
International Journal of Software Engineering and Its Applications

Vol. 9, No. 1 (2015), pp. 183-190

http://dx.doi.org/10.14257/ijseia.2015.9.1.16

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2015 SERSC

Extracting High-Level Concepts from Open-Source Systems

Mamdouh Alenezi

College of Computer and Information Science, Prince Sultan University, Riyadh

11586, Saudi Arabia

malenezi@psu.edu.sa

Abstract

Analyzing the unstructured information in the source code (that is, the comments and

identifiers) is based on the idea that the unstructured information reveals, to some extent,

the concepts of the problem domain of the software. This information adds a new layer of

source code semantic information and captures the domain semantics of the software.

Developers use identifiers, method names, and comments to incorporate components of

the solution domain of the software. Topic models reveal topics from the corpus, which

embody real world concepts by analyzing words that frequently co-occur. These topics

have been found to be effective mechanisms for describing the major themes spanning a

corpus. Recently, software engineering researchers established that topic models can be

effective in structuring various software artifacts, such as bug reports and requirements

documents. In this paper, we extract topic models from the textual content of source code

by conducting a case study on the source code of Java-based open-source systems,

ArgoUML, Checkstyle, JHotDraw and jEdit. The paper investigates the effectiveness of

LDA in comprehending large open-source software systems.

Keywords: Open source, Source code, LDA, Topic Extraction

1. Introduction

Program comprehension is one of the essential activities during software maintenance

and evolution [1]. Usually, developers spend around 60% of their time working

comprehending the system while doing software maintenance tasks [1], especially the

source code. Understanding and comprehending a small system is usually not a problem

and does not take much time. However, comprehending a large system is essentially not

an easy task. Small software can be analyzed by manually examining the code to discover

its functional architecture. For large-scale system, software engineers rely on source code

analysis techniques, such as, control and data flow and call graphs [2]. Although these

techniques are useful and very helpful to understand the system interactions, they don not

convey any information regarding the functional intent of the system. Structural

relationships between software entities focus on a very low level of granularity of

dependencies, such as, function calls. This information does not reveal any underlying

functional behavior or purpose of the studied system.

An essential step towards comprehending and understanding the functional behavior of

any system is to find and recognize business topics that exist in the source code of the

system. These business domain objects are modeled as high level components and then

realized in the implementation and transformed into code. For example consider an UML

modeling application that models UML diagrams and deals with objects, figures, relation-

ships, and cardinality. When a maintainer with no application knowledge wants to add a

new feature or modify one of the features, will find it very di cult before comprehending

and understanding the main functionality of the application. Extracting business topics

from the source code and establishing the relationship between them would be a huge

sup-port in finding related data structures, methods, classes. This will eventually help the

International Journal of Software Engineering and Its Applications

Vol. 9, No. 1 (2015)

184 Copyright ⓒ 2015 SERSC

developer or the maintainer productivity, especially when dealing with a large system

with little documentation.

One technique to find and discover the source code business topics is to extract the

semantic information by analyzing the unstructured information in the source code (that

is, the comments and identifiers) is based on the idea that the unstructured information

reveals, to some extent, the concepts of the problem domain of the software. Developers

usually leave trails of the functional behavior of the system in the comments, identifier

names, method names, data types and so on [3, 4]. This paper introduces a Latent

Dirichlet Allocation (LDA) based approach for finding source code topics. LDA is a very

widespread technique in text document classification and extracting topics from textual

documents.

The rest of the paper is organized as follows: Section 2 presents some background in-

formation about LDA. Section 3 describes the study methodology. Section 4 presents the

experimental evaluation and discussions. Section 5 discusses threats to the validity of the

study. Section 6 discusses related work. Section 7 concludes the paper.

2. Latent Dirichlet Allocation (LDA)

LDA is a popular fully generative and probabilistic topic model utilized to excerpt the

hidden topics existing in documents collection and to represent each document as a finite

mixture over the set of topics [5]. Every topic is a probability distribution over the set of

words that compose the vocabulary of the document collection. In the LDA model, each

document is a multi-membership combination of topics, which means that each topic can

be contained in more than one document and each document can contain multiple topics.

LDA is capable of discovering a representation of concepts or ideas that describe the

corpus as a total [6].

Latent Dirichlet Allocation (LDA) [5] is a method to construct topic models, an

un-supervised machine-learning algorithm to discover topics in a corpus and

allocate topics distributions over each document, as well as distributions of words

over topics. The reason behind adopting LDA in our study is the fact that LDA is a

statistical model that supports alleviating model over-fitting, paralleled to other

topic models like Probabilistic LSI [7]. In addition, LDA has been shown to be

effective for different software engineering purposes. Examples include using LDA

to study the evolution of source code [6], refactor code [8], compute source code

metrics [3], categorize bug reports [9], localize features and concerns [10], program

comprehension [11], and recover traceability links between source code and

requirements documents [12, 13].

