
International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015), pp. 43-52

http://dx.doi.org/10.14257/ijseia.2015.9.5.05

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2015 SERSC

Software Evolution via Topic Modeling: An Analytic Study

Shadi Banitaan
1
 and Mamdouh Alenezi

2

1Computer Science and Software Engineering, University of Detroit Mercy, USA
2College of Computer & Information Sciences, Prince Sultan University, Saudi

Arabia

banitash@udmercy.edu, malenezi@psu.edu.sa

Abstract

Open-source projects continue to evolve resulted in so many versions. Managing,

visualizing and understanding an evolving software system are challenging tasks. In this

work, we apply Latent Dirichlet Allocation (LDA) to discover source code topics and

study their evolution over multiple software versions. We apply LDA to all versions of the

system together and then determine how the assignment metric evolves over time. We

study the software evolution of two large open-source projects, JEdit and JHotDraw, over

twelve versions. The results show that changes in topics across versions are due to actual

software changes such as adding, updating, and removing features. Our work suggests

that using LDA can open many paths in software evolution research.

Keywords: software evolution, topic modeling

1. Introduction

In recent years, many researchers apply information retrieval (IR) techniques to solve

software engineering tasks. Two dominant IR techniques have been widely used in the

software engineering community namely Latent Semantic Indexing (LSI) [1] and Latent

Dirichlet Allocation (LDA) [2]. LSI is based on the principle that terms that are used in

the same contexts tend to have similar meanings. It has the ability to extract the

conceptual content of textual documents by forming associations between words that

occur in similar contexts. LDA is a generative model that estimates the distributions of

topics from textual documents. It assumes that documents have been generated using the

probability distribution of topics. LDA is able to identify topics in text corpus. Some of

the software engineering tasks that have been addressed using IR techniques are bug

localization [3], feature location [4], software evolution [5] and traceability link recovery

[6].

Most open source software systems continue to evolve resulted in so many versions.

Nowadays, we have access to software repositories that were born more than ten years

ago. Managing these huge versions is not an easy task. Previous studies showed that the

cost of software maintenance and evolution ranges from 50 to 90% of total software cost

[7]. Monitoring, visualizing and understanding software evolution are challenging tasks.

Recent work used topic modeling to understand how topics evolve over time [8]. Two

main methods can be used to discover topic evolution [8]. The first method discovers the

topics of each version and then calculates the similarities between them while the second

method applies LDA to all versions of the system together and then determines how topic

metrics evolve over time.

Although LDA was effectively used in both natural language processing community

and software engineering community, it did not always yield the expected results on

software artifacts [6]. This is because software engineering researchers used the same

parameter values as the values used for natural language text. On the same hand, LDA

requires choosing the number of topics (K). It is still not yet clear how to set the number

International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015)

44 Copyright ⓒ 2015 SERSC

of topics in order to apply LDA for software evolution. In this paper, we explore the task

of using LDA to support software evolution. We examine the project history of two open

source projects namely JEdit and JHotDraw. To set the number of topics, we used the

approach proposed by Arun et al. [9].

The rest of the paper is organized as follows. Section 2 presents some background

information about LDA and Arun et al. measure [9]. Section 3 presents the related work.

Section 4 describes the approach and presents two case studies. Section 5 discusses the

threats to validity that could have affected our study. Finally, Section 6 concludes the

paper.

2. Background

Latent Dirichlet allocation (LDA) is a probabilistic model used to extract the hidden

topics existing in a collection of documents and to represent each document as a finite

mixture on the topics [2]. Each topic is a probability distribution over the set of terms of

the document collection. In LDA, each document can have several topics, and each topic

can exist in more than one document. LDA is able to discover a representation of ideas or

themes that describe the corpus as a whole [5]. LDA is a generative statistical model that

helps alleviating model over-fitting, compared to other topic models like Probabilistic LSI

[10]. In this study, we used the 'topicmodel' package version 0.2-1 in the R language

version 3.1.1. The parameters of LDA are chosen based on the recommendation of the

literature [10].

