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ABSTRACT

Software Architecture plays a vital role in the success or failure of software systems. Architecture understandability is a very 

important factor for managing and improving the system architecture. In this work, understandability of software 

architectures at the component-level will be explored. This study examines software structural properties of size, 

coupling, stability, and complexity against the effort spent by a developer to study a component. Number of software 

design metrics have been explored in the same context in the literature before, however, this work would explore a 

different combination of design metrics. A case study has been adopted from the literature that used an open source 

software system, which comprises of seven components. Analyses of Correlation, Collinearity, and Multivariate 

regression have been performed. The results of the statistical analyses indicate a correlation between most of the metrics 

used and the required effort needed to understand a component.
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INTRODUCTION

In the object-oriented software systems, measuring 

architecture understandability is trending to be a major 

topic. Understandability is one of the most important 

characteristics of software quality because of the more 

difficult to understand a software system the more this 

would prevent or limit its reusability and maintainability 

and therefore can influence cost and/or reliability of 

software evolution (Stevanetic and Zdun, 2015). Software 

architecture is defined as, “the structure or structures of 

the system, which comprise software components, the 

externally visible properties of those components, and the 

relationships among them” (Bass et al., 1998). Understand 

ability is defined as the ease with which a model can be 

understood (Stevanetic and Zdun, 2014; Moody, 1998). It 

is a sub-characteristic of the usability characteristic of 

software quality as it is mentioned in ISO 9126-1 Quality 

Model (ISO, 2001). Hence, this work focuses on the area of 

software architecture understand ability metrics. It will 

extend exploration of some of the metrics that are 

believed to have an effect on the understandability of 

software architecture.

This work would extend a work done by (Stevanetic and 

Zdun, 2014) that explored the relationships between 

component-level metrics size, coupling and complexity 

and the required effort to understand a component. The 

design metrics that were used in (Stevanetic and Zdun, 

2014) were Number of Classes as size metric, Number of 

incoming Dependencies and Number of Outgoing 

Dependencies as coupling metric and for complexity, 

Number of Internal Dependencies was used. On the other 

hand, in extending Stevanetic and Zdun work, this work 

aims to explore a different combination of design metrics 

that touches Size, Coupling, Complexity, and Instability. 

The design metrics are Number of Methods as a size 

metric, Loose Class Coupling (LCC), and Tight Class 
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Coupling (TCC) as coupl ing metr ics, McCabe's 

Cyclomatic Complexity V(G) as a complexity metric and 

finally Instability and Distance as Instability metrics.

In this work, the first step is to develop and agree on 

research questions. The aim is to answer these research 

questions within the work. For this work, two research 

questions have been developed and agreed on and they:

(RQ1) What are the available metrics in the literature that 

measure design/ architecture properties understand 

ability of object-oriented software architecture? 

(RQ2) What is the relationship of design metrics of size, 

coupling, complexity and stability, and the understandability 

of object-oriented software architecture?

1. Related Work

This section is designed to have a dedicated subsection 

for each metric. Some background information about 

what software architecture, understandability and the 

differences between package, component, and module 

is discussed. Tables A3 and A4 in the Appendices show a 

list of metrics and their information that was found in the 

literature and Information about the research papers, 

respectively.

1.1 Software Architecture

There are different definitions that define software 

architecture of a system. One of the famous ones that 

were repeatedly mentioned and used in the literature is 

“the structure or structures of the system, which comprise 

software components, the externally visible properties of 

those components, and the relationships among them" 

(Bass et al., 1998). IEEE 2000 standards define the 

software architecture as following, "Architecture is the 

fundamental organization of a system embodied in its 

components, their relationships to each other and to the 

environment and the principles guiding its design and 

evolution" (IEEE, 2000). Another definition is used and it 

says, “software architecture is an abstraction of the run-

time elements of a software system during some phase of 

its operation. A system may be composed of many levels 

of abstraction and many phases of operation, each with 

its own software architecture” (Shaw, 1990). 

Gomaa (2011) has explained software architecture as, “a 

software architecture separates the overall structure of 

the system, in terms of components and thei r 

interconnections, from the internal details of the individual 

components.”

Software architecture is used by architects to allow them 

focusing on the “big picture” of a system rather than the 

fine-grained details (Oreizy et al., 1999). In addition, 

software architecture is considered by Garlan (2000) to 

have a major role in 6 different sides of software 

development. These sides are understanding, reuse, 

construction, evolution, analysis, and management.

1.2 Package, Module, and Component

In the literature, one can notice that package, module 

and component levels are mentioned and that is 

because of the different levels of architecture that each 

literature is focusing on. 

The package is used to represent a set of classes that 

might be hierarchically structured and to perform a series of 

related tasks (Gupta and Chhabra, 2009; Alenezi, 2016). 

