
RESEARCH PAPERS

SOFTWARE ARCHITECTURE UNDERSTANDABILITY IN
OBJECT-ORIENTED SYSTEMS

By

ABSTRACT

Software Architecture plays a vital role in the success or failure of software systems. Architecture understandability is a very

important factor for managing and improving the system architecture. In this work, understandability of software

architectures at the component-level will be explored. This study examines software structural properties of size,

coupling, stability, and complexity against the effort spent by a developer to study a component. Number of software

design metrics have been explored in the same context in the literature before, however, this work would explore a

different combination of design metrics. A case study has been adopted from the literature that used an open source

software system, which comprises of seven components. Analyses of Correlation, Collinearity, and Multivariate

regression have been performed. The results of the statistical analyses indicate a correlation between most of the metrics

used and the required effort needed to understand a component.

Keywords: Software Engineering, Software Architecture, Understandability, Object Oriented, Size, Coupling, Stability,

Complexity, Software Design Metrics, Number of Methods, Loose Class Coupling, Tight Class Coupling, McCabe's

Cyclomatic Complexity.

* College of Computer & Information Sciences, Prince Sultan University, Riyadh, Kingdom of Saudi Arabia.
** Chief Information and Technology Officer (CITO), Prince Sultan University, Riyadh, Kingdom of Saudi Arabia.

TURKI F. ALSHAMMARY * MAMDOUH ALENEZI **

INTRODUCTION

In the object-oriented software systems, measuring

architecture understandability is trending to be a major

topic. Understandability is one of the most important

characteristics of software quality because of the more

difficult to understand a software system the more this

would prevent or limit its reusability and maintainability

and therefore can influence cost and/or reliability of

software evolution (Stevanetic and Zdun, 2015). Software

architecture is defined as, “the structure or structures of

the system, which comprise software components, the

externally visible properties of those components, and the

relationships among them” (Bass et al., 1998). Understand

ability is defined as the ease with which a model can be

understood (Stevanetic and Zdun, 2014; Moody, 1998). It

is a sub-characteristic of the usability characteristic of

software quality as it is mentioned in ISO 9126-1 Quality

Model (ISO, 2001). Hence, this work focuses on the area of

software architecture understand ability metrics. It will

extend exploration of some of the metrics that are

believed to have an effect on the understandability of

software architecture.

This work would extend a work done by (Stevanetic and

Zdun, 2014) that explored the relationships between

component-level metrics size, coupling and complexity

and the required effort to understand a component. The

design metrics that were used in (Stevanetic and Zdun,

2014) were Number of Classes as size metric, Number of

incoming Dependencies and Number of Outgoing

Dependencies as coupling metric and for complexity,

Number of Internal Dependencies was used. On the other

hand, in extending Stevanetic and Zdun work, this work

aims to explore a different combination of design metrics

that touches Size, Coupling, Complexity, and Instability.

The design metrics are Number of Methods as a size

metric, Loose Class Coupling (LCC), and Tight Class

Date Received: 28/02/2018 Date Revised: 04/03/2018 Date Accepted: 09/04/2018

1l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

Coupling (TCC) as coupl ing metr ics, McCabe's

Cyclomatic Complexity V(G) as a complexity metric and

finally Instability and Distance as Instability metrics.

In this work, the first step is to develop and agree on

research questions. The aim is to answer these research

questions within the work. For this work, two research

questions have been developed and agreed on and they:

(RQ1) What are the available metrics in the literature that

measure design/ architecture properties understand

ability of object-oriented software architecture?

(RQ2) What is the relationship of design metrics of size,

coupling, complexity and stability, and the understandability

of object-oriented software architecture?

1. Related Work

This section is designed to have a dedicated subsection

for each metric. Some background information about

what software architecture, understandability and the

differences between package, component, and module

is discussed. Tables A3 and A4 in the Appendices show a

list of metrics and their information that was found in the

literature and Information about the research papers,

respectively.

1.1 Software Architecture

There are different definitions that define software

architecture of a system. One of the famous ones that

were repeatedly mentioned and used in the literature is

“the structure or structures of the system, which comprise

software components, the externally visible properties of

those components, and the relationships among them"

(Bass et al., 1998). IEEE 2000 standards define the

software architecture as following, "Architecture is the

fundamental organization of a system embodied in its

components, their relationships to each other and to the

environment and the principles guiding its design and

evolution" (IEEE, 2000). Another definition is used and it

says, “software architecture is an abstraction of the run-

time elements of a software system during some phase of

its operation. A system may be composed of many levels

of abstraction and many phases of operation, each with

its own software architecture” (Shaw, 1990).

Gomaa (2011) has explained software architecture as, “a

software architecture separates the overall structure of

the system, in terms of components and thei r

interconnections, from the internal details of the individual

components.”

Software architecture is used by architects to allow them

focusing on the “big picture” of a system rather than the

fine-grained details (Oreizy et al., 1999). In addition,

software architecture is considered by Garlan (2000) to

have a major role in 6 different sides of software

development. These sides are understanding, reuse,

construction, evolution, analysis, and management.

1.2 Package, Module, and Component

In the literature, one can notice that package, module

and component levels are mentioned and that is

because of the different levels of architecture that each

literature is focusing on.

The package is used to represent a set of classes that

might be hierarchically structured and to perform a series of

related tasks (Gupta and Chhabra, 2009; Alenezi, 2016).

Niemeyer and Knudsen (2005) have defined a JAVA

package as, "a group of classes that are related by

purpose or by an appl icat ion. Classes in the same

package have special access privilege with respect to

one another and may be designed to work together

closely" (Niemeyer and Knudsen, 2005). A Package can

contain sub-packages.

The module comprises of a large number of classes and

“module is referred to as a package” (Alenezi, 2016). It

provides information hiding for the module allowing a

software engineer to see it as a black box (Hwa et al.,

2009).

