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Abstract 

Open-source projects continue to evolve resulted in so many versions. Managing, 

visualizing and understanding an evolving software system are challenging tasks. In this 

work, we apply Latent Dirichlet Allocation (LDA) to discover source code topics and 

study their evolution over multiple software versions. We apply LDA to all versions of the 

system together and then determine how the assignment metric evolves over time. We 

study the software evolution of two large open-source projects, JEdit and JHotDraw, over 

twelve versions. The results show that changes in topics across versions are due to actual 

software changes such as adding, updating, and removing features. Our work suggests 

that using LDA can open many paths in software evolution research. 
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1. Introduction 

In recent years, many researchers apply information retrieval (IR) techniques to solve 

software engineering tasks. Two dominant IR techniques have been widely used in the 

software engineering community namely Latent Semantic Indexing (LSI) [1] and Latent 

Dirichlet Allocation (LDA) [2]. LSI is based on the principle that terms that are used in 

the same contexts tend to have similar meanings. It has the ability to extract the 

conceptual content of textual documents by forming associations between words that 

occur in similar contexts. LDA is a generative model that estimates the distributions of 

topics from textual documents. It assumes that documents have been generated using the 

probability distribution of topics. LDA is able to identify topics in text corpus. Some of 

the software engineering tasks that have been addressed using IR techniques are bug 

localization [3], feature location [4], software evolution [5] and traceability link recovery 

[6]. 

Most open source software systems continue to evolve resulted in so many versions. 

Nowadays, we have access to software repositories that were born more than ten years 

ago. Managing these huge versions is not an easy task. Previous studies showed that the 

cost of software maintenance and evolution ranges from 50 to 90% of total software cost 

[7]. Monitoring, visualizing and understanding software evolution are challenging tasks. 

Recent work used topic modeling to understand how topics evolve over time [8]. Two 

main methods can be used to discover topic evolution [8]. The first method discovers the 

topics of each version and then calculates the similarities between them while the second 

method applies LDA to all versions of the system together and then determines how topic 

metrics evolve over time. 

Although LDA was effectively used in both natural language processing community 

and software engineering community, it did not always yield the expected results on 

software artifacts [6]. This is because software engineering researchers used the same 

parameter values as the values used for natural language text. On the same hand, LDA 

requires choosing the number of topics (K). It is still not yet clear how to set the number 
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of topics in order to apply LDA for software evolution. In this paper, we explore the task 

of using LDA to support software evolution. We examine the project history of two open 

source projects namely JEdit and JHotDraw. To set the number of topics, we used the 

approach proposed by Arun et al. [9].  

The rest of the paper is organized as follows. Section 2 presents some background 

information about LDA and Arun et al. measure [9]. Section 3 presents the related work. 

Section 4 describes the approach and presents two case studies. Section 5 discusses the 

threats to validity that could have affected our study. Finally, Section 6 concludes the 

paper. 

 

2. Background 

Latent Dirichlet allocation (LDA) is a probabilistic model used to extract the hidden 

topics existing in a collection of documents and to represent each document as a finite 

mixture on the topics [2]. Each topic is a probability distribution over the set of terms of 

the document collection. In LDA, each document can have several topics, and each topic 

can exist in more than one document. LDA is able to discover a representation of ideas or 

themes that describe the corpus as a whole [5]. LDA is a generative statistical model that 

helps alleviating model over-fitting, compared to other topic models like Probabilistic LSI 

[10]. In this study, we used the 'topicmodel' package version 0.2-1 in the R language 

version 3.1.1. The parameters of LDA are chosen based on the recommendation of the 

literature [10].  

In order to estimate topic and word distributions in LDA, the number of topics should 

be selected first. Arun et al., [9] proposed a measure to find the right number of LDA's 

topics by looking at distributions generated from topic-word and document-topic matrix 

outputs of LDA. Formally, for a corpus C, their proposed divergence measure is the 

following:  

 

    Measure(M1, M2 ) = KL(CM1||CM2 ) + KL(CM1||CM2 )   

Where M1 is the topic-word matrix and M2 is the document-topic matrix, CM1 is the 

distribution of singular values of M1, CM2 is the distribution obtained by normalizing the 

vector L*M2 where L is a 1*D vector of lengths of each document. After computing the 

measure, a plot is generated where the y-axis represents the divergence values when 

varying the number of topics (the x-axis). Then, the right number of topics is selected 

where the divergence dips to zero.  In this paper, we adopt this measure for selecting the 

optimal value of the number of topics. 

