
FEATURE

October 2020 Computer Fraud & Security
13

Security controls in
infrastructure as code

Mamdouh AleneziSadiq Almuairfi

To accomplish IaC, various programming
languages and tools must be used in order
to define the infrastructure (network, serv-
ers, storage). The ability to use practices
like code review, version control and unit
testing impacts infrastructure automation
positively. Two of the biggest benefits that
IaC implementation provides are com-
paratively rapid iterations and increased
speed of infrastructure deployment. The
usage of IaC scripts is really helpful for
practitioners in order to configure and
provision their development environments.
The scripts employed in IaC are also
known as ‘Configuration as code scripts’
or ‘configuration scripts.’ How beneficial
these IaC scripts are can be identified with
the example of Fortune 500 company
Intercontinental Exchange (ICE). ICE uses
IaC scripts to maintain 75% of its 20,000
servers, which ultimately results in a time
reduction of environment provisioning
from one or two days to 21 minutes.1

Although IaC has gained popularity in
recent years, when it comes to the qual-
ity of code, the research is very sparse.
This limited research has introduced the
term ‘code smell’. Kent Beck and Martin

Fowler introduced the concept of code
smell and according to them, code
smells are flaws in code that may cause
problems.2 There might be no run-time
errors while code smell is present but
the presence of code smell should be
taken as an indication for improvement.
Duplicate block (DB) smell is one such
example of code smell that occurs when-
ever identical statements are repeated.
The results of various researches prove
that noting code smells is an appropriate
method of assessing the quality of pup-
pet code. Puppet is a popular provision-
ing tool that helps write puppet codes
and uses IaC in order to specify the
desired state of the environment.3

Since we know that IaC scripts are
used by practitioners to develop environ-
ments and provision servers, there is a
chance that they may introduce security
smells inadvertently. Security smells are
simply recurring coding patterns or, in
simpler terms, are basically measures that
indicate security weakness. There is also
a possibility that the presence of secu-
rity smells may lead to frequent security
breaches. Thus, it becomes necessary

for practitioners to study security smells
in IaC scripts so that insecure coding
practices can be avoided. If we study the
responses of the Common Weakness
Enumerator (CWE), it can be found
that CWE considers hard-coded pass-
words as a security weakness. According
to CWE: “If hard-coded passwords are
used, it is almost certain that malicious
users will gain access to the account in
question.” Thus, even if a security smell
might not lead to a security breach at
the time of its discovery, proper atten-
tion should be given to it and it should
be inspected whenever needed.4

“Code smells are flaws
in code that may cause
problems. There might be
no run-time errors while
code smell is present but
the presence of code smell
should be taken as an
indication for improvement”

Writing the IaC code is quite a
complex task as it is basically done
by blending various infrastructure
programming languages. Thus, some
sort of approach is needed in order to
create complex IaC designs that save
time not only when being designed
but also at the time of deployment and
redeployment. Model-driven engineer-

intend to shift some employees to
remote work permanently’. Gartner,
3 Apr 2020. Accessed Sep 2020.
www.gartner.com/en/newsroom/
press-releases/2020-04-03-gartner-
cfo-surey-reveals-74-percent-of-
organisations-to-shift-some-employ-

ees-to-remote-work-permanently2.
3. Bissette, Hayleigh. ‘The threat

of Covid-19 phishing attacks’.
TheBusinessDesk, 7 Jul 2020. Accessed
Sep 2020. www.thebusinessdesk.com/
yorkshire/news/2058462-the-threat-of-
covid-19-phishing-attacks.

4. ‘Mitigate risks with PKI’. DigiCert.
Accessed Sep 2020. www.digicert.
com/pki/.

5. ‘Behind the scenes of SSL cryptogra-
phy’. DigiCert. Accessed Sep 2020.
www.digicert.com/ssl-cryptography.
htm.