Alenezi (2016) has stated that, “A component in the

context of object-oriented design is for organization

purposes. The component contains a group of classes

and other components as well.” A component provides

one or two similar system functionalities (Stevanetic and

Zdun, 2014).

In conclusion, it is noticeable that these terms explain the

same thing; a container that is used to organize and hold

a set of related software artifacts together. However, a

component can mean a different artifact organization

RESEARCH PAPERS

2 l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

when it is looked at in the context of a UML Diagram.

1.3 Understandability

Understandability in the context of software architecture

simply means the degree of understanding system

architecture by the average architect/developer.

Understandability is defined in the literature as the ease

with which a model can be understood (Stevanetic and

Zdun, 2014; Moody, 1998). It is a sub-characteristic of the

usability characteristic of software quality as it is

mentioned in the ISO 9126-1 Quality Model (ISO, 2001). It

is considered as one of the most important sub-

characteristics since the difficulty of understanding the

software system limits and might even prevent the

software system reusability and maintainability. This

drawback would lead eventually to influence the cost or

reliability of software evolution (Stevanetic and Zdun,

2015). Software Assurance Technology Centre has

developed a software quality model for quantitative

measurement of quality of software. SATC has proposed five

quality contributors/attributes for the code and design phase,

such as efficiency, complexity, understandability, reusability,

and testability /maintainability (Khaliq et al., 2011).

1.4 Metrics

Metric, in general, is defined as the following, "it is merely a

measurement of an arbitrary standard" (Knudsen and

Niemeyer, 2005). In the Software field, a metric is defined

as, "a quantitative measure of the degree to which a

software item possesses a given quality attributes" (Xu and

Nicolaescu, 2015). In this case, understandability is a sub-

characteristic that if an engineer would want to control,

manage and then enhance then he/she needs to

measure it first.

However, there is literature that has explored relationships

of certain design metrics at a certain view-level of

architecture and the understandability of the architecture

to a developer. Each of these view-level design metrics is

discussed separately in the next sub-sections.

1.4.1 Size

Size metric in software is related to the number of artifacts

of a certain system part in a certain view level of an

architecture.

Elish (2010) has used as the measurement of a package-

level size the number of classes (NC). The NC metric for a

package is defined as the number of concrete and

abstract classes (and interfaces) in the package. Elish has

found that there is a positive significant correlation

between the Number of Classes and Package

understandability. As the NC increases in a package, the

more effort is required to understand it.

Almousa and Alenezi (2017) in their quest to measure

software architecture stability have considered size to be

the main metr ic. They have stated that, “ These

functionality will be represented at the end for each class

in the system either by adding new line of codes or

method or imported packages or adding new

interfaces.”

Stevanetic and Zdun (2014) have considered the number

of classes too in a component-level as the metric to

measure the size. They have concluded that when a

number of class increases in a component, it increases

the needed effort to understand it. The needed effort is

measured by the time that a programmer/developer took

to understand the component and answer the related

questions of the component.

Hwa et al. (2009) in their proposed hierarchical quality

model have found that there is a positive influence of the

design size in the module and it is defined as a number of

modules (MD) in the design on understandability. The

larger the size the harder is to understand.

The Number of Methods (NOM) in a class is another size

metric that represents the total number of all methods

implemented within a class (Bansiya and Davis, 2002). It is

commonly used in Weighted Methods per Class (WMC)

metric. Rosenberg and Hyatt (1997) have mentioned that

WMC is either the number of the methods implemented

within a class or the sum of the complexities of the

methods. Also Bansiya and Davis (2002) defined the

number of methods as, “a count of all methods defined in

a class”. However, Chidamber and Kemerer (1994) have

considered this WMC to be a design metric that measures

a complexity attribute of a system. Table A1 in the

Appendices shows a list of the literature that used size

metrics and their view level along with the type of the

RESEARCH PAPERS

3l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

metric used.

For this work, Number of methods metric is selected. The

reason behind this selection is that NC metric is already

explored for the same variables of the Case Study

(Stevanetic and Zdun, 2014). Another reason is to explore

different size metric that the already explored NC metric in

both (Elish, 2010; Stevanetic and Zdun, 2014).

1.4.2 Coupling

The Coupling metric is defined as “the manner and

degree of interdependence between packages” (Gupta

and Chhabra, 2009). Both terms of Coupling and

Cohesion are usually occurring together and caused

some confusion. Both terms were first introduced by

Stevens et al. (1974). The aim of a software module is to be

loosely coupled and has a high cohesion in order to

reduce maintenance and modification cost. There are

different ways of measuring coupling at a different level of

architecture's views found in the literature. One is the

afferent (Ca) (Almousa and Alenezi, 2017) also known as

Number of Incoming Dependencies (NID). Another one is

the efferent (Ce) (Almousa and Alenezi, 2017) –also

known as Number of Outgoing Dependencies. Also,

Loose Class Coupling (LCC), and Tight Class Coupling

(TCC) are found which measure class coupling.

The Ca metric for a package is defined as, “the number of

other packages that depend upon classes within the

package” (Elish, 2010). Ca is used to measure the

incoming dependencies (fan-in) for a package. The Ce

metric for a package is defined as, “the number of other

packages that the classes in the package depend upon”

(Elish, 2010). Ce is used to measures the outgoing

dependencies (fan-out) for a package. LCC is defined as

a metric that calculates the low dependency between

object-structure at run-time (Sharma and Chug, 2015).

TCC is defined as the metric that calculates the high

dependency between object-structure at run-time

(Sharma and Chug, 2015). In addition to these Coupling

metrics, Gupta and Chahbra (2009) have proposed new

metrics based on Package level coupling and the formal

definitions and properties of packages (Package, Sub-

Package, and class).

