
Towards Test Focus Selection for Integration
Testing using Method Level Software Metrics

Shadi Banitaan, Mamdouh Alenezi, Kendall Nygard, and Kenneth Magel
Department of Computer Science

North Dakota State University

Fargo, ND 58108, USA

shadi.banitaan, mamdouh.alenezi, kendall.nygard, kenneth.magel@ndsu.edu

Abstract—The aim of integration testing is to uncover errors in
the interactions between system modules. However, it is generally
impossible to test all the interactions between modules because
of time and cost constraints. Thus, it is important to focus
the testing on the connections presumed to be more error-
prone. The goal of this research is to guide quality assurance
team wherein a software system to focus when they perform
integration testing to save time and resources. In this work,
we use method level metrics that capture both dependencies
and internal complexity of methods. In addition, we build a
tool that calculates the metrics automatically. We also propose
an approach to select the test focus in integration testing. The
main goal is to reduce the number of test cases needed while
still detecting at least 80% of integration errors. We conducted
an experimental study on several Java applications taken from
different domains. Error seeding technique have been used for
evaluation. The experimental results showed that our proposed
approach is very effective for selecting the test focus in integration
testing. It reduces considerably the number of required test cases
while at the same time detects at least 80% of integration errors.

Index Terms—Integration Testing, Test Case Reduction, Soft-
ware Metrics, Test Focus Selection

I. INTRODUCTION

Software testing is the process of executing a program

with the intent of finding errors [1]. Software testing is very

costly. It requires approximately 50% of software development

cost [1]. Many programs contain large number of errors. One

reason these errors persist through the software development

life cycle is the restriction of testing resources. These resources

are restricted by many factors such as time (e.g., the software

should be delivered in specific time) and cost (e.g., testing the

whole software system requires a large team). Thus, if testing

effort can be focused on the parts of a software system where

errors are most likely to occur, then the available resources can

be used more effectively, and the produced software system

will be more reliable at lower cost.

Object-oriented software systems contain large number of

modules which make the testing process very difficult and

time-consuming. The aim of integration testing is to uncover

errors in the interactions between system modules. Correct

functioning of object-oriented software depends upon the

successful integration of classes. While individual classes may

function correctly, several new errors can arise when these

classes are integrated together. However, it is usually very

difficult to test all the connections between classes. Therefore,

it is important to focus the testing on the interactions that are

more critical and faulty.
The goal of this research is to reduce both cost and time

required for integration testing. We are aiming to provide

testers with an accurate assessment of which connections are

most likely to contain errors, so they can regulate the testing

efforts to target these dependencies. Our assumption is that

using a small number of test cases to test the highly ranked

error-prone dependencies will detect most of the integration

errors. This work presents an approach to select the test focus

in integration testing. It uses method-level software metrics,

such as coupling, to give a weight for each method-pair

dependency and then to predict the number of test cases

needed to test each dependency. A dependency is a relationship

between two components where changes to one may have

an impact that will require changes to the other [2]. For

example, we say that component A depends on component

B. We also say that A has outbound dependency and B has

inbound dependency. A component is a dependent to another

component if it has outbound dependency on that component.

A component is a dependee to another component if it has

inbound dependency from that component.
In general, there are two main types of dependencies

according to the dependency extraction method: static and

dynamic. Static dependencies are extracted from binary files

while dynamic dependencies are extracted during run-time. In

our work, we extract static dependencies.
To summarize, we make the following key contributions in

this work:

1) Use method-level object-oriented metrics. The metrics

are selected according to the following two assumptions:

A) the degree of dependencies between the two methods

that have an interaction are strongly correlated with the

number of integration errors between the methods; B)

the internal complexity of the two method that have

an interaction are strongly correlated with the number

of integration errors in the interaction between them.

We use four method level dependency metrics and three

method level internal complexity metrics.

2) Build a tool to calculate the metrics automatically. We

develop a tool using R language to compute the metrics

automatically.

2013 10th International Conference on Information Technology: New Generations

978-0-7695-4967-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ITNG.2013.55

343

3) Propose an approach to reduce cost and time of inte-

gration testing. We use a combination of object-oriented

metrics to give a weight for each method-pair connec-

tion. Then, we predict the number of test cases needed

to test each connection. The objective is to reduce the

number of test cases needed to a large degree while still

detecting at least 80% of integration errors.