Niemeyer and Knudsen (2005) have defined a JAVA 

package as, "a group of classes that are related by 

purpose or by an appl icat ion. Classes in the same 

package have special access privilege with respect to 

one another and may be designed to work together 

closely" (Niemeyer and Knudsen, 2005). A Package can 

contain sub-packages. 

The module comprises of a large number of classes and 

“module is referred to as a package” (Alenezi, 2016). It 

provides information hiding for the module allowing a 

software engineer to see it as a black box (Hwa et al., 

2009).

Alenezi (2016) has stated that, “A component in the 

context of object-oriented design is for organization 

purposes. The component contains a group of classes 

and other components as well.” A component provides 

one or two similar system functionalities (Stevanetic and 

Zdun, 2014).  

In conclusion, it is noticeable that these terms explain the 

same thing; a container that is used to organize and hold 

a set of related software artifacts together. However, a 

component can mean a different artifact organization 
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when it is looked at in the context of a UML Diagram. 

1.3 Understandability

Understandability in the context of software architecture 

simply means the degree of understanding system 

architecture by the average architect/developer. 

Understandability is defined in the literature as the ease 

with which a model can be understood (Stevanetic and 

Zdun, 2014; Moody, 1998). It is a sub-characteristic of the 

usability characteristic of software quality as it is 

mentioned in the ISO 9126-1 Quality Model (ISO, 2001). It 

is considered as one of the most important sub-

characteristics since the difficulty of understanding the 

software system limits and might even prevent the 

software system reusability and maintainability. This 

drawback would lead eventually to influence the cost or 

reliability of software evolution (Stevanetic and Zdun, 

2015). Software Assurance Technology Centre has 

developed a software quality model for quantitative 

measurement of quality of software. SATC has proposed five 

quality contributors/attributes for the code and design phase, 

such as efficiency, complexity, understandability, reusability, 

and testability /maintainability (Khaliq et al., 2011).

1.4 Metrics

Metric, in general, is defined as the following, "it is merely a 

measurement of an arbitrary standard" (Knudsen and 

Niemeyer, 2005). In the Software field, a metric is defined 

as, "a quantitative measure of the degree to which a 

software item possesses a given quality attributes" (Xu and 

Nicolaescu, 2015). In this case, understandability is a sub-

characteristic that if an engineer would want to control, 

manage and then enhance then he/she needs to 

measure it first.

However, there is literature that has explored relationships 

of certain design metrics at a certain view-level of 

architecture and the understandability of the architecture 

to a developer. Each of these view-level design metrics is 

discussed separately in the next sub-sections.

1.4.1 Size

Size metric in software is related to the number of artifacts 

of a certain system part in a certain view level of an 

architecture. 

Elish (2010) has used as the measurement of a package-

level size the number of classes (NC). The NC metric for a 

package is defined as the number of concrete and 

abstract classes (and interfaces) in the package. Elish has 

found that there is a positive significant correlation 

between the Number of Classes and Package 

understandability. As the NC increases in a package, the 

more effort is required to understand it. 

Almousa and Alenezi (2017) in their quest to measure 

software architecture stability have considered size to be 

the main metr ic. They have stated that, “ These 

functionality will be represented at the end for each class 

in the system either by adding new line of codes or 

method or imported packages or adding new 

interfaces.”

Stevanetic and Zdun (2014) have considered the number 

of classes too in a component-level as the metric to 

measure the size. They have concluded that when a 

number of class increases in a component, it increases 

the needed effort to understand it. The needed effort is 

measured by the time that a programmer/developer took 

to understand the component and answer the related 

questions of the component. 

Hwa et al. (2009) in their proposed hierarchical quality 

model have found that there is a positive influence of the 

design size in the module and it is defined as a number of 

modules (MD) in the design on understandability. The 

larger the size the harder is to understand.  

The Number of Methods (NOM) in a class is another size 

metric that represents the total number of all methods 

implemented within a class (Bansiya and Davis, 2002). It is 

commonly used in Weighted Methods per Class (WMC) 

metric. Rosenberg and Hyatt (1997) have mentioned that 

WMC is either the number of the methods implemented 

within a class or the sum of the complexities of the 

methods. Also Bansiya and Davis (2002) defined the 

number of methods as, “a count of all methods defined in 

a class”. However, Chidamber and Kemerer (1994) have 

considered this WMC to be a design metric that measures 

a complexity attribute of a system. Table A1 in the 

Appendices shows a list of the literature that used size 

metrics and their view level along with the type of the 
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metric used.

For this work, Number of methods metric is selected. The 

reason behind this selection is that NC metric is already 

explored for the same variables of the Case Study 

(Stevanetic and Zdun, 2014). Another reason is to explore 

different size metric that the already explored NC metric in 

both (Elish, 2010; Stevanetic and Zdun, 2014).