Gupta and Chahbra's (2009) proposed metrics have

been created based on the dif ferent types of

connections in the packages: Class – Class Connection,

Sub-Package – Sub-Package Connection, Sub-Package

– Class Connection, and Class – Sub-Package

Connection. Moreover, the proposed metrics have been

empirically validated by evaluating two open source

Java projects. They have concluded that there is a strong

correlation between package coupling and effort

required to understand the package.

Elish has explored the relationships between a suite of five

metrics and package understandability (Elish, 2010). Two

of the five metrics are direct coupling metric and they are

afferent couplings (Ca) and efferent couplings (Ce). Elish

has found that there is a positive significant correlation

between the Ca and package understandability and that

is the higher number of “Incoming Dependencies” the

more effort is required to understand the package. For the

Ce, Elish found that there is a negative correlation

between the Ce metric and the effort required to

understand the package, which means simply high

reusability of a package and that will lead to decreases

the time needed to understand it.

Stevanetic and Zdun (2014) have used four types of

metrics in their study to investigate the relationship of a

number o f component leve l met r ics and the

understandability of the architecture components. Two of

these metrics are coupling metrics and they are Number

of Incoming Dependencies (NID) and Number of

Outgoing Dependencies (NOD). The authors found that

when the NID in a component increases, the needed

effort to understand the component increases as well. On

the other hand, the NOD has shown no relationship

between either the increase or decrease of the NOD in a

component and the needed effort to understand the

component.

Hwa et al. (2009) have proposed a hierarchical quality

model (consist of 4 levels and 3 links to connect these

levels) to assess the understandability of the modular

design of an Object-Oriented software system. At the level

2 of their proposed model 6 design properties were

identified that affect understandability of the modular

design of a system. They have used for the coupling

RESEARCH PAPERS

4 l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

metric the Direct Module Coupling (DMC) and that is the

number of Modules which a module (MD) is directly

related. They have found that the coupling property has a

negative influence on understandability and that means

the higher number of coupling the harder is to understand

the system.

Sharma and Chug (2015) have carried out an empirical

study to compare a list of dynamic software metrics (14

different Metrics) with a list of static software metrics (19

different Metrics) in the context of maintainability

attribute. The authors have found that the dynamic

metrics outperformed the static metrics. As the coupling

property concerns, Sharma and Chug have identified

Loose Class Coupling and Tight Class Coupling as

dynamic software metrics. They measure the degree of

how tightly or loosely a class is bounded with other classes

(Kaur and Maini, 2016). LCC is defined as to, “calculate

the low dependency between object-structure at run-

time”(Kaur and Maini, 2016). For TCC, it is defined as to,

“measure the high dependency between object-

structure at runtime”. Table A2 in the Appendices shows a

list of the literature that used coupling metrics and their

view level along with the type of the metric used (Kaur and

Maini, 2016).

LCC and TCC are used as coupling metrics to explore the

relationships between design metrics and component

understandability. The reason behind this selection is that

for this Case Study, NID, and NOD have been already

explored with the relationship to the understandability

(Stevanetic and Zdun, 2014; Elish, 2010). Second, the aim

is to explore more metrics in the context of coupling and

LCC and TCC are two metrics that were made available

by the used Software Metric “Source Code Metric”

(Warzocha, 2012) in this case study.

1.4. 3 Instability

Instability metric is defined as, “the ratio of efferent

coupling (Ce) to total coupling (Ce+Ca) for the package”

(Elish, 2010). The equation that describes the Instability it is

as follows.

 (1)

This instability metric measures the resilience of a certain

package to change (Elish, 2010). It has the range from

zero to one. Zero measurement indicates to a totally

stable package and one totally unstable package (Elish,

2010). Elish (2010) has found that there is a negative

significant correlation between the Instability metric and

the effort required to understand a package. Elish (2010)

has interpreted that this metric against the understand

ability as, “the easier to change a package the less effort

is required to understand it”. Therefore, Instability (I) metric

will be included in the authors’ exploration with other

metrics.

1.4.4 Distance

Distance metric is an indicator of the package's balance

between abstractness and stability (Elish, 2010). It is

defined as, “the perpendicular distance of the package

from the idealized line A+I = 1”.

 D=|A+I-1| (2)

In equation (2), A represents the percentage of the

number of abstract classes to the total number of classes

in a certain package. I represent the instability which is

described in equation (1). Distance value ranges from

zero to one. The zero number refers to a package that is

coincident with the main sequence. On the other hand,

the number one indicates that a package is at the furthest

possible point from the main sequence (Elish, 2010).

Elish (2010) has found that when Distance metric

increases, the effort needed to understand a package

increases. He says that when there is unbalance of a

package between abstracts and stability the need for

more effort to understand that package increases.

Therefore, Distance (D) metric will be included in their

exploration with other metrics.

1.4.5 McCabe's Cyclomatic Complexity

McCabe's Cyclomatic Complexity is a metric that was

introduced by McCabe in the 70s. In software programs,

McCabe's Cyclomatic Complexity is considered the

most used metric (Azim et al., 2008). It uses in its

calculation the control flow graph and “measures the

number of linearly-independent paths” (Azim et al., 2008).

The result shows the degree of ease to understand and

RESEARCH PAPERS

5l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

modify the measured program. (McCabe, 1976) has

defined his formula in his famous paper titled “A

Complexity Measure” as “the cyclomatic number V(G) of

a graph G with n vertices, e edges, and p connected

components is”

 V(G) = e-n+p (3)

Second way is by the following equation

 V(G) = Total number of bounded areas+1 (4)

As it has been mentioned in the beginning, 4 properties of

size, coupling, instability, and complexity will be explored

in this work. Therefore, McCabe's Cyclomatic complexity

will be included in this case study.

