
Academic Editors: Zhenyu Chen and

Chunrong Fang

Received: 21 December 2024

Revised: 26 January 2025

Accepted: 27 January 2025

Published: 28 January 2025

Citation: Alenezi, M.; Akour, M.

AI-Driven Innovations in Software

Engineering: A Review of Current

Practices and Future Directions. Appl.

Sci. 2025, 15, 1344. https://doi.org/

10.3390/app15031344

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

AI-Driven Innovations in Software Engineering: A Review of
Current Practices and Future Directions
Mamdouh Alenezi 1,† and Mohammed Akour 2,*,†

1 The Saudi Technology and Security Comprehensive Control Company (Tahakom),
Riyadh 12435, Saudi Arabia; mkalenezi@tahakom.com

2 College of Computer and Information Sciences, Prince Sultan University, Riyadh 12435, Saudi Arabia
* Correspondence: makour@psu.edu.sa
† These authors contributed equally to this work.

Abstract: The software engineering landscape is undergoing a significant transformation
with the advent of artificial intelligence (AI). AI technologies are poised to redefine tra-
ditional software development practices, offering innovative solutions to long-standing
challenges. This paper explores the integration of AI into software engineering processes,
aiming to identify its impacts, benefits, and the challenges that accompany this paradigm
shift. A comprehensive analysis of current AI applications in software engineering is
conducted, supported by case studies and theoretical models. The study examines various
phases of software development to assess where AI contributes most effectively. The inte-
gration of AI enhances productivity, improves code quality, and accelerates development
cycles. Key areas of impact include automated code generation, intelligent debugging,
predictive maintenance, and enhanced decision-making processes. AI is revolutionizing
software engineering by introducing automation and intelligence into the development
lifecycle. Embracing AI-driven tools and methodologies is essential for staying competitive
in the evolving technological landscape.

Keywords: artificial intelligence (AI); software engineering; automation; software
development lifecycle

1. Introduction
The evolution of software engineering practices has been both rapid and transforma-

tive, shaped by technological advancements and the increasing complexity of software
demands [1,2]. Since the early days of software development, methodologies have under-
gone continuous improvements, progressing from the traditional waterfall model to more
iterative and agile practices [3]. This evolution has aimed to address the growing need for
efficiency, flexibility, and quality in software products. Over time, the adoption of DevOps,
continuous integration, and test automation has redefined how software is built, tested,
and deployed [4,5]. Despite these advances, certain challenges such as error-prone man-
ual coding, delayed feedback loops, and resource allocation have persisted, necessitating
further innovation.

The emergence of artificial intelligence (AI) presents a new frontier in addressing some
of the long-standing challenges in software engineering [6]. AI’s relevance to software
development is particularly significant due to its ability to learn patterns, make predic-
tions, and automate complex tasks [7,8]. Technologies such as machine learning, natural
language processing, and neural networks are becoming instrumental in enhancing soft-
ware engineering processes. AI-powered tools are enabling smarter automation, adaptive

Appl. Sci. 2025, 15, 1344 https://doi.org/10.3390/app15031344

https://doi.org/10.3390/app15031344
https://doi.org/10.3390/app15031344
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app15031344
https://www.mdpi.com/article/10.3390/app15031344?type=check_update&version=1

Appl. Sci. 2025, 15, 1344 2 of 26

problem-solving, and decision-making capabilities, offering a promising avenue to opti-
mize both the efficiency and effectiveness of software development. The integration of AI
is not only transforming traditional workflows but also redefining the skill sets required
for modern software engineering professionals.

Recent years have seen a surge in AI-driven techniques for various stages of the
software development lifecycle. Automated code generation has made significant strides,
facilitated by large language models (LLMs) that can generate or suggest code snippets with
minimal human intervention [9,10]. Tools such as GitHub Copilot leverage transformer-
based models to provide context-aware code completions [11], while DeepMind’s Alpha-
Code has demonstrated the capability to solve programming challenges by generating
solutions that closely match human-written code [12]. Beyond code generation, defect pre-
diction and detection have benefited greatly from machine learning algorithms trained on
historical bug data, enabling the early identification of potential issues [13,14]. Furthermore,
advancements in automated testing have introduced intelligent test case generation and
prioritization using AI-based approaches, reducing both testing time and human effort [15].
In the maintenance and refactoring domain, AI techniques now assist in suggesting optimal
refactoring strategies to enhance code quality and performance, while predictive analytics
tools help estimate development timelines and resource allocations more accurately.

In tandem with these advances, explainable AI (XAI) has emerged as a crucial sub-
field, offering techniques to improve the transparency and interpretability of AI-driven
decisions in software engineering [16]. This is particularly significant in safety-critical and
compliance-heavy industries, where understanding the rationale behind AI recommen-
dations is vital. Moreover, the integration of continuous learning frameworks is allowing
AI-driven tools to evolve dynamically with the changing software codebase, reducing
model drift and enhancing overall reliability [17].

Despite these notable advancements, several gaps remain. First, while AI excels
at specialized tasks (e.g., automated code suggestions and bug prediction), there is a
lack of holistic frameworks that integrate these capabilities across the entire software
development lifecycle. Existing approaches often operate in silos—code generation tools
may not seamlessly share insights with defect prediction models, and vice versa, leading
to fragmented development workflows [18]. Secondly, the trustworthiness and reliability
of AI recommendations are ongoing concerns. Even with explainable AI techniques,
ensuring that developers can fully understand and validate the outputs of AI systems
remains challenging [16]. Thirdly, many current AI-based solutions are data-hungry and
may struggle in domains where large datasets are unavailable or where data privacy is
a concern [17]. Fourthly, ethical considerations, such as bias in AI models or the risk
of over-reliance on automation, have yet to be comprehensively addressed, potentially
impacting both code quality and human skill development [19].

AI’s transformative potential in software engineering is evident from tools like GitHub
Copilot 1.7.4421. In a study, developers using Copilot completed coding tasks approxi-
mately 55% faster than those relying on traditional methods. Furthermore, the tool con-
tributed to enhanced code quality, with higher rates of test case success on the first attempt.
This underscores how AI-driven tools can significantly improve developer productivity
while reducing errors in software development [20].

Building on these observations, the specific gap that this study aims to address is the
lack of a unified framework for integrating AI-driven tools and methodologies throughout
the entire software development lifecycle in a way that balances automation benefits with
human oversight and ethical considerations. While several studies have explored the
individual applications of AI in areas such as code generation or testing, there is a need for
a more comprehensive perspective that examines how these different AI applications can

Appl. Sci. 2025, 15, 1344 3 of 26

work in synergy—from planning and requirements analysis to coding, testing, deployment,
and maintenance [9,13]. By taking a lifecycle-wide approach, we seek to uncover best
practices for the seamless integration of AI, highlighting where automation can most
effectively augment human capabilities and where human expertise remains indispensable.

Accordingly, the primary purpose of this study is to gain an in-depth understanding
of the role of AI in modern software engineering and propose a holistic integration strategy.
The research objectives are as follows:

• To examine the application of AI across various phases of the software development
lifecycle, identifying where AI-driven tools offer the greatest potential for impact.

• To evaluate the benefits of AI integration, including reductions in manual errors, devel-
opment cycle acceleration, and improved collaboration among cross-functional teams.

• To identify challenges and risks associated with AI-driven software engineering, such
as the reliability of AI-generated code, ethical implications, and the possibility of skill
degradation among developers.

• To propose actionable recommendations for seamlessly integrating AI into existing
workflows, ensuring responsible use and maintaining a balance between automation
and human insight.

By addressing these objectives, this study aims to provide a roadmap for successfully
incorporating AI in software engineering practices, thereby offering both theoretical and
practical contributions. On the theoretical side, this work adds to the academic discourse
by synthesizing diverse AI applications into a cohesive framework. On the practical side,
it offers guidelines that practitioners can use to navigate the complexities of AI adoption,
ensuring that the technology delivers on its promise of efficiency and quality improvements
while safeguarding against potential pitfalls.

Ultimately, this research underscores that the integration of AI in software engineering
is not merely a technical issue but also a strategic, organizational, and ethical one. By taking
a holistic view, we can harness AI’s transformative power responsibly, driving sustainable
innovations in the field of software engineering.