In this study, we used the 'topicmodel' package version 0.2-1 in the R language

version 3.1.12. The LDA parameters were chosen based on the recommendation of

the literature [14]. The used parameters are = 50/K and = 0.01 where K is the

number of topics.

3. Study Methodology

3.1. Unstructured Source Code

When analyzing source code, traditional techniques rely on the structured data avail-

able in source code (e.g., syntax, program semantics, and control-flow). Aside from the

structured data, the source code contains a large amount of unstructured data. The

comments in the source code are used to indicate the domain information of the software

in the form of developer messages and descriptions. Identifier names include package

names, class names, method names, and local and global variable names which represent

parts of the domain problem. String literals also can be found in print commands and

functions. Without the utilization of the source code structured information, these

International Journal of Software Engineering and Its Applications

Vol. 9, No. 1 (2015)

185

unstructured data can help comprehend the high-level functionality or concept of the

source code [15].

3.2. Systems Under Study

We perform thorough case studies on Java-based well-known open-source software

sys-tems, ArgoUML, Cechstyle, JHotDraw and jEdit. Table 1 shows Characteristics of

the systems under study. ArgoUML is a large-sized, a UML modeling tool that includes

sup-port for standard UML diagrams. It was initially developed by a PhD student at

University of California, Irvine. Checkstyle is a medium-sized, development tool that

checks whether code adheres to a coding standard. It automates the process of checking

Java code resulting in coding standard enforcement. JHotDraw is a medium-sized, 2-D

drawing framework that supports the development of customized drawings editors. It is

used to model technical and structured Graphics with a GUI framework. It was initially

developed as an application of good program design. jEdit is a medium-sized, text editor.

It focuses on providing different features for developers, including macro scripting,

syntax highlighting, and a comprehensive plug-in environment.

Table 1. Characteristics of the Systems Under Study

Project Version # Files

ArgoUML 0.34 1929

Checkstyle 5.7 820

JHotDraw 7.4.1 585

jEdit 5.1.0 572

3.3. Study Setup

String-literals, identifiers, and comments were excerpted from the software systems

and utilized to create the documents for each system. An example is shown in Figure 1 to

clarify the preprocessing of the unstructured source code data. A number of preprocessing

steps are then applied to the source code [6]. Figure 2 shows a high-level visualization of

the preprocessing steps. These preprocessing steps are common in most information

retrieval techniques [16]. First, syntax and programming language keywords are filtered

out. Second, each word is then tokenized according to well-known naming practices, for

instance, underscores (first_name) and camel case (firstName). Third, common English

terms are removed (stop words) to eliminate noise. The final step is to prune the

vocabulary. The number of terms that can end up the bag-of-words is very large which

usually would cause a problem in most text-mining applications. In order to select the

most useful subset, a filter has been applied to remove the overly common terms that

appear in too many documents (=90%), as they can be seen as a non-informative and

background terms. Table 2 shows the number of terms for each system after

preprocessing.

Figure 1. An Example of Unstructured Source Code Preprocessing

International Journal of Software Engineering and Its Applications

Vol. 9, No. 1 (2015)

186 Copyright ⓒ 2015 SERSC

Figure 2. Preprocessing Steps

Table 2. Number of Terms

Project # Terms

ArgoUML 58994

Checkstyle 17818

JHotDraw 24529

jEdit 41001

3.4. Choosing K

Choosing how many topics to use in LDA is still a research problem. Finding the best

number of topics is still a problem and it is not only for the source code domain. Topic

excerption in textual documents encounters the same problem. In this work, we adopted a

well-known approach for determining the number of topics [17]. Their approach specifies

that the number of topics T can be determined by running LDA for different values of T

with freezing the LDA hyper-parameters. For each value of T, they estimate the

symmetric Kullback-Leibler divergence [18] between the singular values of the topic-

word matrix and the document-topic matrix using the following equation:

Measure = KL(CM1||CM2) + KL(CM2||CM1) (1)

Their approach calculates the symmetric Kullback-Leiber divergence of the Singular

value distributions of of two matrices M1 and M2. In this equation, CM1 represents the

singular values distribution of the topic word matrix, CM2 represents the distribution

obtained by normalizing the vector L*M2 where L is a one-dimensional vector of

documents lengths in the corpus and M2 is the document topic-matrix. To determine T,

choose T where the minimum value of the measure is. It is noteworthy that these

distributions CM1 and CM2 are in sorted order.

Figure 3 plots the KL divergence measure against a varying number of topics (5 -

35) for the studied systems. The curve dips down where T is 6 in ArgoUML, dips

down where T is 5 in Checkstyle, dips down where T is 5 in JHotDraw, and dips

down where T is 10 in jEdit. We selected T based on the minimum value of the KL

divergence measure [17].

