ICIC Express Letters ICIC International (©2019 ISSN 1881-803X
Volume 13, Number 7, July 2019 pp. BE7T—567

USING PUBLIC VULNERABILITIES DATA TO SELF-HEAL
SECURITY ISSUES IN SOFTWARE SYSTEMS

ATTIQ UR REHMAN JAFFAR!, MUHAMMAD NADEEM!, MAMDOUH ALENEZI?
AND YASIR JAVED?

!Computer Engineering Department
Balochistan University of Information Technology Engineering and Management Sciences
Airport Road, Baleli, Quetta 87300, Pakistan
attiq.jaffar@hotmail.com; dr.nadeem@ieee.org

2College of Computer and Information Sciences
Prince Sultan University
P.O.Box No. 66833 Rafha Street, Riyadh 11586, Saudi Arabia
{ malenezi; yjaved }@psu.edu.sa

Received December 2018; accepted February 2019

ABSTRACT. Hackers are worryingly becoming able to trick both naive and well-informed
users into becoming security victims. Software applications nowadays have become more
complex due to the increased interaction of the user, the limitless need for innovative
capabilities, the use of open source, and third-party libraries known to be vulnerable.
With each passing day, the techniques used to hack systems become ever more ingenious.
Therefore, individual users and companies must prepare and raise their shields to safe-
guard their data and reputation. Web-applications are the main streams these days with
regard to software systems requiring an inclusive approach to both prevent and reduce
security weaknesses. During Cross-Site Scripting (XSS) vulnerabilities exploration, we
assume that all security measures can fail and security depends on multiple levels of
mechanisms that cover errors. Achieving this goal is possible by applying different meth-
ods and tools that can ensure security during or after the development of the application.
This paper examines the possibility of using public vulnerability repositories in helping to
suggest mitigation techniques in Common Weakness Enumeration (CWE) articles. The
paper proposes a framework that can transform a vulnerable code to secure code. The
evaluation suggests that the proposed system can successfully remove the vulnerable code
by applying articles from the public vulnerability repository. Application of framework on
two projects shows the removal of above 90% wvulnerabilities after detection. The proto-
type implementation showed that the vulnerable code could be transformed into a secure
code automatically without human intervention.

Keywords: Self-healing, CWE, Secure systems, Vulnerable code, Security defects

1. Introduction. The software development process has become a very complex en-
deavor, which led to ignoring several security measures. Web-applications are the main
streams these days with regard to software systems and are stored on a remote machine,
which can be accessed globally. The architecture of this type of applications is based on
client-server and can be accessed with any standard Internet browser by multiple clients
or in a hybrid environment (desktop or Web services). It is not necessary to develop and
test it in all possible configurations and versions of the operating system. This makes it
far easier to develop and troubleshoot this kind of applications.

Software attacks have increased exponentially after 2014 in form of denial of service,
Web application or cyber espionage [1,2]. It is observed that most companies invest less
in applications and products and the percentages of breaches have increased.

DOLI: 10.24507 /icicel.13.07.557

557

558 A. UR R. JAFFAR, M. NADEEM, M. ALENEZI AND Y. JAVED

The ubiquity of Web browsers, the ability to update and manage Web applications
without the distribution and installation of software on thousands of computers and their
cross-platform compatibility were the main reasons for the popularity of Web applications
[3]. The evolution of Web technology greatly improves the variety of services offered on
the Web. However, the modern development of Web applications presents many security
challenges, which are often not taken into account seriously. Although techniques such
as threat analysis are increasingly recognized as essential for software development, there
are also other practices that can be adopted while developing software applications.

Cyberwar has led to change of attacks over government or countries. Attacks on com-
mon installation, leakage of data through national centers, manipulating political results
are to name few [4]. Some of the common reasons for Web attacks are vulnerable software
design, code defects and default installations [5,6]. The main challenge facing the security
community is to understand software security weaknesses by communicating a common
language that is reported by different vendors. This will help discover more in-depth
knowledge for any vulnerability and attack patterns found in software. The only way to
succeed in application security is to use a process that continuously analyzes and evalu-
ates new threats, evolves and establishes defenses and monitors those defenses to ensure
their effectiveness.

