

RESEARCH ARTICLE XXXXXXXXXXXXXXXXX

1

Copyright © 2016 American Scientific Publishers Advanced Science Letters

All rights reserved Vol. XXXXXXXXX

Printed in the United States of America

A Test Suite Reduction Approach

for Software Unit Testing

Shadi Banitaan1, Mohammad Akour2, and Mamdouh Alenezi3
1College of Engineering & Science, University of Detroit Mercy, USA

2Faculty of Information Technology & Computer Sciences, Yarmouk University, Jordan
3College of Computer & Information Sciences, Prince Sultan University, Saudi Arabia

Software testing is usually starts with the Unit testing phase. The goal of unit testing is to reveal logic and implementation errors in each unit. The unit

testing process is usually costly and time-consuming especially when the system under test is very large. In addition, because of the time pressures,

the testing team may not find time to fully test the product. Therefore, identifying the units that have most of the errors helps the testing team to focus

on testing them to save time and resources. In this paper, we propose an approach for unit testing that weights each method using a combination of

static object-oriented metrics. The proposed approach predicts the number of test cases necessary to test system methods. It assumes that complex

methods contain more errors which require executing more test cases to test the complex methods. The goal of this work is to help software developers

where to dedicate their available resources when performing unit testing. The experimental results on the studied Java systems show that how small

number of test cases are needed and how those test cases detect a high percentage of errors.

Keywords: Unit Testing, Test Focus Selection, Test Suite Reduction, Software Metrics.

1. INTRODUCTION

Software testing is an investigation conducted on

a program with the intent of finding errors21. The cost of

software testing is very high. It requires approximately 50%

of software development cost22. Moreover, the distribution

of bugs over different components of a software system is

not uniform. Therefore, if testing resources can be

concentrated on the more error prone components, then the

accessible resources can be exploited more effectively, and

the developed software will have a high quality with lower

cost.

In this work, we focus on unit testing where

individual units are tested independently. Unit testing is

normally conducted by software developers because it

requires deep understanding of the functional specification

of the system under test. The developer usually writes test

cases to test the system after he/she finishes the

implementation to make sure that the system meets its

design and behaves as intended. Unit testing is performed

by isolating each part of the program and testing if
*Email Address: banitash@udmercy.edu

individual parts are correct. Unit testing tries to find if the

implementation of the unit satisfies the functional

specification. The goal is to identify faults related to logic

and implementation in each unit. If these faults are not

detected, they may cause system failure when running the

system.

In this work, we utilize several method level

coupling and complexity metrics in order to rank software

methods. Ranking methods may help software developers

where to dedicate their available resources. Following are

the summarized contributions in this work:

 Propose an approach to reduce the effort of unit

testing in terms of the number of developed test

cases using static object oriented metrics.

 Perform several experimental studies on three

Java applications belong to different domains.

 Evaluate the proposed approach using mutation

analysis.

The remaining parts of the paper is organized as

follows: Section 2 briefly describes some background

information needed in this work, Section 3 describes the

proposed approach. The experimental evaluation and

Adv. Sci. Lett. X, XXX–XXX, 2015 RESEARCH ARTICLE

2

discussion are presented in Section 4. Section 5 discusses

related work. The conclusion of the paper is presented in

Section 6.

2. Background

2.1 A test case

A test case is a documentation that identifies input

values, expected output and the preconditions for

executing the test. In other words, a test case is a sequence

of steps executed on a software product, using a set of input

data, expected to produce a set of outputs in a given

environment11. A test suite is a collection of test cases with

the goal of testing some specified set of functionality.

2.2 A dependency

A dependency happens when one component uses

the services provided by another component. It is an

association between two components such that changes to

one component effect the other one. For example, if we

have two components X and Y. If X depends on Y then X

has an outbound dependency and Y has an inbound

dependency. The presence of X requires the presence of Y.

X is a dependent while Y is a dependee.

2.3 Size estimates

Size estimates of software testing is represented by

number of test cases written, number of test scenarios

covered, or number of configurations needed to be tested.

It is the primary input for effort estimation. Effort

estimation is very important since it has a direct

relationship of testing cost. In this work, we consider the

number of test cases to represent an effort estimation

measure for unit testing11.