2. Case Study

A case study from the literature is adopted where it is

found to be applicable for the authors to use (Stevanetic

and Zdun, 2014). This adoption would allow us to explore

the relationships between Number of Methods (NOM),

Loose Class Coupling (LCC), Tight Class Coupling (TCC),

Instability (I), Distance (D) and McCabe's Cyclomatic

Complexity (V(G)) components-level metrics and the

effort needed to be measured in time that takes a

programmer/developer to understand the component

that was not covered by Stevanetic and Zdun's (2014)

work. Stevanetic and Zdun (2014) have explored the

relationships between “Number of Classes (NC), Number

of Incoming Dependencies (NID), Number of Outgoing

Dependencies (NOD) and Number of In te rna l

Dependencies (NIntD) and the effort required to

understand a component measured through the time

spent on studying it”. For this purpose, the already used

open source software in (Stevanetic and Zdun, 2014) is

used here and that is “Soomla Android store version 2.0”. It

contains “54 source code classes” allocated across “8

packages”. The number of Line of Code is 3623 KLOC

–not considering the comment and empty lines.

However, it is important to mention that the software's

packages are not considered in the broader sense for the

Case Study in (Stevanetic and Zdun, 2014), but the

components that are driven from the UML component

diagram. The subject of the case study was 49 master

students who were enrolled in the Advance Software

Engineering course.

For the selected 6 metrics to be measured from the open

source system “Soomla Android Store Version 2.0”, Source

Code Metric software is used (Warzocha, 2012) which is a

NetBeans plug-in to generate the measurements.

Seven components were used for the component-level

metrics after excluding the two external components

Google Plays Ser ver and SQL L i te Database. The

description of the included seven components and their

roles in the software is shown in Table 1.

The average time spent is based on the reading from the

graph in Figure 1 that was found in (Stevanetic and Zdun,

2014).

The dependent variable is the Average Time Spent by

participants to study the corresponding component. On

the other hand, the independent variables that will be

used in this case study are the 6 component level metrics

mentioned earlier and they are Instability, Distance,

Number of Methods, Loose Class Coupling, Tight Class

Coupling, and McCabe's Cyclomatic Complexity. The

source code metrics have been used to get the results of

these metrics.

For NOM, the authors have summed up all the classes'

methods in each component. For the LCC, TCC, and

V(G), Source Code Metric software has calculated LCC

Component Component’s role

Security (C1) Verifies the information during the purchasing
process.

Crypt Decrypt (C2) Provides encrypt/decrypt services to obfuscate
the billing information and to encrypt/decrypt
the data stored to or retrieved from the
database.

Price Model (C3) Describes the model that explains how the
prices of virtual items are formed.

Google Play Billing (C4) Simplifies in-app billing API which is a Google
play service that lets you sell virtual goods from
inside your applications.

Store Controller (C5) Provides the runtime functionality of the Android
store and contains up-to-date store information.

Database Services (C6) Performs the initialization of the database and
implement retrieve, add, and remove
operations for store assets in the database.

Store Assets (C7) Describes the virtual items used in the
application (virtual currency, virtual goods,
and their classification).

Table 1. Soomla Android Store Components and their Roles
in the System (Stevanetic and Zdun, 2014)

RESEARCH PAPERS

6 l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

for each class in a component, hence, to get the LCC for

each component, the average has been calculated. For

I and D, they have calculated it by equations (1) and (2),

respectively from the NIDs and NODs that were already

measured by Stevanetic and Zduns (2014). The complete

dependent and independent variables with their

corresponding values that will be used in this case study

are showing in Table 2.

2.1 Null Hypotheses

As it is mentioned previously, this work aims to explore the

relationships of the previously selected design metrics

with the understandability (measured in time spent by a

developer to study and understand a component).

In this case study, the following null hypotheses are

developed and will be tested:

Null Hypothesis I: I metric of a component does not have a

significant correlation to the effort needed to be

measured in time that takes a programmer/developer to

understand the component.

Null Hypothesis II: D metric of a component does not have

a significant correlation to the effort needed to be

measured in time that takes a programmer/developer to

understand the component.

Null Hypothesis III: NOM metric of a component does not

have a significant correlation to the effort needed to be

measured in time that takes a programmer/developer to

understand the component.

Null Hypothesis IV: LCC metric of a component does not

have a significant correlation to the effort needed to be

measured in time that takes a programmer/developer to

understand the component.

Null Hypothesis V: TCC metric of a component does not

have a significant correlation to the effort needed to be

measured in time that takes a programmer/developer to

understand the component.

Null Hypothesis VI: V(G) metric of a component does not

have a significant correlation to the effort needed to be

measured in time that takes a programmer/developer to

understand the component.

3. Results and Discussion

For the results of the case study to be analyzed three types

of analysis need to be performed. These analyses are

Correlation Analysis, Multicollinearity Analysis, and

Multivariate Regression Analysis.

The statistical analysis process is done with the help of an

analysis software tool. The analysis software tool that has

been used during the analyses is 'XLSTAT Version

2016.05.35252' (2016).

3.1 Correlation Analysis

Correlation Analysis is a statistical method used to

evaluate if there are possible connections/relationships

between two variables. If a correlation is found to be

present between the two variables this means that when

one variable changes, there is also a positive or negative

change in the other variable. The range of the correlation

coefficient is between +1 and -1. When a correlation

coefficient is equal to +1 or -1 this indicates to the

strongest possible positive or negative correlation

Figure 1. Mean, Median, and Standard Deviation Time
Spent on each Component by Participants

(Stevanetic and Zdun, 2014)

Time
Spent

I D NOM LCC TCC V(G)

6 0.57 0.43 7 0.29 0.29 3.00

7 0.00 1.00 37 0.19 0.15 1.20

6.5 0.80 0.13 18 0.29 0.29 1.00

20 0.43 0.39 61 0.35 0.32 1.09

12 0.75 0.25 50 0.76 0.75 1.45

14 0.50 0.50 43 0.29 0.28 2.33

13.75 0.25 0.60 61 0.54 0.41 0.86

Component

Security (C1)

Crypt Decrypt (C2)

Price Model (C3)

Google Play Billing (C4)

Store Controller (C5)

Database Services (C6)

Store Assets (C7)

Table 2. Dependent Variable (Average Time Spent on a
Component) and the Independent Variables (I, D, NOM,

LCC, TCC, and V(G))

RESEARCH PAPERS

7l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

respectively. However, when the coefficient gets closer to

the zero the weaker the correlation is and when it is equal

to zero this means there is no correlation found in the

relationship (Correlation Analysis-Market Research, 2016).