2. Literature Review
The integration of artificial intelligence (AI) into software engineering (SE) has

emerged as a transformative force, reshaping traditional paradigms and introducing novel
methodologies. Table 1 shows the evolution of software engineering practices. AI-driven
tools, particularly automated code generation (ACG) and large language models (LLMs),
have significantly enhanced productivity and code quality while redefining developer roles
within the industry [6,21]. Platforms such as ChatGPT and GitHub Copilot exemplify this
trend, not only assisting in code generation but also influencing the skill sets required for
modern developers. This shift emphasizes the need for proficiency in AI tools and a deep
understanding of their underlying mechanisms, necessitating a reevaluation of educational
curricula to include AI literacy [22,23].

The sources reviewed in this section were selected based on the following criteria:

1. Relevance: Studies that focus on the integration of AI in software engineering processes.
2. Recency: Priority was given to studies published within the past five years to ensure

up-to-date analysis.
3. Impact: Research with a significant number of citations or from high-impact journals.
4. Diversity: A mix of case studies, theoretical analyses, and empirical evaluations to

provide a holistic perspective.

Appl. Sci. 2025, 15, 1344 4 of 26

Table 1. Evolution of Software Engineering Practices.

Era Methodologies Key Features Introduction/Adoption
Period References

Traditional Waterfall model
Linear, sequential

approach to software
development

1970s Royce, 1970 [24]

Iterative Agile, Scrum
Flexible, iterative

approach emphasizing
collaboration

1990s Beck et al., 2001 [25]

Modern DevOps, continuous
integration

Automated testing,
continuous deployment

practices
2010s Humble and Farley,

2010 [26]

AI-Driven AI-powered tools,
machine learning

Automated coding,
adaptive software

maintenance
2020s

Smith et al., 2023
(GitHub Copilot) [27],
Qian et al., 2024 [28]

Despite the promising advancements, the integration of AI in software development
presents several challenges. Concerns surrounding algorithmic bias, legal compliance, and
security vulnerabilities have been prominent [29]. These issues underscore the importance
of ethical considerations and the development of robust frameworks to mitigate potential
risks associated with AI adoption. Furthermore, current large language models, such as
ChatGPT, exhibit limitations in software modeling tasks, including syntactic and semantic
deficiencies, inconsistency, and scalability issues [30]. Addressing these limitations requires
ongoing research and development to enhance the capabilities of AI tools in SE contexts.

Machine learning (ML) algorithms have demonstrated significant potential in address-
ing long-standing software engineering challenges. Applications such as software quality
assessment, bug prediction, and test automation have benefited from ML techniques, with
tools like the Naïve Bayes algorithm and WEKA becoming staples in both research and
industry applications [31,32]. Since 2009, the synergy between SE and ML/deep learning
has intensified, with researchers exploring the complexities of applying ML solutions to SE
problems. Studies have focused on issues of reproducibility and replicability, which are
critical for the advancement of research and practical applications [33]. Predictive models
using algorithms like random forests have achieved high accuracy in identifying software
refactoring opportunities, underscoring ML’s efficacy in enhancing code maintainability
and evolution [34].

In the realm of software testing, ML techniques have been employed to automate and
improve various processes, including test case generation, refinement, evaluation, and the
construction of test oracles. Additionally, ML has been utilized for cost prediction, aiding
in resource allocation and project management [35]. These applications streamline testing
procedures and contribute to more reliable and efficient software development cycles.

The increasing integration of AI models into development tools is poised to funda-
mentally alter the industry. Developers’ roles are gradually shifting from traditional coding
to supervising and assessing AI-generated suggestions, potentially leading to changes in
job requirements and team dynamics [36]. Generative AI, particularly LLMs, is considered
a major disruptor, offering the promise of enhanced productivity and quality. However, it
also raises ethical concerns, particularly regarding data privacy, intellectual property, and
the potential for misuse [6].

AI-driven development environments (AIDEs) offer the potential to automate rou-
tine programming tasks, yet they bring forth concerns related to bias in AI algorithms,
legal implications of AI-generated code, and security vulnerabilities inherent in AI sys-
tems [29]. Addressing these concerns is crucial for the responsible adoption of AI in SE.
Moreover, the unique characteristics of AI systems pose new challenges to traditional
SE approaches, necessitating the development of novel methodologies for responsible AI
system creation [37].

Appl. Sci. 2025, 15, 1344 5 of 26

Education plays a pivotal role in this evolving landscape. AI virtual assistants com-
bined with recommender systems can enhance learning experiences in SE capstone courses
by leveraging collective knowledge and providing personalized support to students [38].
As AI continues to permeate SE practices, it is crucial to adapt and develop new educational
approaches to harness its potential while addressing associated challenges.

As AI continues to evolve, its impact on software development practices is expected
to grow substantially [39]. The adoption of AI-driven tools and methodologies will require
significant adjustments in education and training. There is a pressing need for new approaches
to address the challenges and limitations of AI in software development, including ethical
guidelines, legal frameworks, and security protocols. Future research should focus on explor-
ing the full potential of AI in software engineering, developing strategies to mitigate associated
risks, and effectively integrating AI into existing development practices. This literature review
underscores the current state of AI in software engineering and emphasizes the necessity for
further investigation and innovation in this rapidly advancing field.

The synergy between AI and SE offers significant potential for improving software
development processes and outcomes. AI techniques can enhance various SE phases,
from requirements engineering to maintenance, leading to more efficient, automated, and
adaptive solutions for complex software problems [39,40]. Specific applications include
cost-sensitive transfer learning for cross-project defect prediction, Bayesian networks for
software quality estimation, and machine learning for program comprehension [40].

However, the integration of AI and SE is not without its challenges. The unique
characteristics of AI systems introduce complexities that traditional SE approaches must
address. These include ensuring the reliability and robustness of AI-driven tools, managing
the ethical implications of AI applications, and adapting SE methodologies to accommodate
the dynamic nature of AI technologies [37,41]. Assessing the readiness of both fields to
leverage their combined potential is crucial for the successful integration of AI into SE [42].

As AI continues to permeate SE practices, responsible development becomes
paramount. This involves adapting SE practices to address ethical considerations and
potential risks associated with AI systems. Responsible AI development requires the estab-
lishment of ethical guidelines, legal frameworks, and security protocols to ensure that AI
technologies are used safely and ethically in software development [37]. Furthermore, edu-
cational initiatives must evolve to prepare future professionals to navigate the complexities
of AI-integrated SE, fostering a workforce that is both technically proficient and ethically
aware [38].

The evolving relationship between AI and SE necessitates significant adjustments in
educational curricula. Incorporating AI literacy into SE education ensures that upcoming
professionals are equipped to leverage AI technologies effectively. AI virtual assistants
and recommender systems can enhance learning experiences by providing personalized
support and leveraging collective knowledge [38]. By integrating AI-focused modules and
practical applications into SE programs, educational institutions can prepare students to
meet the demands of an AI-enhanced software development landscape [23].

Below is the summary of the systematic analysis of findings:

• Automated Code Generation: Tools like GitHub Copilot and AlphaCode have
demonstrated significant improvements in developer productivity and accuracy.
However, concerns remain regarding the reliability and ethical implications of AI-
generated code.

• Defect Prediction: Machine learning algorithms trained on historical data enable
the early identification of potential bugs, reducing testing time and enhancing soft-
ware reliability.

Appl. Sci. 2025, 15, 1344 6 of 26

• Ethical and Legal Challenges: Bias in AI models and intellectual property concerns
require robust frameworks and continuous oversight to ensure responsible adoption.

Future research should aim to explore the full potential of AI in software engineering,
focusing on developing strategies to mitigate associated risks and integrating AI into
existing development practices effectively. Key areas for future investigation include
the following:

• Enhancing the capabilities of AI-driven tools to address current limitations in software
modeling tasks.

• Developing robust ethical guidelines and legal frameworks to govern the use of AI
in SE.

• Creating secure AI systems that mitigate vulnerabilities and ensure data privacy.
• Improving reproducibility and replicability in ML applications within SE to advance

research and practical implementations.
• Exploring the impact of AI integration on developer roles, team dynamics, and

job requirements.