Sadiq Almuairfi and Mamdouh Alenezi, Prince Sultan University

The development, deployment and management of software applications have
shifted dramatically in the past 10 years. This fundamental shift is what we now
know as development operations (DevOps). Infrastructure as Code (IaC) is one
of the main tenets of DevOps. Previously, manual configuration via cloud pro-
viders’ UI consoles and physical hardware used to take place. But now, with the
concept of IaC, the IT infrastructure can be automated by using blueprints that
are easily readable by machines.

FEATURE

Computer Fraud & Security October 2020
14

ing (MDE) provides us with one such
approach – data-intensive continuous
engineering and rollout (Dicer) – that
can be used to create language-agnostic
models that can be transformed into
IaC. Dicer is a model-driven approach
and acts as a supporting tool for users
who wish to develop IaC for big data
frameworks. Although Dicer doesn’t
support all of the well-known big data
frameworks, it provides the benefit of
the addition of new frameworks.5

Similar to software source code, IaC
scripts can face many issues, making
these scripts susceptible to security
defects. Defects in IaC scripts can have
serious consequences, as these scripts are
associated with setting up and managing
cloud-system infrastructure and ensur-
ing the availability of software devices.
For example, in early 2017, execution
of a defective IaC script removed the
home directories of around 270 cus-
tomers in cloud instances maintained
by Wikimedia.6 This evidence, plus
research studies, motivated us to care-
fully study the security of IaC, which is
the focus of this article.

Related work

Software teams are able to implement
continuous deployment and make rapid
changes by the use of configuration as
code (CaC) tools.7 The popularity of
these tools is increasing day by day but
investigating the challenges faced by the
programmers while using these tools and
finding solutions to those challenges can
be really helpful in identifying potential
technical challenges related to CaC.

We conducted research on what ques-
tions are asked by the programmers about
CaC. In order to extract puppet-related
questions asked by programmers on Stack
Overflow from 2010 to 2016, qualita-
tive analysis was applied. On the basis of
responses extracted through this analysis,
it was discovered that the three areas that
disturb programmers the most about
CaC are installation, security and data
separation. While practitioners use IaC,

certain recurring coding patterns may
lead to weaknesses in security, indicating
an increased chance of security breaches.

In order to make sure that practitioners
make no mistakes when developing IaC
scripts, researchers conducted a study of
security smells in IaC scripts. They made
use of 1,726 IaC scripts through the
approach of qualitative analysis in order
to find seven security smells. Among the
15,232 IaC scripts, the authors imple-
mented the SLIC (security linter for
infrastructure as code) tool to identify the
occurrence of each smell. Through their
research, Rahman et al in ‘The Seven
Sins’ have tried to answer questions about
the type of security smells, their frequen-
cy, lifetime and the opinion of practition-
ers about them. Apart from finding the
answers to these questions, the authors
made sure that the results of the SLIC
tool were properly evaluated and created
Oracle datasets in order to do that.

IaC uses blueprints that are easily read-
able by machines. Schwarz et al have
discussed all the necessary elements and
abstractions that are used in the writing
and maintenance of the blueprint of IaC.
The authors seem to outline the benefits
of DevOps but at the same time keeping
IaC as the accelerating tactic for DevOps.
The standard that the authors have used
for the expression is known as ‘topology
and orchestration specification for cloud
applications’ (Tosca). Tosca is defined as
an industrial practice language that is used
for automated industrial deployment and
multi-cloud compliant applications. One
other major benefit that Tosca offers is
that it provides reusable nodes and edges.
Also, the authors have discussed Dicer,
which is a model-driven tool to quickly
put together the infrastructure design for
a big data cloud application as a part of
continuous-data intensive architecting.

Increased complexity

IaC scripts are a blend of various infra-
structural programming languages, and
with the increased complexity of the
infrastructure, the complexity of writ-

ing these IaC scripts is also increased.
In order to exploit model-driven engi-
neering (MDE), Artac et al attempted
to create language-agnostic models that
possess the capability to transform them-
selves into IaC scripts automatically. In
addition, the authors have shown that
a significant amount of time can be
saved even while creating complex IaC
by following the Dicer approach. Also,
the authors described the Ops activi-
ties (server provisioning, monitoring,
self-adaptation, etc) required to deploy
and operate cloud applications continu-
ously. Speaking of Dicer, the key feature
it offers is that models that are written
using the Dicer profile can be automati-
cally translated into IaC scripts.