3. The Proposed Test Reduction Approach

This section presents and discusses in details the

proposed approach. Figure 1 depicts the proposed test

reduction approach. The proposed approach in this

research paper is composed of four main steps. First, the

system dependencies are pulled out from Java byte-code

using Dependency Finder17. The dependency graphs are

then used to compute the dependency metrics. Second, the

selected object oriented metrics are calculated. Third, for

each single method the weight is measured using the

chosen metrics in the prior step. Ranking methods gives an

indication of which methods should be concentrated on

through testing process. After that, the approach predicts

the number of test cases recommended to test system

methods based on its rank. In our proposed approach, we

are trying to find the smallest set of methods that contain

most of the errors. We are investigating whether the

selected metrics can be used to identify the most error-

prone methods.

Fig.1. The proposed test reduction approach.

In this work, we use the following metrics:

 Inbound All Method Dependencies (IM): The set

of methods that depend on a given method.

 Outbound All Meth Dependencies (OM): The set

of methods that a given method depends on.

 Outbound All Field Dependencies (OF): The set of

fields that a given method depends on.

 Local Variables (LVAR): The number of local

variables used by a given method.

 PAR: The number of input parameters in a given

method.

 NOCMP: The number of complex input

parameters in a given method. The input parameter

is considered complex if it is not a primitive data

type.

 Maximum Nesting Depth (MND): The maximum

depth of nesting for a given method.

The metrics are used to calculate and assign a weight

for each method. The weight of method is calculated below:

𝑤𝑒𝑖𝑔ℎ𝑡(𝑚𝑖|𝑐𝑘) =
𝐼𝐶𝑚𝑖 ×(𝐼𝑀𝑚𝑖 + 𝑂𝑀𝑚𝑖+ 𝑂𝐹𝑚𝑖)2

∑ 𝐼𝐶𝑦 ×(𝐼𝑀𝑦 + 𝑂𝑀𝑦+ 𝑂𝐹𝑦)2
𝑦𝜖𝑀(𝑐𝑘)

Where M(ck) denotes all methods in the ck class. The

denominator is used for normalization. ICmi is the internal

complexity of method mi and it is measured as follows:
ICmi. = MNDmi + PARmi + NOCMPmi + LVARmi

After calculating the weight for each method, the

approach gives a recommendation about the number of test

cases that are required to test each method based on

methods weights. In this research paper, we suppose the

preliminary number of required test cases to test a software

RESEARCH ARTICLE XXXXXXXXXXXXXXXXX

3

system S is M(S)/2 where M(S) represents the total number

of methods in the system. The weight for each method is

measured using the aforementioned equation. The class

weight is computed by calculating the summation of all

method weights that associated with the targeted class. We

create a tool to calculate the metrics automatically. The tool

is developed using R language version 2.15.023.

4. Experimental Evaluation

How good are our test cases? We can answer this

question by applying mutation testing. In mutation testing,

mutants (artificial defects) are injected into software.

Mutants are usually created using an automated mutation

tool. In our work, mutation operators are automatically

generated using MuJava tool. We create mutants using both

intra-method and intra-class operators. MuJava tool is

widely used to perform mutation analysis21, 27. After

creating mutation operators, test cases are run against both

the original program and the faulty programs. We say that

the mutant is killed if test cases differentiate the output of

the original program from the mutant programs; otherwise

the mutant is still alive. Previous work found that mutation

testing is a reliable way of assessing the fault-finding

effectiveness of test cases and the generated mutants are

similar to real faults2, 3. Lyu et al.20 conducted an

experiment which engaged 34 development teams to

develop independent versions of a program to measure the

effectiveness of coverage testing versus mutation testing.

They concluded that mutation testing is a more truthful

indicator of testing quality.
For evaluation purposes, we pick three free open

source applications that are implemented using Java
programming language. Table 1 presents a summary of the
software applications under study. PureMVC is a
framework for building applications based on the Model,
View and Controller concept. The Cinema application is a
management system that is responsible for movie tickets
and movie schedules. ApacheCli is a library that provides
an API for parsing command line options passed to
programs.

Table.1. A summary of the applications.