1.4.2 Coupling

The Coupling metric is defined as “the manner and 

degree of interdependence between packages” (Gupta 

and Chhabra, 2009). Both terms of Coupling and 

Cohesion are usually occurring together and caused 

some confusion. Both terms were first introduced by 

Stevens et al. (1974). The aim of a software module is to be 

loosely coupled and has a high cohesion in order to 

reduce maintenance and modification cost. There are 

different ways of measuring coupling at a different level of 

architecture's views found in the literature. One is the 

afferent (Ca) (Almousa and Alenezi, 2017) also known as 

Number of Incoming Dependencies (NID). Another one is 

the efferent (Ce) (Almousa and Alenezi, 2017) –also 

known as Number of Outgoing Dependencies. Also, 

Loose Class Coupling (LCC), and Tight Class Coupling 

(TCC) are found which measure class coupling. 

The Ca metric for a package is defined as, “the number of 

other packages that depend upon classes within the 

package” (Elish, 2010). Ca is used to measure the 

incoming dependencies (fan-in) for a package. The Ce 

metric for a package is defined as, “the number of other 

packages that the classes in the package depend upon” 

(Elish, 2010). Ce is used to measures the outgoing 

dependencies (fan-out) for a package. LCC is defined as 

a metric that calculates the low dependency between 

object-structure at run-time (Sharma and Chug, 2015). 

TCC is defined as the metric that calculates the high 

dependency between object-structure at run-time 

(Sharma and Chug, 2015). In addition to these Coupling 

metrics, Gupta and Chahbra (2009) have proposed new 

metrics based on Package level coupling and the formal 

definitions and properties of packages (Package, Sub-

Package, and class). 

Gupta and Chahbra's (2009) proposed metrics have 

been created based on the dif ferent types of 

connections in the packages: Class – Class Connection, 

Sub-Package – Sub-Package Connection, Sub-Package 

– Class Connection, and Class – Sub-Package 

Connection. Moreover, the proposed metrics have been 

empirically validated by evaluating two open source 

Java projects. They have concluded that there is a strong 

correlation between package coupling and effort 

required to understand the package.  

Elish has explored the relationships between a suite of five 

metrics and package understandability (Elish, 2010). Two 

of the five metrics are direct coupling metric and they are 

afferent couplings (Ca) and efferent couplings (Ce). Elish 

has found that there is a positive significant correlation 

between the Ca and package understandability and that 

is the higher number of “Incoming Dependencies” the 

more effort is required to understand the package. For the 

Ce, Elish found that there is a negative correlation 

between the Ce metric and the effort required to 

understand the package, which means simply high 

reusability of a package and that will lead to decreases 

the time needed to understand it. 

Stevanetic and Zdun (2014) have used four types of 

metrics in their study to investigate the relationship of a 

number o f  component leve l  met r ics and the 

understandability of the architecture components. Two of 

these metrics are coupling metrics and they are Number 

of Incoming Dependencies (NID) and Number of 

Outgoing Dependencies (NOD). The authors found that 

when the NID in a component increases, the needed 

effort to understand the component increases as well. On 

the other hand, the NOD has shown no relationship 

between either the increase or decrease of the NOD in a 

component and the needed effort to understand the 

component. 

Hwa et al. (2009) have proposed a hierarchical quality 

model (consist of 4 levels and 3 links to connect these 

levels) to assess the understandability of the modular 

design of an Object-Oriented software system. At the level 

2 of their proposed model 6 design properties were 

identified that affect understandability of the modular 

design of a system. They have used for the coupling 
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metric the Direct Module Coupling (DMC) and that is the 

number of Modules which a module (MD) is directly 

related. They have found that the coupling property has a 

negative influence on understandability and that means 

the higher number of coupling the harder is to understand 

the system.  

Sharma and Chug (2015) have carried out an empirical 

study to compare a list of dynamic software metrics (14 

different Metrics) with a list of static software metrics (19 

different Metrics) in the context of maintainability 

attribute. The authors have found that the dynamic 

metrics outperformed the static metrics. As the coupling 

property concerns, Sharma and Chug have identified 

Loose Class Coupling and Tight Class Coupling as 

dynamic software metrics. They measure the degree of 

how tightly or loosely a class is bounded with other classes 

(Kaur and Maini, 2016). LCC is defined as to, “calculate 

the low dependency between object-structure at run-

time”(Kaur and Maini, 2016). For TCC, it is defined as to, 

“measure the high dependency between object-

structure at runtime”. Table A2 in the Appendices shows a 

list of the literature that used coupling metrics and their 

view level along with the type of the metric used (Kaur and 

Maini, 2016).