This literature review highlights the current advancements and challenges in the
integration of AI and SE, emphasizing the need for continued exploration and innovation
to fully harness the potential of AI in enhancing software development practices.

3. AI Applications in Software Engineering
The advent of artificial intelligence (AI) has precipitated transformative shifts across

various facets of software development. The integration of AI-driven tools and method-
ologies has enhanced the efficiency, accuracy, and adaptability of software engineering
processes. This section examines the principal applications of AI within software engi-
neering, illustrating how they revolutionize conventional techniques and augment overall
efficiency [7,39,43].

Selection Criteria for Tools and Datasets: The tools, datasets, and examples included
in this study were selected based on the following criteria:

1. Relevance to Industry Applications: Tools and datasets that are widely used in
real-world software engineering contexts, such as GitHub Copilot and IBM’s defect
prediction tools, were prioritized.

2. Recency: Preference was given to tools and datasets published or actively used within
the past five years to ensure that the study reflects the current state of the field.

3. Accessibility: Open-source datasets and tools with publicly available documentation
were selected to facilitate reproducibility.

4. Coverage of Development Phases: Examples were chosen to cover diverse phases of
the software development lifecycle, including coding, testing, and maintenance.

5. Impact and Adoption: The selection emphasized tools and datasets with demonstrated
effectiveness, as reported in industry and academic studies.

3.1. Requirements Analysis
3.1.1. Natural Language Processing (NLP) for Requirements Gathering

Requirements gathering constitutes a critical phase in the software development
lifecycle, wherein stakeholders’ needs are translated into precise technical specifications.
Traditionally, this process has been predominantly manual, labor-intensive, and suscep-
tible to misinterpretations and omissions. AI, particularly natural language processing
(NLP), presents significant advancements in automating and enhancing requirements
elicitation [44].

Appl. Sci. 2025, 15, 1344 7 of 26

NLP algorithms can process vast amounts of unstructured data from stakeholders,
including emails, meeting transcripts, and user feedback. By leveraging sophisticated
language models, AI systems can extract meaningful requirements efficiently, discern
underlying functional and non-functional requirements, and detect ambiguities or in-
consistencies. Furthermore, these systems can proactively suggest clarifications, thereby
mitigating the risk of misunderstandings that could propagate costly errors in later stages
of development.

Recent advancements in NLP, such as transformer-based models like BERT and GPT,
have enhanced the capability of AI systems to comprehend and process human language
with higher accuracy [45,46]. These models enable the extraction of nuanced require-
ments from complex and diverse stakeholder communications, improving the fidelity of
requirements documentation.

3.1.2. AI-Driven User Stories

User stories are pivotal components in agile development methodologies, encapsu-
lating user requirements in concise and accessible formats. AI technologies can augment
the creation and management of user stories by automatically generating them based on
stakeholder inputs or analyzing system usage data [47].

By employing machine learning models trained on extensive datasets from prior
projects, AI systems can predict and formulate user stories that are congruent with business
objectives and user expectations. Moreover, these systems can prioritize user stories
by evaluating factors such as potential impact, feasibility, and alignment with strategic
organizational goals.

For instance, let us consider a software development team tasked with implementing
a new feature. To ensure comprehensive requirement capture, the team integrates AI
into their requirements engineering process. After drafting initial requirements, the AI
system assists in refining and expanding these into detailed requirements specifications
and scenarios. Subsequently, the AI aids in prioritizing the requirements based on criteria
such as stakeholder significance, development complexity, and anticipated impact. This
application of AI not only streamlines the requirements engineering process but also
enhances the accuracy and relevance of the specifications, thereby facilitating a more
efficient development workflow.

Additionally, AI can assist in identifying inconsistencies or dependencies among
user stories, thereby facilitating better planning and resource allocation. Machine learning
models can analyze historical data to estimate the effort and time required for implementing
each user story, enabling more accurate sprint planning and workload distribution.

3.2. Design and Architecture
3.2.1. Automated Design Pattern Recognition

Design patterns represent reusable solutions to recurrent problems in software design,
and their appropriate application is instrumental in developing robust and maintainable
systems. AI technologies can assist developers by automatically recognizing suitable design
patterns based on system requirements and the existing codebase [48].

By leveraging machine learning algorithms, AI systems can analyze code reposito-
ries and architectural diagrams to suggest optimal design patterns that enhance code
efficiency, scalability, and maintainability. Such automation alleviates the cognitive burden
on developers, ensures consistency in design decisions, and expedites the architectural
planning phase.

For example, AI tools can scan the codebase to identify areas where specific design
patterns, such as Singleton, Observer, or Factory, may be effectively applied. By recom-

Appl. Sci. 2025, 15, 1344 8 of 26

mending refactoring opportunities, these tools can improve the overall code structure
and performance. Moreover, AI can detect anti-patterns or suboptimal design choices,
providing suggestions for architectural improvements.

Advanced AI techniques, including graph neural networks and pattern recognition
algorithms, have enhanced the capability of AI systems to understand complex software
architectures and code structures. These techniques enable the identification of patterns at
a higher level of abstraction, facilitating more sophisticated design recommendations.

3.2.2. Intelligent System Modeling

System modeling is the process of creating abstract representations of software systems
to comprehend and communicate their structure and behavior. AI augments system
modeling by providing intelligent tools capable of generating models from requirements
specifications or existing codebases.

Employing techniques such as graph analysis, machine learning, and pattern recogni-
tion, AI tools can automatically generate Unified Modeling Language (UML) diagrams or
other architectural representations. These models assist in visualizing complex systems,
identifying potential bottlenecks, and enhancing communication among development
team members.

Automating system modeling through AI not only accelerates the modeling process
but also ensures that documentation remains current, which is crucial for onboarding
new team members and facilitating future system enhancements. Moreover, AI-driven
modeling tools can simulate system behavior under various scenarios, enabling predictive
analysis and the early detection of design flaws.

Advanced AI methodologies, such as model-driven engineering (MDE) augmented
with AI, enable the generation of code directly from models, thereby bridging the gap
between design and implementation [49]. This integration fosters a seamless transition
from system models to executable code, enhancing development efficiency and consistency.

3.3. Coding and Implementation
3.3.1. AI-Assisted Code Generation

AI-assisted code generation represents a significant advancement in software engineer-
ing. Tools such as GitHub Copilot, powered by OpenAI’s Codex model, have demonstrated
the potential of AI to generate code snippets based on natural language prompts or partially
written code.

Developers can utilize AI to automate the creation of repetitive and structurally simple
code constructs, such as loops, conditionals, or even entire functions. By providing a
description or an initial code fragment, AI systems can predict and generate the subsequent
code, thereby accelerating development and reducing manual coding effort.

Although AI-generated code may not always be flawless, it serves as a valuable
assistant by handling boilerplate code, enabling developers to concentrate on more complex
and innovative aspects of the application. Furthermore, AI code generation can contribute
to standardizing coding practices and reducing human errors.

However, it is essential to consider the limitations and ethical implications associated
with AI-assisted code generation. Issues such as code correctness, security vulnerabilities,
and potential intellectual property concerns must be carefully managed [50].

3.3.2. Smart Code Completion and Suggestions

Beyond code generation, AI significantly enhances the coding experience through in-
telligent code completion and context-aware suggestions. Modern integrated development
environments (IDEs) augmented with AI capabilities can predict subsequent lines of code,
recommend optimal implementations, and detect potential errors in real time.

Appl. Sci. 2025, 15, 1344 9 of 26

These intelligent suggestions are contextually aware, taking into account the project’s
codebase, established coding standards, and industry best practices. By assisting developers
in adhering to consistent coding styles and patterns, AI aids in reducing syntax errors,
improving code quality, and expediting the coding process. The immediate feedback
and guidance provided by AI-powered IDEs foster a more efficient and less error-prone
development environment.

Moreover, AI can assist in identifying deprecated APIs or libraries and suggest mod-
ern alternatives, thereby enhancing code maintainability and future-proofing applica-
tions [51–53].