4) Conduct an experimental study on several Java applica-

tions taken from different domains.

The rest of the paper is organized as follows: Section II

discusses related work. Section III describes the proposed

approach. The experimental evaluation and discussion are

presented in Section IV. Section V concludes the paper.

II. RELATED WORK

Class fault-proneness can be defined as the number of faults

detected in a class. There is much research on building fault-

proneness prediction models using different sets of metrics in

object-oriented systems [3], [4], [5], [6]. The metrics are used

as independent variables and fault-proneness is the dependent

variable. In [3], the authors identified polymorphism measures

to predict fault-prone classes. Their results showed that their

measures can be used at early phases of the product life cycle

as good predictors of its quality. The results also showed that

some of the polymorphism measures may help in ranking and

selecting software artifacts according to their level of risk

given the amount of coupling due to polymorphism. Briand

et al. [4] empirically investigated the relationships between

object-oriented design measures and fault-proneness at the

class level. They defined fault-proneness as the probability of

detecting a fault in a class. Their results showed that coupling

induced by method invocations, the rate of change in a class

due to specialization, and the depth of a class in its inheritance

hierarchy are strongly related to the fault-proneness in a class.

Their results also showed that using some of the coupling and

inheritance measures can be used to build accurate models for

class-proneness prediction.

Predicting fault-prone classes can be used in the unit testing

process such that the testers can focus the testing on the faulty

classes. On the other hand, identifying fault-prone classes

can not be used effectively in the integration testing process

because we do not know what the fault-prone connections

are. Therefore, we need to identify error-prone connections

between method-pairs in order to focus the testing on them.

Zimmermann and Nagappan [7] proposed the use of net-

work analysis on dependency graphs such as closeness mea-

sure to identify program parts which are more likely to contain

errors. They investigated the correlation between dependencies

and defects for binaries in Windows Server 2003. Their

experimental results show that network analysis measures can

detect 60% of binaries that are considered more critical by

developers. They mentioned in their paper that most complex-

ity metrics focus on single components and do not take into

consideration the interactions between elements. In our work,

we take the interactions between methods in our consideration.

We use metrics that define dependencies on both method level

and method-pair level to identify the interactions that are more

likely to contain integration errors.

Borner and Paech [8] presented an approach to select the

test focus in the integration testing process. They identified the

correlations between dependency properties and the number of

errors in both the dependent and the independent files in the

previous versions of a software system. They used information

about the number of errors in dependent and independent files

to identify the dependencies that have a higher probability to

contain errors. The main differences between our approach

and Borner and Paech approach are the followings:

• Their approach just works for systems that have previous

versions while our approach does not need previous

versions of the system under test.

• Their approach predicts the error-prone dependencies

while our approach not only predicts the error-prone

dependencies but also predicts the number of test cases

needed to test each dependency. In addition, we rank

dependencies by giving a weight for each dependency

in which a dependency with a higher weight is assigned

more test cases than a dependency with a lower weight.

• They identify the correlations between the dependency

properties and the number of errors in the dependent and

the independent file. In our work, we do not identify the

correlations between our metrics and the number of errors

in files because we are working on the method level and

information about number of errors at the method level

is not available. In our view, identifying the correlations

with the number of errors in files is not an accurate

measure because errors belong to different classes inside

the file and we cannot tell in which class the errors reside.

1. Dependency
Extractor

2. Metrics
Extractor

3. Connections
Ranker

4. Test Focus
Selector

5. Generate Test
Cases

Source files Source files

Class files Class files

All dependencies

MetricsMetrics

Fig. 1. An overview of the proposed approach.

III. THE PROPOSED APPROACH

In this section, we discuss the proposed approach. Figure 1

provides an overview of the proposed approach. Our approach

is divided into five steps. First of all, the dependency extractor

extracts the dependencies from the compiled Java code. The

result of this step is an XML file that contains the dependen-

cies at method and class levels. After that, metrics extractor

calculates the metrics using both the source code and the

dependencies. The output of this step is the metrics at method

level and method-pair level. Then, a weight is calculated for

each method-pair using a combination of the metrics defined in

344

the previous step. The ranks of the connections indicate which

connections should be focused on during the testing process.

