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Abstract—Bug triage is an essential phase in the bug fixing
process. The aim of bug triage is to assign an experienced
developer to a new coming bug report. Existing bug triage
approaches are mainly based on machine learning techniques.
These approaches suffer from low prediction accuracy. In this
paper, we propose TRAM (TRiaging Approach using bug reports
Metadata). The goal is to improve the prediction accuracy of bug
triage by utilizing the most discriminating terms of bug reports,
the components in which the bugs belong to, and the reporter who
filed the bug. We perform experimental evaluation on open-source
projects namely Freedesktop, NetBeans, Eclipse, and Firefox. The
results show that TRAM outperforms existing machine learning-
based approaches in terms of classification accuracy. TRAM
improves the F-score by approximately 34%, 40%, 20%, and 21%

for Freedesktop, NetBeans, Eclipse, and Firfox respectively.

Keywords—bug triage, term selection method, classification,
mining bug repositories

I. INTRODUCTION

Essential part of the software development process is bug
reporting and fixing. In large open source software projects the
bug tracking system is the central core for developers coordi-
nation and communication about a collection of bug reports
and development issues. Bug tracking systems (BTS) enable
many users to report their findings in a unified environment.
These bug reports are utilized to guide software maintenance
activities in order to produce more reliable software systems.
Through the bug tracking systems, users are able to report new
bugs, track changes of bug reports, and comment on existing
bug reports.

Open source software systems receive abundant rate of
bug reports daily. In an ideal world, each bug should be
assigned to a developer who can fix it within a reasonable
time. However, this is not usually the case. Many bug reports
get assigned to inappropriate developers resulting in delaying
the fixing time of these bugs. In addition, bug triaging, the
process of assigning bugs to developers, is labor-intensive,
time-consuming and fault-prone if done manually. Moreover,
for open-source projects, keeping track of active developers
and their expertise is very difficult. For instance, Anvik found
that in the Eclipse project an average of 37 bugs per day are
submitted to the BTS and 3 person-hours per day are required
for the manual triage [1]. The empirical study by Jeong et
al. [2] showed that 44% of bugs have been assigned to the
wrong developer after the first assignment. In addition, the

study reported that the first developer’s assignment takes on
average 40 and 180 days for Eclipse and Mozilla projects
respectively. The second assignment takes on average 100 and
250 days for Eclipse and Mozilla projects respectively. These
numbers indicate that manual triaging is an error-prone time-
consuming process.

Previous work formulated the problem as a classification
task where instances represent bug reports, features represent
the textual description of bug reports, and developers who fixed
those bugs as class labels. They built predictive models that
can be used to predict a developer for a new coming bug
report. Different classification techniques have been used to
build classification models such as Naive Bayes and Support
Vector Machines [3], [4]. All of these approaches suffer from
low prediction accuracy. In this paper, the goal is to improve
the prediction accuracy by using features other than the textual
description of a bug such as the reporter who filed the bug.

To summarize, we make the following key contributions in
this work:

• We reach much higher prediction accuracy compared
to two other classification based bug triaging ap-
proaches by:

◦ Using features of bug reports other than the
textual data. Besides the bug description used
in prior work, we incorporate more features
namely the reporter who filed the bug and the
component in which the bug belongs to.

◦ Employing the most discriminating terms as
a representation of the bug report instead of
using all terms.

• We perform experimental evaluation using four bug
reports datasets obtained from real projects. We use
larger datasets compared to previous work. The exper-
imental results show that building a classifier model
using more features than the textual description of
bugs can increase the prediction accuracy dramatically.

The rest of the paper is organized as follows: Section
II discusses related work. Section III describes the proposed
approach. The experimental evaluation and discussion are
presented in Section IV. Section V discusses threats to validity
and Section VI concludes the paper.
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II. RELATED WORK

Many approaches adopted both machine learning and in-
formation retrieval techniques to improve the bug triaging pro-
cess. Čubranić et al. [3] were the first to use a text classification
approach to automatically assign bug reports to developers.
Anvik et al. [5], [4] improved the approach proposed by
Čubranić et al. by removing inactive developers (i.e, developers
with a too low bug fixing frequency or developers whom
not working on the project anymore). They employed SVM,
Naive Bayes and Decision Trees classification techniques,
and reported prediction accuracy of up to 64%. TRAM is
different from their work in the following ways. We use the
discriminating terms of bug reports as features instead of using
all terms. In addition, we use other information about bug
reports such as the reporter who filed the bug to obtain higher
accuracy.