3.4. Testing and Quality Assurance
3.4.1. Automated Test Case Generation

Testing constitutes a critical aspect of software quality assurance, ensuring that appli-
cations perform as intended. AI can automate the generation of test cases by analyzing
code changes and predicting potential failure points.

For example, when developers introduce new code into the codebase, AI models can
suggest relevant tests for the changes and generate test scripts that seamlessly integrate
with the existing testing framework. AI-driven tools can automatically create unit tests and
other testing scripts, covering basic functionalities and edge cases. This automation reduces
the manual effort associated with writing tests, enhances test coverage, and facilitates the
early detection of defects.

By continuously updating test suites in response to code modifications, AI ensures that
testing processes remain aligned with ongoing development activities, thereby maintaining
high-quality standards throughout the project lifecycle.

AI techniques, such as model-based testing and symbolic execution, can analyze
program behavior to generate comprehensive test cases that cover a wide range of sce-
narios [54]. Machine learning models can predict areas of the code that are more likely to
contain defects, enabling targeted testing efforts.

3.4.2. AI in Defect Prediction and Management

Defect prediction is a critical component of proactive quality assurance. AI models
trained on historical project data can predict code segments that are likely to contain defects,
enabling developers to focus their testing and review efforts more effectively [55].

Machine learning algorithms can analyze patterns in code complexity metrics, change
histories, developer activities, and previous defect occurrences to identify high-risk compo-
nents. This predictive capability allows teams to allocate resources efficiently, prioritize
testing efforts, and address potential issues before they manifest into significant problems.

Additionally, AI can assist in defect management by automating the triage process
and assigning bugs to the most appropriate developers based on factors such as expertise,
workload, and historical performance. By automating prioritization and assignment, AI
reduces bottlenecks in the defect resolution process and accelerates the delivery of fixes.

Techniques such as random forests, support vector machines, and deep learning
models have been employed for defect prediction with varying degrees of success [56]. The
integration of AI into defect management systems enhances the overall quality assurance
process and contributes to the development of more reliable software systems.

Appl. Sci. 2025, 15, 1344 10 of 26

3.5. Deployment and Maintenance
3.5.1. Predictive Maintenance Using AI

In the deployment and maintenance phases, AI significantly contributes to ensuring
system reliability and performance. Predictive maintenance employs AI algorithms to
analyze operational data and predict potential system failures before they occur.

By continuously monitoring metrics such as system logs, resource utilization, network
traffic, and user behavior patterns, AI models can detect anomalies and forecast issues. Ma-
chine learning techniques, such as time-series analysis and anomaly detection algorithms,
enable the identification of patterns indicative of impending failures.

This proactive approach allows teams to address problems pre-emptively, thereby
minimizing system downtime, reducing maintenance costs, and enhancing user satisfaction.
Furthermore, predictive maintenance facilitated by AI supports the optimization of system
performance over time by enabling data-driven decision-making in maintenance scheduling
and resource allocation.

3.5.2. Automated Monitoring and Alert Systems

AI enhances system monitoring by automating the detection of irregularities in de-
ployed applications. Intelligent alert systems, powered by AI, can distinguish between
normal operational fluctuations and significant issues, thereby reducing false alarms and
enabling teams to focus on critical events.

Integrating AI into continuous integration/continuous deployment (CI/CD) pipelines
can automate post-deployment monitoring. AI systems can assess system logs, identify
anomalies, and promptly notify the development team, ensuring the swift resolution of
production issues.

For instance, developers may enhance their CI/CD pipelines by incorporating AI-
generated unit tests, which are created on the fly and added to the codebase during
deployment. These tests run upon deployment and in subsequent deployments, improving
test coverage and reliability. Additionally, AI can be employed to monitor production
system logs for a defined period after deployment, enabling the early detection of anomalies.
This integration of AI into the deployment process results in a more efficient and robust
system, reducing the likelihood of undetected issues impacting end-users.

Advanced AI techniques, such as machine learning-based anomaly detection and
natural language processing for log analysis, can process large volumes of system data to
identify subtle patterns indicative of potential issues [57]. By automating these processes,
AI reduces the manual effort required for monitoring and enables real-time responsiveness
to operational problems.

4. Case Studies
This section presents multiple case studies to illustrate how AI-driven solutions are

transforming software engineering in real-world scenarios. Each case highlights distinct
AI applications (e.g., generative code, automated defect detection, and intelligent coding
assistants) implemented by leading organizations. The selection of case studies was based
on their relevance to current AI applications in software engineering, focusing on tools
widely adopted in industry, such as GitHub Copilot and IBM’s defect prediction tool.
Theoretical models were chosen to ensure the coverage of diverse development phases,
including requirements gathering, coding, and maintenance.

By analyzing these diverse implementations, we gain insights into both the benefits
and challenges of adopting AI across various stages of the software development lifecycle.

The case studies included here were selected based on the following criteria:

Appl. Sci. 2025, 15, 1344 11 of 26

1. Industry Impact: Organizations known for pioneering or significantly influencing
AI-driven methodologies in software development (e.g., McKinsey, GitHub, IBM,
Microsoft, Snyk, and Google).

2. Variety of AI Applications: Each case study addresses different facets of AI inte-
gration—such as code generation, defect prediction, and real-time code review—to
present a holistic view of AI’s potential.

3. Empirical Evidence: Only initiatives with measurable outcomes (e.g., productiv-
ity gains or reduction in bugs) were chosen to ensure that concrete data support
our analysis.

From a theoretical standpoint, our analysis aligns with socio-technical theory, ex-
amining how AI tools reshape interactions between developers (the social component)
and software systems (the technical component). We also adopt principles from design
science research (DSR) by exploring how AI solutions address specific software engineering
challenges (e.g., high error rates or lengthy code reviews) and how they are iteratively
refined over time. Additionally, we invoke activity theory to highlight the learning and
adaptation processes that occur as human developers and AI tools collaborate.

4.1. McKinsey’s Integration of Generative AI in Software Development

McKinsey & Company, a global management consulting firm, has been at the forefront
of integrating generative artificial intelligence (AI) into its software development processes.
Recognizing the increasing demand for efficient and high-quality software solutions, McK-
insey embarked on a comprehensive study to evaluate the impact of generative AI on
software development productivity and quality [58].

The initiative involved deploying generative AI tools across multiple development
teams. These AI tools assisted in automated code generation, routine coding tasks, and
intelligent suggestions for code improvements. Trained on extensive code repositories,
the AI models could produce code snippets aligned with both industry best practices and
project-specific requirements.

The results demonstrated a notable increase in productivity—development teams
using the generative AI tools completed coding tasks up to twice as fast compared to
control groups. Code quality also improved modestly, evidenced by fewer bugs and
enhanced maintainability. Crucially, McKinsey reported accelerated time to market for new
software products.

Despite these positive outcomes, McKinsey identified challenges, particularly the vari-
ability in AI tool effectiveness depending on task complexity, and the need for developers
to maintain sufficient expertise to leverage AI assistance responsibly. This underscores the
importance of striking a balance between automation and skilled human oversight.

4.2. GitHub Copilot’s Impact on Developer Productivity and Code Quality

GitHub Copilot, an AI-powered coding assistant developed in collaboration with
OpenAI, has transformed how developers approach coding tasks. By offering real-time
code suggestions and completions, Copilot aims to enhance developer productivity and
overall code quality [20].

In a large-scale study by GitHub, 95 professional developers were split into control
and treatment groups. The treatment group utilized Copilot, while the control group relied
on traditional coding methods. Metrics such as task completion time, success rates, and
coding error frequency were evaluated.

The results indicated that developers using Copilot completed tasks approximately
55% faster than the control group. The Copilot-assisted code also exhibited higher rates

Appl. Sci. 2025, 15, 1344 12 of 26

of passing test cases on the first attempt, reflecting fewer syntactic and logical errors. The
developers appreciated the reduced effort in maintaining consistent coding standards.

However, the study also highlighted potential risks, including the possibility of de-
veloper over-dependence on AI-generated suggestions and the occasional misalignment
between Copilot’s contextual understanding and complex project requirements. Still,
GitHub Copilot demonstrated a strong correlation between AI assistance and developer
productivity, pointing to AI’s transformative capacity in modern software development.