Next, the test focus selector selects the error-prone connections

as a test focus and predicts the number of test cases needed

to test each method-pair connection based on the ranks of

the connections produced in the previous step and given the

initial minimum number of test cases needed. The last step is

to generate test cases manually to test the required application.

The following sections explain these steps in detail.

A. System Representation

We first define a representation for a software system.

Definition 1: (System, Classes, Methods). A software sys-

tem S is an object-oriented system. S has a set of classes

C = {c1, c2, · · · , cn}. The number of classes in the system

is n = |C|. A class has a set of methods. For each class

c ∈ C,M(c) = {m1,m2, · · · ,mt} are the set of methods in

c, where t = |M(c)| is the number of methods in a class c.
The set of all methods in the system S is denoted by M(S).

B. Dependency Extractor

The dependency extractor extracts dependencies from Java

class files. It detects three levels of dependencies: 1) class to

class; 2) feature to class; and 3) feature to feature. The term

feature indicates class attributes, constructors, or methods. We

use the Dependency Finder tool [9] to extract the depen-

dencies. In our work, we are just considering dependencies

between methods. We consider two types of dependencies;

method to method dependency and method to field depen-

dency. We use the dependencies to define some of the metrics

in the next section.

C. Metrics Extractor

The aim of this step is to identify set of metrics and to

extract those metrics automatically from both the dependencies

produced in the previous step and the source code. This

section describes the software metrics that we use in our

work. The metrics are defined for object-oriented systems.

We define the metrics on both method level and method-

pair level. Those metrics cover the dependencies between

methods and the internal complexity of the methods. We

consider the dependency metrics because errors are found

during integration testing exactly where couplings typically

occur [10]. In addition, complex methods are mostly more

error prone.

1) Method Level Metrics: We define metrics on individual

methods within a class. For method mi in class ci, we define

the following metrics.

• Inbound Method Dependencies (IMD): Methods in

other classes that depend on method mi.

• Outbound Method Dependencies (OMD): Methods in

other classes that method mi depends on.

• Outbound Field Dependencies (OFD): Fields in other

classes that method mi depends on.

• Local Variables (LV AR): The number of local variables

used by method mi.

• Number of Complex Method Parameters (NOCMP):
The number of complex input parameters in method mi.

The input parameter is complex if it is not a primitive

type.

• Maximum Nesting Depth (MND): The maximum depth

of nesting in method mi. This metric represents the

maximum nesting level of control constructs (if, for,

while, and switch) in the method.

2) Method Pair Metrics: We define the following metrics

on the method pair (mi, mj) where mi is a dependent and

mj is a dependee, mi ∈ ci, mj ∈ cj where ci �= cj .

• Inbound Common Method Dependencies (ICMmimj):

Number of common methods that depend on both mi and

mj .

• Outbound Common Method Dependencies

(OCMmimj): Number of common methods that

both mi and mj depends on.

D. Connections Ranker

In this step, we use a combination of metrics defined in the

previous step to calculate the weight for each method-pair. For

method-pair (mi,mj), the weight for the connection between

mi and mj is calculated as follows:

weight(mi,mj) = (weight(mi) + weight(mj))×
(ICMmimj +OCMmimj + 1)

Both ICM metric and OCM metric indicate the indirect

dependency between the two methods. We give more weight

for the connection if there are common dependencies between

the two methods as appeared in the previous equation. In

addition, the ICM and OCM metrics do not contribute to the

weight if the value for both of them is zero.

The weight of method mi (weight(mi)) is calculated as

follows:

weight(mi|ck, cl) = ICmi
×(IMDmi+OMDmi+OFDmi)

2

∑
y∈M(ck,cl)

ICy×(IMDy+OMDy+OFDy)2

where M(ck, cl) is the set of methods in both ck class and

cl class. As we see in the previous equation, the weight for

a method depends on: 1) method to method dependencies

(IMD,OMD); 2) method to field dependencies (OFD);

and 3) the internal complexity of the method (IC). The

denominator is used to get a normalized weight. ICmi
is

the internal complexity of method mi and it is measured as

follows:

ICmi = MNDmi +NOCMPmi + LV ARmi

E. Test Focus Selector

The Test focus selector predicts the number of test cases

needed to test each connection based on the weights of the

connections produced in the previous step and given the initial

minimum number of test cases needed. We would like to start

with a small initial number of test cases. In our work, we

assume the initial number of test cases needed to test a system

S to be
|M(S)|

2 . After that, the number of test cases can be

345

adjusted depending on the error discovery rate. For example,

if the initial number of test cases to test a system was 50 and

the error discovery rate was 60%, then we generate and run

more test cases until we reach 80% of error discovery rate.