International Journal of Software Engineering and Its Applications

Vol. 9, No. 1 (2015)

187

Figure 3. Variation of KL Divergence with Number of Topics

4. The Discovered Topics

We manually labeled the discovered topics. Table 3 shows selected topics and their top

terms for the studied systems. Based on their semantic similarities, these groups seem to

make sense to a human reader. It is very clear that the discovered topics are coherent and

conceptually related. Any person with some familiarity with drawing tools, for instance,

would concur that the terms 'g', 'diagram', and 'node' logically go together in this situation.

We find the topics of the source code to be useful and coherent, just as different domains

have found LDA topics to seem sensible and be suitable for their purpose.

Table 3. Example Topics and their Top Terms

System Topic Name Top Terms

 Figures g, diagram, setting, node, edge, width, bound, param

ArgoUML Files le, project, name, pro le, label, name, panel, list

 Events event, action, target, model, item, namespace, element, handle

 Formatting check, indentation, type, level, param, child, parent, number

Checkstyle Notifications line, tag, warning, location, format, text, comment, annotation

 Rules eld, support, pattern, rules, place, suite, test, missing

 Menu view, editor, action, drawing, label, button, menu, chooser

JHotDraw Figures gure, handle, bound, event, link, area, point, connector

 Properties color, icon, property, descriptor, component, index, inset, border

 Menu event, action, handler, model, list, label, button, menu

jEdit Search node, count, search, history, property, result, pane, set

 Selection line, selection, start, o set, bu er, text, color, area

The approach was capable of excerpting the domain topics, cross cutting topics, and

even infrastructure-level topics. Table 3 also shows that the approach was capable of

clustering all related keywords together. Another strong point in this approach is its

International Journal of Software Engineering and Its Applications

Vol. 9, No. 1 (2015)

188 Copyright ⓒ 2015 SERSC

ability in resolving synonymy to an acceptable degree because LDA constructs topics in a

le and words in a topic using multinomial probability distributions.

5. Threats to Validity

The approach of this paper depends on the quality of comments and identifier names

found in the code. If developers of these systems did not follow any known naming

conventions, this would results with low semantic value topics. However, the selected

systems have a strict coding and naming conventions. In addition, a previous study

revealed that most systems have good comments and good identifiers names which make

them sufficient for such topic analyses [19].

We have focused on open source Java-based systems.We have selected these systems

very carefully because of their extensive documentation, good designs, and manageable

sizes. We tried varying the size of the selected system, however, we cannot generalize the

results. Additional case studies are needed to investigate closed-source and other

programming languages systems.

6. Related Work

Extracting topics from the unstructured text found in many software repositories has

been the focus of many software engineering researchers. Most of their work is focused

on calculating coupling/cohesion metrics, categorizing bug reports, and nding traces

between requirements and code.

Thomas et al., [6] evaluated topic modeling in analyzing the evolution of software

using two well-documented systems. They computed different metrics on the discovered

topic evolutions and found that most of topic evolutions matched with concrete code

change activities by developers like corrective maintenance, improvements, and the

addition of new features. Savage et al., [11] developed a tool named 'TopicXP ', which

extracts identifier names and comments from source code using Latent Dirichlet

Allocation. The tool was implemented as open-source Eclipse plug-in that extracts and

visualizes conceptual relationships between software entities. The goal of the tool is to

support developers during software maintenance tasks. The tool helps developers to learn

about the concepts, or latent topics, while also observing the dependencies and

cohesiveness of these topics.

Gethers and Poshyvanyk [3] proposed a LDA-based coupling metric, the Relational

Topic-based Coupling (RTC) metric. It is based on a variant of LDA called Relational

Topic Models (RTM). RTM is an extension to LDA in which the links are explicitly

modeled between documents in the corpus. These embedded links explains both the

words of the documents and how they are connected. RTC utilizes these links to describe

the coupling between two classes in the corpus. The authors demonstrated that the new

metric is statistically di erent from existing metrics. Gethers et al., [13] introduced an

approach that uses Relational Topic Modeling (RTM) to recover traceability links

between requirements and code. Their study showed a great promise in retrieving highly

accurate tractability links. Oliveto et al., [8] introduced an approach based on Relational

Topic Models to identify Move Method refactoring opportunities and remove the Feature

Envy bad smell from source code. Their approach analyzes both structural and semantic

relationships between methods to identify sets of methods that share several

responsibilities. Their empirical evaluation indicated that their approach provided

meaningful refactoring opportunities.

7. Conclusion

Understanding the functionality of a large system is not an easy task. This paper

investigated the applicability of LDA in extracting the main business topics and domains

International Journal of Software Engineering and Its Applications

Vol. 9, No. 1 (2015)

189

from the source code. The goal was to discover the high-level functionality and the

purpose of the system. One problem with unsupervised learning is to find the number of

K, this paper adopt a well-known approach to finding the optimal K. Experiments on four

Java-based open-source systems showed the effectiveness of the approach.