4.3. IBM’s AI-Powered Defect Prediction Tool Enhances Software Quality

IBM’s recent integration of an AI-powered defect prediction tool reflects its long-
standing commitment to technological innovation. Trained on a decade’s worth of code
and defect data from large-scale projects, this tool aims to anticipate defect-prone areas,
enabling proactive management throughout the software development lifecycle.

Upon deployment, development teams within IBM’s software division used the tool’s
real-time insights to prioritize testing and debugging efforts. The resulting improvements
were significant: post-release defects decreased by 20%, while defect detection rates during
development rose by 15%. Furthermore, debugging time dropped by 30%, translating to
faster project timelines and lower overall costs.

These metrics highlight the potential of AI-driven analytics to elevate software quality
and developer productivity. By systematically identifying latent issues, the tool ensures
more efficient allocation of resources, reinforcing IBM’s competitive edge in delivering
robust, high-quality software.

4.4. Microsoft IntelliCode’s Enhancement of Developer Productivity and Code Quality

Microsoft IntelliCode, an AI-driven extension for Visual Studio and Visual Studio
Code, leverages models trained on thousands of open-source projects to provide intelligent
code completions and suggestions [59].

IntelliCode addresses common coding challenges such as inconsistent coding styles,
manual code reviews, and the need for repetitive boilerplate code. By offering context-
aware suggestions, IntelliCode accelerates the coding process while promoting best prac-
tices. Developers can further refine IntelliCode by training it on their own repositories,
enhancing its project-specific recommendations.

Empirical studies indicate a 30% increase in coding speed and a 25% reduction in bugs
when teams adopt IntelliCode’s recommendations. This not only expedites development
cycles but also reduces technical debt, improving maintainability and easing collaborative
workflows for distributed teams. Surveyed developers reported high satisfaction, citing
IntelliCode’s positive impact on both productivity and code quality.

4.5. Snyk Code’s AI-Driven Enhancements to Code Quality and Developer Efficiency

Snyk Code—formerly known as DeepCode—applies advanced AI and natural lan-
guage processing to automate code reviews and detect security vulnerabilities, bugs, and
code quality issues [60].

By integrating with GitHub, GitLab, and Bitbucket, Snyk Code analyzes each commit
and pull request, offering real-time feedback. This proactive approach allows teams to
catch problems early and adopt consistent coding standards. Organizations employing
Snyk Code reported a 40% increase in early bug detection, a 35% decrease in security
vulnerabilities, and a 50% reduction in manual code review times.

The immediate feedback loop helps developers address vulnerabilities and bugs on
the fly, mitigating the risk of introducing critical defects into production. Furthermore, the
solution fosters developer satisfaction by reducing the repetitive and error-prone aspects of
manual reviews, allowing senior developers to focus on more complex, high-value tasks.

Appl. Sci. 2025, 15, 1344 13 of 26

4.6. Google’s DeepMind AlphaCode Transforms Code Generation and Problem Solving

DeepMind’s AlphaCode has garnered attention for its ability to generate high-quality
code capable of solving intricate programming problems, often at or above human-
competitive levels. Trained on a large corpus of competitive programming tasks and
associated solutions, AlphaCode can interpret natural language problem statements and
generate optimized, maintainable code.

Its performance in competitive programming contests is particularly notable, with
a 65% success rate in solving attempted problems [12]. AlphaCode’s integration into
development workflows enables rapid prototyping and brainstorming, cutting down the
time from conceptualization to a working prototype by nearly 40%. This efficiency gain
frees developers to concentrate on refining solutions, exploring multiple design approaches,
and tackling more creative tasks.

Developer feedback indicates a 25% increase in productivity when leveraging Al-
phaCode for initial code generation. Moreover, it offers an excellent learning resource,
exposing teams to diverse coding strategies and best practices. In essence, AlphaCode
exemplifies AI’s capability not only to automate coding tasks but also to augment human
problem-solving skills and foster innovation.

4.7. Underexplored Areas and Novelty

While these six case studies provide a broad perspective on AI’s role in software
engineering, several underexplored areas remain:

1. Requirements Engineering: Existing research largely focuses on code-level AI applica-
tions; few studies address how AI can automate or improve the capture and analysis
of complex, evolving software requirements.

2. Domain-Specific AI Tools: Many current solutions target general-purpose software.
There is a gap in specialized domains—such as safety-critical, embedded, or high-
assurance systems—where compliance and reliability are paramount.

3. Long-Term Human–AI Collaboration: Current insights offer snapshots of productivity
gains, but long-term impacts on team skill development, morale, and reliance on AI-
based suggestions are understudied.

By highlighting these gaps, we emphasize that the novelty in future research lies
in exploring and bridging these underexamined domains. Addressing these topics will
further demonstrate how AI can not only improve existing practices but also redefine the
boundaries of what is achievable in software engineering.

5. Artificial Intelligence on Software Engineering Practices:
A Quantitative Analysis

To evaluate the impact of artificial intelligence (AI) on software engineering practices, a
survey (Appendix A) was conducted targeting professionals across various roles, including
software developers, project managers, and quality assurance specialists. The survey
aimed to measure perceptions, experiences, and outcomes related to AI-driven tools in the
software development lifecycle (SDLC).

A total of 250 respondents participated in the survey, hailing from the Kingdom of
Saudi Arabia and the Kingdom of Jordan. All participants had a minimum of two years
of experience in software engineering, ensuring that the insights gathered were from
individuals with substantial industry experience (Figure 1).

Appl. Sci. 2025, 15, 1344 14 of 26

Figure 1. Analysis.

The survey employed a structured questionnaire comprising 20 questions, which were
segmented into the following sections:

1. Adoption Rates: Assessed the frequency of AI tool usage and the specific stages of the
SDLC where they are implemented.

2. Perceived Benefits: Evaluated improvements in efficiency, productivity, and code
quality attributed to AI tools.

3. Challenges: Identified barriers to implementation, trust in AI-generated suggestions,
and necessary skill shifts.

4. Future Outlook: Gauged the willingness of professionals to integrate more AI tech-
nologies in the future.

Appl. Sci. 2025, 15, 1344 15 of 26

Responses were measured using a 5-point Likert scale, ranging from Strongly Disagree
(1) to Strongly Agree (5).

• Usage of AI Tools: In total, 68% of participants reported using AI tools in at least one
phase of the SDLC. The most common applications were coding and debugging.

• Popular AI Tools: The tools frequently cited included GitHub Copilot (48%), Intelli-
Code (30%), and AI-based test automation platforms (22%).

Key benefits were assessed in terms of efficiency, accuracy, and team collaboration:

• Efficiency: In total, 74% agreed that AI reduced the time required for routine cod-
ing tasks.

• Code Quality: A total of 62% noted a decrease in post-release defects in projects that
utilized AI assistance.

• Team Collaboration: In total, 45% acknowledged improved resource allocation due to
automated task suggestions.

Challenges highlighted by the respondents include the following:

• Trust in AI: Only 40% expressed complete trust in AI-generated solutions, citing
concerns over errors and lack of transparency.

• Skill Gaps: In total, 58% believed that insufficient AI training among team members
hindered full adoption.

• Implementation Costs: A total of 52% noted high initial costs as a significant barrier.

The analysis identified the following as critical to the successful integration of AI:

• Training Programs: Teams with formal AI training achieved 30% higher effi-
ciency gains.

• Project Size: Medium-to-large projects benefited the most, with a 20% increase in
developer productivity.

• Tool Suitability: The customization and alignment of tools with project needs were
pivotal, as cited by 68% of respondents.

The survey responses were statistically analyzed, with key metrics summarized in
Table 2.

Table 2. Quantitative summary of survey responses.

Metric Mean Score (Out of 5) Std. Deviation

Reduction in Coding Time 4.2 0.7
Improvement in Code Quality 4.0 0.8
Increase in Team Collaboration 3.7 0.9
Challenges in Skill Development 3.9 1.1

The findings affirm the potential of AI to revolutionize software engineering by
enhancing productivity and quality. However, the success of AI integration depends on
addressing challenges such as skill enhancement and building trust in AI recommendations.
Organizations should invest in comprehensive training programs and select AI tools that
align closely with their project requirements to maximize the benefits of AI in the software
development lifecycle. To address the challenges and limitations of AI tools in software
engineering, the following strategies are recommended:

• Fairness-Aware Models: Implementing fairness-aware algorithms can help mitigate
biases in AI-generated recommendations.