The main reason for having vulnerable software is because of the lack of knowledge at
software architects or developers. There have been substantial Web security breaches in
corporate, military, e-commerce and banking sectors. Such breaches not only affect these
sectors financially but also destroy their public reputations [4,7].

It is very essential to introduce new methods that can alleviate such risks and make
Web-applications less prone to cyber-attacks. Web application developers have begun to
think about intrinsic security that builds security throughout the Software Development
Life Cycle (SDLC). SDLC is commonly used by the software industry to produce an in
time and high-quality software solution after rigorous testing. Most Web application se-
curity testing efforts are concentrated around penetration testing which is an art based on
hacker’s awareness who is obsessed with figuring out new exploits to hack your applica-
tion, thought process and determination to exploit software vulnerabilities. In this paper,
we introduce a framework that takes input from public vulnerabilities data repositories
and provides suggestions to remove vulnerabilities. It also will provide auto-correction
based on mitigation techniques to remove any vulnerability existing in code.

In Section 2 literature review is presented in form of division into security requirements,
attacks, and validation techniques. Section 3 presents the software self-healing framework
that can be used to reduce the vulnerabilities such as cross-site scripting from the code.
Section 4 presents the research methodology and research questions to be addressed.
Section 5 presents the results obtained from the proposed framework and analysis of the
results. Section 6 presents the conclusions.

2. Literature Review.

2.1. Web application security. Web applications have introduced a number of new
issues that were not even there with static websites. Moreover, due to the openness
in a Web application, it has become a practice battle group for checking any new kind
of attacks by even script kiddies or newbies. The attacks are ever evolving while the
technologies have not evolved, thus leaving a gap between the application and attackers
[8,9]. Due to the awareness among the developers and some new technologies, some
of the critical attacks have vanished from the surface. Web application infrastructure
requires in-depth knowledge of handling security at each stage. Identification of security
vulnerabilities requires not only good tools but also good security practices [10]. Security
community suggested to use white box analysis for detection of security issues or other

ICIC EXPRESS LETTERS, VOL.13, NO.7, 2019 559

practices such as black box testing scanners check Web application security for different
vulnerabilities [11].

Checking for security issues is an essential part and ensures that at least the major
vulnerabilities are not there. Understanding the specific Web vulnerabilities is a key
element of the application that should be considered in all organizations and should be
the main domain of penetration assessors, code reviewers and other security professionals
[12].

2.2. Cross-site scripting or XSS attack. Cross-site scripting, also known as XSS
attack, is a type of attack that can be performed to engage users of a website. Exploiting
an XSS error allows attackers to inject scripts into Web pages viewed by users [13].
Although there is no specific classification of XSS attacks as they depend on the context
of the attack where malicious script or file can be sent in a shape of file or input field
researchers normally classify XSS attack into three categories Type-0 attacks, Type-1
attacks, and Type-2 attacks. These are briefly described below.

e Type-0 attack is also known as Document Object Model (DOM) based attacks [13],
in which the attacker injects the script on the client side and this is often imitated
by convincing a victim to click on a certain link containing malicious code. During
this attack pattern, the attacker does not need to send the payload to the server
rather executing it on the client’s browser.

e Type-1 attack, also known as Stored or Persistent XSS, in which the attacking hacker
inserts malicious code into Web pages and then stores it on the Web server for future
use. The payload can be returned to other users who requested the stored information
from an infected Web page and are executed in its context [14]. The severity of the
attack is directly proportional to the number of users visiting the compromised Web
server. Applications such as social networking, forums, and blogs are the major
victims to initiate this type of attacks.

e Type-2 attacks are also known as a Reflected XSS. During this attack, pattern hacker
creates a link in form of website ads or by sending it in victims’ emails asking them to
reset their passwords by opening that link. A request sent by the user to the server
is not executed in the context of that server rather sending the user a malicious code
that executes in victim browser. After executing malicious script in the browser,
the hacker can get control of the user’s session and can steal sensitive information

[14,15].

2.3. Input validation. Input validation attacks constitute most of the vulnerabilities.
Hence, a strong mechanism is required to implement those validation rules, although it
may vary from one application to another or based on the choice of languages used by the
developer [16]. It is also believed that unfiltered input is responsible for the wide range of
vulnerabilities. There are different methods that have been employed to avoid unfiltered
data on the client-side or server-side [17].