The quality of code is important in
any software project. Schwarz et al have
focused research on the quality of code
while the concept of IaC is gaining
popularity day by day, looking for flaws
in the quality of code – that is, code
smells. In their research, the authors
tried to apply code smells to different
technologies in order to investigate if
similar results could be achieved. To
proceed with their research, the authors
formulated two questions and by the
application of code smells, tried to find
the answers to those questions. The
questions were particularly concerned
with the applicability of puppet smells
to other configuration management
tools and the existence of other pro-
gramming smells relevant to IaC. Also,
the authors have proposed three types
of code smells in the paper: technology
agnostic smells, technology-depend-
ent smells and technology-specific
smells. The results obtained through
the research indicate the presence of
IaC smells in other technologies and
tools. In order to be sure of the results
obtained, the authors further evaluated
the results and conducted two more
case studies that examined the proper-
ties of completeness and soundness.

System discrepancies and system
outages are some of the outcomes
that can be seen if the quality of IaC

FEATURE

15
October 2020 Computer Fraud & Security

scripts isn’t up to the mark. In order to
improve the quality of IaC scripts by
practitioners, Rahman in ‘Anti-Patterns
in Infrastructure as Code’ conducted
research on the identification of anti-
patterns in IaC scripts and then devel-
opment of the IaC scripts. As per the
author: “Through systematic investiga-
tion, we can identify anti-patterns in IaC
that correlate with defects, and violate
security and privacy objectives.”

The methodology used by Rahman
was based on characterising defective IaC
scripts by extracting text features. The
two text-mining techniques used were the
‘bag-of-word’ technique, and the ‘term
frequency-inverse document frequency’
technique. In order to characterise the
properties of defective IaC scripts, Rahman
also applied Strauss-Corbin Grounded the-
ory. As a result, the three properties that
characterise defective IaC scripts turned
out to be infrastructure provisioning, file
system operations and management of user
accounts. Rahman built prediction mod-
els using characteristics such as commits,
number of multitasking practitioners, their
age, etc.

Quality challenge

Even though IaC scripts are widely adopt-
ed, the development and maintenance of
premium quality IaC scripts are challeng-
ing to the majority of the developers. Chen
et al conducted research in order to iden-
tify error patterns for IaC.8 The authors
proposed an approach to handle frequently
occurring IaC code errors. The approach
works on the extraction of ‘code changes’
from historical commits and once they
are extracted, an unsupervised machine
learning algorithm is employed in order to
cluster them in groups. Thus it can be said
that the approach is formed by following
three steps, which are: extraction of code
changes; identification of error patterns;
and suggesting constraint rules as outcome.
The authors employed abstract syntax tree
(AST) differencing in order to locate the
code changes. Through their research, they
were able to classify 41 cross-project error

patterns such as variable related errors, file-
related errors, OS-related errors, etc. The
rationale that the authors propose as being
behind their approach is: “Identical (or
similar) code errors would be fixed with
identical (or similar) code changes.”

In order to keep up with the improve-
ment in cloud system environments,
Lavriv et al proposed the method of cloud
system disaster recovery based on the con-
cept of infrastructure as code.9 In order to
define a sample cloud infrastructure, the
authors used a tool named Terraform by
Harshicorp. This tool was developed using
the Go programming language and is very
promising. Its simple syntax is based on
the key-value format, which makes it very
popular in IT operations. Through their
research, the authors have tried to show
the benefits of using the IaC concept as
compared to the manual approach in case
of system failure. Also, the authors simulat-
ed the disaster of sudden manual destruc-
tion of all previously created infrastructure.
The two types of recovery actions that
were investigated were Terraform tool
activation and manual infrastructure rec-
reation. Through the results achieved, the
authors were able to justify the difference
between the recovery time manually and
with a tool like Terraform. The difference
becomes more visible with the increased
complexity of the cloud system.