LCC and TCC are used as coupling metrics to explore the 

relationships between design metrics and component 

understandability. The reason behind this selection is that 

for this Case Study, NID, and NOD have been already 

explored with the relationship to the understandability 

(Stevanetic and Zdun, 2014; Elish, 2010). Second, the aim 

is to explore more metrics in the context of coupling and 

LCC and TCC are two metrics that were made available 

by the used Software Metric “Source Code Metric” 

(Warzocha, 2012) in this case study. 

1.4. 3 Instability

Instability metric is defined as, “the ratio of efferent 

coupling (Ce) to total coupling (Ce+Ca) for the package” 

(Elish, 2010). The equation that describes the Instability it is 

as follows.

      (1)

This instability metric measures the resilience of a certain 

package to change (Elish, 2010). It has the range from 

zero to one. Zero measurement indicates to a totally 

stable package and one totally unstable package (Elish, 

2010). Elish (2010) has found that there is a negative 

significant correlation between the Instability metric and 

the effort required to understand a package. Elish (2010) 

has interpreted that this metric against the understand 

ability as, “the easier to change a package the less effort 

is required to understand it”. Therefore, Instability (I) metric 

will be included in the authors’ exploration with other 

metrics.

1.4.4 Distance

Distance metric is an indicator of the package's balance 

between abstractness and stability (Elish, 2010). It is 

defined as, “the perpendicular distance of the package 

from the idealized line A+I = 1”.

  D=|A+I-1|   (2)

In equation (2), A represents the percentage of the 

number of abstract classes to the total number of classes 

in a certain package. I represent the instability which is 

described in equation (1). Distance value ranges from 

zero to one. The zero number refers to a package that is 

coincident with the main sequence. On the other hand, 

the number one indicates that a package is at the furthest 

possible point from the main sequence (Elish, 2010).

Elish (2010) has found that when Distance metric 

increases, the effort needed to understand a package 

increases. He says that when there is unbalance of a 

package between abstracts and stability the need for 

more effort to understand that package increases. 

Therefore, Distance (D) metric will be included in their 

exploration with other metrics.

1.4.5 McCabe's Cyclomatic Complexity

McCabe's Cyclomatic Complexity is a metric that was 

introduced by McCabe in the 70s. In software programs, 

McCabe's Cyclomatic Complexity is considered the 

most used metric (Azim et al., 2008). It uses in its 

calculation the control flow graph and “measures the 

number of linearly-independent paths” (Azim et al., 2008). 

The result shows the degree of ease to understand and 
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modify the measured program. (McCabe, 1976) has 

defined his formula in his famous paper titled “A 

Complexity Measure” as “the cyclomatic number V(G) of 

a graph G with n vertices, e edges, and p connected 

components is”

 V(G) = e-n+p    (3)

Second way is by the following equation 

 V(G) = Total number of bounded areas+1 (4)

As it has been mentioned in the beginning, 4 properties of 

size, coupling, instability, and complexity will be explored 

in this work. Therefore, McCabe's Cyclomatic complexity 

will be included in this case study.

2. Case Study

A case study from the literature is adopted where it is 

found to be applicable for the authors to use (Stevanetic 

and Zdun, 2014). This adoption would allow us to explore 

the relationships between Number of Methods (NOM), 

Loose Class Coupling (LCC), Tight Class Coupling (TCC), 

Instability (I), Distance (D) and McCabe's Cyclomatic 

Complexity (V(G)) components-level metrics and the 

effort needed to be measured in time that takes a 

programmer/developer to understand the component 

that was not covered by Stevanetic and Zdun's (2014) 

work. Stevanetic and Zdun (2014) have explored the 

relationships between “Number of Classes (NC), Number 

of Incoming Dependencies (NID), Number of Outgoing 

Dependencies (NOD) and Number of In te rna l 

Dependencies (NIntD) and the effort required to 

understand a component measured through the time 

spent on studying it”. For this purpose, the already used 

open source software in (Stevanetic and Zdun, 2014) is 

used here and that is “Soomla Android store version 2.0”. It 

contains “54 source code classes” allocated across “8 

packages”. The number of Line of Code is 3623 KLOC 

–not considering the comment and empty lines. 

However, it is important to mention that the software's 

packages are not considered in the broader sense for the 

Case Study in (Stevanetic and Zdun, 2014), but the 

components that are driven from the UML component 

diagram. The subject of the case study was 49 master 

students who were enrolled in the Advance Software 

Engineering course. 

For the selected 6 metrics to be measured from the open 

source system “Soomla Android Store Version 2.0”, Source 

Code Metric software is used (Warzocha, 2012) which is a 

NetBeans plug-in to generate the measurements. 

Seven components were used for the component-level 

metrics after excluding the two external components 

Google Plays Ser ver and SQL L i te Database. The 

description of the included seven components and their 

roles in the software is shown in Table 1.

The average time spent is based on the reading from the 

graph in Figure 1 that was found in (Stevanetic and Zdun, 

2014).