Some known practices are adopted by the programmers to filter such input data prior to
processing it. Figure 1 shows an example of white list for PHP language where alphanu-
meric characters, white spaces or any other specific inputs are allowed. This type of list
confirms that user-supplied input is safe to process. In the same way, blacklist contains
all those patterns, which are not allowed, and the program will validate everything else.

Validating the user input for any malicious activity is easy but may lead too many false
positive results to process all incoming data that user may enter. There may be another
way to address input validations issues as described earlier; i.e., it depends on the choice
of programming language preferred by developers. HtmlLawed [18] is one of the tools
which is PHP based used to remove cross-site scripting and neutralize the HTML code.
Due to static in nature, it is also recommended to revise these lists regularly as the range

560 A. UR R. JAFFAR, M. NADEEM, M. ALENEZI AND Y. JAVED

<2php
function wss_whitelist($input, $1imit = null, Soffset = @)
I
/ Force input to be a stringd
fx = (string) f$input;
/ A4llow alphanumeric characters, whitespace, and specific characters
$x = preg_replace("/["a-zA-Z8-9 -z, . 12/ |1/, ", 80
imit characters
if ($1imit) {
3 = substr{$x, %foffset, $limit);
/ Convert characters to HTML entities and return the sanitized string
retuern htmlentities{%x, ENT_QUOTES, 'UTF-8');
H
Eh

Ficure 1. XSS whitelist for PHP language that shows a safe input check

of input data may change over time since it also helps to decrease the false positive or
false negative results.

3. Software Self-Healing Framework. Software framework can be defined as a set of
abstract rules or libraries on which applications can be built and can help to reduce the
overall complexity of the application during its development phase. Application frame-
works not only increase the performance of the developer but can also help to produce
complex applications in a given period [19]. The selection of the framework depends on d-
ifferent factors such as platform support, the type of platform they support, programming
language preferences, developer availability, or the cost of software licenses.

3.1. Proposed framework. In the proposed framework shown in Figure 2, we will ex-
plain the different modules. The reason behind the selection of a public repository is that
they can help us to modify the code by utilizing the mitigation reported in public vul-
nerabilities database. We discussed the framework by dividing it into a public repository,
static analysis and code transformation for further details.

3.2. Public vulnerability repositories. In this section, we analyzed the list of differ-
ent vulnerability repositories, which can further help us to choose the type of repository
to mitigate some of our focused vulnerabilities. Software buyers want to ensure that
software products that they purchase are reviewed for known types of security breaches
and software companies making it part of their future agreements. The basic goal of the
vulnerabilities repository is to classify the security-related issues so that the developers
can be timely informed to overcome security flaws. For this goal, different security or-
ganizations started centralized databases to address those flaws and develop a mutual
consensus on the basic taxonomy of security flaws [20].

3.3. National vulnerability database. This repository is developed by the United
States (US) government. Vulnerability management information is based on standards
represented by the use of content automation protocol for security. This information allows
automation of vulnerability management, security measures and compliance. National

ICIC EXPRESS LETTERS, VOL.13, NO.7, 2019 561

Source
Static Analysis
Vulnerable
Modules
Transform textual Code
solutions to Transformation
standardizedrules module

\|/ Transformed
code

EE

Modified Code

Public Repository

FIGURE 2. Proposed software self-healing framework for identification and
removal of software security vulnerabilities

Vulnerability Database (NVD) includes security checklist databases, security software
defects, incorrect configurations, product names and impact metrics. Security Content
Automation Protocol (SCAP) provides a detailed low-level guide to establish security for
operating systems and applications [21].

3.4. Common Weakness Enumeration (CWE). CWE was launched early 2006 as a
result of a workshop hosted by the NIST in 2005. The goal of the workshop was to analyze
the security diagnostic tools and detect security problems. The motive behind the CWE
was to improve software quality by introducing common reference dataset of reported
vulnerabilities within the source code of the application and to provide common mitigation
techniques for reported flaws [22]. CWE is assembled and updated by various international
groups of security experts and academic institutions to explain the complexity of content.
CWE provides a standardized vocabulary for software developers to specify potential
risks and their proposed solutions by the security community. Each section has its own
significance to understand the nature of weaknesses during the life cycle of any application.
There are over 700+ weaknesses listed on the CWE website [23].