IaC scripts can be defective and may
lead to large-scale service outages for end
users.10 These defects can be mitigated
if somehow we are able to predict the
defective IaC scripts and that was the
goal of Rahman et al in conducting this
research. The authors talk about propos-
ing the matrices related to the defect
prediction model in order to prioritise
inspection efforts. Also, the authors
employed constructivist ground theory
(CGT) to identify the metrics that are
suitable to IaC scripts. The methodol-
ogy used by the authors consists of four
steps: repository collection; commit mes-
sage processing; determination of defect-
related commits; and application of
CGT theory respectively. As a result, the
authors obtained 18 metrics indicating

18 different defect characteristics. Thus
the authors, through their research, were
able to prove that IaC scripts are suscep-
tible to defects and these defect predic-
tion models or metrics can help practi-
tioners prioritise inspection efforts.

Even though build automation tools
provide benefits such as reduction in
errors and reduction in rapid release of
software changes, these are still considered
complex among software practitioners.
Build automation is considered to be a
technology that “automatically compiles
and tests software changes, packages
the software changes into a binary, and
prepares the created binary for deploy-
ment”.11 The authors in ‘Which Factors
Influence Practitioners’ Usage of Build
Automation Tools?’ focus their research
on the identification of adoption factors
that may influence the usage of these
build automation tools among software
practitioners. In addition, the authors
conducted a survey to identify these
adoption factors, and responses from
268 software professionals were recorded.
The responses revealed that complexity
wasn’t the main factor hindering the use
of these tools by practitioners – instead,
it was compatibility. On the basis of
responses received, the authors suggest
that the use of build automation tools can
be increased if, “build automation tools
fit well with practitioners’ existing work-
flow and tool usage, and usage of build
automation tools are made more visible
among practitioners’ peers.”

Security (code) smells

The concept of code smells describes
flaws in code that may lead to a prob-
lem. Rahman et al in ‘The Seven Sins’
identified seven security smells in IaC
by performing an experiment on open
source repositories. They concluded that
security smells can have a long lifespan
– for example, a hard-coded secret can
remain as long as 98 months, with a
median lifetime of 20 months. On the
other hand, Schwarz et al presented a
catalogue of 17 code smells in IaC which

FEATURE

Computer Fraud & Security October 2020
16

were applied and focused on the Chef
configuration management tool. This
indicates that a further investigation of
code smells in the area of IaC is needed.
Therefore, we will list some code smells
(process metrics) for any deployment
tools that are not covered by the above-
mentioned studies as follows:

Permissions: The source (deployment)
server must have write-only permission
to destination servers and client machines
during the deployment process. This
action will avoid reading the source server
information from destination servers
and clients. In fact, read permission does
not always lead to a security breach but
makes it easier to gather information on
the deployment server. Thus, we consider
read permission is a security smell in IaC.

Path configuration: In this smell, it’s
recommended to save all paths in the
config file, which will save time and effort
in the case of any path issues brought up.
The configuration file is not compiled
during the deployment process, so if a case
of a path error comes along on a produc-
tion server, practitioners can change the
path from the config file easier and faster.
Figure 1 shows an example of a config file
protected with a key.

Threat model

Threat modelling is the process of iden-
tifying and investigating potential threats
in order to find any architectural bugs
before they breach security. Although
threat modelling can be done at any
stage, doing it in the early stages provides
the additional benefit of early determina-
tion of threats. Figure 2 shows the model

that represents the security assurance
workflow as proposed by Jim Bird.12

Pre-commit stage

At this stage the continuous integration
server executes automatic tests on all the
proposed changes and team members are
engaged in reviewing code. Changes to soft-
ware and configuration are checked into a
source code repo. Security checks and con-
trols at this stage are as follows: lightweight
iterative threat modelling and risk assess-
ment; static analysis checking in the IDE of
the engineer; and peer code reviews.