In order to estimate topic and word distributions in LDA, the number of topics should

be selected first. Arun et al., [9] proposed a measure to find the right number of LDA's

topics by looking at distributions generated from topic-word and document-topic matrix

outputs of LDA. Formally, for a corpus C, their proposed divergence measure is the

following:

 Measure(M1, M2) = KL(CM1||CM2) + KL(CM1||CM2)

Where M1 is the topic-word matrix and M2 is the document-topic matrix, CM1 is the

distribution of singular values of M1, CM2 is the distribution obtained by normalizing the

vector L*M2 where L is a 1*D vector of lengths of each document. After computing the

measure, a plot is generated where the y-axis represents the divergence values when

varying the number of topics (the x-axis). Then, the right number of topics is selected

where the divergence dips to zero. In this paper, we adopt this measure for selecting the

optimal value of the number of topics.

3. Related Work

Identifying topics from software repositories has been the focus of several software

engineering researchers. Most of work on that area is focused on comprehending source

code, calculating coupling/cohesion metrics [12], categorizing bug reports [13, 14],

feature location [15, 16], and finding traceability links between requirements and code

[17, 18].

Savage et al., [16] developed a topic visualization tool named ‘TopicXP’, which

extracts identifier names and comments from source code using LDA. However, they

failed to mention any approach or technique to specify the number of topics (K). Gethers

and Poshyvanyk [12] proposed a new coupling metric based on LDA namely the RTC

metric. However, they choose K to be 75 without any justification why did they choose

this number. Oliveto et al. [6] compared the ability of LDA and different techniques to

recover tracability links between code and documentation. However, they varied the

number of topics used to study its impact on the recovery accuracy.

International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 45

Thomas et al., [5] evaluated topic modeling in the analysis of software evolution using

two well-documented systems. They computed various metrics on the discovered topics

and found that large majority of topic evolutions correspond with actual code change

activities by developers such as corrective maintenance, improvements, and the addition

of new features. They have applied LDA to explore software evolution, but it is not clear

how to set the number of topics. In their case, they just fixated the number of topics to 45

based on a previous study. In this work, a very simple and effective approach is used to

set the number of topics which will eventually help researchers to easily specify K in

software engineering tasks.

Two different studies have explored the possibility of determining the tuning

parameters of LDA in mining software artifacts context. Grant and Cordy [19] proposed a

heuristic-based technique to tackle the challenge of determining the optimal number of

LDA topics for a source code corpus of methods by taking into consideration the location

of these methods in files or folders, along with the conceptual similarity between

methods. The impact of topic count on the models relative quality is unmistakable from

their study. However, their approach is a heuristic-based method which cannot be

generalized to different contexts. Panichella et al., [20] employed a genetic algorithm

approach to identify suitable hyper-parameter values of LDA models. They map the LDA

output to graphs and then cluster these graphs. By calculating several clustering metrics,

the quality of these clusters is then used to judge the quality of the LDA model.

4. Approach and Case Study

In this section, we investigate the use of LDA to support software evolution. We

describe the approach that is used to identify the topics from source code. After that, we

present two case studies. We also analyze and visualize the results.

4.1. Terminology

The vocabulary for explaining LDA is as follows. A word is an item from a

vocabulary, a document is a sequence of N words denoted by d = (w1…wN), and a corpus

is a collection of M documents denoted by D = {d1 … dM}. LDA assumes a generative

process for generating a document d in a corpus D [2] as follows:

1. Choose N ~ Poisson(ξ).

2. Choose θ Dir(α).

3. For each wi:

 Choose a topic zn ~ Multinomial(θ).

 Choose a word wi from p(wi|zn,β), a multinomial probability conditioned on zn.

4.2. Systems Under Study

Two well-documented Java systems have been used in this study. The first system is

JEdit. JEdit is an open source text editor written in Java. It is maintained by a world-wide

development team. JEdit contains many features such as auto indent, word wrap, and

syntax highlighting for more than two hundred languages. We consider twelve versions of

JEdit from version 3.0.0 to version 4.2. The second system is JHotDraw. JHotDraw is a

medium-sized, 2-D drawing framework that supports the development of customized

drawings editors. It is a GUI framework for technical and structured Graphics. It was

initially developed as an exercise of good program design and has become a standard

system for experiments and analysis in topic and concern mining. We consider twelve

versions of JHotDraw from version 5.2.0 to version 7.4.1. Table I shows a summary of

the datasets.