A thorough survey suggests that there are a number of other vulnerability repositories
including security focus, WPscan and OSVDB, etc. [23]. Every repository has its own
benefits and issues in terms of understanding software weaknesses. Some of these, such
as WPscan focus solely on Word press applications or specific to the platform [24]. We
found that CWE repository covers a wide range of reported vulnerabilities, most of which
are discussed with their potential mitigations. A major focus of our research is those
articles which are related to coding issues. After analyzing a dataset of articles provided
by CWE, we conclude them based on their weaknesses abstraction type in Table 1.

3.5. Static analysis tools. These tools scan applications code for possible errors without
executing them as illustrated in Figure 4. Employing these tools provides the first line
of defense against any security threat. Finding bugs in the source code with a static

562

A. UR R. JAFFAR, M. NADEEM, M. ALENEZI AND Y. JAVED

TABLE 1. CWE articles analysis showing weakness type in class level, base
level and variant abstraction

L Research | Development | Architectural
Description
concepts concepts concepts
Class weaknesses abstraction type 89 85 42
Base weaknesses abstraction type 328 328 117
Variant weaknesses abstraction type 289 289 61
Compound weaknesses abstraction type 8 4 3
Major categories 0 42 12
Total listed articles 714 707 223

analysis has been a challenging task for the security community that is conducted through
a number of tools to understand the flagged warnings or errors generated by these tools
which is also another daunting task for the code reviewer. Researchers also recognize the
impact of false positive or false negative reports [25] generated by the static analysis tools
which can also reduce the quality of code analysis.

As many factors need to be considered during code analysis, such as programming
language in which static analysis tools are built. Answers should be found for how well
they are aligned with the type of software being developed. How fast the development
team can adapt the possible security threats recommended by the tools and, finally yet
importantly, how well these tools integrate with the SDLC during development process
26,27].

Figure 3 shows that with the help of a static analysis tool, the framework checks the
source code for possible weaknesses that are vulnerable to security attacks. Analysis report
generated by the static analysis will help us evaluate the performance of our framework and
understand how the flagged warnings or vulnerabilities are mitigated with the proposed
methodology.

Static Analysis

AL

n List of
Source 3 Vulnerabilities
Code @

FIGURE 3. Static analysis workflow

3.6. Code transformation module. Applying changes after scanning the source code
for possible security vulnerabilities will be the core module in our framework. Modifi-
cation of code in a vulnerable source code file can produce unexpected results and may
compromise the overall execution of the application.

4. Research Methodology. In this section, we discuss our purposed approach by an-
swering the following Research Questions (RQs).

RQ 1: What is a software self-healing framework, which utilizes public
repositories?

In the proposed framework, the CWE articles are well explained and we can analyze
their data from different angles such as the development concepts, research concepts and
architectural concept.

RQ 2: How can the mitigation strategies in the CWE repository be trans-
formed into standardized rules?

ICIC EXPRESS LETTERS, VOL.13, NO.7, 2019 563

We studied a different type of vulnerabilities from the CWE repository where it proposes
different mitigation solutions on different levels of the application development.

RQ 3: How can the standardized rules, discussed in the previous question,
be used to transform vulnerable code to secure code?

As we discussed in RQ2, the mitigation techniques explained in the articles can be
converted into rules as we will translate those suggestions with the help of regular expres-
sion. In Figure 4, we showed that when we select the article CWE-79 and transformed
the textual solutions to standard rules, it can ensure that the XSS attack will not occur
again.

] OWE - CWE-79: Imprope %

(& & Sccure | https://cwe.mitre.org/data/definitions/79.htm

¥ Potential Mitigations

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output
include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be
expected. This is especially important when transmitting data between different components,
or when generating outputs that can contain multiple encodings at the same time, such as
web pages or multi-part mail messages. Study all expected communication protocols and data
representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received
from external inputs, use the appropriate encoding on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary
depending on whether the output is in the:

« HTML body

« Element attributes (such as src="XYZ")

» URIs

« JavaScript sections

« Cascading Style Sheets and style property

etc. Note that HTML Entity Encoding is only appropriate for the HTML body.

Consult the XSS Prevention Cheat Sheet [R.79.16] for more details on the types of encoding
and escaping that are needed.

FiGure 4. CWE-T79 article showing the possible mitigation technique for
handling design to prevent XSS attack

RQ 4: How is the performance of the proposed framework in terms of
resolution of security issues?