Continuous integration
stage
This stage is triggered automatically by
a check-in. Build and basic automated
testing of the system is performed. Fast
feedback to developers is returned verify-
ing whether the change breaks the build.
The stage is usually completed in a few
minutes. The security checks at this stage
are as follows:
• Compile and build checks that

ensure that the steps are clean with
no errors and warnings.

• Software component analysis in the
build with identification of risk in
third-party components.

• Incremental static analysis scanning for
bugs and security vulnerabilities.

• Generating alerts on high-risk code
changes with the help of static analysis
checks and tests.

• Automatic unit testing of security
functions with the help of code cov-
erage analysis.

• Signing binary artifacts digitally and
storing them in repositories.

Acceptance stage

The continuous integration server executes
a set of automatic acceptance tests. This
stage is triggered by a successful com-
mit. The latest good commit build is
selected and dispatched to an acceptance
test environment. Automated acceptance
tests – which involve functional, integra-
tion, performance and security tests – are
executed. In order to minimise the time
required to perform the test, in most cases
the tests are fanned out to heterogeneous
test servers and executed in parallel. By
following the ‘fail fast’ approach, the most
time-consuming and expensive tests are
left until as late as possible in the test cycle
and are only executed if other tests have
already passed.

Security control and tests at this stage
are as follows:
• Provisioning of runtime environment

and secure automated configuration
management.

• Deployment of the latest good build
from the binary artifact repository
automatically.

• Smoke tests, which are designed to
catch mistakes in configuration or
deployment.

• Dynamic application security testing.
• Automatic functional and integration

testing of security features.
• Automated security attacks with the

help of Gauntlt or other security tools.
• Deep static analysis scanning.
• Fuzzing (APIs, files).
• Manual penetration testing.

Production deployment
and post-deployment
Upon passing the above-mentioned tests,
the change is ready to be deployed to
production. Security checks and controls
are needed at this stage, including:
• Provisioning of a run-time environ-

ment and secure automated configu-
ration management.

Figure 1: An example of a config file.

FEATURE

October 2020 Computer Fraud & Security
17

• Automated deployment and release
orchestration.

• Post-deployment smoke tests.
• Automated run-time assets and com-

pliance checks.
• Production monitoring/feedback.
• Runtime defence.
• Red teaming.
• Bug bounties.
• Blameless postmortems.

All of the above-mentioned practices
are implemented according to the risk
profile of the organisation.

Vulnerability
management module
In order to track vulnerabilities, assess
risk and understand trends, this module
helps us to view the status of the pipe-
line, systems and portfolios. There is

a need for metrics for compliance and
risk-management purposes. These met-
rics will help us understand how to pri-
oritise testing and training efforts, which
helps in assessing the application security
program.

By collecting data on vulnerabilities,
important information can be gained,
such as: the number of vulnerabilities dis-
covered, how the vulnerabilities are dis-
covered and what tools are giving the best
returns, what are serious vulnerabilities,
how long it’s taking to get the vulnerabili-
ties fixed, etc. All this information can
be obtained by providing security testing
results from continuous delivery pipelines
into a vulnerability manager.

The above-mentioned security assur-
ance workflow can be made more secure
with the best practices discussed in the
following section.

Best practices to secure IaC

To achieve consistency, speed of deploy-
ment, simplicity and security in IaC,
best practice should be followed. Related
efforts in this direction can be found in
the references.13-19 We have worked on
consolidating these studies and present
the best of the best practices as follows:

Manual security assessment: This step
involves manually inspecting the live infra-
structure after deployments and reviewing
the architecture/templates before they are
deployed to a live environment.

Codify everything: All infrastructure
specifications should be explicitly coded
in configuration files, such as AWS
CloudFormation templates, Chef recipes,
Ansible playbooks, or any other IaC tool.
These configuration files represent the
single source of truth of your infrastructure
specifications and describe exactly what
cloud components you’ll use, how they
relate to one another and how the entire
environment is configured. Infrastructure
can then be deployed quickly and seam-
lessly, and – ideally – no one should log
into a server to manually make changes.