• Human-in-the-Loop Systems: Combining AI with human oversight ensures that
critical thinking and contextual expertise are preserved.

Appl. Sci. 2025, 15, 1344 16 of 26

• Continuous Model Updates: Regular updates and the fine-tuning of AI models based
on user feedback and new datasets can enhance performance and reliability.

These measures can help maximize the value of AI tools while minimizing their risks,
fostering a balanced and effective integration into software engineering practices.

Figure 2 provides a boxplot representation of the key metrics evaluated in this study.
The metrics include reduction in coding time, improvement in code quality, increase in team
collaboration, and challenges in skill development. The boxplot illustrates the distribution
of responses, highlighting central tendencies (medians), variability (interquartile ranges),
and potential outliers for each metric.

Figure 2. Key metrics evaluated in this study.

6. Challenges and Considerations
While the integration of AI into software engineering heralds numerous benefits, it

also presents a range of challenges that must be carefully addressed to ensure successful
adoption. These challenges encompass technical hurdles, ethical and legal dilemmas, and
significant workforce implications (Figure 3). This section dives into these challenges,
providing a comprehensive analysis to inform future research and practice.

Figure 3. Challenges and considerations.

6.1. Technical Challenges
6.1.1. Data Quality and Availability

The performance of AI systems is intrinsically linked to the quality and quantity of
data used for training and validation. In software engineering, acquiring high-quality,

Appl. Sci. 2025, 15, 1344 17 of 26

relevant data can be particularly challenging due to the diverse and complex nature of
software artifacts and processes [61].

Data quality issues such as noise, inconsistency, and incompleteness can significantly
impair AI models, leading to unreliable predictions and recommendations. Moreover, pro-
prietary constraints and privacy concerns often limit access to essential datasets, hindering
the development of robust AI solutions [62].

To mitigate these challenges, organizations need to establish rigorous data governance
frameworks that ensure data integrity and accessibility. Implementing standardized data
collection and curation practices can enhance data reliability. Additionally, leveraging
techniques such as data augmentation and synthetic data generation can alleviate data
scarcity while preserving sensitive information [63].

6.1.2. Integration with Existing Systems

Integrating AI technologies into existing software engineering workflows poses sig-
nificant technical complexities. Legacy systems may not be designed to accommodate AI
components, resulting in compatibility issues and the need for substantial re-engineering
efforts [64].

Challenges include ensuring interoperability between AI tools and current develop-
ment environments, managing data flow between disparate systems, and maintaining
system performance and scalability [65]. Furthermore, the integration process may disrupt
established workflows, leading to temporary decreases in productivity.

To address these issues, organizations should adopt modular architectures and stan-
dardized interfaces that facilitate seamless integration. Employing middleware solutions
and adopting microservice architectures can enhance flexibility and scalability. A phased
integration approach, accompanied by thorough testing and validation, can minimize
disruptions and ensure a smooth transition [66].

6.2. Ethical and Legal Issues
6.2.1. Bias in AI Algorithms

AI systems are susceptible to biases inherent in their training data or introduced
during model development. In software engineering, such biases can lead to skewed
analyses, unfair prioritizations, and suboptimal decision-making [67].

For instance, an AI tool trained on historical project data may inadvertently perpetuate
past biases, such as underrepresenting certain programming paradigms or technologies.
This can result in recommendations that do not align with current best practices or organi-
zational goals [68].

Mitigating bias requires a multifaceted approach, including diversifying training
datasets, implementing fairness-aware algorithms, and conducting regular bias audits.
Transparency in AI processes and outputs is crucial, enabling stakeholders to understand
and scrutinize AI-driven decisions [69].

6.2.2. Intellectual Property Concerns

The use of AI in generating software artifacts raises complex intellectual property
(IP) issues. Questions arise regarding the ownership of code or designs produced by AI
systems: whether the rights belong to the creator of the AI, the user, or the AI itself [70].

Moreover, AI models trained on proprietary or open-source code repositories may in-
advertently replicate copyrighted material, leading to potential infringement disputes [71].
The legal frameworks governing AI-generated content are still evolving, creating uncer-
tainty for organizations leveraging these technologies.

Organizations must proactively address IP concerns by establishing clear policies and
agreements that define ownership and usage rights. Consulting legal experts specialized in

Appl. Sci. 2025, 15, 1344 18 of 26

technology law can provide guidance. Additionally, implementing safeguards within AI
systems to detect and prevent the unauthorized use of protected content can mitigate legal
risks [72].

6.3. Workforce Implications
6.3.1. Skill Gaps

The infusion of AI into software engineering necessitates a workforce proficient in both
domains. There is a pressing demand for professionals who understand AI methodologies,
data science principles, and their application within software development contexts [39].

However, many software engineers may lack the requisite AI expertise, leading to
a skill gap that can impede the effective utilization of AI tools. This gap extends to
understanding AI-driven insights, interpreting model outputs, and integrating AI recom-
mendations into development processes [64].

Addressing this challenge requires strategic investment in education and training pro-
grams. Organizations can offer professional development opportunities, collaborate with
academic institutions, and promote interdisciplinary learning. Cultivating an environment
that encourages continuous skill enhancement will equip the workforce to harness AI’s full
potential [73].

6.3.2. Resistance to Change

Adopting AI technologies can encounter resistance from practitioners accustomed
to traditional software engineering methodologies. Concerns may include fear of job
displacement, skepticism about AI effectiveness, or discomfort with altering established
workflows [74].

Overcoming resistance involves transparent communication about the benefits and
limitations of AI, emphasizing its role in augmenting rather than replacing human ex-
pertise. Involving employees in the adoption process, providing adequate training, and
demonstrating tangible improvements can facilitate acceptance [75].

Leadership plays a critical role in driving cultural change. By championing AI ini-
tiatives and fostering an organizational mindset open to innovation, leaders can mitigate
resistance and inspire confidence in new technologies [76].

7. Future Directions
While the case studies presented in this study provide valuable insights into the

transformative role of AI in software engineering, they primarily focus on a subset of tools
and applications. This scope may not fully capture the diversity of AI implementations
across all domains of software engineering. Future research should aim to investigate AI
applications in less-studied areas, such as real-time systems and distributed computing.

As artificial intelligence continues to evolve, its integration with software engineering
is expected to deepen, influencing emerging technologies and necessitating shifts in research
focus and educational practices. This section explores potential future developments,
identifies areas ripe for research, and underscores the importance of educational reforms to
prepare professionals for the changing landscape.

The convergence of AI and IoT is poised to create a new paradigm in software engi-
neering. IoT devices generate massive amounts of data, providing rich opportunities for AI
algorithms to extract insights and enable intelligent decision-making. Software engineers
will need to develop systems capable of handling real-time data processing and analysis,
ensuring seamless integration between AI algorithms and IoT infrastructures. This synergy
can lead to the creation of adaptive systems that respond proactively to environmental
changes and user behaviors.

Appl. Sci. 2025, 15, 1344 19 of 26

The findings of this study, particularly those related to tools like GitHub Copilot, are
based on specific datasets and scenarios. As such, their applicability to other tools or broader
contexts in software engineering may be limited. To enhance generalizability, future studies
should incorporate diverse datasets and evaluate a wider range of AI-driven tools. The ethical
implications of adopting AI tools in software engineering remain a critical concern. Issues such
as algorithmic bias, data privacy, and the long-term impact on workforce skills require careful
attention. To address these concerns, organizations are encouraged to adopt fairness-aware
algorithms, perform regular audits, and maintain a balance between automation and human
expertise to mitigate risks and ensure ethical practices.

Quantum computing presents a frontier with the potential to revolutionize compu-
tational capacities. Its implications for software engineering are profound, as traditional
algorithms may become obsolete. AI can assist in developing quantum algorithms and in
simulating quantum processes, bridging the gap between current computational methods
and future quantum technologies. Software engineers will be challenged to rethink soft-
ware design principles to accommodate quantum computing’s unique properties, such as
superposition and entanglement.