This has been answered in the experiments and results section where the proposed
framework shows a solution of around 83% of the issues.

5. Experiments and Results. In this section, the login form is analyzed to check the
vulnerabilities and how the insertion of secure code can make the code secure.

Step 1: We are scanning a standard Login form for any vulnerability. The following
sample page contains the different components such as Textbox controls and Button
control. The following page, illustrated in Figure 5, was developed in Asp.net 4.0, and the
basic structure of the code is distributed in two files, namely, Login.aspx and Login.aspx.cs.

In Figure 6, the controls being used belong to the input type, which is the first entry
for a hacker to insert their malicious code.

Step 2: In this step, we observed a CWE-79 article where it focuses on input validation
and we convert it to rule for this specific input element. The article explains one of the

564 A. UR R. JAFFAR, M. NADEEM, M. ALENEZI AND Y. JAVED

Sign in
Business Logic
e = protected void LoginButton_Click({object
14 {
string u = Username.Text;
: string p = Password.Text ;
—_
}
Login.aspx.cs
Consequences
* Un-encoded information supply Vulnerable Code
+ Attacker can execute Malicious code String u= Username.Text;
f—
and may become permanent part of the String p= Password.Text;
application.

* Codeinjection

FI1GURE 5. Showing the sample test page for the Login form

Login.aspx.cs

Rules for Input controls J
string pattern = "\w+\.(Text)*(\s)*;"; Use one
a 4 static
Article CWE-79 * ModifyCode Replace(attribute, Static AnaIySIs analysis

"Server.HtmlEncode(" + attribute +")"); il

Vulnerable
Modules

Transform textual Code T
| solutions to Transformation e:ioooﬁe
=7 standardizedrules module

J/ Transformed
code

o EPE

ModifiedLogin.aspx.cs

Knowledgebase

FIGURE 6. Framework processes showing how article CWE-79 is used to
extract rules and applied on Login form to do input validation

mitigation strategies for input that is if the input controls are not encoded before sending
user data to the server, it may give chance to the attacker to execute some malicious
codes on the server-side or client-side.

As mentioned before, the rules we are proposing are language specific as in this case
we configure rule specific to asp.net language discussed in Step 1.

In this case, we write a rule for all the input controls in Asp.net to check whether
the controls are properly encoded as per CWE-79 proposed mitigation solution. We
transformed the rule for encoding mitigation by extracting the input controls with the
help of regular expressions as described in Figure 7.

ICIC EXPRESS LETTERS, VOL.13, NO.7, 2019 565

17 - private List<string> GetVulnerableCode(string htmlString)
18 {

19 List<string> Collection = new List<string>();

20

21 string pattern = @"\w+\.(Text)*(\s)*;";

22 Regex rgx = new Regex(pattern, RegexOptions.IgnoreCase);
23 MatchCollection matches = rgx.Matches(htmlString);

24

25 for (int i = @, 1 = matches.Count; i < 1; i++)

26 {

27 Collection.Add(matches[i].Value);

28 }

29

30 return Collection;

31 }

2 [

FiGure 7. Input rule for checking vulnerable code

var regex = new RegExp("\\Ww{1,}\\.(Text){0,}(\\s){0,};", "¢"); var testString
= """ // fill this in var match;
while ((match = regex.exec(testString)) != null) {

// javascript RegExp has a bug when the match has length 0 if
(match.index === regex.lastlndex) {

++regex.lastIndex;

}

// the match variable is an array that contains the matching groups }

Vulnerable Code Healed Code

using System; using System;

using Svstem Collections Genene, using System Collections Generic,

using Svstem Ling; using System Ling;

usang System. Web; using System. W

using System. Web.UT; using System.Web UI;

using System. Web. UL WebControls; using System. Web UL WebControls;

usang System. Text RegularExpressions; using System. Text RegularExpressions;

public partial class Login : Systern. Web UL Page public partial class Login : System. Web, Ul Page

{ protected voud Page_Load(object sender, EventArgs ¢) { protected voud Page_Load(object sender, EventArgs ¢)
{ 1

H ¥

P d veid L B: _Click(object sender, EventArgs) protected void LoginBunton_Click(object sender, EventArgs e)
{

string u = [IRCTREITERN string u = Server HmlEncode(Usemame. Text);

string p = PRSNGSR string p = Server HmlEncode(Password. Text)

sEregion Processing #region Processing

Zendregion #endregion

H

H }

String u= Username.Text; Converted to Server HrmlEncode(Username.Text)
String p= Password.Text; Converted to Server HtmlEncode(Password. Text)

F1GURE 8. The proposed healed code

In Figure 8, we described a rule to collect all input text controls, which are not encoded.