IaC documentation: This approach
advises that writing documentation should
be avoided because the code itself will
register the machine status automatically.
That means the infrastructure documen-
tation is always up to date. Additional
documentation, such as diagrams and
other setup instructions, may be necessary
to educate employees who are less familiar
with the infrastructure deployment pro-
cess. But most of the deployment steps will
be performed by the configuration code,
so this documentation should ideally be
kept to a minimum.

Version everything: The configuration
files should be managed in a version-
controlled way. Because all configuration
data are written in code, any modifications
to the codebase can be controlled, tracked
and reconciled. The version control system
(VCS) is a core part of managing IaC. The
VCS is the source of truth for the overall
status of the infrastructure. Any changes
in infrastructure will be performed by

Figure 2: Security
assurance workflow
for IaC.

FEATURE

Computer Fraud & Security October 2020
18

changes committed to the VCS. In addi-
tion, VCS is important for IaC because it
provides the following functions:
• Traceability: Record all changes that

have been made.
• Rollback: Restore things back in case

of any failures.
• Correlation: Useful for tracing and fixing

complex problems when these occur.
• Visibility: All team members can see

when changes are committed to VCS.
• Actionability: VCS can trigger

actions automatically when a change
is committed.

Continuously test system, integrate
and deploy: The repeatability of IaC is an
enabler of this approach, where the chang-
es first deploy into a test environment.
Automated tests verify that there were no
security and compliance regressions before
deploying the changes to a production
server. All of this is managed by an auto-
mated CI/CD (continuous integration/
continuous deployment) pipeline. Unit
tests for configuration code should include
security checks such as the following:
• Disable unnecessary services.
• Close unused ports.
• Look for hardcoded credentials and

secrets.
• Check and review permissions on

files and directories.
• Ensure that development tools are

not installed in production servers.

• Check auditing and logging policies
and configurations.

Modular code (small changes rather
than big batches): Modular infrastructure
limits the number of changes that can
be made to the configuration. Smaller
changes make errors easier to detect and
allow the team to fix them. There are
many reasons to prefer small changes over
big batches, including the following:
• Easier and less effort in case of test-

ing the changes and evaluation.
• Faster to find the cause of the bugs

and errors, then easy to fix them.
Immutable infrastructure: This

approach takes IaC to the next level. The
idea behind immutable infrastructure
is that IT infrastructure elements are
replaced for each deployment, instead
of making changes on current compo-
nents. This process provides consistency,
avoids configuration drift and restricts the
impact of undocumented changes. Also,
it improves security and makes fixes easier
due to the lack of configuration edits.

Continuous security and service
availability: Complexity is the enemy of
security, so it’s important to secure not
only the application and its runtime envi-
ronment but also the continuous delivery
toolchain and test environment. Also,
it is important to protect the pipeline
from insider attacks by ensuring that all
changes are fully transparent and trace-

able from end to end. That will provide
secure service availability and ensure the
continuous flow of the delivery pipeline.

Figure 3 shows the summary of the
best practice approach to secure IaC.

Conclusion

The aim of this article was not only to
introduce the reason behind the increas-
ing popularity of ‘infrastructure as code’
but also to dig deep into an area that is
not much researched. Our research in this
paper led us to the identification of code
smells and their classification in categories
such as technology-agnostic and technol-
ogy-dependent smells. Thus, it can be
concluded that these smells provide us
with adequate means to test the quality/
security of IaC scripts.

The research leads us to information on
how IaC scripts help companies in the cur-
rent IT industry to automatically configure
their production environment and how
security smells lead to an increment in
system weakness and what practices can be
used by software practitioners in order to
formulate a quality code or IaC script.

Through our research on security in
IaC, one thing that became clear is that
IaC might be one of the fundamental
pillars to DevOps but it is susceptible to
defects. In order to eliminate the occur-
rence of these defects, we have to learn
about defect prediction models. Lastly, we
built a threat model in order to secure the
controls of an IaC. The employability of
threat models and their importance in the
development stage is what makes them the
preferred tool of developers. This practice
of making threat models should also be
promoted as it can protect end users from
a lot of disturbance.