The dependent variable is the Average Time Spent by 

participants to study the corresponding component. On 

the other hand, the independent variables that will be 

used in this case study are the 6 component level metrics 

mentioned earlier and they are Instability, Distance, 

Number of Methods, Loose Class Coupling, Tight Class 

Coupling, and McCabe's Cyclomatic Complexity. The 

source code metrics have been used to get the results of 

these metrics.

For NOM, the authors have summed up all the classes' 

methods in each component. For the LCC, TCC, and 

V(G), Source Code Metric software has calculated LCC 

Component Component’s role

Security (C1) Verifies the information during the purchasing 
process.

Crypt Decrypt (C2) Provides encrypt/decrypt services to obfuscate 
the billing information and to encrypt/decrypt 
the data stored to or retrieved from the 
database.

Price Model (C3) Describes the model that explains how the 
prices of virtual items are formed.

Google Play Billing (C4) Simplifies in-app billing API which is a Google 
play service that lets you sell virtual goods from 
inside your applications.

Store Controller (C5) Provides the runtime functionality of the Android 
store and contains up-to-date store information.

Database Services (C6) Performs the initialization of the database and 
implement retrieve, add, and remove 
operations for store assets in the database.

Store Assets (C7) Describes the virtual items used in the 
application (virtual currency, virtual goods, 
and their classification).

Table 1. Soomla Android Store Components and their Roles 
in the System (Stevanetic and Zdun, 2014)
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for each class in a component, hence, to get the LCC for 

each component, the average has been calculated. For 

I and D, they have calculated it by equations (1) and (2), 

respectively from the NIDs and NODs that were already 

measured by Stevanetic and Zduns (2014). The complete 

dependent and independent variables with their 

corresponding values that will be used in this case study 

are showing in Table 2.

2.1 Null Hypotheses

As it is mentioned previously, this work aims to explore the 

relationships of the previously selected design metrics 

with the understandability (measured in time spent by a 

developer to study and understand a component). 

In this case study, the following null hypotheses are 

developed and will be tested:

Null Hypothesis I: I metric of a component does not have a 

significant correlation to the effort needed to be 

measured in time that takes a programmer/developer to 

understand the component.

Null Hypothesis II: D metric of a component does not have 

a significant correlation to the effort needed to be 

measured in time that takes a programmer/developer to 

understand the component.

Null Hypothesis III: NOM metric of a component does not 

have a significant correlation to the effort needed to be 

measured in time that takes a programmer/developer to 

understand the component. 

Null Hypothesis IV: LCC metric of a component does not 

have a significant correlation to the effort needed to be 

measured in time that takes a programmer/developer to 

understand the component. 

Null Hypothesis V: TCC metric of a component does not 

have a significant correlation to the effort needed to be 

measured in time that takes a programmer/developer to 

understand the component.

Null Hypothesis VI: V(G) metric of a component does not 

have a significant correlation to the effort needed to be 

measured in time that takes a programmer/developer to 

understand the component. 

3. Results and Discussion

For the results of the case study to be analyzed three types 

of analysis need to be performed. These analyses are 

Correlation Analysis, Multicollinearity Analysis, and 

Multivariate Regression Analysis.

The statistical analysis process is done with the help of an 

analysis software tool. The analysis software tool that has 

been used during the analyses is 'XLSTAT Version 

2016.05.35252' (2016).

3.1 Correlation Analysis

Correlation Analysis is a statistical method used to 

evaluate if there are possible connections/relationships 

between two variables. If a correlation is found to be 

present between the two variables this means that when 

one variable changes, there is also a positive or negative 

change in the other variable. The range of the correlation 

coefficient is between +1 and -1. When a correlation 

coefficient is equal to +1 or -1 this indicates to the 

strongest possible positive or negative correlation 

Figure 1. Mean, Median, and Standard Deviation Time 
Spent on each Component by Participants 

(Stevanetic and Zdun, 2014)

Time 
Spent

I D NOM LCC TCC V(G)

6 0.57 0.43 7 0.29 0.29 3.00

7 0.00 1.00 37 0.19 0.15 1.20

6.5 0.80 0.13 18 0.29 0.29 1.00

20 0.43 0.39 61 0.35 0.32 1.09

12 0.75 0.25 50 0.76 0.75 1.45

14 0.50 0.50 43 0.29 0.28 2.33

13.75 0.25 0.60 61 0.54 0.41 0.86

Component

Security (C1)

Crypt Decrypt (C2)

Price Model (C3)

Google Play Billing (C4)

Store Controller (C5)

Database Services (C6)

Store Assets (C7)

Table 2. Dependent Variable (Average Time Spent on a 
Component) and the Independent Variables (I, D, NOM, 

LCC, TCC, and V(G))
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respectively. However, when the coefficient gets closer to 

the zero the weaker the correlation is and when it is equal 

to zero this means there is no correlation found in the 

relationship (Correlation Analysis-Market Research, 2016).