Project # of

classes

of

methods

Source

PureMVC 22 139 http://puremvc.org/

Cinema 10 106 http://alarcos.esi.uclm.es

ApachiCLI 20 207 http://commons.apache.org/cli/

The selected systems contain unit test cases

developed using the JUnit testing framework. The JUnit
framework is an open-source testing framework. JUnit is
usually used for developing unit tests where each single
method is tested in isolation. Tables 2, 3, and 4 show the

results of applying mutation testing on the selected
applications. For the PureMVC application, 30 mutants are
injected and 26 of them are killed. For the Cinema
application, 1545 mutants are injected and all of them are
killed. For the ApacheCLI application, 1924 mutants are
injected and 1562 of them are killed. The mutation score is
86.67% for PureMVC, 100% for Cinema, and 81.19% for
ApacheCLI. Therefore, our approach is effective in
detecting at least 81.19% of mutants.

Table.2. PureMVC results.
Class Killed Lived Total

Façade 16 0 16

Mediator 0 2 2
Notification 4 0 4
Observer 2 0 2
Proxy 4 2 6
Total 26 4 30

Table.3. Cinema results.

Class Killed Lived Total
Asiento 51 0 51
Cine 1491 0 1491
Sesion 3 0 3
Total 1545 0 1545

Table.4. ApachiCLI results.

Class Killed Lived Total
CommandLine 50 0 50
HelpFormatter 724 22 746
GnuParser 42 0 42
Option 261 0 261
OptionBuilder 39 8 47

OptionGroup 7 2 9
Options 5 0 5
OptionValidator 127 90 217
PatternOptionBuilder 157 240 397
PosixParser 118 0 118
TypeHandler 26 0 26

Util 6 0 6
Total 1562 362 1924

A comparison with a base line approach is also conducted.

For the base line approach, all test cases available with the

selected software systems are executed. We perform two

comparisons with the baseline approach. The first one is

performed by measuring the savings that can be achieved

by the proposed approach. The savings is measured using

the following equation:

𝑆𝑎𝑣𝑖𝑛𝑔𝑠 =
|𝑇𝑏𝑎𝑠𝑒| − |𝑇|

|𝑇𝑏𝑎𝑠𝑒|
∗ 100

Adv. Sci. Lett. X, XXX–XXX, 2015 RESEARCH ARTICLE

4

Table.5. The comparison with the baseline approach.

Application The Proposed Approach The Baseline Approach

 # of test cases Mutation

Score

Score # of test cases Mutation

Score

Score

PureMVC 70 86.67% 1.24 139 93.30% 0.67

Cinema 53 100% 1.89 106 100% 0.94

ApacheCli 104 91.19% 0.88 207 94.33% 0.46

Where Tbase represents the number of test cases of the base

line approach while T represents the total number of test

cases that are chosen by the proposed approach. The

proposed approach achieves 50% savings for the selected

applications. The second comparison is conducted by

calculating a score that considers both mutation score and

number of developed test cases. The score is computed as

follows:

𝑆𝑐𝑜𝑟𝑒 =
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒

|𝑇|

Table 5 shows the results of comparing the

proposed approach with the base line approach. The results

indicate that the proposed approach achieves a higher score

than the base line approach for all of the selected

applications. Based on the two comparisons, we conclude

that the proposed approach is feasible and outperforms the

baseline approach.

5. Related Work

A number of approaches have been proposed in

literature to reduce the cost of software testing which

include test prioritization13, 28, test selection 7, 19, and test

minimization 25, 16. The purpose of test prioritization is to

rank test cases so that test cases that are more effective

according to a given criteria will be executed first to

maximize the fault detection rate. The purpose of test

selection is to identify test cases that are not needed to run

on the new version of the software. The purpose of test

minimization is to remove test cases that are redundant

based on a given criteria.

Another direction to reduce the cost of software

testing is to predict fault-proneness modules and then

concentrate the testing effort on the modules that are

recognized to be more error prone. Different approaches

are available in literature about building fault-proneness

prediction models using of object-oriented metrics6, 9, 8, 14.

Benlarbi and Melo6 identified and used polymorphism

measures to predict fault-proneness on class level. Their

results reveals that system's quality can be predicted by

their measures. Briand, Wüst, Daly, and Porter9 studied the

relationships between object-oriented design measures and

fault proneness at the class level. In their work, they

outlined the fault-proneness as the probability of detecting

a fault in a class. Their results showed that coupling

induced by method invocations, the rate of change in a

class due to specialization, and the depth of a class in its

inheritance hierarchy are strongly associated to the fault-

proneness in a class. Denaro and Pezze10 used logistic

regression to predict fault-prone modules. They reported

that their best model required about 50% of the modules to

be investigated in order to find 80% of the software faults.

