 discusses related work. Section 7 concludes the paper. 

 

2. Latent Dirichlet Allocation (LDA) 

LDA is a popular fully generative and probabilistic topic model utilized to excerpt the 

hidden topics existing in documents collection and to represent each document as a finite 

mixture over the set of topics [5]. Every topic is a probability distribution over the set of 

words that compose the vocabulary of the document collection. In the LDA model, each 

document is a multi-membership combination of topics, which means that each topic can 

be contained in more than one document and each document can contain multiple topics. 

LDA is capable of discovering a representation of concepts or ideas that describe the 

corpus as a total [6]. 

Latent Dirichlet Allocation (LDA) [5] is a method to construct topic models, an 

un-supervised machine-learning algorithm to discover topics in a corpus and 

allocate topics distributions over each document, as well as distributions of words 

over topics. The reason behind adopting LDA in our study is the fact that LDA is a 

statistical model that supports alleviating model over-fitting, paralleled to other 

topic models like Probabilistic LSI [7]. In addition, LDA has been shown to be 

effective for different software engineering purposes. Examples include using LDA 

to study the evolution of source code [6], refactor code [8], compute  source code 

metrics [3], categorize bug reports [9], localize features and concerns [10], program 

comprehension [11], and recover traceability links between source code and 

requirements documents [12, 13]. 

In this study, we used the 'topicmodel' package version 0.2-1 in the R language 

version 3.1.12. The LDA parameters were chosen based on the recommendation of 

the literature [14]. The used parameters are = 50/K and = 0.01 where K is the 

number of topics. 

 

3. Study Methodology 
 

3.1. Unstructured Source Code 

When analyzing source code, traditional techniques rely on the structured data avail-

able in source code (e.g., syntax, program semantics, and control-flow). Aside from the 

structured data, the source code contains a large amount of unstructured data. The 

comments in the source code are used to indicate the domain information of the software 

in the form of developer messages and descriptions. Identifier names include package 

names, class names, method names, and local and global variable names which represent 

parts of the domain problem. String literals also can be found in print commands and 

functions. Without the utilization of the source code structured information, these 
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unstructured data can help comprehend the high-level functionality or concept of the 

source code [15]. 

 

3.2. Systems Under Study 

We perform thorough case studies on Java-based well-known open-source software 

sys-tems, ArgoUML, Cechstyle, JHotDraw and jEdit. Table 1 shows Characteristics of 

the systems under study. ArgoUML is a large-sized, a UML modeling tool that includes 

sup-port for standard UML diagrams. It was initially developed by a PhD student at 

University of California, Irvine. Checkstyle is a medium-sized, development tool that 

checks whether code adheres to a coding standard. It automates the process of checking 

Java code resulting in coding standard enforcement. JHotDraw is a medium-sized, 2-D 

drawing framework that supports the development of customized drawings editors. It is 

used to model technical and structured Graphics with a GUI framework. It was initially 

developed as an application of good program design. jEdit is a medium-sized, text editor. 

It focuses on providing different features for developers, including macro scripting, 

syntax highlighting, and a comprehensive plug-in environment. 

Table 1. Characteristics of the Systems Under Study 

Project Version # Files 
   

ArgoUML 0.34 1929 
   

Checkstyle 5.7 820 
   

JHotDraw 7.4.1 585 
   

jEdit 5.1.0 572 
 

3.3. Study Setup 

String-literals, identifiers, and comments were excerpted from the software systems 

and utilized to create the documents for each system. An example is shown in Figure 1 to 

clarify the preprocessing of the unstructured source code data. A number of preprocessing 

steps are then applied to the source code [6]. Figure 2 shows a high-level visualization of 

the preprocessing steps. These preprocessing steps are common in most information 

retrieval techniques [16]. First, syntax and programming language keywords are filtered 

out. Second, each word is then tokenized according to well-known naming practices, for 

instance, underscores (first_name) and camel case (firstName). Third, common English 

terms are removed (stop words) to eliminate noise. The final step is to prune the 

vocabulary. The number of terms that can end up the bag-of-words is very large which 

usually would cause a problem in most text-mining applications. In order to select the 

most useful subset, a filter has been applied to remove the overly common terms that 

appear in too many documents (=90%), as they can be seen as a non-informative and 

background terms. Table 2 shows the number of terms for each system after 

preprocessing. 

 

 

 

 

 

 

 

Figure 1. An Example of Unstructured Source Code Preprocessing 
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Figure 2. Preprocessing Steps 

Table 2. Number of Terms 

Project # Terms 
  

ArgoUML 58994 
  

Checkstyle 17818 
  

JHotDraw 24529 
  

jEdit 41001 
 

3.4. Choosing K 

Choosing how many topics to use in LDA is still a research problem. Finding the best 

number of topics is still a problem and it is not only for the source code domain. Topic 

excerption in textual documents encounters the same problem. In this work, we adopted a 

well-known approach for determining the number of topics [17]. Their approach specifies 

that the number of topics T can be determined by running LDA for different values of T 

with freezing the LDA hyper-parameters. For each value of T, they estimate the 

symmetric Kullback-Leibler divergence [18] between the singular values of the topic-

word matrix and the document-topic matrix using the following equation:  
 

Measure = KL(CM1||CM2) + KL(CM2||CM1)                                                (1) 

Their approach calculates the symmetric Kullback-Leiber divergence of the Singular 

value distributions of of two matrices M1 and M2. In this equation, CM1 represents the 

singular values distribution of the topic word matrix, CM2 represents the distribution 

obtained by normalizing the vector L*M2 where L is a one-dimensional vector of 

documents lengths in the corpus and M2 is the document topic-matrix. To determine T, 

choose T where the minimum value of the measure is. It is noteworthy that these 

distributions CM1 and CM2 are in sorted order. 

