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Abstract. Recently, with the purpose of helping developers reduce the needed
effort to build highly secure software, researchers have proposed a number of
vulnerable source code prediction models that are built on different kinds of
features. Identifying security vulnerabilities along with differentiating
non-vulnerable from a vulnerable code is not an easy task. Commonly, security
vulnerabilities remain dormant until they are exploited. Software metrics have
been widely used to predict and indicate several quality characteristics about
software, but the question at hand is whether they can recognize vulnerable code
from non-vulnerable ones. In this work, we conduct a study on static code
metrics, their interdependency, and their relationship with security vulnerabili-
ties in Android applications. The aim of the study is to understand: (i) the
correlation between static software metrics; (ii) the ability of these metrics to
predict security vulnerabilities, and (iii) which are the most informative and
discriminative metrics that allow identifying vulnerable units of code.
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1 Introduction

Several software systems bump into security issues during their lifetime. To ensure
building highly secure software systems, developers need to invest the right amount of
time in testing and debugging security issues. Nonetheless, due to limited resources, it
is usually not possible to thoroughly check every file in a software system. Prioriti-
zation and different level of focus are needed to check and test more parts of the system
that are more prone to be vulnerable. Regrettably, identifying these vulnerable parts is
not an easy task since there are many parts in a software system, and only a few of them
are vulnerable.

Software security vulnerabilities are a continuous danger to software businesses
and their clients. Evaluating the security of a software system requires prioritizing
resources and minimizing risks. Several available techniques can be used to identify
security vulnerabilities before releasing the software such as manual inspection, static
and dynamic analysis. However, these techniques were found to be error-prone and
resource-intensive activities. This research aims to improve the detection of security
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issues by building a predictive model that will enable engineers to focus their activities
on non-secure apps. Basili et al. [1] suggested that prediction models can support
software project planning, scheduling, and decision-making. They enable software
teams to properly allocate needed resources to modules that are more likely to be
defect-prone. Generally, security vulnerabilities are a subset of defects.

In this work, we study which software static metrics have more relation with
security vulnerabilities in the source code. We hypothesize that some metrics can be
employed to distinguish between vulnerable or non-vulnerable code. A dataset
including 1407 Android apps with different static code metrics was analyzed. The
purpose of this research is to design an empirical study that aims to find the correlations
among these metrics, their impact in detecting vulnerabilities in source codes and to
define set of metrics which highly contributing to the prediction of security vulnera-
bilities. The results of this empirical study showed a strong correlation among some of
the static metrics. Moreover, by applying machine learning algorithm on the complete
dataset with 21 static metrics, the ability of these metrics to predict security vulnera-
bilities was observed with accuracy reached 94.4% in some classes. To find out the set
of metrics which have more influence in detecting the insecure codes, a feature
selection algorithm was also implemented. This algorithm succeeded to choose 9 out of
21 metrics which reduced the complexity of the prediction model without affecting its
accuracy. As a result, this research has mainly introduced an efficient risk score pre-
diction model for Android applications.

The rest of paper is organized as follows: Sect. 2 presents recent related work.
Section 3 introduces the empirical study setup. The experiments and their results are
detailed in Sect. 4. Then a discussion section is followed. Section 6 concludes the
paper and presents possible future work.

2 Related Work

Software security research has been going for a long period of time, several topics were
discussed by researchers, including security protocols and patterns to build secure
systems [2], software security testing [3], vulnerability detection [4], attack prediction
[5], and intrusion detection systems [6], just to name some. This shows that building
software without security vulnerabilities, despite the huge advances in software
development processes, is still very difficult, if not impossible [7].