 

3. Related Work 

Identifying topics from software repositories has been the focus of several software 

engineering researchers. Most of work on that area is focused on comprehending source 

code, calculating coupling/cohesion metrics [12], categorizing bug reports [13, 14], 

feature location [15, 16], and finding traceability links between requirements and code 

[17, 18]. 

Savage et al., [16] developed a topic visualization tool named ‘TopicXP’, which 

extracts identifier names and comments from source code using LDA. However, they 

failed to mention any approach or technique to specify the number of topics (K). Gethers 

and Poshyvanyk [12] proposed a new coupling metric based on LDA namely the RTC 

metric. However, they choose K to be 75 without any justification why did they choose 

this number. Oliveto et al. [6] compared the ability of LDA and different techniques to 

recover tracability links between code and documentation. However, they varied the 

number of topics used to study its impact on the recovery accuracy.  
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Thomas et al., [5] evaluated topic modeling in the analysis of software evolution using 

two well-documented systems. They computed various metrics on the discovered topics 

and found that large majority of topic evolutions correspond with actual code change 

activities by developers such as corrective maintenance, improvements, and the addition 

of new features. They have applied LDA to explore software evolution, but it is not clear 

how to set the number of topics. In their case, they just fixated the number of topics to 45 

based on a previous study. In this work, a very simple and effective approach is used to 

set the number of topics which will eventually help researchers to easily specify K in 

software engineering tasks.  

Two different studies have explored the possibility of determining the tuning 

parameters of LDA in mining software artifacts context. Grant and Cordy [19] proposed a 

heuristic-based technique to tackle the challenge of determining the optimal number of 

LDA topics for a source code corpus of methods by taking into consideration the location 

of these methods in files or folders, along with the conceptual similarity between 

methods. The impact of topic count on the models relative quality is unmistakable from 

their study. However, their approach is a heuristic-based method which cannot be 

generalized to different contexts. Panichella et al., [20] employed a genetic algorithm 

approach to identify suitable hyper-parameter values of LDA models. They map the LDA 

output to graphs and then cluster these graphs. By calculating several clustering metrics, 

the quality of these clusters is then used to judge the quality of the LDA model. 

 

4. Approach and Case Study 

In this section, we investigate the use of LDA to support software evolution. We 

describe the approach that is used to identify the topics from source code. After that, we 

present two case studies. We also analyze and visualize the results. 

 

4.1. Terminology 

The vocabulary for explaining LDA is as follows. A word is an item from a 

vocabulary, a document is a sequence of N words denoted by d = (w1…wN), and a corpus 

is a collection of M documents denoted by D = {d1 … dM}. LDA assumes a generative 

process for generating a document d in a corpus D [2] as follows: 

 

1. Choose N ~ Poisson(ξ). 

2. Choose θ Dir(α). 

3. For each wi: 

  Choose a topic zn  ~ Multinomial(θ). 

  Choose a word wi from p(wi|zn,β ), a multinomial probability conditioned on zn. 

 

4.2. Systems Under Study 

Two well-documented Java systems have been used in this study. The first system is 

JEdit. JEdit is an open source text editor written in Java. It is maintained by a world-wide 

development team. JEdit contains many features such as auto indent, word wrap, and 

syntax highlighting for more than two hundred languages. We consider twelve versions of 

JEdit from version 3.0.0 to version 4.2. The second system is JHotDraw. JHotDraw is a 

medium-sized, 2-D drawing framework that supports the development of customized 

drawings editors. It is a GUI framework for technical and structured Graphics. It was 

initially developed as an exercise of good program design and has become a standard 

system for experiments and analysis in topic and concern mining. We consider twelve 

versions of JHotDraw from version 5.2.0 to version 7.4.1. Table I shows a summary of 

the datasets. 
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Table I. Summary of the Datasets 

System JEdit JHotDraw 

Purpose Text Editor Drawing Framework 

Language Java Java 

# of Versions 12 12 

# of Classes From 252 to 394 From 309 to 485 

Time Period Dec 2000 to Dec 2004 Feb 2001 to Aug 2010 

Source www.jedit.org www.jhotdraw.org 

 

4.3. Preprocessing 

In this work, we applied the approach of Linstead et al., [21] where they applied LDA 

to all documents of all the versions at once. One advantage of this approach is that no 

constraints are placed on the evolution of topics, which results in a great flexibility for 

describing large corpus, which is usually the case of open source systems.  