The method-pair weight is computed using the equation in

the previous section. The class-pair weight is computed as the

summation of all method-pair weights that belong to the two

classes. If the class-pair weight is zero, we specify one test

case to test the class-pair connections. Figure 2 explains the

testing process used in our approach. We start by creating

w test cases where w is the initial number of test cases

given by the approach. We then run the test cases against the

seeded versions of the applications and we compute the error

discovery rate. We stop if we achieve 80% error discovery

rate. Otherwise, we create more test cases until the 80% is

achieved.

Start

Create w test cases

Execute test cases

80% of errors have
been discovered?

Stop

Create test cases

YES

NO

Fig. 2. Our testing approach.

F. Generate Test Cases

In this step, test cases are created manually to test the

required application. For evaluating the testing process, error

seeding technique [11] is used where a number of seeded

integration errors are inserted manually into the source code

by a third party. The assumption is that if the test cases found

y% of the seeded errors, those test cases can find y% of the

actual errors.

G. Tool Implementation

We build a Software Metrics for Integration Testing (SMIT)

tool to calculate the metrics automatically. The tool is devel-

oped using R programming language [12]. Binary versions

of this language are available for several platforms including

Windows, Unix and MacOS. It is not only free but also

an open source. R provides powerful functions to deal with

regular expressions. Our tool uses the DependencyFinder tool

to extract dependencies from compiled Java code. Our tool

calculates the metrics using both the dependencies and the

source files. The outputs of our tool are four files in CSV

format: method level file, method-pair level file, class-pair

level file and a final report that specifies the number of test

cases needed to test each method-pair interaction.

IV. EXPERIMENTAL EVALUATION

In order to evaluate the proposed approach, we select open-

source applications implemented in Java. Table II shows a

summary of the selected applications. The selected appli-

cations vary in size and domain and can be downloaded

freely from the Internet. The Monopoly application presents a

Monopoly-like computer game. Monopoly provides many fea-

tures that appear in the Monopoly board game. The CruiseC-

ontrol application simulates a car engine and its cruising con-

troller, and PureMVC is a light weight framework for creating

applications based on the classic Model, View and Controller

concept. There are two versions of the PureMVC framework:

Standard and MultiCore. We use the standard Version that

provides a methodology for separating the coding interests

according to the MVC concept. The Cinema application is a

cinema management system that manages tickets booking and

movie schedules. The ApacheCli is a library that provides an

API for parsing command line options passed to programs.

TABLE II
A SUMMARY OF THE SELECTED APPLICATIONS.

Project # of classes # of methods Source
Monopoly 57 336 http://realsearchgroup.com/rose/

CruiseControl 4 35 http://sir.unl.edu

PureMVC 22 139 http://puremvc.org/

Cinema 10 106 http://alarcos.esi.uclm.es

ApacheCli 20 207 http://commons.apache.org/cli/

Table III shows part of the method-level metrics output

for the CruiseControl application. For example, the number

of local variables for CarSimulator.run() is 4, the maximum

nesting depth is 3, and the number of outbound method

dependencies is 2. Table IV shows part of the method-pair

level metrics output for the CruiseControl application. The last

column in the Figure represents the weight of the method pair.

Table V shows the class-level output for the CruiseControl

application. Table VI shows part of the final report for the

CruiseControl application. For example, the approach suggests

to write one test case to test the method-pair (CruiseC-

ontrol.handleCommand(),CarSimulator.accelerate()). We start

with the initial number of test cases needed according to

our approach and we stop after the first iteration because the

created test cases detect at least 80% of the errors.

We use error seeding technique in order to evaluate our

approach. Integration errors are placed in the source code by

a third party. The third party injects the following types of

integration errors [13]:

• Wrong function error: it occurs when the functionality

provided by the dependee module is not the required

functionality by the dependent module.