International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015)

46 Copyright ⓒ 2015 SERSC

Table I. Summary of the Datasets

System JEdit JHotDraw

Purpose Text Editor Drawing Framework

Language Java Java

of Versions 12 12

of Classes From 252 to 394 From 309 to 485

Time Period Dec 2000 to Dec 2004 Feb 2001 to Aug 2010

Source www.jedit.org www.jhotdraw.org

4.3. Preprocessing

In this work, we applied the approach of Linstead et al., [21] where they applied LDA

to all documents of all the versions at once. One advantage of this approach is that no

constraints are placed on the evolution of topics, which results in a great flexibility for

describing large corpus, which is usually the case of open source systems.

For both case studies, comments, identifiers, and string-literals were extracted from the

software systems and used to create the document collections for each system. Several

preprocessing steps are then applied to these documents, these steps are required by any

information retrieval technique [22]. There steps are explained as follows:

 Filtering: syntax and programming language keywords are filtered out.

 Tokenization: each word is then tokenized based on common naming practices,

such as camel case (firstName) and underscores (first_name)

 Stop-words Removal: common English terms are removed (stop words) to

eliminate noise.

 Stemming: the process of conflating the variant forms of a word into a common

representation (e.g., "changing" becomes "chang").

 Pruning: the number of terms that can end up the bag-of-words is very large

which usually would cause a problem in most text-mining applications. To select

the most useful subset, a filter has been applied to remove the overly common

terms that appear in too many documents (=80%), as they can be seen as a non-

informative and background terms.

(a) JEdit (b) JHotDraw

Figure 1. Number of Topics versus KL Divergence

http://www.jhotdraw.org/

International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 47

4.4. Selecting the number of topics

Based on the adopted measure for selecting the number of topics, the numbers of topics

were set to 30 and 20 for JEdit and JHotDraw respectively. These values have been

selected because the KL divergence dips down close to zero when the number of topics is

30 for JEdit and 20 for JHotDraw (Figure 1).

4.5. The Generated Topics

We calculated the assignment metric and analyzed the discovered topics. Formally, the

assignment of a topic zn at version Vi is the summation of the membership values of all

documents in Version Vi [8].

||

1

,
)()(

i
V

j

kjiin
dVzA

Since the numbers of topics are 30 and 20, we show the analysis of few selected topics.

Table 2 shows three selected topics, their labels, their top five terms, and their top

corresponding document, and their top two corresponding versions based on the

assignment values for each system. The values inside the parenthesis indicate the

membership values of documents and the assignment values of versions. The table

indicates that the top terms in each topic are coherent and much related to one concept

and they are semantically similar. Moreover, each topic corresponds and fit with the top-

matching document. For JEdit, the assignment values for these topics are slightly larger in

the last two selected versions (version 4.1 and version 4.2).

Table 2. Selected Topics in JEdit and JHotDraw

System Topic Label Top 5 Terms Top Document Top 2Versions

JEdit

6 Editing
color, font, highlight,

line, style
Gutter.java (0.75)

4.2(10.05),

4.1(8.89)

10 Browsing

jpanel, actionhandl,

emptybord, cancel,

jbutton

ToolBarOptionPane.j

ava (0.62)

4.2(17.79),

4.1(17.23)

15 Searching
search, view, buffer,

replac, start

SearchAndReplace.ja

va (0.82)

4.2(8.76),

4.1(7.62)

JHotDraw

12 XML
valu, object, param,

name, key

SVGInputFormat.jav

a (0.88)

7.0.9(22.45),

7.1.0(22.99)

14 Drawing

color, editor, label,

drawingeditor,

attribute

ButtonFactory.java

(0.917)

7.0.9(28.41),

7.0.8(28.54)

17 Display
view, action, file,

project, applic

DefaultOSXApplicati

on.java (0.762)

5.4.b2(36.24),

7.1.0(40.00)

To better understand the results, we use visualization. Figures 2 and 3 depict the

heatmap of the assignment evolutions of JEdit and JHotDraw. The colors represent the

assignment values for topics in each version of the system, where darker colors (blackish)

indicate higher assignment values. The following subsections analyze the heatmap view

of JEdit and JHotDraw respectively.