In this Correlation Analysis, Spearman's rank correlation 

test is performed with the level of significance a = 0.05. 

This means that the level of confidence is 95%. The goal of 

this type of analysis is to determine if each component-

level metric is related to the average Time Spent to 

understand the component.

The critical value of the spearman's ranking correlation 

coefficient is determined based on the significance level 

and the degree of freedom (df) which is the size of the 

sample data subtracted by 2. In this case study, the 

sample size was 49 different number of pairs of 

observations and the significance level is selected to be 

a=0.05 (Stevanetic and Zdun, 2014). Based on Zar 

(1984), the critical value in this experiment for the 

Spearman's ranking correlation equals to 0.243. 

3.1.1 Discussion

The resu l ts of Spearman's coeff ic ient and the 

corresponding p-values between the average time that 

had been spent by participants on studying the 

components and component level metrics are put 

together in Table 3.

Based on the results in Table 3 and keeping in mind that 

the critical value = 0.243, the null hypotheses I, III, IV, V, VI 

are rejected and II is accepted. 

I metric of a component does have a significant negative 

correlation to the effort needed to be measured in time 

that takes a programmer/developer to understand the 

component. It indicates that the decrease in the 

instability of a component leads to the increase of the 

needed effort to understand the component measured 

in time. 

D metric of a component does not have a significant 

correlation to the effort needed to be measured in time 

that takes a programmer/developer to understand the 

component. 

NOM metric of a component does have a significant 

positive correlation to the effort needed to be measured 

in time that takes a programmer/developer to understand 

the component.  

LCC metric of a component does have a significant 

correlation to the effort needed to be measured in time 

that takes a programmer/developer to understand the 

component. 

TCC metric of a component does have a significant 

correlation to the effort needed to be measured in time 

that takes a programmer/developer to understand the 

component.  

V(G) metric of a component does have a significant 

correlation to the effort needed to be measured in time 

that takes a programmer/developer to understand the 

component. 

3.2 Multicollinearity Analysis

The Multicollinearity analysis is a statistical condition where 

the independent variables are highly correlated (Hart, 

n.d.). The problem of the collinearity when it is present is 

that it causes the inflation of at least one estimated 

regression coefficient. To identify the collinearity, the 

Variance Inflation Factor (VIF) values need to be found. 

· If the VIFs >10, this indicates to a serious collinearity 

(Elish, 2010; Stevanetic and Zdun, 2014).

According to Hart (n.d.), there are ways of dealing with 

Multicollinearity, we are getting rid of the “redundant” 

variables.

3.2.1 Correlation Matrix (Spearman)

The first step in the Multicollinearity analysis is finding the 

highest correlation's coefficient between the predictors. 

As shown in Table 4, we can see that there are strong 

positive correlations between (LCC and TCC) by the 

amount of 0.893 and between (I and D).  So, the next step 
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Metric Coefficient r p-value from Table p-value from Equation

I -0.393 P>0.10 0.383

D 0.143 P>0.10 0.760

NOM 0.865 0.025>P>0.01 0.012

LCC 0.571 0.1>P>0.05 0.180

TCC 0.250 P>0.10 0.589

V(G) -0.250 P>0.10 0.589

Table 3. The Spearman Correlation Coefficients and 
Corresponding p-values between the Average Time Spent 

on studying a Component and the Selected Metrics
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is to exclude the predictor of the 4 predictors which has 

the highest VIF (Variance Inflation Number). 

According to Table 5, TCC has a very high VIF (86.709) and 

as stated previously when VIF is greater than 10 this 

indicates to a serious collinearity. Hence, TCC will be 

eliminated from the list of variables. 

After getting rid of the TCC variable from the list, VIF is 

recalculated between the remaining variables (NOM, 

LCC, V(G), I and D). As a result, we can see in Table 6 that I 

and D have very high VIF and one of them need to be 

eliminated to get rid of the redundancy. I metric has been 

chosen since it has the higher VIF = 33.104.

After getting rid of the I variable from the list, VIF is 

recalculated between the remaining variables (NOM, 

LCC, V(G) and D). Finally, all the remaining variables (NOM, 

LCC, V(G) and D) are way below 10 as shown in Table 7.

3.3 Multivariate Regression Analysis

The multivariate analysis is performed to build different 

multivariate linear regression models for predicting the 

time spent to understand a component (Elish, 2010). 

Based on the conclusion from the Multicollinearity Analysis 

in the previous section, there are four independent 

variables left after excluding Tight Class Coupling (TCC) 

and Instability (I) variables because of their high VIF – 

much greater than 10. The remaining variables are 

Number of Methods (NOM), Loose Class Coupling (LCC), 

McCabe's Cyclomatic Complexity (V(G)), and Distance (D). 