About the authors
Dr Sadiq Almuairfi is currently an e-ser-
vice director and researcher at the Security
Engineering Lab at Prince Sultan University,
Riyadh, Saudi Arabia. He received a bach-
elor’s degree in computer engineering from
KFUPM, Dhahran, Saudi Arabia in 2001,
a master’s degree in information manage-

Figure 3: Best practice
summary.

FEATURE

October 2020 Computer Fraud & Security
19

ment from King Abdulaziz University,
Jeddah, Saudi Arabia, in 2005 and a PhD
in cyber security from La Trobe University,
Melbourne, Australia in 2014. His research
interests include cyber security, network secu-
rity and e-commerce security.
Dr Mamdouh Alenezi is currently the dean
of educational services at Prince Sultan
University. He received his MS and PhD
degrees from DePaul University and North
Dakota State University in 2011 and 2014
respectively. He has extensive experience in
data mining and machine learning, where
he applied several data mining techniques to
solve software engineering problems. He has
worked in several research areas and devel-
oped predictive models using machine learn-
ing to predict fault-prone classes, comprehend
source code and predict the appropriate devel-
oper to be assigned to a new bug.

References
1. Artac, M; Borovssak, T; Di Nitto,

E; Guerriero, M; Tamburri, D.
‘DevOps: Introducing Infrastructure-
As-Code’. 2017 IEEE/ACM 39Th
International Conference On Software
Engineering Companion (ICSE-C).

2. Fowler, M; Beck, K; Brant, J;
Opdyke, W; Roberts, D; ‘Roberts,
Refactoring: Improving the Design
of Existing Code’. Addison-Wesley
Longman Publishing, 2018.

3. Schwarz, J; Steffens, A; Lichter,
H. ‘Code Smells in Infrastructure
as Code’. 11th International
Conference On the Quality of
Information and Communications
Technology (QUATIC), 2018.

4. Rahman, A; Parnin, C; Williams, L.
‘The Seven Sins: Security Smells in
Infrastructure as Code Scripts’. IEEE/
ACM 41st International Conference
On Software Engineering (ICSE), 2019.

5. Artac, M; Borovsak, T; Di Nitto,

E; Guerriero, M; Perez-Palacin, D;
Tamburri, D. ‘Infrastructure-As-Code
for Data-Intensive Architectures:
A Model-Driven Development
Approach’. IEEE International
Conference On Software Architecture
(ICSA), 2018, pp.156-165.

6. Rahman, A. ‘Anti-Patterns in
Infrastructure as Code’. IEEE 11th
International Conference On Software
Testing, Verification and Validation
(ICST), 2018.

7. Rahman, A; Partho, A; Morrison, P;
& Williams, L, ‘What Questions Do
Programmers Ask about Configuration
as Code?’, 2018 ACM/IEEE 4Th
International Workshop On Rapid
Continuous Software Engineering

8. Chen, W; Wu, G; Wei, J. ‘An
Approach to Identifying Error
Patterns for Infrastructure as Code’.
2018 IEEE International Symposium
On Software Reliability Engineering
Workshops (ISSREW).

9. Lavriv, O; Klymash, M; Grynkevych, G;
Tkachenko, O; Vasylenko, V. ‘Method
of cloud system disaster recovery based
on “Infrastructure as a code” concept’.
14th International Conference On
Advanced Trends in Radioelecrtronics,
Telecommunications and Computer
Engineering (TCSET), 2018.

10. Rahman, A; Stallings, J; Williams,
L. ‘Defect Prediction Metrics for
Infrastructure as Code Scripts in
DevOps’. 2018 ACM/IEEE 40th
International Conference On Software
Engineering: Companion Proceedings.

11. Rahman, A; Partho, A; Meder, D;
Williams, L. ‘Which Factors Influence
Practitioners’ Usage of Build
Automation Tools?’. IEEE/ACM 3rd
International Workshop On Rapid
Continuous Software Engineering
(Rcose), 2017.