Several approaches were proposed in literature to enhance
bug assignment accuracy. Park et al. [6] proposed a bug
triaging approach. Their approach incorporated collaborative
filtering recommender and topic modeling to improve bug
triaging, reduce the sparseness of the training data, and en-
hance the quality of the triaging recommendation. Zou et
al. [7] proposed the training set reduction with both feature
selection and instance selection techniques for bug triage. They
combine feature selection with instance selection to improve
the accuracy of bug triage. They evaluated their approach
on Eclipse where their approach removed 70% words and
50% bug reports. Alenezi et al. [8] employed five state-of-
the-art term selection methods on the textual description of
bug reports to produce discriminating terms. After that, they
built a classification model on the discriminating terms using
Naive Bayes classifier. Moreover, they re-balanced the load
between developers. Their experimental results on four real
datasets showed that by selecting a small number of discrim-
inating terms, the classification accuracy can be significantly
improved. In this work, we not only utilize a term selection
method to select the most discriminating terms in bug reports
but also we use other metadata about bug reports in order to
boost the accuracy.

Other approaches have been proposed to automate bug
assignment using different techniques other than classification.
Matter et al. [9] represent a developer’s expertise using the
vocabulary found in the developer’s source code. They recom-
mend experienced developers by extracting information from
new bug reports and looking it up in the vocabulary. Their
approach does not require a history of bug reports and was
tested on 130,769 Eclipse bug reports. They achieved 33.6%
top-1 precision and 71.0% top-10 recall using eight years of
Eclipse project. Tamrawi et al. [10] used fuzzy-sets to model
bug-fixing expertise of developers based on the hypothesis
that developers who recently fixed bugs are likely to fix them
in the near future. They only considered recent reports to
build the fuzzy-sets representing the membership of developers
to technical terms in the reports. For new incoming reports,
developers are recommended by comparing their membership
to the terms included in the new report.

III. APPROACH

In this Section we present our proposed approach, TRAM.
Figure 1 shows a high level description of TRAM. Adopted

from previous research, we formulate bug assignment as a
classification task where each instance represents a bug report,
features represent several information about each bug, and a
class label represents the developer who fixed the bug report.
TRAM consists of the following main steps: 1) select the most
discriminating terms from the textual contents of bug reports,
2) build a classification model using features from bug reports’
metadata, 3) predict a developer with relevant experience to
newly coming bug reports using the model built in the previous
step. A detailed description of these steps is shown next.

A. Bug Representation

A collection of bug reports are represented as B =
{

b1, · · · , b|B|

}

. Each bug report bi has a collection of features,

F =
{

f1, · · · , f|F |

}

, and a class label (developer), c ∈ C =
{

c1, · · · , c|C|

}

.

B. Feature Space

Feature extraction is an essential part of building an accu-
rate classification model. We examine the impact of the textual
representation of bug reports, and other information about bug
reports namely the component and the reporter. The following
is a set of features that we use to build the classification model:

• Discriminating terms: 1% of the most discriminating
terms of the textual description of bug reports selected
by X2 method. Using discriminating terms instead
of all terms as features improve the classification
accuracy dramatically and reduce the dimensionality
of data as shown in literature [7], [8].

• Component: It represents the component in which the
bug belongs to. For example, in the Netbeans dataset,
some of the components are Java, Compiler, UI, and
Ant.

• Reporter: It represents the person who filed this bug
report.

C. Data Pre-processing

Previous studies used both summary and description to
represent the textual contents of bug reports. The description
of bug reports contains too many terms that are unrelated to the
actual functionality of bug reports which distract the classifier
from detecting the actual developers who fixed the bugs (e.g.,
stack traces and steps to reproduce the bugs). Nevertheless,
the summary of bug report contains terms that are related to
the functionality of bug report and include less terms [11].
For these reasons, we only consider the title (summary) as the
textual representation of a bug report.

Bug reports are unstructured data which contain irrelevant
terms. Therefore, we apply the traditional text processing
approach to transform the text data into a meaningful represen-
tation. The text processing includes white-spaces, punctuation,
numbers, and stopwords removal and stemming (i.e., process
of conflating the variant forms of a word into a common
representation). After that, the approach constructs a bug-term
matrix weighted by Term Frequency (TF) [12]. After that, a
filtering is performed to refine the training set further to remove
reports that are assigned to inactive developers (i.e., developers
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Fig. 1. The TRAM Approach.

who no longer work on the project or developers who have
only fixed a small number of bugs) or reports that does not
have sufficient words to describe a meaningful description. We
eliminate bug reports that have less than 3 words since it is
too short to hold relevant information. We consider developers
who have fixed at least 20 bug reports in the dataset as active
developers.