15 prediction models have been designed that involve all 

the possible combination of the selected variables as 

shown in Table 8. Since four variables are present than 
42 –1 (the subtraction of the combination that excludes 

the variables) which equals to 15 Models. For the 

evaluation and accuracy comparison of the 15 

developed prediction models, first, the procedure of 

Leave-One-Out Cross-Validation (LOOCV) is used 

(Refaeilzadeh et al., 2009). Then the accuracy of the 15 

models is determined based on de facto standard and 

commonly used measures of the Mean Magnitude 

Relative Error (MMRE) and Prediction at level 0.25 

(Pred(0.25)) (Kitchenham et al., 2001).

As shown in Table 8, all the different 15 models with their 

corresponding MMRE and Pred(0.25) are listed. 

3.3.1 Discussion of Multicollinearity and Multivariate 

Regression Analyses

In the Multicollinearity Analysis, TCC and I were found to 

have very high VIFs which were much greater than 10 due 

to the high correlation with LCC and D, respectively. After 

eliminating TCC and I variables from the list, VIF is 

recalculated between the remaining variables (NOM, 

LCC, V(G) and D). Finally, all the remaining variables 

(NOM, LCC, V(G) and D) are way below 10 as shown in 
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R² Tolerance VIF

NOM 0.777 0.223 4.491

LCC 0.985 0.015 67.493

TCC 0.988 0.012 86.709

V(G) 0.454 0.546 1.831

I 0.988 0.012 83.618

D 0.981 0.019 51.811

Table 5. Multicollinearity Statistics

R² Tolerance VIF

NOM 0.576 0.424 2.358

LCC 0.486 0.514 1.947

V(G) 0.346 0.654 1.529

D 0.338 0.662 1.51

Table 7. Multicollinearity Statistics without TCC and I

Variable NOM LCC TCC V(G) I D

NOM 1

LCC 0.78 1

TCC 0.60 0.89 1

V(G) -0.51 -0.29 -0.4 1

I -0.41 0.18 0.32 0.21 1

D 0.13 -0.32 -0.50 0.04 -0.89 1

Table 4. Values in bold are different from 0 with a 
Significance Level Alpha=0.05

Table 6. Multicollinearity Statistics without TCC

R² Tolerance VIF

NOM 0.734 0.266 3.755

LCC 0.620 0.380 2.631

V(G) 0.454 0.546 1.831

I 0.970 0.030 33.104

D 0.962 0.038 26.18
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Table 7. Hence, the Multicollinearity is not strong between 

these independent variables. 

From Table 8, it is noticed that Model 15 has achieved the 

best MMRE value of 0.32. In terms of Pred(0.25), the best 

model is Model 15 as well; achieved a value of 71.43%.

Conclusion

This work has explored the relationships between six 

component-level metrics and the average time that took 

a programmer/developer to study a component in order 

to understand it. The metrics were Number of Methods 

(NOM), Loose Class Coupling (LCC), Tight Class Coupling 

(TCC), Instabil ity (I), Distance (D) and McCabe's 

Cyclomatic Complexity. These metrics measure different 

structural properties of a component, such as size, 

coupling, stability, and complexity. Next, a case study was 

performed using open source software. The subjects of 

the experiment were 49 master students. Three types of 

analysis were performed and they are Correlation, 

Collinearity, and Multivariate Regression. The results from 

the correlation analysis have shown that all of the metrics 

except (Distance) have significant correlations to the 

effort needed to be measured in time that takes a 

programmer /developer to understand the component. 

In Multivariate Regression, the model that included all the 

metrics that measure the different structural properties is 

better than the ones that did not.

In the case study, there are limitations that are common 

and can be found in the literature. The case study has 

used a dataset that is recently published (Stevanetic and 

Zdun, 2014). This adopted dataset is small in size since it 

comprises of 7 components. However, three types of 

analysis were performed.

For the future work, it would involve exploring more metrics 

of the different structural properties. For example, Size 

metric, in this work the NOM metric has been explored and 

Number of classes metric has been explored in (Elish, 

2010; Stevanetic and Zdun, 2014), yet the LOC as a size 

metric has not been explored. Same applies to Coupling, 

Complexity, and Instability. Moreover, more software 

systems which have large numbers of components need 

to be used in the exploration in the quest to measure and 

study the software architecture understandability.
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Appendices

Literature’s Authors Level Metric

Stevanetic and Zdun (2014) Component Number of Classes

Elish (2010) Package Number of Classes

Hwa et al. (2009) Module Number of Classes

Rosenberg and Hyatt (1997) Class Number of Methods

Bansiya and Davis (2002) Class Number of Methods

Table A1. View-level and the used Size Metric

Table A2. Coupling Metric that is used at a certain Level

Literature’s 
Authors

Level Metric

Gupta and 
Chahbra (2009)