In this Correlation Analysis, Spearman's rank correlation

test is performed with the level of significance a = 0.05.

This means that the level of confidence is 95%. The goal of

this type of analysis is to determine if each component-

level metric is related to the average Time Spent to

understand the component.

The critical value of the spearman's ranking correlation

coefficient is determined based on the significance level

and the degree of freedom (df) which is the size of the

sample data subtracted by 2. In this case study, the

sample size was 49 different number of pairs of

observations and the significance level is selected to be

a=0.05 (Stevanetic and Zdun, 2014). Based on Zar

(1984), the critical value in this experiment for the

Spearman's ranking correlation equals to 0.243.

3.1.1 Discussion

The resu l ts of Spearman's coeff ic ient and the

corresponding p-values between the average time that

had been spent by participants on studying the

components and component level metrics are put

together in Table 3.

Based on the results in Table 3 and keeping in mind that

the critical value = 0.243, the null hypotheses I, III, IV, V, VI

are rejected and II is accepted.

I metric of a component does have a significant negative

correlation to the effort needed to be measured in time

that takes a programmer/developer to understand the

component. It indicates that the decrease in the

instability of a component leads to the increase of the

needed effort to understand the component measured

in time.

D metric of a component does not have a significant

correlation to the effort needed to be measured in time

that takes a programmer/developer to understand the

component.

NOM metric of a component does have a significant

positive correlation to the effort needed to be measured

in time that takes a programmer/developer to understand

the component.

LCC metric of a component does have a significant

correlation to the effort needed to be measured in time

that takes a programmer/developer to understand the

component.

TCC metric of a component does have a significant

correlation to the effort needed to be measured in time

that takes a programmer/developer to understand the

component.

V(G) metric of a component does have a significant

correlation to the effort needed to be measured in time

that takes a programmer/developer to understand the

component.

3.2 Multicollinearity Analysis

The Multicollinearity analysis is a statistical condition where

the independent variables are highly correlated (Hart,

n.d.). The problem of the collinearity when it is present is

that it causes the inflation of at least one estimated

regression coefficient. To identify the collinearity, the

Variance Inflation Factor (VIF) values need to be found.

· If the VIFs >10, this indicates to a serious collinearity

(Elish, 2010; Stevanetic and Zdun, 2014).

According to Hart (n.d.), there are ways of dealing with

Multicollinearity, we are getting rid of the “redundant”

variables.

3.2.1 Correlation Matrix (Spearman)

The first step in the Multicollinearity analysis is finding the

highest correlation's coefficient between the predictors.

As shown in Table 4, we can see that there are strong

positive correlations between (LCC and TCC) by the

amount of 0.893 and between (I and D). So, the next step

RESEARCH PAPERS

Metric Coefficient r p-value from Table p-value from Equation

I -0.393 P>0.10 0.383

D 0.143 P>0.10 0.760

NOM 0.865 0.025>P>0.01 0.012

LCC 0.571 0.1>P>0.05 0.180

TCC 0.250 P>0.10 0.589

V(G) -0.250 P>0.10 0.589

Table 3. The Spearman Correlation Coefficients and
Corresponding p-values between the Average Time Spent

on studying a Component and the Selected Metrics

8 l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

is to exclude the predictor of the 4 predictors which has

the highest VIF (Variance Inflation Number).

According to Table 5, TCC has a very high VIF (86.709) and

as stated previously when VIF is greater than 10 this

indicates to a serious collinearity. Hence, TCC will be

eliminated from the list of variables.

After getting rid of the TCC variable from the list, VIF is

recalculated between the remaining variables (NOM,

LCC, V(G), I and D). As a result, we can see in Table 6 that I

and D have very high VIF and one of them need to be

eliminated to get rid of the redundancy. I metric has been

chosen since it has the higher VIF = 33.104.

After getting rid of the I variable from the list, VIF is

recalculated between the remaining variables (NOM,

LCC, V(G) and D). Finally, all the remaining variables (NOM,

LCC, V(G) and D) are way below 10 as shown in Table 7.

3.3 Multivariate Regression Analysis

The multivariate analysis is performed to build different

multivariate linear regression models for predicting the

time spent to understand a component (Elish, 2010).

Based on the conclusion from the Multicollinearity Analysis

in the previous section, there are four independent

variables left after excluding Tight Class Coupling (TCC)

and Instability (I) variables because of their high VIF –

much greater than 10. The remaining variables are

Number of Methods (NOM), Loose Class Coupling (LCC),

McCabe's Cyclomatic Complexity (V(G)), and Distance (D).

15 prediction models have been designed that involve all

the possible combination of the selected variables as

shown in Table 8. Since four variables are present than
42 –1 (the subtraction of the combination that excludes

the variables) which equals to 15 Models. For the

evaluation and accuracy comparison of the 15

developed prediction models, first, the procedure of

Leave-One-Out Cross-Validation (LOOCV) is used

(Refaeilzadeh et al., 2009). Then the accuracy of the 15

models is determined based on de facto standard and

commonly used measures of the Mean Magnitude

Relative Error (MMRE) and Prediction at level 0.25

(Pred(0.25)) (Kitchenham et al., 2001).

As shown in Table 8, all the different 15 models with their

corresponding MMRE and Pred(0.25) are listed.