The modified code saved in a new file as ModifyLogin.aspx.cs, which can be integrated
with the existing project solution.

In Table 2, it is shown that for any specific type of code elements for input and re-
sponse.write() are scanned and vulnerable elements are resolved. The probability of re-
solving vulnerable codes is based on filters applied and current practices reported in the

566 A. UR R. JAFFAR, M. NADEEM, M. ALENEZI AND Y. JAVED

TABLE 2. Results for application of a framework for two Web resources

Domain Pages LoC |Response. Write found|Textbox|Resolved Syntax Total
scanned error
Carskilla.com 19 3550 12 35 39 3 47
Educational
management, 51 7429 78 226 290 9 304
System

CWE-T79 article, which can be further improved with the adoption of new CWE articles
and their proposed mitigation techniques.

Table 2 shows that with the help of the proposed solution the accuracy of the code is
83% for the carskilla.com domain whereas syntax error produced after resolving issues is
6%. This concludes that by improving the proposed prototype in terms of the scanner
and all the suggested mitigation techniques provided in CWE articles, the ratio of syntax
error to resolving issues can be minimized.

6. Conclusions. The major contribution of this work resides in the development of a
framework that can utilize mitigation techniques provided in CWE entries. The proposed
framework consists of different modules integrated with each other to achieve the desired
result. CWE entries provide a different suggestion of each category such as architecture,
development, and implementation. We closely analyzed the entry structure, which helped
to extract mitigation techniques for the potential mitigation section. Then, we identified
the particular vulnerability and converted its textual information to rules. Based on
these rules, we scanned the code for possible vulnerability with regular expression based
pattern(s). The porotype was furtherly developed to Add, Remove/Comment or Replace
vulnerable code found during scanning with the possible mitigation solution. With the
combination of publically reported vulnerable repositories and code transformation, this
will help mitigate vulnerable code automatically. The prototype implementation showed
that the vulnerable code can be transformed into a secure code automatically without
human intervention.

In the future work, we plan to develop more advanced techniques to mitigate code
vulnerabilities as the buffer overflows. The proposed framework is still on early stage, but
the rules defined in vulnerability repository can be extracted with advanced NLP based
processing of repositories to produce sophisticated regular expressions, which can help
to reduce code anomalies after modification. To automate the selection of CWE articles
from the repository, a particular vulnerability can also be done with the help of a mapping
algorithm, to get the most relevant mitigation scheme for vulnerability.

Acknowledgment. This work is fully supported by Prince Sultan University under the
Project ID SSP-18-5-08. The authors also gratefully acknowledge the helpful comments
and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] A.S. Khan, Y. Javed, J. Abdullah, J. M. Nazim and N. Khan, Security issues in 5G device to device
communication, IJCSNS, vol.17, no.5, pp.366-375, 2017.

[2] R. H. Veni, A. H. Reddy and C. Kesavulu, Identifying malicious Web links and their attack types
in social networks, IJSRCSFEIT, vol.3, no.4, pp.1060-1066, 2018.

[3] M. Babiker, E. Karaarslan and Y. Hoscan, Web application attack detection and forensics: A survey,
Proc. of the 6th Int. Symp. Digit. Forensic Secur. (ISDFS 2018), pp.1-6, 2018.

[4] M. Uma and G. Padmavathi, A survey on various cyber attacks and their classification, Int. J. Netw.
Secur., vol.15, no.5, pp.390-396, 2013.

[5] Y. Javed and M. Alenezi, Defectiveness evolution in open source software systems, Procedia Comput.
Seci., vol.82, pp.107-114, 2016.

[6]

10]
11]
12]
13]
14]

[15]

[16]

ICIC EXPRESS LETTERS, VOL.13, NO.7, 2019 567

M. Alenezi and Y. Javed, Open source Web application security: A static analysis approach, 2016
Int. Conf. Eng. MIS, pp.1-5, 2016.