• Extra function error: an extra function error happens

when the dependee module contains functionality that is

not required by the dependent module.

346

TABLE I
RESULTS.

Application # of seeded errors Error type Detected Not Detected Error detection rate
CruiseControl 10 Wrong function errors 10 0 100.00%
CruiseControl 4 Miscoded Call Errors (Missing instruction) 3 1 75.00%
CruiseControl 3 Miscoded Call Errors (Extra call instruction) 3 0 100.00%
Total 17 16 1 94.12%

Monopoly 12 Wrong function errors 11 1 90.91%
Monopoly 7 Miscoded Call Errors (Missing instruction) 7 0 100.00%
Monopoly 2 Miscoded Call Errors (Extra call instruction) 1 1 50.00%
Total 21 19 2 90.48%

PureMVC 10 Wrong function errors 8 2 80.00%
PureMVC 8 Miscoded Call Errors (Missing instruction) 7 1 87.50%
PureMVC 1 Miscoded Call Errors (Extra call instruction) 1 0 100.00%
Total 19 16 3 84.21%

Cinema 11 Wrong function errors 10 1 90.91%
Cinema 6 Miscoded Call Errors (Missing instruction) 5 1 83.33%
Cinema 3 Miscoded Call Errors (Extra call instruction) 2 1 66.67%
Total 20 17 3 85.00%

ApacheCli 10 Wrong function errors 8 2 80.00%
ApacheCli 8 Miscoded Call Errors (Missing instruction) 7 1 87.50%
ApacheCli 4 Miscoded Call Errors (Extra call instruction) 4 0 100.00%
Total 22 19 3 86.36%

TABLE III
PART OF THE METHOD-LEVEL OUTPUT FOR THE CRUISECONTROL

APPLICATION.

LVAR NOCMP MND IMD OMD OFD

CarSimulator.CarSimulator() 1 0 0 1 1 0

CarSimulator.accelerate() 1 0 2 1 0 0

CarSimulator.brake() 1 0 2 1 0 0

CarSimulator.engineOff() 1 0 0 1 0 0

CarSimulator.engineOn() 1 0 1 1 2 0

CarSimulator.getBrakepedal() 1 0 0 0 0 0

CarSimulator.getDistance() 1 0 0 0 0 0

CarSimulator.getIgnition() 1 0 0 0 0 0

CarSimulator.getSpeed() 1 0 0 2 0 0

CarSimulator.getThrottle() 1 0 0 0 0 0

CarSimulator.run() 4 0 3 0 2 1

CarSimulator.setThrottle(double) 2 0 1 1 0 0

Controller.Controller(CarSimulator) 2 1 0 1 2 0

Controller.accelerator() 1 0 1 1 1 0

Controller.brake() 1 0 1 1 1 0

Controller.engineOff() 1 0 1 1 1 0

• Missing function error: a missing function error occurs

when there are some inputs from the dependent module

to the dependee module which are outside the domain of

the dependee module.

• Missing instruction error: it happens when the invocation

statement is missing.

• Extra call instruction error: it occurs when the invocation

statement is placed on a path that should not contain such

invocation.

• Wrong call instruction placement: it happens when the

invocation statement is placed in a wrong position on the

right path.

• Interface error: interface errors occur when the defined

interface between two modules is violated.

Table I shows the experimental results of the proposed

approach. We calculate the error detection rate by dividing

the number of detected seeded errors by the total number of

seeded errors. For the CruiseControl application, 17 integration

TABLE IV
PART OF THE METHOD-PAIR LEVEL OUTPUT FOR THE CRUISECONTROL

APPLICATION.