3.3.1 Discussion of Multicollinearity and Multivariate

Regression Analyses

In the Multicollinearity Analysis, TCC and I were found to

have very high VIFs which were much greater than 10 due

to the high correlation with LCC and D, respectively. After

eliminating TCC and I variables from the list, VIF is

recalculated between the remaining variables (NOM,

LCC, V(G) and D). Finally, all the remaining variables

(NOM, LCC, V(G) and D) are way below 10 as shown in

RESEARCH PAPERS

R² Tolerance VIF

NOM 0.777 0.223 4.491

LCC 0.985 0.015 67.493

TCC 0.988 0.012 86.709

V(G) 0.454 0.546 1.831

I 0.988 0.012 83.618

D 0.981 0.019 51.811

Table 5. Multicollinearity Statistics

R² Tolerance VIF

NOM 0.576 0.424 2.358

LCC 0.486 0.514 1.947

V(G) 0.346 0.654 1.529

D 0.338 0.662 1.51

Table 7. Multicollinearity Statistics without TCC and I

Variable NOM LCC TCC V(G) I D

NOM 1

LCC 0.78 1

TCC 0.60 0.89 1

V(G) -0.51 -0.29 -0.4 1

I -0.41 0.18 0.32 0.21 1

D 0.13 -0.32 -0.50 0.04 -0.89 1

Table 4. Values in bold are different from 0 with a
Significance Level Alpha=0.05

Table 6. Multicollinearity Statistics without TCC

R² Tolerance VIF

NOM 0.734 0.266 3.755

LCC 0.620 0.380 2.631

V(G) 0.454 0.546 1.831

I 0.970 0.030 33.104

D 0.962 0.038 26.18

9l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

Table 7. Hence, the Multicollinearity is not strong between

these independent variables.

From Table 8, it is noticed that Model 15 has achieved the

best MMRE value of 0.32. In terms of Pred(0.25), the best

model is Model 15 as well; achieved a value of 71.43%.

Conclusion

This work has explored the relationships between six

component-level metrics and the average time that took

a programmer/developer to study a component in order

to understand it. The metrics were Number of Methods

(NOM), Loose Class Coupling (LCC), Tight Class Coupling

(TCC), Instabil ity (I), Distance (D) and McCabe's

Cyclomatic Complexity. These metrics measure different

structural properties of a component, such as size,

coupling, stability, and complexity. Next, a case study was

performed using open source software. The subjects of

the experiment were 49 master students. Three types of

analysis were performed and they are Correlation,

Collinearity, and Multivariate Regression. The results from

the correlation analysis have shown that all of the metrics

except (Distance) have significant correlations to the

effort needed to be measured in time that takes a

programmer /developer to understand the component.

In Multivariate Regression, the model that included all the

metrics that measure the different structural properties is

better than the ones that did not.

In the case study, there are limitations that are common

and can be found in the literature. The case study has

used a dataset that is recently published (Stevanetic and

Zdun, 2014). This adopted dataset is small in size since it

comprises of 7 components. However, three types of

analysis were performed.

For the future work, it would involve exploring more metrics

of the different structural properties. For example, Size

metric, in this work the NOM metric has been explored and

Number of classes metric has been explored in (Elish,

2010; Stevanetic and Zdun, 2014), yet the LOC as a size

metric has not been explored. Same applies to Coupling,

Complexity, and Instability. Moreover, more software

systems which have large numbers of components need

to be used in the exploration in the quest to measure and

study the software architecture understandability.

References

[1]. Alenezi, M. (2016). Software Architecture Quality

Measu rement S tab i l i t y and Unders tandab i l i t y.

International Journal of Advanced Computer Science

and Applications (IJACSA), 7(7), 550-559.

[2]. Almousa, H., & Alenezi, M. (2017). Measuring Software

Architecture Stability Evolution in Object-Oriented Open

Source Systems. Journal of Engineering and Applied

Sciences, 12(2), 353-362.

[3]. Architecture Working Group of the Software

Engineering Committee. (2000). Recommended

Practice for Architectural Description of Software Intensive

Systems. IEEE Standards Department, Piscataway, New

Jersey, USA.

[4]. Azim, A., Ghani, A., Koh Tieng, W. G., Muketha, M., &

Wen, W. P. (2008). Complexity metrics for measuring the

understandability and maintainability of business process

models using Goal-Question-Metric. International

Journal of Computer Science and Network Security, 8(5),

219-225.

[5]. Bansiya, J., & Davis, C. G. (2002). A hierarchical

model for object-oriented design quality assessment. IEEE

Transactions on Software Engineering, 28(1), 4-17.

[6]. Bass, L., Clements, P., & Kazman, R. (1998). Software

Architecture in Practice. Addisson.

[7]. Chidamber, S. R., & Kemerer, C. F. (1994). A metrics

suite for object oriented design. IEEE Transactions on

RESEARCH PAPERS

Table 8. Evaluation of the Prediction Models with MMRE
and Pred(0.25)

Model NOM LCC V(G) D MMRE Pred(0.25)

1 X 0.811 28.57%

2 X 1.127 0.00%

3 X 0.607 14.29%

4 X 1.258 0.00%

5 X X 0.533 42.86%

6 X X 1.118 14.29%

7 X X 0.556 42.86%

8 X X 0.788 0.00%

9 X X 1.541 0.00%

10 X X 0.919 0.00%

11 X X X 0.619 42.86%

12 X X X 0.590 14.29%

13 X X X 0.617 28.57%

14 X X X 1.202 0.00%

15 X X X X 0.325 71.43%

10 l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

Software Engineering, 20(6), 476-493.

[8]. Correlation Analysis - Market Research. (n.d.).

Retrieved from http://www.djsresearch.co.uk/glossary/

item/Correlation-Analysis-Market-Research

[9]. Elish, M. O. (2010, June). Exploring the relationships

between design metrics and package understandability:

A case study. In Program Comprehension (ICPC), 2010
thIEEE 18 International Conference on (pp. 144-147). IEEE.