International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015)

48 Copyright ⓒ 2015 SERSC

Figure 2. Heatmap View of JEdit Topics

Figure 3. Heatmap View of JHotDraw Topics

International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 49

4.6. JEdit Heatmap

We notice that some topics born in later versions of the system (e.g., topic 2 was born

in version 5) while other topics appear in early versions and then disappear (e.g., topic 29

was born in version 1 and almost died after version 6). We notice that many topics have

darker colors in version 12(4.2) which indicate that some significant additions have been

made at this version (e.g., new functionalities, refactoring, or a new release). Figure 4

shows the features that have been updated in version 4.2.

Figure 4. Updated Features in version 4.2 of JEdit

4.7. JHotDraw Heatmap

We notice that some topics born in later versions of the system (e.g., topic 9 was born

in version 11) while other topics appear in early versions and then disappear (e.g., topic 8

was born in version 1 and almost died after version 8). We notice that many topics have

darker colors in version 7.0.7 which indicates that some significant additions have been

made at this version (e.g., new functionalities, refactoring, or a new release). Figure 5

shows the features that have been updated in version 7.0.7.

Figure 5. Changes in Version 7.0.7 of JHotDraw

After version 8 (7.1.0), a lot of changes have been introduced which explains the

radical changes in the topics distribution after that version. Figure 6 shows the changes in

version 9 (7.2.0).

Figure 6. Changes in Version 7.2.0 of JHotDraw

International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015)

50 Copyright ⓒ 2015 SERSC

Topic 20 has high values in versions 1 to 3. Topic 19 has higher values from version 4

to version 8. The reason behind that is that version 4 gone through a major package

restructuring. The new package structure of "org.jhotdraw" has been introduced instead of

the old "CH.ifa.draw" package structure. Also, in later version, the copyright notices have

been modified and updated in all source code file (Topic 20). Topic 9 has very high

values in the last two versions. In version 11 (7.3.0), many changes have been introduced

(Figure 7).

Figure 7. Changes in Version 7.3.0 of JHotDraw

The aforementioned changes have led to a lot of changes in both Javadoc

documentation and test cases. If we examine the top terms in Topic 9, we will see that we

have junit, javadocmethod, test, exception, framework, and testcas.

Both topics 7 and 8 die after version 8. In the changes of version 9, drawing objects can

now be serialized using the SerializationInputOutputFormat. This allows to easily

implement short-term persistence for drawings (for example for clipboard support). A

substantial number of user interface classes for the creation of toolbars have been added,

and are used by the SVG sample application. For these reasons, both topics 7 and 8 died

after version 8. These words in these topics are no longer exist in the system vocabulary

because of these changes.

Topic 2 has high values in the last three versions. The components structure and the gui

components were majorly changed in these last versions. For instance,

DefaultDrawingView uses in the last three versions double buffering to improve editing

performance. Some classes were redesigned to better support the common use cases.

5. Threats to Validity

This study has been performed using only two case studies. The two case studies are

quite similar. They are both long-lived projects and large open-source software systems.

The results may vary if there is no enough history in order to generate meaningful LDA

models (i.e., if the projects are not long lived). The size of the system is another important

factor where the issues that arise in a large project are not the same in a small project. We

think that this methodology could be also applied to other large, long-lived, open-source

software projects, but we have not tested the results with other case studies. These two

systems were chosen because they are well-documented and well-designed which allows

us to validate and test the proposed approach.

6. Conclusion

In this paper, we investigated the use of LDA to support software evolution. LDA has

been applied to all documents of all versions at once. We used the approach proposed by

Arun to set the number of topics. The assignment metric has been calculated and

visualization has been used to understand topic evolution. We examined the project

history of two large open-source projects, JEdit and JHotDraw. The experiments showed

International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 51

that changes in topics across versions are due to actual software changes such as addition

of new features, updating of features, and removing features. As a result, using LDA

facilitates the software evolution task. Future directions include using and defining other

metrics on the output of LDA. In addition, we would like to perform more case studies on

other systems.