D. Naive Bayes and Chi-Square

Naive Bayes classifier is used to build the predictive model.
Although known for its simplicity, the Naive Bayes algorithm
have been found to perform astonishingly well in information
retrieval. Naive Bayes is the best classifier compared to many
common classifiers such as decision tree, neural network, and
support vector machines in terms of accuracy and computa-
tional efficiency [13].

Feature or term selection methods include the removal of
non-informative terms according to corpus statistics. For se-
lecting the discriminating terms, we use the X2 term selection
method for two reasons. First, X2 is verified as the best feature
selection method for text classification [14]. Second, X2 gave
the best performance compared to other term selection methods
in bug triaging [8]. In statistics, the X2 test is used to examine
independence of two events. The events, X and Y, are assumed
to be independent if P(XY) = P(X)P(Y). In term selection, the
two events are the occurrence of the term and the occurrence
of the class. Terms are ranked with respect to the following
equation [12]:

X2(t, c) =
∑

t∈{0,1}

∑

c

(Nt,c − Et,c)
2

Et,c

where N is the observed frequency and E is the expected
frequency for each state of term t and class c. X2 is a measure
of how much expected counts E and observed counts N deviate
from each other.

IV. EXPERIMENTAL EVALUATION

In this Section, we report the results of TRAM on real
datasets. A description of the datasets that are used is shown

in Section IV-A and the results are shown and discussed in
Section IV-B. Section IV-C shows the most influential features
for each project.

A. Datasets

We evaluate TRAM based on Bugzilla bug repositories of
Freedesktop1, NetBeans2, Eclipse3, and Firefox4. In our work,
we collect the bug reports that have the status of [Closed,
Verified, and Resolved] and the resolution of [Fixed]. Choosing
these statuses means that most of the fields in these bug reports
have been confirmed. For each bug report, we extract the
bug ID, the summary, the reporter, the component, and the
assignee. For Freedesktop, we choose (9881) bug reports from
January 1st, 2011 until December 31st, 2012. For NetBeans,
we choose (9450) bug reports from January 1st, 2012 until
December 31st, 2012. For Eclipse, we choose (7898) bug
reports from January 1st, 2011 until December 31st, 2012.
For Firefox, we choose (5101) bug reports from January 1st,
2011 until December 31st, 2012. Table I shows a summary of
the datasets and Table II shows a statistics about the refined
datasets.

TABLE I. SUMMARY OF THE DATASETS

Project # of Bugs From To

Freedesktop 9881 Jan, 01, 2011 Dec 31, 2012

NetBeans 9450 Jan, 01, 2012 Dec 31, 2012

Eclipse 7898 Jan, 01, 2011 Dec 31, 2012

Firefox 5101 Jan, 01, 2011 Dec 31, 2012

TABLE II. STATISTICS ABOUT THE DATASETS

Project Bugs Developers Compon. Reporters

Freedesktop 8583 73 237 3249

NetBeans 8947 55 256 1677

Eclipse 7339 61 29 1019

Firefox 3856 41 40 719

1https://bugs.freedesktop.org/
2http://netbeans.org/bugzilla/
3https://bugs.eclipse.org/bugs/
4https://bugzilla.mozilla.org/
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B. Results

Each dataset is divided into training and testing sets. To
obtain unbiased evaluation results, we perform a 5-fold cross-
validation. The 5-fold cross-validation is used to avoid over-
fitting problem by calculating the average of the results [15].
Three methods are compared in this work as follows:

• Baseline: The vector space model is constructed by
considering all the terms (after processing) in the bug
summary weighted by TF.

• X2: The vector space model is constructed by select-
ing the 1% most discriminating terms chosen by X2.

• TRAM: The vector space model is constructed by
selecting metadata from bug reports namely the most
discriminating terms chosen by X2, Component, and
Reporter.

The classification of bug reports is evaluated using Preci-
sion, Recall, and F-score as follows:

Precision =
Number of correct recommendations

Number of recommendations made

Recall =
Number of correct recommendations

Number of possible relevant developers

F-score = 2×
Precision × Recall

Precision + Recall

Table III shows the Precision and Recall of the three meth-
ods. The X2 approach improves the Precision over the baseline
approach whereas it diminishes the Recall. For instance, X2

improves the Precision over the baseline approach by 22.4%
while it diminishes the Recall over the baseline approach by
7.8% in NetBeans. On the other hand, TRAM improves both
the Precision and Recall dramatically over both baseline and
X2 on all datasets. For example, TRAM improves Precision
by 39.5% and 17.1% over baseline and X2 respectively in
NetBeans. TRAM also improves Recall by 40.6% and 46.4%
over baseline and X2 respectively in NetBeans.