Despite significant advancements, several areas within AI-driven software engineering
remain underexplored. Research is needed to enhance the explainability of AI models,
ensuring transparency in decision-making processes. Additionally, the development of
AI techniques for automated software maintenance and evolution poses a significant
opportunity. Exploring AI’s role in cybersecurity within software systems is another critical
area, given the increasing sophistication of cyber threats.

Bridging the gap between theoretical research and practical application is essential.
Collaborative efforts between academia and industry can accelerate innovation by aligning
research objectives with real-world challenges. Such partnerships can facilitate the sharing
of resources, data, and expertise, leading to the development of robust AI-driven software
solutions. Joint initiatives can also foster the creation of standards and best practices,
promoting consistency and reliability across the industry.

To prepare the next generation of software engineers, educational institutions must
integrate AI concepts into their curricula. This includes foundational courses in machine
learning, data science, and AI ethics. Practical experience with AI tools and platforms
should be emphasized to equip students with hands-on skills. Interdisciplinary programs
combining software engineering with AI specializations can produce professionals adept
at navigating the complexities of AI integration.

The rapid pace of AI innovation necessitates a commitment to lifelong learning among
software engineering professionals. Continuous education programs, workshops, and
certifications can help professionals stay abreast of the latest developments. Employers
play a crucial role by supporting ongoing training initiatives, fostering a culture that values
adaptability and continuous improvement. Embracing lifelong learning ensures that the
workforce remains competent and competitive in an evolving technological landscape.

The findings of this study raise important questions about the future of AI in software
engineering and its applicability across organizations of different scales.

• Applicability to Small Startups: Startups with limited resources can use AI tools
to automate routine tasks, such as code generation and defect detection, reducing
overhead costs. For instance, a small development team could employ GitHub Copilot
to streamline coding tasks while focusing their efforts on innovation. Additionally, AI
tools offer startups an opportunity to adopt agile practices more effectively, despite
their constrained budgets.

• Applicability to Big Companies: In contrast, larger organizations can benefit from
AI’s ability to optimize workflows across distributed teams. For example, large-scale

Appl. Sci. 2025, 15, 1344 20 of 26

enterprises could integrate AI tools into their DevOps pipelines, ensuring continuous
integration and delivery. However, big companies must also invest in employee
training programs to maximize AI’s potential and address ethical challenges, such as
bias in AI algorithms.

• Future Directions for AI in Software Engineering: As the field advances, AI has the
potential to foster decentralized software teams that operate autonomously, driven by
adaptive AI tools. Additionally, the development of universal benchmarks and ethical
standards for AI-driven tools could facilitate cross-industry collaboration, ensuring
sustainable and fair AI adoption.

8. Conclusions
This study has explored the transformative integration of artificial intelligence (AI)

into software engineering processes, revealing its potential to reshape fundamentally the
discipline. By bridging automation, predictive analytics, and intelligent decision-making,
AI introduces not merely incremental advancements but a paradigm shift in addressing
persistent challenges in software development. The key scientific contributions of this
study are as follows:

• Comprehensive AI Integration Across the Development Lifecycle: Unlike previous re-
search that isolates specific AI applications (e.g., code generation or defect prediction),
this study advocates for a cohesive, end-to-end approach. By uniting AI-driven com-
ponents across planning, development, testing, and maintenance phases, this work
highlights AI’s role in creating more adaptive, efficient, and robust software systems.

• Novel Insights into Adaptive and Data-Driven Development: This study demonstrates
AI’s capability to learn continuously from evolving codebases and defect datasets,
reducing model drift and enhancing long-term reliability. Such adaptivity positions
AI not as a static tool but as a collaborative partner capable of evolving with develop-
ment workflows.

• Balancing Human–AI Collaboration: The findings underscore the indispensable role
of human expertise for contextual understanding, strategic oversight, and ethical
considerations. This balance between human judgment and AI automation emerges
as a critical factor in maximizing the effectiveness and fairness of software engineer-
ing practices.

• Identification of Emerging Research Opportunities: By showcasing AI’s current appli-
cations in areas such as security and advanced code generation, this study identifies
underexplored domains like requirements engineering, safety-critical systems, and
human–AI co-evolution. These areas present significant opportunities for impactful
future research.

• Scientific Novelty and Future Directions: The study provides an original classification
framework for AI methodologies in software engineering, offering a structured lens
to analyze and advance the field. Future work should prioritize quantitative studies,
ethical frameworks, and interdisciplinary collaborations to deepen this paradigm shift.

Looking ahead, this study calls for a collaborative evolution between AI and human
engineers, where ethical, technical, and organizational challenges are navigated collectively.
By fostering synergies among academia, industry, and practitioners, AI can sustainably
drive efficiency, quality, and creativity in software engineering, paving the way for a new
era of innovation.

These scientific contributions reinforce the notion that AI is neither a mere tool for
incremental improvements nor a transient trend, but rather an integral component reshap-
ing the fabric of software engineering. Our findings also illustrate the dynamic synergies
emerging between AI-driven analytics and software development teams, suggesting that

Appl. Sci. 2025, 15, 1344 21 of 26

professionals and organizations must cultivate agility and continuous learning to harness
AI’s transformative potential fully.

Looking ahead, the future of AI in software engineering involves deepening this
collaborative paradigm, where AI and human engineers co-evolve to tackle escalating
complexities in system design, maintenance, and innovation. By fostering multidisciplinary
collaborations between academia, industry, and practitioners, the field can better navigate
ethical, technical, and organizational challenges, ensuring that AI integration sustainably
drives efficiency, quality, and creativity in software engineering.

Author Contributions: Methodology, M.A. (Mamdouh Alenezi); Software, M.A. (Mohammed Akour);
Validation, M.A. (Mamdouh Alenezi); Investigation, M.A. (Mohammed Akour); Resources, M.A.
(Mohammed Akour); Writing—original draft, M.A. (Mamdouh Alenezi); Writing—review and edit-
ing, M.A. (Mohammed Akour). All authors have read and agreed to the published version of
the manuscript.

Funding: The authors would like to acknowledge the support of Prince Sultan University for paying
the Article Processing Charge (APC) of this publication.

Institutional Review Board Statement: This approach ensured that participants’ rights and privacy
were fully protected, adhering to ethical research standards. Given the anonymized nature of the
data and the explicit consent obtained, no Institutional Review Board (IRB) approval was required
under the relevant guidelines.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: Author Mamdouh Alenezi was employed by the The Saudi Technology and
Security Comprehensive Control Company (Tahakom). The remaining authors declare that the
research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Appendix A. Survey Questions
Appendix A.1. Adoption of AI in Software Engineering

1. Which phases of the software development lifecycle (SDLC) do you currently use AI
tools for?

• Requirements Analysis
• Design
• Coding
• Testing
• Deployment
• Maintenance
• None

2. How frequently do you use AI tools in your daily work?

• Always
• Frequently
• Occasionally
• Rarely
• Never

3. What are the primary AI tools you use?
(Open-ended)

Appl. Sci. 2025, 15, 1344 22 of 26

Appendix A.2. Perceived Benefits of AI Tools

4. To what extent do you agree with the following statement: “AI tools have significantly
improved my productivity in software engineering”.
(Likert Scale: Strongly Disagree to Strongly Agree)

5. How much time has AI saved you on routine coding tasks compared to manual efforts?

• No time saved
• 10–25%
• 26–50%
• 51–75%
• Over 75%

6. Have AI tools reduced errors in your software development process?
(Yes/No/Not Sure)

7. To what extent do you agree that AI tools improve code quality by following
best practices?
(Likert Scale: Strongly Disagree to Strongly Agree)

8. Have AI tools enhanced collaboration within your team?
(Yes/No)

Appendix A.3. Challenges in Using AI Tools

9. What challenges have you faced in adopting AI tools?
(Select all that apply)

• Lack of training
• High cost
• Integration issues
• Trust in AI
• Resistance to change
• Other

10. Do you feel sufficiently trained to use AI tools effectively in your work?
(Likert Scale: Strongly Disagree to Strongly Agree)