For both case studies, comments, identifiers, and string-literals were extracted from the 

software systems and used to create the document collections for each system. Several 

preprocessing steps are then applied to these documents, these steps are required by any 

information retrieval technique [22]. There steps are explained as follows: 

 Filtering: syntax and programming language keywords are filtered out. 

 Tokenization: each word is then tokenized based on common naming practices, 

such as camel case (firstName) and underscores (first_name) 

 Stop-words Removal: common English terms are removed (stop words) to 

eliminate noise. 

 Stemming: the process of conflating the variant forms of a word into a common 

representation (e.g., "changing" becomes "chang"). 

 Pruning: the number of terms that can end up the bag-of-words is very large 

which usually would cause a problem in most text-mining applications. To select 

the most useful subset, a filter has been applied to remove the overly common 

terms that appear in too many documents (=80%), as they can be seen as a non-

informative and background terms. 
 

(a) JEdit                                                                    (b) JHotDraw 

Figure 1. Number of Topics versus KL Divergence 

 

 

http://www.jhotdraw.org/
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4.4. Selecting the number of topics 

Based on the adopted measure for selecting the number of topics, the numbers of topics 

were set to 30 and 20 for JEdit and JHotDraw respectively. These values have been 

selected because the KL divergence dips down close to zero when the number of topics is 

30 for JEdit and 20 for JHotDraw (Figure 1). 

 

4.5. The Generated Topics 

We calculated the assignment metric and analyzed the discovered topics. Formally, the 

assignment of a topic zn at version Vi is the summation of the membership values of all 

documents in Version Vi [8].  
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Since the numbers of topics are 30 and 20, we show the analysis of few selected topics. 

Table 2 shows three selected topics, their labels, their top five terms, and their top 

corresponding document, and their top two corresponding versions based on the 

assignment values for each system. The values inside the parenthesis indicate the 

membership values of documents and the assignment values of versions. The table 

indicates that the top terms in each topic are coherent and much related to one concept 

and they are semantically similar. Moreover, each topic corresponds and fit with the top-

matching document. For JEdit, the assignment values for these topics are slightly larger in 

the last two selected versions (version 4.1 and version 4.2).  

Table 2. Selected Topics in JEdit and JHotDraw 

System Topic Label Top 5 Terms Top Document Top 2Versions 

JEdit 

6    Editing 
color, font, highlight, 

line, style 
Gutter.java (0.75) 

4.2(10.05), 

4.1(8.89) 

10 Browsing 

jpanel, actionhandl, 

emptybord, cancel, 

jbutton 

ToolBarOptionPane.j

ava (0.62) 

4.2(17.79), 

4.1(17.23) 

15 Searching 
search, view, buffer, 

replac, start 

SearchAndReplace.ja

va (0.82) 

4.2(8.76), 

4.1(7.62) 

JHotDraw 

12 XML 
valu, object, param, 

name, key 

SVGInputFormat.jav

a (0.88) 

7.0.9(22.45), 

7.1.0(22.99) 

14 Drawing 

color, editor, label, 

drawingeditor, 

attribute 

ButtonFactory.java 

(0.917) 

7.0.9(28.41), 

7.0.8(28.54) 

17 Display 
view, action, file, 

project, applic 

DefaultOSXApplicati

on.java (0.762) 

5.4.b2(36.24), 

7.1.0(40.00) 

 

To better understand the results, we use visualization. Figures 2 and 3 depict the 

heatmap of the assignment evolutions of JEdit and JHotDraw. The colors represent the 

assignment values for topics in each version of the system, where darker colors (blackish) 

indicate higher assignment values. The following subsections analyze the heatmap view 

of JEdit and JHotDraw respectively. 