Package General Coupling

·   Class–Class Connection
·   Sub-Package–Su-Package 
     Connection

·   Sub-Package–Class Connection

·   Class–Sub-Package Connection

Stevanetic and 
Zdun (2014)

Component (NID) Number of incoming dependencies 
(Fan-in)

(NOD) Number of outgoing dependencies 
(Fan-out)

Elish (2010) Package (Ca) Afferent Couplings (Fan-in)

(Ce) Efferent Couplings (Fan-out)

Hwa, Lee, and 
Kwon (2009)

Module General Coupling

Sharma and 
Chug (2015)

Class Loose Class Coupling (LCC)

Tight Class Coupling (TCC)
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References Goal Research 
Methodology

Systems Used

Gupta and 
Chhabra (2009)

To propose new metrics for measurement of package level coupling. Theoretical and 
Empirical

·   XGen Source Code Generator
·   Jakarta Element Construction 
     Set (ECS)

Khaliq et al. (2011) To explore the relationships between five package-level metric (Size, 
Afferent, Efferent, Instability and Distance) and the average effort 
required to understand a package in O.O. design.

Empirical ·   Xgen Source Code Generator
·   Jakarta Element Construction 
     Set (ECS)

Alenezi (2016) Systematic mapping study on software metrics related to the 
understandability concept of such higher-level software structures 
with regard to their relations to the system implementation

Systematic Review NA

Hwa et al. (2011) To propose a hierarchical model to assess understandability 
of modularization in large-scale O.O. software.

Empirical JFreeChart

Bass (1998) To examine the relationships between the efforts required to understand a 
component, measured through the time that participant spent on studying 
a component and component level metrics that describe component’s 
size, complexity and coupling.

Experimental Soomla Android 
store Version 2.0

IEEE (2000) To examine the effect of the level of abstraction of the software 
architecture representation (3 levels) on the architecture-level 
understandability of a software system.

Experimental Soomla Android 
store Version 2.0

Stevens et al. (1974) To examine the impact of hierarchies on architectural-level software 
understandability.

Empirical WebWork version 2.2

Warzocha (2012) To extend their previous studies (Stevanetic, Javed and Zdun, 2015) 
the impact of personal factors of participants like experience and 
expertise and the combinations of both personal factors and the metrics.

Empirical Soomla Android 
store Version 2.0

McCabe (1976) Software quality metrics for object-oriented environments. NA NA

Oreizy (1999) Dynamic metrics are superior to static metrics in maintainability prediction: 
An empirical case study.

Empirical Hodoku 1.1 and 
Hodoku 2.2.

Shaw (1990) A complexity measure Empirical Various Fortran Programs 

Metric Name Abbreviation Definition Validation 

Number of Classes NC The number of concrete and abstract classes 
(and interfaces) in the package

Correlation, MultiCollinearity and 
multivariate regression analysis

Module Size in Classes MSC Total number of classes in a module Empirical

Package Coupling Metric PCM Summation of coupling of the package with 
all other packages present at the hierarchical level

Theoretical and Empirical

Afferent / Number of Incoming 
Dependencies

Ca / NID Total number of dependencies between the classes 
outside of a component and the classes inside a 
component that are used by those outside classes.

Correlation, Multicollinearity and 
multivariate regression analysis

Efferent/ Number of Outgoing 
Dependencies

Ce/ NOD Total number of dependencies between the classes 
inside a component and the classes outside of a 
component that are used by those outside classes.

Correlation, Multicollinearity and 
multivariate regression analysis

Distance D It indicates to the package’s balance between 
abstractness and stability

Correlation, Collinearity and 
multivariate regression analysis

Instability I It measures the resilience of a certain package 
to a change.

Correlation, Multicollinearity and 
multivariate regression analysis

Number of Internal 
Dependencies

NIntD Total number of dependencies between the classes 
within a component

Correlation, Multicollinearity and 
multivariate regression analysis

Number of Methods NOM Number of method Empirical

Loose Class Coupling LCC It measures the degree of how loosely a class is 
bounded with other classes.

Empirical

Tight Class Coupling TCC It measures the degree of how tightly a class is 
bounded with other classes.

Empirical

McCabe’s Cyclomatic Complexity V(G) It measures of control flow complexity. Testing methodology

Abstraction Level -- It is the level where it is sufficient to adequately 
map the system’s relevant functionalities to 
the corresponding architectural components.

Empirical

Hierarchal Abstraction -- Architectural representation where architectural 
components at all abstraction levels in the 
hierarchy are shown.

Empirical

Table A3. List of Metrics and their Information that were found in the Literatures

Table A4. Information about the Research Papers
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