Majority of similar studies concentrated on detecting and categorizing malicious
Android apps through the use of permissions [8], dynamic analysis, and machine
learning techniques [9]. Rahman et al. [10] investigated how effectively static code can
be used to predict security risk of Android applications. Based on 21 static code metrics
of 1,407 Android applications, and using radial-based support vector machine
(r-SVM), they got a precision of 0.83. Syer et al. [11] examined the relationship
between files defect-proneness and platform dependence in Android apps. They found
that source code files that are defect-prone have a higher dependence on the platform
than defect-free files. Previous studies also investigated the undesirable effects of
Android apps low-quality source code. Corral and Fronza [12] examined how market
success is dependent on source code quality.
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Software metrics have been widely-used to build prediction models to predict faults
[13, 14]. We also believe that software metrics can be used to build prediction models
to predict security vulnerabilities. Several vulnerability detection techniques and tools
are implemented by both commercial and open source to detect software vulnerabili-
ties. Generally, these techniques can be categorized broadly into three main categories:
static code analysis [15], emulation of security attacks (i.e., also known as penetration
testing) [16], and runtime monitoring of the system behavior [17].

While using software metrics to detect and predict security vulnerabilities is not that
common, we still can find quite a few studies in the literature to show some rela-
tionships between the software internal quality attributes and its security (as an external
quality attribute). The work in [18], is one of the first attempts to show that there is a
strong correlation between attackability (i.e., likelihood of an attack to succeed on a
software system [19]) and coupling metrics (e.g., Coupling Between Objects).

A different effort was focused on predicting software security vulnerabilities using
quantitative metrics [20]. A new metric called vulnerability density (i.e., number of
vulnerabilities per unit of code) was proposed to be used for comparing software
systems within the same category in terms of functionality. They also investigated the
possibility of predicting the number of vulnerabilities. In a different study [21], the
authors tried to understand where the majority of the vulnerabilities occur in a software.
They were not successful in finding a correlation between complexity or buffer usage
and the number of vulnerabilities. The authors in [22] focused more on complexity
metrics to predict failures and security vulnerabilities in software. They employed
machine learning approach to build a model using nine complexity metrics to predict
vulnerabilities. They showed that complexity metrics (e.g., Cyclomatic Complexity)
can predict vulnerabilities, but with a very high false negative rate. In [23], the authors
used nine function-level complexity metrics to build a framework to automatically
predict vulnerabilities (in addition to other coupling and cohesion file-level metrics, in a
total of 17). Several file-level metrics and development activity metrics (a total of 28)
were used to distinguish between vulnerable and neutral files in [24]. The results
showed their effectiveness in discriminating and predicting vulnerable files.

Recently, the authors in [25] used 27 function-level metrics to examine the cor-
relation between the software internal quality and security vulnerabilities. Although
they did not find a strong correlation between these metrics and the number of vul-
nerabilities, they found that software metrics can be used to discriminate vulnerable
functions from non-vulnerable ones.

The following sections present the structure of an empirical study, its implemen-
tation, results’ discussions and analysis. This study aims to investigate the impact of
static code metrics in detecting insecure software code, which metrics and to what
extent they can contribute to propose high-performance prediction models.

3 Empirical Study Setup

This section presents the empirical study conducted to examine the impact of static
code metrics in predicting the level of vulnerability in Android apps. Figure 1 shows
the empirical study structure.
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This study has used a dataset of 1407 Android apps obtained from the authors of
the work presented in [10]. SonarQube [26] analyzed these apps to extract 21 static
code metrics. SonarQube is a well-known tool that uses source code static analysis and
produces metrics. Since Android applications are built using Java, SonarQube was used
to extract the static code metrics from the Android Java source code files. The 21 static
code metrics are classified as follows:

Fig. 1. Empirical study structure
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• Object-oriented: Class complexity, Comment lines, Complexity, Density of
comment lines, Files, File complexity, Function complexity, Lines, Lines of code,
Methods, Number of classes, Percentage of comments, Percentage of duplicated
lines. The

• Bad Coding Practice: Blocker practices, Critical practices, Major practices, Minor
practices, Total bad coding practices

• Duplication: Duplicated blocks, Duplicated files, Duplicated lines

Moreover, Androrisk [27] tool was used to give a risk score to the Android
applications using fuzzy logic. This risk score is an approximation of the amount of
security and privacy risk for the Android application. Androrisk calculates a risk score
between 0 and 100 for each app based on different permissions and settings used by the
application. Each permission has a weight depending on its sensitivity and risk (i.e.
access to the Internet, SMS messages, or payment systems). The presence of more
dangerous functionality in the app (i.e. a shared library, use of cryptographic functions,
the reflection API) also has an impact on the risk score. Androrisk reports the security
risk score for each application. Androrisk is freely available, open-source, and has the
ability to quickly process a large number of apps.