TABLE III. CLASSIFICATION RESULTS

Project Method Precision Recall

Freedesktop
Baseline 0.31 0.303

X
2 0.539 0.251

TRAM 0.663 0.623

NetBeans
Baseline 0.271 0.232

X
2 0.495 0.154

TRAM 0.666 0.638

Eclipse
Baseline 0.296 0.289

X
2 0.408 0.188

TRAM 0.493 0.482

Firefox
Baseline 0.326 0.318

X
2 0.365 0.322

TRAM 0.532 0.528

Figure 2 shows the F-score of the approaches investigated
in this work. For Freedesktop, the F-score is 0.306, 0.343,

and 0.642 for baseline, X2, and TRAM respectively. TRAM
improves the F-score by 33.6% and 30% over baseline and
X2 respectively. For NetBeans, the F-score is 0.250, 0.235,
and 0.652 for baseline, X2, and TRAM respectively. TRAM
improves the F-score by 40.2% and 41.7% over baseline and
X2 respectively. For Eclipse, the F-score is 0.292, 0.257,
and 0.487 for baseline, X2, and TRAM respectively. TRAM
improves the F-score by 19.5% and 23% over baseline and
X2 respectively. For Firefox, the F-score is 0.322, 0.342,
and 0.530 for baseline, X2, and TRAM respectively. TRAM
improves the F-score by 20.8% and 18.8% over baseline and
X2 respectively.

In summation, the experimental results appear in Table III
and Figure 2 clearly indicate that our hypothesis of adding
other features to the textual representation is valid. In this
work, we incorporate metadata of bug reports which include
the most discriminating terms in the report, the component that
the bug belongs to, and the reporter. Incorporating such addi-
tional information helped in distinguishing between developers
which clearly shown by the classification accuracy.

C. Significant Features

We have shown that TRAM gives high classification ac-
curacy for all projects. It is noteworthy knowing the most
influential features that determine correct developers for bug
reports. The most influential features can be computed using
gain ratio [16]. Gain ratio provides a normalized measure of
the contribution of each feature to classification. We report the
highest five influential features for each project in Table IV.
The higher the gain ratio, the more important the feature to
identify the developer.

TABLE IV. TOP 5 INFLUENTIAL FEATURES USING THE GAIN RATIO

MEASURE.

Project Feature Feature Set Gain Ratio

Freedesktop

fprinted Component 1
pixman Component 0.973
src Component 0.973
Driver/Radeon Component 0.968
SyncEvolution Component 0.933

NetBeans

Dashboard Component 0.973
GlassFishv3 Component 0.949
ReportException Component 0.899
Persistence Component 0.873
Inspection Component 0.865

Eclipse

Core Component 0.886
UserAssistance Component 0.861
SWT Component 0.81
Relenge Component 0.798
Build Component 0.769

Firefox

Installer Component 0.744
netzen Reporter 0.709
mano Reporter 0.691
robert.bugzilla Reporter 0.665
mconley Reporter 0.648

V. THREATS TO VALIDITY

We consider the developer in which the report assigned to
as the expert developer to fix that bug. This assumption is not
always valid. The bug fixing is usually a collaborative effort.
Therefore, other factors to determine the experience developers
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Fig. 2. F-Score of classification on four datasets.

should be considered. Moreover, we have validated TRAM
on open source bug repositories; commercial projects may
have different characteristics that may require some adaptation.
Also, we only use projects that use Bugzilla as their bug
tracking system. Other bug tracking systems are available such
as Gnats and Trac that model bug reports in a different way.
Therefore, TRAM should be applied to more open source and
commercial projects in order to generalize the results.

VI. CONCLUSION

In this paper, we presented TRAM, a new approach to
improve the prediction accuracy of the bug assignment task.
We utilized three sources of information namely the most
discriminating terms of bug reports, the component that the
bug report belongs to, and the reporter who filed the bug. We
built a classification model using the Naive Bayes classifier.
We applied TRAM on Freedesktop, NetBeans, Eclipse, and
Firefox. TRAM improves the F-score by approximately 34%,
40%, 20%, and 21% for Freedesktop, NetBeans, Eclipse, and
Firefox respectively. As a result, using component and reporter
information in addition to the discriminating terms of the
textual description improved the accuracy of the classification
significantly. Future directions include applying TRAM on
other projects. In addition, we would like to investigate the
effect of using other information such as the severity of bug
reports on classification accuracy.
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