 



International Journal of Software Engineering and Its Applications 

Vol. 9, No. 5 (2015) 

 

 

48   Copyright ⓒ 2015 SERSC 

 

Figure 2. Heatmap View of JEdit Topics 

 

Figure 3. Heatmap View of JHotDraw Topics 
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4.6. JEdit Heatmap 

We notice that some topics born in later versions of the system (e.g., topic 2 was born 

in version 5) while other topics appear in early versions and then disappear (e.g., topic 29 

was born in version 1 and almost died after version 6). We notice that many topics have 

darker colors in version 12(4.2) which indicate that some significant additions have been 

made at this version (e.g., new functionalities, refactoring, or a new release). Figure 4 

shows the features that have been updated in version 4.2.  

 

 

 

 

 

 

 

 

 

 

Figure 4. Updated Features in version 4.2 of JEdit 

4.7. JHotDraw Heatmap 

We notice that some topics born in later versions of the system (e.g., topic 9 was born 

in version 11) while other topics appear in early versions and then disappear (e.g., topic 8 

was born in version 1 and almost died after version 8). We notice that many topics have 

darker colors in version 7.0.7 which indicates that some significant additions have been 

made at this version (e.g., new functionalities, refactoring, or a new release). Figure 5 

shows the features that have been updated in version 7.0.7. 

 

 

 

 

Figure 5. Changes in Version 7.0.7 of JHotDraw 

After version 8 (7.1.0), a lot of changes have been introduced which explains the 

radical changes in the topics distribution after that version. Figure 6 shows the changes in 

version 9 (7.2.0). 

 

 

 

 

 

Figure 6. Changes in Version 7.2.0 of JHotDraw 
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Topic 20 has high values in versions 1 to 3. Topic 19 has higher values from version 4 

to version 8. The reason behind that is that version 4 gone through a major package 

restructuring. The new package structure of "org.jhotdraw" has been introduced instead of 

the old "CH.ifa.draw" package structure. Also, in later version, the copyright notices have 

been modified and updated in all source code file (Topic 20). Topic 9 has very high 

values in the last two versions. In version 11 (7.3.0), many changes have been introduced 

(Figure 7). 

 

 

 

 

 

 

 

Figure 7. Changes in Version 7.3.0 of JHotDraw 

The aforementioned changes have led to a lot of changes in both Javadoc 

documentation and test cases. If we examine the top terms in Topic 9, we will see that we 

have junit, javadocmethod, test, exception, framework, and testcas. 

Both topics 7 and 8 die after version 8. In the changes of version 9, drawing objects can 

now be serialized using the SerializationInputOutputFormat. This allows to easily 

implement short-term persistence for drawings (for example for clipboard support). A 

substantial number of user interface classes for the creation of toolbars have been added, 

and are used by the SVG sample application. For these reasons, both topics 7 and 8 died 

after version 8. These words in these topics are no longer exist in the system vocabulary 

because of these changes. 

Topic 2 has high values in the last three versions. The components structure and the gui 

components were majorly changed in these last versions. For instance, 

DefaultDrawingView uses in the last three versions double buffering to improve editing 

performance. Some classes were redesigned to better support the common use cases.  

 

5. Threats to Validity 

This study has been performed using only two case studies. The two case studies are 

quite similar. They are both long-lived projects and large open-source software systems. 

The results may vary if there is no enough history in order to generate meaningful LDA 

models (i.e., if the projects are not long lived). The size of the system is another important 

factor where the issues that arise in a large project are not the same in a small project. We 

think that this methodology could be also applied to other large, long-lived, open-source 

software projects, but we have not tested the results with other case studies. These two 

systems were chosen because they are well-documented and well-designed which allows 

us to validate and test the proposed approach. 

 

6. Conclusion 

In this paper, we investigated the use of LDA to support software evolution. LDA has 

been applied to all documents of all versions at once. We used the approach proposed by 

Arun to set the number of topics. The assignment metric has been calculated and 

visualization has been used to understand topic evolution. We examined the project 

history of two large open-source projects, JEdit and JHotDraw. The experiments showed 
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that changes in topics across versions are due to actual software changes such as addition 

of new features, updating of features, and removing features. As a result, using LDA 

facilitates the software evolution task. Future directions include using and defining other 

metrics on the output of LDA. In addition, we would like to perform more case studies on 

other systems. 
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