M. Alenezi and Y. Javed, Developer companion: A framework to produce secure Web applications,
Int. J. Comput. Sci. Inf. Secur., vol.14, no.7, p.5, 2016.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee and S.-Y. Kuo, Securing Web application code
by static analysis and runtime protection, Proc. of the 13th Conf. World Wide Web — WWW’04,
p.40, 2004.

X. Liand Y. Xue, A Survey on Web Application Security, Isis.Vanderbilt.Edu, Nashville, 2011.

B. Arkin, S. Stender and G. McGraw, Software penetration testing, IEEE Secur. Priv., vol.3, no.1,
pp-84-87, 2005.

M. Khanna, N. Chauhan, D. Sharma and A. Toofani, A novel approach for regression testing of Web
applications, Int. J. Intell. Syst. Appl., vol.10, no.2, pp.55-71, 2018.

A. Rashid et al., Scoping the cyber security body of knowledge, IEEE Secur. Priv., vol.16, no.3,
pp-96-102, 2018.

S. Gupta and B. B. Gupta, Cross-Site Scripting (XSS) attacks and defense mechanisms: Classifica-
tion and state-of-the-art, Int. J. Syst. Assur. Eng. Manag., vol.8, pp.512-530, 2017.

Z. S. Alwan and M. F. Younis, Detection and prevention of SQL injection attack: A survey, Int. J.
Comput. Sci. Inf. Technol., vol.6, no.8, pp.5-17, 2017.

G. R. K. Rao, K. V. J. S. S. Ram, M. A. Kumar, R. Supritha, S. A. Reza and B. Tech, Cross
site scripting attacks and preventive measures, Int. Res. J. Eng. Technol., vol.4, no.3, pp.2016-2019,
2017.

D. A. Kindy and A. S. K. Pathan, A detailed survey on various aspects of SQL injection in Web
applications: Vulnerabilities, innovative attacks and remedies, Int. J. Commun. Networks Inf. Secur.,
vol.5, no.2, pp.80-92, 2013.

F. Holik and S. Neradova, Vulnerabilities of modern Web applications, The 40th Int. Conv. Inf.
Commun. Technol. Electron. Microelectron., pp.1256-1261, 2017.

M. S. Mahindrakar, Prevention to cross-site scripting attacks: A survey, International Journal of
Science and Research, vol.3, no.7, pp.414-418, 2014.

M. Salehie and L. Tahvildari, Self-adaptive software: Landscape and research challenges, Trans.
Auton. Adapt. Syst., vol.4, no.2, 2009.

S. Christey and R. A. Martin, Vulnerability Type Distributions in CVE, MITRE, Common Weakness
Enumer., pp.1-38, 2007.

S. Zhang, D. Caragea and X. Ou, An empirical study on using the national vulnerability database
to predict software vulnerabilities, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol.6860, no.1, pp.217-231, 2011.

M. Howard, Improving software security by eliminating the CWE top 25 vulnerabilities, IEEE Secur.
Priv., vol.7, no.3, pp.68-71, 2009.

R. A. M. Coley, S. Christey, J. E. Kenderdine and L. Piper, CWE Version 2.9, 2015.

A. K. Kyaw, F. Sioquim and J. Joseph, Dictionary attack on wordpress: Security and forensic
analysis, The 2nd Int. Conf. Inf. Secur. Cyber Forensics (InfoSec 2015), pp.158-164, 2016.

Z. P. Reynolds, A. B. Jayanth, U. Koc, A. A. Porter, R. R. Raje and J. H. Hill, Identifying and
documenting false positive patterns generated by static code analysis tools, Proc. of IEEE/ACM the
4th Int. Work. Softw. Eng. Res. Ind. Pract. SER IP, pp.55-61, 2017.

A. K. Talukder et al., Security-aware Software Development Life Cycle (SaSDLC): Processes and
tools, IFIP Int. Conf. Wirel. Opt. Commun. Networks (WOCN’09), pp.1-5, 2009.

M. Nadeem, E. B. Allen and B. J. Williams, A method for recommending computer-security train-
ing for software developers: Leveraging the power of static analysis techniques and vulnerability
repositories, Proc. of the 12th Int. Conf. Inf. Technol. New Gener. (ITNG), pp.534-539, 2015.