12. Bird, Jim. ‘Security as Code:
Security Tools and Practices in
Continuous Delivery’. O’Reilly
Media, 2016. Accessed Sep 2020.
www.oreilly.com/library/view/devo-
pssec/9781491971413/ch04.html.

13. Feintuch, Roy. ‘New Security
Challenges with Infrastructure-as-
Code and Immutable Infrastructure’.
The New Stack, 4 Apr 2018.
Accessed Jan 2020. https://the-
newstack.io/new-security-challenges-
with-infrastructure-as-code-and-
immutable-infrastructure.

14. Chan, Mike. ‘Infrastructure as Code:
6 best practices to get the most out
of IaC’. Thorn Technologies, 27
Feb 2018. Accessed Jan 2020. www.
thorntech.com/2018/02/infrastruc-
ture-as-code-best-practices/.

15. ‘What Is Infrastructure as Code? How
It Works, Best Practices, Tutorials’.
Stackify, 5 Sep 2019. Accessed Jan
2020. https://stackify.com/what-is-
infrastructure-as-code-how-it-works-
best-practices-tutorials/.

16. Null, Christopher. ‘Infrastructure
as code: The engine at the heart of
DevOps’. TechBeacon. Accessed Jan
2020, https://techbeacon.com/enter-
prise-it/infrastructure-code-engine-
heart-devops.

17. Hornbeek, Mike. ‘9 Pillars of
Continuous Security Best Practices’.
DevOps.com, 8 Jan 2019. Accessed
Jan 2020, https://devops.com/9-pillars-
of-continuous-security-best-practices/.

18. Morris, Kief. ‘Challenges and
Principles’. In: ‘Infrastructure as
Code’, O’Reilly Media, 2015.

19. ‘Secure development and deployment
guidance’. National Cyber Security
Centre (NCSC). Accessed Jan 2020,
www.ncsc.gov.uk/collection/develop-
ers-collection.

http://www.oreilly.com/library/view/devo�pssec/9781491971413/ch04.html
http://www.oreilly.com/library/view/devo�pssec/9781491971413/ch04.html
https://the�newstack.io/new-security-challenges-with-infrastructure-as-code-and-immutable-infrastructure
https://the�newstack.io/new-security-challenges-with-infrastructure-as-code-and-immutable-infrastructure
https://the�newstack.io/new-security-challenges-with-infrastructure-as-code-and-immutable-infrastructure
https://the�newstack.io/new-security-challenges-with-infrastructure-as-code-and-immutable-infrastructure
http://www.thorntech.com/2018/02/infrastruc�ture-as-code-best-practices/
http://www.thorntech.com/2018/02/infrastruc�ture-as-code-best-practices/
http://www.thorntech.com/2018/02/infrastruc�ture-as-code-best-practices/
https://stackify.com/what-is-infrastructure-as-code-how-it-works-best-practices-tutorials/
https://stackify.com/what-is-infrastructure-as-code-how-it-works-best-practices-tutorials/
https://stackify.com/what-is-infrastructure-as-code-how-it-works-best-practices-tutorials/
https://techbeacon.com/enter�prise-it/infrastructure-code-engine-heart-devops
https://techbeacon.com/enter�prise-it/infrastructure-code-engine-heart-devops
https://techbeacon.com/enter�prise-it/infrastructure-code-engine-heart-devops
https://devops.com/9-pillars-of-continuous-security-best-practices/
https://devops.com/9-pillars-of-continuous-security-best-practices/
http://www.ncsc.gov.uk/collection/developers-collection
http://www.ncsc.gov.uk/collection/developers-collection

	Security controls in infrastructure as code
	Related work
	Increased complexity
	Quality challenge
	Security (code) smells
	Threat model
	Continuous integration stage
	Acceptance stage
	Production deployment and post-deployment
	Vulnerability
management module
	Best practices to secure IaC
	Conclusion
	About the authors
	References