[10]. Garlan, D. (2000, May). Software architecture: a

roadmap. In Proceedings of the Conference on the

Future of Software Engineering (pp. 91-101). ACM.

[11]. Gomaa, H. (2011). Software Modeling and Design:

UML, Use Cases, Patterns, and Software Architectures.

Cambridge University Press.

[12]. Gupta, V., & Chhabra, J. K. (2009). Package

coupling measurement in object-oriented software.

Journal of Computer Science and Technology, 24(2),

273-283.

[13]. Hart, J. D. (n.d.). Collinearity of independent

variables. Retrieved from http://www.stat.tamu.edu/~

hart/652/collinear.pdf on October 21 2016.

[14]. Hwa, J., Lee, S., & Kwon, Y. R. (2009, December).

Hierarchical understandability assessment model for

large-scale OO system. In Software Engineering

Conference, 2009. APSEC'09. Asia-Pacific (pp. 11-18).

IEEE.

[15]. International Organization for Standardization, &

International Electrotechnical Commission. (2001).

Software Engineering--Product Quality: Quality Model

(Vol. 1). ISO/IEC.

[16]. Kaur, S., & Maini, R. (2016). Analysis of Various

Software Metrics used to Detect Bad Smells. Int J Eng Sci

(IJES), 5(6), 14-20.

[17]. Khaliq, M., Khan, R. A., & Khan, M. H. (2011).

Significance of Design Properties in Object Oriented

Software Product Quality Assessment. TECHNIA –

International Journal of Computing Science and

Communication Technologies, 3(2), 622-625.

[18]. Kitchenham, B. A., Pickard, L. M., MacDonell, S. G.,

& Shepperd, M. J. (2001). What accuracy statistics really

measure [software estimation]. In IEE Proceedings -

Software (Vol. 148, No. 3, pp. 81-85). doi: 10.1049/ip-

sen:20010506

[19]. McCabe, T. J. (1976). A complexity measure. IEEE

Transactions on Software Engineering, SE-2(4), 308-320.

[20]. Moody, D. L. (1998, November). Metrics for

evaluating the quality of entity relationship models. In

International Conference on Conceptual Modeling (pp.

211-225). Springer, Berlin, Heidelberg.

[21]. Niemeyer, P., & Knudsen, J. (2005). Learning Java.

O'Reilly Media, Inc.

[22]. Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimhigner, D.,

Johnson, G., Medvidovic, N., ... & Wolf, A. L. (1999). An

architecture-based approach to self-adaptive software.

IEEE Intelligent Systems and their Applications, 14(3), 54-

62.

[23]. Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-

validation. In Encyclopedia of Database Systems (pp.

532-538). Springer US.

[24]. Rosenberg, L. H., & Hyatt, L. E. (1997). Software

quality metrics for object-oriented environments.

Crosstalk Journal, 10(4), 1-6.

[25]. Sharma, H., & Chug, A. (2015, September).

Dynamic metrics are superior than static metrics in

maintainability prediction: An empirical case study. In

Reliability, Infocom Technologies and Optimization
t h(ICRITO) (Trends and Future Directions), 2015 4

International Conference on (pp. 1-6). IEEE.

[26]. Shaw, M. (1990). Toward higher-level abstractions for

software systems. Data & Knowledge Engineering, 5(2),

119-128.

[27]. Statistical software and data analysis add-on for

Excel | XLSTAT. (n.d.). Retrieved October 21, 2016, from

https://www.xlstat.com/en/

[28]. Stevanetic, S., & Zdun, U. (2014, May). Exploring the

re lat ionships between the understandabi l i ty of

components in architectural component models and
thcomponent level metrics. In Proceedings of the 18

International Conference on Evaluation and Assessment

in Software Engineering (p. 32). ACM.

[29]. Stevanetic, S., & Zdun, U. (2014, October). Empirical

Study on the Effect of a Software Architecture

RESEARCH PAPERS

11l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

Representation's Abstraction Level on the Architecture-

Level Software Understanding. In Quality Software (QSIC),
th2014 14 International Conference on (pp. 359-364).

IEEE.

[30]. Stevanetic, S., & Zdun, U. (2015, April). Software

metr ics for measur ing the understandabi l i ty of

architectural structures: a systematic mapping study. In
thProceedings of the 19 International Conference on

Evaluation and Assessment in Software Engineering (p.

21). ACM.

[31]. Stevanetic, S., & Zdun, U. (2016, April). Exploring the

Understandability of Components in Architectural

Component Models Using Component Level Metrics and

Participants' Experience. In Component-Based Software
thEngineering (CBSE), 2016 19 International ACM SIGSOFT

Symposium on (pp. 1-6). IEEE.

[32]. Stevanetic, S., Javed, M. A., & Zdun, U. (2015,

September). The impact of h ierarchies on the

archi tecture - level software understandabi l i ty-a

control led experiment. In Sof tware Engineering
thConference (ASWEC), 2015 24 Australasian (pp. 98-107).

IEEE.

[33]. Stevens, W. P., Myers, G. J., & Constantine, L. L.

(1974). Structured design. IBM Systems Journal, 13(2),

115-139.

[34]. Warzocha, K. (2012, May 14). Source Code Metrics -

NetBeans Plugin detail. Retrieved October 21, 2016, from

http://plugins.netbeans.org/plugin/42970/sourcecodem

etrics

[35]. Xu, Y., & Nicolaescu, A. (2015). Evolution of Object

Oriented Software Coupling Metrics. Full-scale Software

Engineering, 79.

[36]. Zar, J. H. (1984). Comparing simple linear regression

equations. Biostatistical Analysis, 2, 292-305.