References

[1] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman, “Indexing by latent

semantic analysis,” (1990) JASIS, vol. 41, no. 6, pp. 391–407.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” (2003) the Journal of machine

Learning research, vol. 3, pp. 993–1022.

[3] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? more accurate information retrieval-

based bug localization based on bug reports,” (2012) in 34th International Conference on Software

Engineering (ICSE) IEEE, 2012, pp. 14–24.

[4] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in source code: a taxonomy and

survey,” (2013) Journal of Software: Evolution and Process, vol. 25, no. 1, pp. 53–95.

[5] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Studying software evolution using topic

models,” (2014) Science of Computer Programming, vol. 80, pp. 457–479.

[6] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. “On the equivalence of information retrieval

methods for automated traceability link recovery,”. (2010) in IEEE 18th International Conference on

Program Comprehension, pp. 68–71.

[7] R. C. Seacord, D. Plakosh, and G. A. Lewis, “Modernizing legacy systems: Software technologies,”

(2003) Engineering Process and Business Practices.

[8] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Validating the use of topic models for

software evolution,” (2010) in 10th IEEE Working Conference on Source Code Analysis and

Manipulation, pp. 55–64.

[9] R. Arun, V. Suresh, C. V. Madhavan, and M. N. Murthy, “On finding the natural number of topics with

latent dirichlet allocation: Some observations,” (2010) in Advances in Knowledge Discovery and Data

Mining.Springer, pp. 391–402.

[10] T. Hofmann, “Probabilistic latent semantic indexing,”, (1999) in Proceedings of the 22nd annual

international ACM SIGIR conference on Research and development in information retrieval. ACM, pp.

50–57.

[11] T. L. Griffiths and M. Steyvers, “Finding scientific topics,”, (2004) Proceedings of the National

academy of Sciences of the United States of America, vol. 101, no. Suppl 1, pp. 5228–5235.

[12] M. Gethers and D. Poshyvanyk, “Using relational topic models to capture coupling among classes in

object-oriented software systems,”, (2010) in IEEE International Conference on Software Maintenance,

pp. 1–10.

[13] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug reports using latent dirichlet

allocation,”, (2012) in Proceedings of the 5th India Software Engineering Conference, pp. 125–130.

[14] N. Pingclasai, H. Hata, and K.-i. Matsumoto, “Classifying bug reports to bugs and other requests using

topic modeling,”, (2013) in Software Engineering Conference, pp. 13–18.

[15] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining eclipse developer contributions

via author-topic models,”, (2007) in Fourth International Workshop on Mining Software Repositories.

[16] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “Topic xp: Exploring topics in source code using

latent dirichlet allocation,”, (2010) in IEEE International Conference on Software Maintenance, pp. 1–6.

[17] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On integrating orthogonal information

retrieval methods to improve traceability recovery,”, (2011) in 27th IEEE International Conference on

Software Maintenance, pp. 133–142.

[18] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk, and A. De Lucia, “Identifying method friendships to

remove the feature envy bad smell (nier track),”, (2011) in Proceedings of the 33rd International

Conference on Software Engineering, pp. 820–823.

[19] S. Grant and J. R. Cordy, “Estimating the optimal number of latent concepts in source code analysis,”,

(2010) in 10th IEEE Working Conference on Source Code Analysis and Manipulation, pp. 65–74.

[20] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia, “How to effectively

use topic models for software engineering tasks? an approach based on genetic algorithms,” (2013) in

Proceedings of the 2013 International Conference on Software Engineering, pp. 522–531.

[21] E. Linstead, C. Lopes, and P. Baldi, “An application of latent dirichlet allocation to analyzing software

evolution,” , (2008) in Seventh International Conference on Machine Learning and Applications, 2008,

pp. 813–818.

[22] C. D. Manning, P. Raghavan, and H. Sch ütze, Introduction to information retrieval, (2008) Cambridge

university press Cambridge, vol. 1.

[23] S. Haiduc and A. Marcus, “On the use of domain terms in source code,”, (2008) in The 16th IEEE

International Conference on Program Comprehension, pp. 113–122.

International Journal of Software Engineering and Its Applications

Vol. 9, No. 5 (2015)

52 Copyright ⓒ 2015 SERSC