The primary goal of this work is to find most of the errors

(80%) by using a small number of test cases (half number

of methods).

Predicting which parts of the system are more

fault-proneness can help the testers during unit and

integration testing to concentrate on the faulty classes.

However, most of the work presented so far do not provide

experimental evidence of the effectiveness of predicting

fault-prone classes on tuning the testing process. In

addition, most of previous work do not integrate prediction

models into the development process (i.e., how to use the

prediction models in testing). Most approaches for

predicting faulty classes use binary classifiers to build

predictive models. Therefore, it cannot tell which methods

are faultier than other methods. Therefore, testing team

cannot know which methods in each class they can spend

more resources on. Therefore, the proposed approach

works on a finer-grain level (method level) since it is the

smallest unit of object-oriented systems.

Some approaches were proposed to reduce the cost

of testing by reducing the number of executed test cases.

Bouchaib15 used a set of complexity metrics to select test

cases for regression testing. The experimental results

showed that the executed test cases based on the proposed

approach detected 100% of seeded errors and at least 60%

of mutants. Banitaan, Alenezi, Nygard, and Magel4

proposed an approach to select the test cases in integration

testing. Their approach used a combination of object

oriented metrics to give a weight for each method-pair

connection. After that, the approach gives a

recommendation about the number of test cases needed to

test each method-pair connection. Their experimental

results on Java applications showed that the small number

of developed test cases detected most of the integration

errors. Banitaan, Daimi, Wang, and Akour5 proposed an

approach for test case selection using software metrics.

They examined the ability of two complexity metrics and

three size metrics to find the most error prone classes. Their

experimental results showed that their proposed approach

significantly reduce the number of test cases needed for

execution while detecting most of errors.

RESEARCH ARTICLE XXXXXXXXXXXXXXXXX

5

6. Conclusion

In this paper, we proposed an approach to reduce

cost and time of the unit testing process. The main goal

behind this work is to concentrate testing effort on part of

software methods while raising the defect detection and

detect at least 80% of errors. The proposed approach is

divided into four steps. First, the dependencies are

extracted from the Java byte code. Second, metrics are

measured by utilizing both the source code and the

dependency relationships. Third, a weight is calculated for

each method using a set of object oriented metrics. Fourth,

the approach gives a recommendation about the number of

test cases needed to test each method. The experimental

evaluation using mutation testing showed that the test cases

executed based on the proposed approach can detect at

least 81.19% of mutants. A comparison with the base line

approach revealed that the proposed approach is feasible in

reducing the number of test cases needed. Future directions

include expanding the proposed approach to work on

systems developed using other object oriented languages

such as C#.

References
[1] M. Akour, A. Jaidev, and T. M. King, Towards change propagating

test models in autonomic and adaptive systems, in Engineering of

Computer Based Systems (ECBS), 2011 18th IEEE International

Conference and Workshops on, IEEE, 2011, pp. 89_96.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche, Is mutation an

appropriate tool for testing experiments?, in Proceedings of the

27th international conference on Software engineering, ICSE '05,

New York, NY, USA, 2005, ACM, pp. 402411.

[3] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, Using

mutation analysis for assessing and comparing testing coverage

criteria, IEEE Trans. Softw. Eng., 32 (2006), pp. 608_624.

[4] S. Banitaan, M. Alenezi, K. Nygard, and K. Magel, Towards test

focus selection for integration testing using method level software

metrics, in Proceedings of the 10th International Conference on

Information Technology: New Generations, April 2013.

[5] S. Banitaan, K. Daimi, Y. Wang, M. Akour, Test Case Selection using

Software Complexity and Volume Metrics, in the 24th

International Conference on Software Engineering and Data

Engineering, SEDE’15, San Diego, CA, USA.

[6] S. Benlarbi and W. L. Melo, Polymorphism measures for early risk

prediction, in Proceedings of the 21st international conference on

Software engineering, ICSE '99, New York, NY, USA, 1999,

ACM, pp. 334_344.

[7] L. C. Briand, Y. Labiche, and S. He, Automating regression test

selection based on uml designs, Inf. Softw. Technol., 51 (2009),

pp. 16_30.