RESEARCH PAPERS

Appendices

Literature’s Authors Level Metric

Stevanetic and Zdun (2014) Component Number of Classes

Elish (2010) Package Number of Classes

Hwa et al. (2009) Module Number of Classes

Rosenberg and Hyatt (1997) Class Number of Methods

Bansiya and Davis (2002) Class Number of Methods

Table A1. View-level and the used Size Metric

Table A2. Coupling Metric that is used at a certain Level

Literature’s
Authors

Level Metric

Gupta and
Chahbra (2009)

Package General Coupling

· Class–Class Connection
· Sub-Package–Su-Package
 Connection

· Sub-Package–Class Connection

· Class–Sub-Package Connection

Stevanetic and
Zdun (2014)

Component (NID) Number of incoming dependencies
(Fan-in)

(NOD) Number of outgoing dependencies
(Fan-out)

Elish (2010) Package (Ca) Afferent Couplings (Fan-in)

(Ce) Efferent Couplings (Fan-out)

Hwa, Lee, and
Kwon (2009)

Module General Coupling

Sharma and
Chug (2015)

Class Loose Class Coupling (LCC)

Tight Class Coupling (TCC)

12 l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

RESEARCH PAPERS

References Goal Research
Methodology

Systems Used

Gupta and
Chhabra (2009)

To propose new metrics for measurement of package level coupling. Theoretical and
Empirical

· XGen Source Code Generator
· Jakarta Element Construction
 Set (ECS)

Khaliq et al. (2011) To explore the relationships between five package-level metric (Size,
Afferent, Efferent, Instability and Distance) and the average effort
required to understand a package in O.O. design.

Empirical · Xgen Source Code Generator
· Jakarta Element Construction
 Set (ECS)

Alenezi (2016) Systematic mapping study on software metrics related to the
understandability concept of such higher-level software structures
with regard to their relations to the system implementation

Systematic Review NA

Hwa et al. (2011) To propose a hierarchical model to assess understandability
of modularization in large-scale O.O. software.

Empirical JFreeChart

Bass (1998) To examine the relationships between the efforts required to understand a
component, measured through the time that participant spent on studying
a component and component level metrics that describe component’s
size, complexity and coupling.

Experimental Soomla Android
store Version 2.0

IEEE (2000) To examine the effect of the level of abstraction of the software
architecture representation (3 levels) on the architecture-level
understandability of a software system.

Experimental Soomla Android
store Version 2.0

Stevens et al. (1974) To examine the impact of hierarchies on architectural-level software
understandability.

Empirical WebWork version 2.2

Warzocha (2012) To extend their previous studies (Stevanetic, Javed and Zdun, 2015)
the impact of personal factors of participants like experience and
expertise and the combinations of both personal factors and the metrics.

Empirical Soomla Android
store Version 2.0

McCabe (1976) Software quality metrics for object-oriented environments. NA NA

Oreizy (1999) Dynamic metrics are superior to static metrics in maintainability prediction:
An empirical case study.

Empirical Hodoku 1.1 and
Hodoku 2.2.

Shaw (1990) A complexity measure Empirical Various Fortran Programs

Metric Name Abbreviation Definition Validation

Number of Classes NC The number of concrete and abstract classes
(and interfaces) in the package

Correlation, MultiCollinearity and
multivariate regression analysis

Module Size in Classes MSC Total number of classes in a module Empirical

Package Coupling Metric PCM Summation of coupling of the package with
all other packages present at the hierarchical level

Theoretical and Empirical

Afferent / Number of Incoming
Dependencies

Ca / NID Total number of dependencies between the classes
outside of a component and the classes inside a
component that are used by those outside classes.

Correlation, Multicollinearity and
multivariate regression analysis

Efferent/ Number of Outgoing
Dependencies

Ce/ NOD Total number of dependencies between the classes
inside a component and the classes outside of a
component that are used by those outside classes.

Correlation, Multicollinearity and
multivariate regression analysis

Distance D It indicates to the package’s balance between
abstractness and stability

Correlation, Collinearity and
multivariate regression analysis

Instability I It measures the resilience of a certain package
to a change.

Correlation, Multicollinearity and
multivariate regression analysis

Number of Internal
Dependencies

NIntD Total number of dependencies between the classes
within a component

Correlation, Multicollinearity and
multivariate regression analysis

Number of Methods NOM Number of method Empirical

Loose Class Coupling LCC It measures the degree of how loosely a class is
bounded with other classes.

Empirical

Tight Class Coupling TCC It measures the degree of how tightly a class is
bounded with other classes.

Empirical

McCabe’s Cyclomatic Complexity V(G) It measures of control flow complexity. Testing methodology

Abstraction Level -- It is the level where it is sufficient to adequately
map the system’s relevant functionalities to
the corresponding architectural components.

Empirical

Hierarchal Abstraction -- Architectural representation where architectural
components at all abstraction levels in the
hierarchy are shown.

Empirical

Table A3. List of Metrics and their Information that were found in the Literatures

Table A4. Information about the Research Papers

13l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

RESEARCH PAPERS

ABOUT THE AUTHORS

Turki Alshammary is currently a Senior System Analyst at the Ministry of Foreign Affairs in the Kingdom of Saudi Arabia. He received
BS in Computer Engineering from the Western Sydney University and his MS in Software Engineering from Prince Sultan University.
He is a certified Business Analyst (CBAP), (PMP) and (ITIL) and a member of the Saudi Council of Engineers. His research interests,
include Software Engineering and Big Data.

Dr. Mamdouh Alenezi is currently the Chief Information and Technology Officer (CITO) at Prince Sultan University. He received MS
and Ph.D. Degrees from DePaul University and North Dakota State University in 2011 and 2014, respectively. He is a member of
the Institute of Electrical and Electronic Engineers (IEEE). His research interests, include Software Engineering, Open Source
software, Software Security, and Data Mining. He teaches mainly software engineering courses.

14 l li-manager’s Journal on Software Engineering, Vol. 12 No. 2 October - December 2017

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