One direction of a future work is to investigate new techniques to excerpt topics at

different granularity levels and classify different relationships between them. RTM

moreover can be used in order to identify the relationships between method and classes. It

can be even used to extract features interactions.

References

[1] X. Sun, X. Liu, J. Hu and J. Zhu, “Empirical studies on the nlp techniques for source code data

preprocessing”, Proceedings of the 2014 3rd International Workshop on Evidential Assessment of

Software Technologies. ACM, (2014), pp. 32-39.

[2] P. Anderson and M. Zarins, “The codesurfer software understanding platform”, Proceedings. 13th

International Workshop on Program Comprehension, IWPC 2005. IEEE, (2005), pp. 147-148.

[3] M. Gethers and D. Poshyvanyk, Using relational topic models to capture coupling among classes in

object-oriented software systems," in IEEE International Conference on Software Maintenance (ICSM),

2010. IEEE, 2010, pp. 1-10.

[4] M. Alenezi and K. Magel, Empirical evaluation of a new coupling metric: Combining structural and

semantic coupling," International Journal of Computers and Applications, vol. 36, no. 1, 2014.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent dirichlet allocation," the Journal of Machine Learning

Research, vol. 3, pp. 993-1022, 2003.

[6] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, Studying software evolution using topic

models," Science of Computer Programming, vol. 80, pp. 457-479, 2014.

[7] T. Hofmann, Probabilistic latent semantic indexing," in Proceedings of the 22nd annual international

ACM SIGIR conference on Research and development in information retrieval. ACM, 1999, pp. 50-57.

[8] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk, and A. De Lucia, “Identifying method friendships to

remove the feature envy bad smell”, Proceedings of the 33rd International Conference on Software

Engineering. ACM, (2011), pp. 820-823.

[9] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug reports using latent dirichlet

allocation”, Proceedings of the 5th India Software Engineering Conference. ACM, (2012), pp. 125-130.

[10] S. Wang, D. Lo, Z. Xing and L. Jiang, “Concern localization using information retrieval: An empirical

study on linux kernel”, 18th Working Conference on Reverse Engineering (WCRE), 2011. IEEE, (2011),

pp. 92-96.

[11] T. Savage, B. Dit, M. Gethers and D. Poshyvanyk, “Topic xp: Exploring topics in source code using

latent dirichlet allocation”, IEEE International Conference on Software Maintenance (ICSM), 2010.

IEEE, (2010), pp. 1-6.

[12] H. U. Asuncion, A. U. Asuncion and R. N. Taylor, “Software traceability with topic modeling”,

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1.

ACM, (2010), pp. 95-104.

[13] M. Gethers, R. Oliveto, D. Poshyvanyk and A. D. Lucia, “On integrating orthogonal information

retrieval methods to improve traceability recovery”, 27th IEEE International Conference on Software

Maintenance (ICSM), 2011. IEEE, (2011), pp. 133-142.

[14] T. L. Gri ths and M. Steyvers, “Finding scientific topics”, Proceedings of the National academy of

Sciences of the United States of America, vol. 101, no. Suppl 1, (2004), pp. 5228-5235.

[15] A. Kuhn, S. Ducasse and T. Girba, “Semantic clustering: Identifying topics in source code”, Informa-

tion and Software Technology, vol. 49, no. 3, (2007), pp. 230-243.

[16] C. D. Manning, P. Raghavan and H. Schutze, “Introduction to information retrieval”, Cambridge

University Press Cambridge, vol. 1, (2008).

[17] R. Arun, V. Suresh, C. V. Madhavan and M. N. Murthy, “On nding the natural number of topics with

latent dirichlet allocation: Some observations”, Advances in Knowledge Discovery and Data Mining.

Springer, (2010), pp. 391-402.

[18] T. M. Cover and J. A. Thomas, “Elements of information theory”, John Wiley & Sons, (2012).

[19] S. Haiduc and A. Marcus, On the use of domain terms in source code," in The 16th IEEE International

Conference on Program Comprehension, ICPC 2008. IEEE, (2008), pp. 113-122.

International Journal of Software Engineering and Its Applications

Vol. 9, No. 1 (2015)

190 Copyright ⓒ 2015 SERSC

Author

Dr. Mamdouh Alenezi, received his Ph.D. degree in Software

Engineering from Department of Computer Science at North Dakota

State University, Fargo, ND in 2014. He got a Master's degree from

DePaul University and got a Bachelor's degree from Prince Sultan

University. His research interests include Mining Software

Repositories, Software Maintenance, Software Testing, and Machine

Learning.