Dependent Dependee OCM ICM Weight

CruiseControl.CruiseControl() CarSimulator.CarSimulator() 1 0 0.048

CruiseControl.handleCommand(String) CarSimulator.accelerate() 0 0 0.806

CruiseControl.handleCommand(String) CarSimulator.brake() 0 0 0.806

CruiseControl.handleCommand(String) CarSimulator.engineOff() 0 0 0.802

CruiseControl.handleCommand(String) CarSimulator.engineOn() 0 0 0.833

SpeedControl.recordSpeed() CarSimulator.getSpeed() 0 0 0.034

SpeedControl.run() CarSimulator.getSpeed() 0 0 0.246

SpeedControl.run() CarSimulator.setThrottle(double) 0 0 0.242

CruiseControl.CruiseControl() Controller.Controller(CarSimulator) 1 0 0.135

CruiseControl.handleCommand(String) Controller.accelerator() 0 0 0.822

CruiseControl.handleCommand(String) Controller.brake() 0 0 0.822

CruiseControl.handleCommand(String) Controller.engineOff() 0 0 0.822

CruiseControl.handleCommand(String) Controller.engineOn() 0 0 0.822

CruiseControl.handleCommand(String) Controller.off() 0 0 0.822

CruiseControl.handleCommand(String) Controller.on() 0 0 0.841

CruiseControl.handleCommand(String) Controller.resume() 0 0 0.822

Controller.Controller(CarSimulator) SpeedControl.SpeedControl(CarSimulator) 1 0 0.338

Controller.engineOn() SpeedControl.clearSpeed() 0 0 0.043

Controller.accelerator() SpeedControl.disableControl() 0 0 0.173

Controller.brake() SpeedControl.disableControl() 0 0 0.173

Controller.engineOff() SpeedControl.disableControl() 0 0 0.173

Controller.off() SpeedControl.disableControl() 0 0 0.173

Controller.on() SpeedControl.enableControl() 0 0 0.216

Controller.resume() SpeedControl.enableControl() 0 0 0.173

Controller.getState() SpeedControl.getState() 0 0 0.009

Controller.on() SpeedControl.recordSpeed() 0 0 0.095

TABLE V
THE CLASS-PAIR LEVEL OUTPUT FOR THE CRUISECONTROL

APPLICATION.

Class-pair Weight Norm. weight No. of test cases

CarSimulator-CruiseControl 3.294 0.292 5

CarSimulator-SpeedControl 0.521 0.046 1

Controller-CruiseControl 5.910 0.523 9

Controller-SpeedControl 1.567 0.139 2

errors are inserted and 16 of them are detected by our test

cases. For the Monopoly application, 21 integration errors

are inserted and 19 of them are detected. For the PureMVC

application, 19 integration errors are inserted and 16 of them

are detected. For the Cinema application, 20 integration errors

347

TABLE VI
PART OF THE FINAL REPORT FOR THE CRUISECONTROL APPLICATION.

Dependent Dependee No. of test cases

CruiseControl.CruiseControl() CarSimulator.CarSimulator() 0

CruiseControl.handleCommand(String) CarSimulator.accelerate() 1

CruiseControl.handleCommand(String) CarSimulator.brake() 1

CruiseControl.handleCommand(String) CarSimulator.engineOff() 1

CruiseControl.handleCommand(String) CarSimulator.engineOn() 1

SpeedControl.recordSpeed() CarSimulator.getSpeed() 0

SpeedControl.run() CarSimulator.getSpeed() 1

SpeedControl.run() CarSimulator.setThrottle(double) 0

CruiseControl.CruiseControl() Controller.Controller(CarSimulator) 0

CruiseControl.handleCommand(String) Controller.accelerator() 1

CruiseControl.handleCommand(String) Controller.brake() 1

CruiseControl.handleCommand(String) Controller.engineOff() 1

CruiseControl.handleCommand(String) Controller.engineOn() 1

CruiseControl.handleCommand(String) Controller.off() 1

CruiseControl.handleCommand(String) Controller.on() 1

CruiseControl.handleCommand(String) Controller.resume() 1

Controller.Controller(CarSimulator) SpeedControl.SpeedControl(CarSimulator) 1

Controller.engineOn() SpeedControl.clearSpeed() 0

Controller.accelerator() SpeedControl.disableControl() 0

Controller.brake() SpeedControl.disableControl() 0

Controller.engineOff() SpeedControl.disableControl() 0

Controller.off() SpeedControl.disableControl() 0

Controller.on() SpeedControl.enableControl() 0

Controller.resume() SpeedControl.enableControl() 0

Controller.getState() SpeedControl.getState() 0

Controller.on() SpeedControl.recordSpeed() 0

are inserted and 17 of them are detected. For the ApacheCli

application, 22 integration errors are inserted and 19 of them

are detected. Figure 3 shows the error detection rate for

the applications under test. Table VII shows the number of

test cases created to test the applications. It also shows the

percentage of connections that are covered by test cases. For

example, in the Monopoly application, we write 30 test cases

to test 30 connections out of 449 connections and we only

covered 6.68% of the connections while detecting 90.48%
of integration errors. The Monopoly application achieves the

highest reduction in the number of tested connections (6.68%)

while the PureMVC application achieves the lowest reduction

(53.57%).