The complete Dataset used by this research’s experiments includes the values of the
21 static metrics for each one of the 1407 apps. Also, the dataset categorizes the risk
scores into No, Low, Medium, and High based on their statistical distribution to ease
the prediction. Table 1 describes the classes/labels and their frequencies in the dataset.

Using this dataset, we designed our experiments to answer the following research
questions:

• RQ1: Is there any correlations among the static code metrics?
• RQ2: Are static code metrics able to predict security vulnerabilities?
• RQ3: Can static code metrics be ranked according to their contributions in pre-

dicting security vulnerabilities?

The following section illustrates how the conducted empirical study answers these
research questions.

Table 1. Classes categories in the dataset

Class Number

High 767
Low 28
Medium 22
No 590
Total 1407
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4 Experiments and Results

To answer the first research question (RQ1), Spearman’s Rank Correlation Coefficient
was performed. Spearman’s correlation can be used to evaluate the statistical depen-
dency between two metrics [28]. One of the strongest points of Spearman is the fact
that it does not need a normal distribution of data. Table 2 presents the results obtained
from the analysis. Two variables are considered strongly correlated if the value is
higher than 0.9 [28]. Since the dataset contains static code metrics, some of these
metrics might have similar definitions that could cause redundancy.

To answer the second research question (RQ2), a prediction model can be built on
the available dataset. The problem is formulated as a classification problem where the
static metrics are considered features and the risk level is considered class label.

A classic software security prediction model is trained using static code metrics and
security data that have been collected from already developed software. After creating
the prediction model, it can be used in new programs that do not have security
information.

Based on previous studies [24, 29], we chose Random Forest as our machine
learning algorithm to build this prediction model. Random Forests is an ensemble
learning method, which produces several decision trees at training time. Each tree gives
a class label. The Random Forests classifier selects the class label that has the mode of
the classes output by individual trees. The algorithm combines several decision tree
classifiers, each one fitted on a random sub-sample of a dataset, making it more
accurate and robust to outliers and noise than a single classifier. The Random Forest
classifier was implemented in WEKA tool with default parameter settings specified in
WEKA.

To get the classification results, we performed a 10-fold cross-validation, which
randomly partitions the data into 10 folds, with each fold being the held-out test fold
exactly once. The metrics used to evaluate the performance of the classifier are namely
Precision, Recall, and ROC (Receiver Operating Characteristic). The authors of [30]
argue that ROC is the best measure to report the classification accuracy. In the collected
data set, the number of apps with security problems is much lower than the number of
apps with no security problems. The Area Under the ROC Curve (AUC) is a preferred
measure since it considers the ability of a classifier to differentiate between the two
classes. AUC is sound more than other performance metrics since it has lower variance.
The AUC value ranges from 0 to 1. The ROC curve characterizes the trade-off between
true positives and false positives. The goodness of a classifier is judged based on how

Table 2. Strongly correlated static code metrics

LOC Functions Complexity Files Violations Lines

Classes 0.96 0.97 0.97 0.93 0.95
LOC 0.98 0.99 0.94 0.93 0.99
Functions 0.98 0.93 0.9 0.98
Complexity 0.92 0.92 0.97
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large an area under the curve is. Precision measures how many of the vulnerable
instances returned by a model are actually vulnerable. The higher the precision is, the
fewer false positives exist. Recall measures how many of the vulnerable instances are
actually returned by a model. The higher the recall is the fewer false negatives exist.

Table 3 shows the performance of the random forest-based prediction model, where
Table 4 displays the confusion matrix in case of considering all features (21 static code
metrics). Overall, the best prediction is observed in case of High and No classes.