[8] L. C. Briand, J. W€.st, and H. Lounis, Replicated case studies for

investigating quality factors in object-oriented designs, Empirical

Software Engineering: An International Journal, 6 (2001), pp. 11_58.
[9] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, Exploring the

relationship between design measures and software quality in

object-oriented systems, J. Syst. Softw., 51 (2000), pp. 245_273.

[10] G. Denaro and M. Pezzè, An empirical evaluation of fault-

proneness models, in Proceedings of the 24th International

Conference on Software Engineering, ICSE 2002, IEEE, 2002, pp.

241_251.

[11] S. Desikan and G. Ramesh, Software Testing: Principles and

Practices, Pearson Education India, 2012.

[12] M. J. T. E. Dietrich, J. and S. M. A. Shah, On the existence of high

impact refactoring opportunities in programs, in Australasian

Computer Science Conference (ACSC 2012), M. Reynolds and B.

Thomas, eds., vol. 122 of CRPIT, Melbourne, Australia, 2012,

ACS, pp. 37_48.

[13] S. Elbaum, A. Malishevsky, and G. Rothermel, Test case

prioritization: A family of empirical studies, IEEE Trans. Software

Eng., 28 (2002), pp. 159182.

[14] K. E. Emam, W. L. Melo, and J. C. Machado, The prediction of

faulty classes using object-oriented design metrics, Journal of

Systems and Software, 56 (2001), pp. 63_75.

[15] B. Falah, Test Case Selection Based on a Spectrum of Complexity

Metrics, PhD Dissertation, North Dakota State University, 2011.

[16] H. Hsu and A. Orso, Mints: A general framework and tool for

supporting test-suite minimization, in Software Engineering, 2009.

ICSE 2009. IEEE 31st International Conference on, IEEE, 2009,

pp. 419_429.

[17] T. J., Dependency finder, 2008. http://depfind.sourceforge.net/

(Online; accessed 2014).

[18] T. Khoshgoftaar, E. Allen, and J. Deng, Using regression trees to

classify fault-prone software modules, Reliability, IEEE

Transactions on, 51 (2002), pp. 455_462.

[19] Y. Ledru, G. Vega, T. Triki, and L. Bousquet, Test suite selection

based on traceability annotations, in Proceedings of the 27th

IEEE/ACM International Conference on Automated Software

Engineering, ACM, 2012, pp. 342_345.

[20] M. Lyu, Z. Huang, S. Sze, and X. Cai, An empirical study on testing

and fault tolerance for software reliability engineering, in

Software Reliability Engineering, 2003. ISSRE 2003. 14th

International Symposium on, IEEE, 2003, pp. 119_130.

[21] A. Masood, R. Bhatti, A. Ghafoor, and A. P. Mathur, Scalable and

effective test generation for role-based access control systems,

IEEE Trans. Software Eng., 35 (2009), pp. 654_668.

[22] G. Myers, C. Sandler, and T. Badgett, The art of software testing,

Wiley, 2011.

[23] R Development Core Team, R: A Language and Environment for

Statistical Computing, R Foundation for Statistical Computing,

Vienna, Austria, 2011.ISBN 3-900051-07-0.

[24] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, An empirical

study of the e_ects of minimization on the fault detection

capabilities of test suites, in In Proceedings of the International

Conference on Software Maintenance, 1998, pp. 34_43.

[25] S. Tallam and N. Gupta, A concept analysis inspired greedy

algorithm for test suite minimization, in Proceedings of the 6th

ACM SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering, PASTE '05, New York, NY, USA,

2005, ACM, pp. 35_42.

[26] W. Wang, X. Ding, C. Li, and H. Wang, A Novel Evaluation Method

for Defect Prediction in Software Systems, in International

Conference on Computational Intelligence and Software

Engineering, Wuhan, China, 2010, pp. 1_5.

[27] B. Yu, L. Kong, Y. Zhang, and H. Zhu, Testing java components

based on algebraic speci_cations, in Proceedings of the 2008

International Conference on Software Testing, Veri_cation, and

Validation, ICST '08, Washington, DC, USA, 2008, IEEE

Computer Society, pp. 190_199.

[28] Z. Zhang, Y. Mu, and Y. Tian, Test case prioritization for regression

testing based on function call path, in Computational and

Information Sciences (ICCIS), 2012 Fourth International

Conference on, IEEE, 2012, pp. 1372_1375.