Figure 3 plots the KL divergence measure against a varying number of topics (5 -

35) for the studied systems. The curve dips down where T is 6 in ArgoUML, dips 

down where T is 5 in Checkstyle, dips down where T is 5 in JHotDraw, and dips 

down where T is 10 in jEdit. We selected T based on the minimum value of the KL 

divergence measure [17]. 
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Figure 3. Variation of KL Divergence with Number of Topics 

4. The Discovered Topics 

We manually labeled the discovered topics. Table 3 shows selected topics and their top 

terms for the studied systems. Based on their semantic similarities, these groups seem to 

make sense to a human reader. It is very clear that the discovered topics are coherent and 

conceptually related. Any person with some familiarity with drawing tools, for instance, 

would concur that the terms 'g', 'diagram', and 'node' logically go together in this situation. 

We find the topics of the source code to be useful and coherent, just as different domains 

have found LDA topics to seem sensible and be suitable for their purpose. 

Table 3. Example Topics and their Top Terms 

System Topic Name Top Terms 
   

 Figures g, diagram, setting, node, edge, width, bound, param 
   

ArgoUML Files le, project, name, pro le, label, name, panel, list 
   

 Events event, action, target, model, item, namespace, element, handle 
   

   

 Formatting check, indentation, type, level, param, child, parent, number 
   

Checkstyle Notifications line, tag, warning, location, format, text, comment, annotation 
   

 Rules eld, support, pattern, rules, place, suite, test, missing 
   

   

 Menu view, editor, action, drawing, label, button, menu, chooser 
   

JHotDraw Figures gure, handle, bound, event, link, area, point, connector 
   

 Properties color, icon, property, descriptor, component, index, inset, border 
   

   

 Menu event, action, handler, model, list, label, button, menu 
   

jEdit Search node, count, search, history, property, result, pane, set 
   

 Selection line, selection, start, o set, bu er, text, color, area 
   

 
The approach was capable of excerpting the domain topics, cross cutting topics, and 

even infrastructure-level topics. Table 3 also shows that the approach was capable of 

clustering all related keywords together. Another strong point in this approach is its 
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ability in resolving synonymy to an acceptable degree because LDA constructs topics in a 

le and words in a topic using multinomial probability distributions. 

 

5. Threats to Validity 

The approach of this paper depends on the quality of comments and identifier names 

found in the code. If developers of these systems did not follow any known naming 

conventions, this would results with low semantic value topics. However, the selected 

systems have a strict coding and naming conventions. In addition, a previous study 

revealed that most systems have good comments and good identifiers names which make 

them sufficient for such topic analyses [19]. 

We have focused on open source Java-based systems.We have selected these systems 

very carefully because of their extensive documentation, good designs, and manageable 

sizes. We tried varying the size of the selected system, however, we cannot generalize the 

results. Additional case studies are needed to investigate closed-source and other 

programming languages systems. 

 

6. Related Work 

Extracting topics from the unstructured text found in many software repositories has 

been the focus of many software engineering researchers. Most of their work is focused 

on calculating coupling/cohesion metrics, categorizing bug reports, and nding traces 

between requirements and code. 

Thomas et al., [6] evaluated topic modeling in analyzing the evolution of software 

using two well-documented systems. They computed different metrics on the discovered 

topic evolutions and found that most of topic evolutions matched with concrete code 

change activities by developers like corrective maintenance, improvements, and the 

addition of new features. Savage et al., [11] developed a tool named 'TopicXP ', which 

extracts identifier names and comments from source code using Latent Dirichlet 

Allocation. The tool was implemented as open-source Eclipse plug-in that extracts and 

visualizes conceptual relationships between software entities. The goal of the tool is to 

support developers during software maintenance tasks. The tool helps developers to learn 

about the concepts, or latent topics, while also observing the dependencies and 

cohesiveness of these topics. 

Gethers and Poshyvanyk [3] proposed a LDA-based coupling metric, the Relational 

Topic-based Coupling (RTC) metric. It is based on a variant of LDA called Relational 

Topic Models (RTM). RTM is an extension to LDA in which the links are explicitly 

modeled between documents in the corpus. These embedded links explains both the 

words of the documents and how they are connected. RTC utilizes these links to describe 

the coupling between two classes in the corpus. The authors demonstrated that the new 

metric is statistically di erent from existing metrics. Gethers et al., [13] introduced an 

approach that uses Relational Topic Modeling (RTM) to recover traceability links 

between requirements and code. Their study showed a great promise in retrieving highly 

accurate tractability links. Oliveto et al., [8] introduced an approach based on Relational 

Topic Models to identify Move Method refactoring opportunities and remove the Feature 

Envy bad smell from source code. Their approach analyzes both structural and semantic 

relationships between methods to identify sets of methods that share several 

responsibilities. Their empirical evaluation indicated that their approach provided 

meaningful refactoring opportunities. 

 

7. Conclusion 

Understanding the functionality of a large system is not an easy task. This paper 

investigated the applicability of LDA in extracting the main business topics and domains 
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from the source code. The goal was to discover the high-level functionality and the 

purpose of the system. One problem with unsupervised learning is to find the number of 

K, this paper adopt a well-known approach to finding the optimal K. Experiments on four 

Java-based open-source systems showed the effectiveness of the approach. 

One direction of a future work is to investigate new techniques to excerpt topics at 

different granularity levels and classify different relationships between them. RTM 

moreover can be used in order to identify the relationships between method and classes. It 

can be even used to extract features interactions. 
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