Looking at the problem from a practitioner’s point of view, it is preferred to have a
model with a small set of metrics. Usually, some of these metrics provide redundant or
no new knowledge. In this work and to answer the third research question (RQ3), we
did a feature selection to find the best subset of the 21 metrics and to rank them with
regard to their contribution in predicting security vulnerabilities in order to build a
reliable prediction model.

Hall and Holmes [31] categorized feature selection algorithms to (1) algorithms that
evaluate individual attributes and (2) algorithms that evaluate a subset of attributes.
Since we are interested to find the best subset of features, we used the second category.
Correlation-based feature selection (CFS) is an automatic filter algorithm that does not
need user-defined parameters. Features selection implies removing irrelevant and
redundant features. CFS calculates a heuristic measure of the merit of a feature subset
from pair-wise feature correlations and a formula adapted from test theory. The subset
with the highest merit found during the search is reported. After running CFS, the
selected features are classes, Density of comment lines, files, directories, File com-
plexity, violations, duplicated blocks, lines, and critical violations.

Table 5 shows the performance of the prediction model after implementing the
features selection which reduces around 43% of the features. The results reveal

Table 3. Random forest classification with all features

Precision Recall ROC Area Class

0.854 0.846 0.944 No
0.941 0.571 0.786 Low
0.909 0.455 0.870 Medium
0.867 0.898 0.938 High
0.864 0.863 0.936 Weighted avg.

Table 4. Confusion matrix for all features

High No Low Medium

689 76 1 1 High
91 499 0 0 No
6 6 16 0 Low
9 3 0 10 Medium

90 M. Alenezi and I. Almomani



maintaining high accuracy in comparison to the model built based on all features.
Similar observations regarding the confusion matrices as can be seen in Table 6.

It is noteworthy knowing the most influential static code metrics that contribute to
predicting security vulnerabilities. The most influential metrics can be computed using
gain ratio [31]. The gain ratio provides a normalized measure of the contribution of
each feature to the classification. Table 7 reports the rank of the selected metrics. The
higher the gain ratio, the more important the feature to predict security vulnerabilities.

5 Discussion

All the metrics used in this study are static which means developers and organizations
can calculate them very easily. The features selected by the feature selection
methodology are classes, Density of comment lines, files, directories, File complexity,

Table 6. Confusion matrix after features selection

High No Low Medium

679 86 1 1 High
91 499 0 0 No
8 4 16 0 Low
10 2 0 10 Medium

Table 7. Features with high gain ratio values

Metric Gain ratio

comment_lines_density 0.1078
Lines 0.0973
Files 0.0839
Violations 0.0818
duplicated_blocks 0.0787
Classes 0.0763
Directories 0.071
critical_violations 0.0701
file_complexity 0.0318

Table 5. Random forest classification after feature selection

Precision Recall ROC Area Class

0.844 0.846 0.941 No
0.941 0.571 0.802 Low
0.909 0.455 0.879 Medium
0.862 0.885 0.934 High
0.857 0.856 0.934 Weighted avg.
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violations, duplicated blocks, lines, and critical violations. The number of classes
determines the size of the app, which plays an important role in determining the
security of the app. More classes mean more attack surface. For Density of comment
lines, it is very common in the software engineering community that if you have a very
complex code, developers tend to write more comments to explain it. Files, directories,
and lines have the same philosophy of the classes. For the file complexity, complexity
is always the enemy of security [32]. Regarding duplicated blocks and critical viola-
tions, they are patterns found to be unhealthy for software systems especially security
and privacy.

6 Conclusion

This papers presented an empirical study to examine the impact of static code metrics
in predicting security vulnerabilities in Android applications. Three main research
questions have been raised and answered in this research. The study results showed
different levels of correlation among the code metrics. A direct influence for the code
metrics in predicting security vulnerabilities was also observed. Moreover, these
metrics could be ranked according to their contributions to providing high prediction
rate. Feature selection algorithm played an important role in selecting the most
influential metrics. The algorithm reduced around 43% of the static metrics which
resulted in producing a lightweight, reliable prediction model.

As for future work, other static metrics could be considered, other tools with
different ranking philosophies could be examined to enhance the ranking system and
introduce prediction models with even higher accuracy.
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