TABLE VII
NUMBER OF TEST CASES CREATED FOR EACH APPLICATION AND THE

PERCENTAGE OF COVERED CONNECTIONS.

Project # of connections # of test cases Covered connections

Monopoly 449 30 6.68%
CruiseControl 26 13 50.00%
PureMVC 28 15 53.57%
Cinema 97 13 13.40%
ApcheCli 196 17 8.67%

It is clear from the experimental results in Table I and

Table VII that our test cases just cover part of the connections

while at the same time detect at least 84% of seeded errors

for all of the selected applications. Therefore, our approach

is very effective in detecting most of the integration errors by

testing the highly ranked connections. The experimental results

show that the highly ranked connections contain most of the

integration errors. It also shows that our approach reduces the

number of test cases needed for integration testing.

V. CONCLUSION

In this paper, we propose an approach to select the test

focus in integration testing. We define method-level metrics

that can be used for test focus selection in integration testing.

We build a tool that calculates the metrics automatically.

0

10

20

30

40

50

60

70

80

90

100

CruiseControl Monopoly PureMVC Cinema ApacheCli

Fig. 3. Error detection rate for the selected applications.

Our approach predicts the number of test cases needed to

test each method-pair dependency. We conducted experiments

on several Java applications taken from different domains.

The experimental results show that our proposed approach

is effective in selecting the test focus in integration testing.

The small number of developed test cases detect at least 80%
of integration errors in all of the selected applications. In

future, we are going to expand SMIT tool to work on other

programming languages such as C++. In addition, we want to

select the test focus for integration testing using method level

metrics and integration errors history in the previous versions

of the application under test.

REFERENCES

[1] G. J. Myers, The Art of Software Testing, Second Edition. Wiley, 2004.
[2] N. Wilde, “Understanding program dependencies,” 1990.
[3] S. Benlarbi and W. L. Melo, “Polymorphism measures for

early risk prediction,” in Proceedings of the 21st international
conference on Software engineering, ser. ICSE ’99. New
York, NY, USA: ACM, 1999, pp. 334–344. [Online]. Available:
http://doi.acm.org/10.1145/302405.302652

[4] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, “Exploring the
relationship between design measures and software quality in object-
oriented systems,” J. Syst. Softw., vol. 51, no. 3, pp. 245–273, May
2000.

[5] L. C. Briand, J. Wst, and H. Lounis, “Replicated case studies for inves-
tigating quality factors in object-oriented designs,” Empirical Software
Engineering: An International Journal, vol. 6, pp. 11–58, 2001.

[6] K. E. Emam, W. L. Melo, and J. C. Machado, “The prediction of faulty
classes using object-oriented design metrics,” Journal of Systems and
Software, vol. 56, no. 1, pp. 63–75, 2001.

[7] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings of the 30th international
conference on Software engineering, ser. ICSE ’08. New York, NY,
USA: ACM, 2008, pp. 531–540.

[8] L. Borner and B. Paech, “Using dependency information to select
the test focus in the integration testing process,” in Proceedings of
the 2009 Testing: Academic and Industrial Conference - Practice and
Research Techniques, ser. TAIC-PART ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 135–143.

[9] T. J., “Dependency finder,” 2008, http://depfind.sourceforge.net/ (Online;
accessed 2012).

[10] Z. Jin and A. J. Offutt, “Coupling-based criteria for integration testing,”
Softw. Test., Verif. Reliab., vol. 8, no. 3, pp. 133–154, 1998.

[11] H. D. Mills, On the statistical validation of computer programs. Little
Brown, Toronto: In Software Productivity.

[12] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2011, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[13] H. Leung and L. White, “A study of integration testing and software
regression at the integration level,” in Software Maintenance, 1990.,
Proceedings., Conference on, 1990, pp. 290 –301.

348