11. How much do you trust the accuracy and reliability of AI-generated suggestions?
(Likert Scale: Strongly Disagree to Strongly Agree)

12. Have you experienced any ethical or legal concerns when using AI tools?
(Yes/No)

Appendix A.4. Outcomes and Future Integration

13. How have AI tools impacted project completion timelines in your organization?

• Significantly shortened
• Somewhat shortened
• No impact
• Lengthened

14. Do you believe that AI tools will become a core component of future software devel-
opment workflows?
(Yes/No/Maybe)

15. What improvements or features would you like to see in AI tools to enhance their
effectiveness?
(Open-ended)

Appendix A.5. Demographics and Context

16. What is your primary role in software engineering?

Appl. Sci. 2025, 15, 1344 23 of 26

• Developer
• Tester
• Manager
• Architect
• Other

17. How many years of experience do you have in software engineering?

• Less than 2 years
• 2–5 years
• 6–10 years
• Over 10 years

18. What is the size of your organization?

• Small (<50 employees)
• Medium (50–500 employees)
• Large (>500 employees)

19. What industry sector do you work in?

• Technology
• Finance
• Healthcare
• Education
• Other

20. Have you received formal training on AI tools for software engineering?
(Yes/No)

References
1. Gurcan, F.; Dalveren, G.G.M.; Cagiltay, N.E.; Soylu, A. Detecting latent topics and trends in software engineering research since

1980 using probabilistic topic modeling. IEEE Access 2022, 10, 74638–74654. [CrossRef]
2. Inkollu, K.; Gorle, S.K.; Kondabattula, S.R.; Shankar, P.B.; Reddy, M.B. A Review on Software Engineering: Perspective of

Emerging Technologies & Challenges. In Proceedings of the Eighth International Conference on Research in Intelligent Computing
in Engineering, Hyderabad, India, 1–2 December 2023; pp. 23–27.

3. Kuhrmann, M.; Tell, P.; Hebig, R.; Klünder, J.; Münch, J.; Linssen, O.; Pfahl, D.; Felderer, M.; Prause, C.R.; MacDonell, S.G.; et al.
What makes agile software development agile? IEEE Trans. Softw. Eng. 2021, 48, 3523–3539. [CrossRef]

4. Forsgren, N. DevOps delivers. Commun. ACM 2018, 61, 32–33. [CrossRef]
5. Gall, M.; Pigni, F. Taking DevOps mainstream: A critical review and conceptual framework. Eur. J. Inf. Syst. 2022, 31, 548–567.

[CrossRef]
6. Sauvola, J.; Tarkoma, S.; Klemettinen, M.; Riekki, J.; Doermann, D. Future of software development with generative AI. Autom.

Softw. Eng. 2024, 31, 26. [CrossRef]
7. Barenkamp, M.; Rebstadt, J.; Thomas, O. Applications of AI in classical software engineering. AI Perspect. 2020, 2, 1. [CrossRef]
8. Bader, J.; Kim, S.S.; Luan, F.S.; Chandra, S.; Meijer, E. AI in software engineering at Facebook. IEEE Softw. 2021, 38, 52–61.

[CrossRef]
9. Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H.P.D.O.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al.

Evaluating large language models trained on code. arXiv 2021, arXiv:2107.03374.
10. Li, Y.; Wang, S.; Nguyen, T.N. Dear: A novel deep learning-based approach for automated program repair. In Proceedings of the

44th International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29 May 2022; pp. 511–523.
11. de Moor, A.; van Deursen, A.; Izadi, M. A transformer-based approach for smart invocation of automatic code completion.

In Proceedings of the 1st ACM International Conference on AI-Powered Software, Porto de Galinhas, Brazil, 15–16 July 2024;
pp. 28–37.

12. Li, Y.; Choi, D.; Chung, J.; Kushman, N.; Schrittwieser, J.; Leblond, R.; Eccles, T.; Keeling, J.; Gimeno, F.; Dal Lago, A.; et al.
Competition-level code generation with alphacode. Science 2022, 378, 1092–1097. [CrossRef]

13. Giray, G.; Bennin, K.E.; Köksal, Ö.; Babur, Ö.; Tekinerdogan, B. On the use of deep learning in software defect prediction. J. Syst.
Softw. 2023, 195, 111537. [CrossRef]

http://doi.org/10.1109/ACCESS.2022.3190632
http://dx.doi.org/10.1109/TSE.2021.3099532
http://dx.doi.org/10.1145/3174799
http://dx.doi.org/10.1080/0960085X.2021.1997100
http://dx.doi.org/10.1007/s10515-024-00426-z
http://dx.doi.org/10.1186/s42467-020-00005-4
http://dx.doi.org/10.1109/MS.2021.3061664
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1016/j.jss.2022.111537

Appl. Sci. 2025, 15, 1344 24 of 26

14. Li, L.; Ding, S.X.; Peng, X. Distributed data-driven optimal fault detection for large-scale systems. J. Process Control 2020,
96, 94–103. [CrossRef]

15. Sawant, P.D. Test Case Prioritization for Regression Testing Using Machine Learning. In Proceedings of the 2024 IEEE International
Conference on Artificial Intelligence Testing (AITest), Shanghai, China, 15–18 July 2024; pp. 152–153.

16. Haji Mohammadkhani, A. Explainable AI for Software Engineering: A Systematic Review and an Empirical Study. Master’s
Thesis, University of Calgary, Calgary, AB, Canada, 2023. Available online: https://prism.ucalgary.ca/handle/1880/115792
(accessed on 25 November 2024).

17. Tamanampudi, V.M. Deep Learning Models for Continuous Feedback Loops in DevOps: Enhancing Release Cycles with
AI-Powered Insights and Analytics. J. Artif. Intell. Res. Appl. 2022, 2, 425–463.

18. Kokol, P. The Use of AI in Software Engineering: A Synthetic Knowledge Synthesis of the Recent Research Literature. Information
2024, 15, 354. [CrossRef]

19. Amugongo, L.M.; Kriebitz, A.; Boch, A.; Lütge, C. Operationalising AI ethics through the agile software development lifecycle: A
case study of AI-enabled mobile health applications. AI Ethics 2023, 1–18. [CrossRef]

20. Kalliamvakou, E. Research: Quantifying GitHub Copilot’s Impact on Developer Productivity and Happiness. 2022. Available
online: https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-
and-happiness/ (accessed on 11 November 2024).

21. Odeh, A.; Odeh, N.; Mohammed, A.S. A Comparative Review of AI Techniques for Automated Code Generation in Software
Development: Advancements, Challenges, and Future Directions. TEM J. 2024, 13, 726–739. [CrossRef]

22. France, S.L. Navigating software development in the ChatGPT and GitHub Copilot era. Bus. Horizons 2024, 67, 649–661.
[CrossRef]

23. Bull, C.; Kharrufa, A. Generative AI Assistants in Software Development Education: A vision for integrating Generative AI into
educational practice, not instinctively defending against it. IEEE Softw. 2024, 41, 52–59. [CrossRef]

24. Royce, W.W. Managing the development of large software systems. Proc. IEEE WESCON 1970, 26, 328–388.
25. Beck, K.; Beedle, M.; Van Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler, M.; Grenning, J.; Highsmith, J.; Hunt, A.;

Jeffries, R.; et al. Manifesto for Agile Software Development. 2001. Available online: http://agilemanifesto.org/ (accessed on 25
November 2024).

26. Humble, J.; Farley, D. Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation; Pearson
Education: London, UK, 2010.

27. Smith, J.; Brown, T.; Wilson, R. Unlocking Developer Productivity: A Deep Dive into GitHub Copilot’s AI-Powered Code
Completion. Int. J. Eng. Res. Technol. 2023, 13, 82–87.

28. Qian, C.; Liu, W.; Liu, H.; Chen, N.; Dang, Y.; Li, J.; Yang, C.; Chen, W.; Su, Y.; Cong, X.; et al. ChatDev: Communicative Agents for
Software Development. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Bangkok, Thailand, 11–16 August 2024; pp. 15174–15186.

29. Ernst, N.A.; Bavota, G. Ai-driven development is here: Should you worry? IEEE Softw. 2022, 39, 106–110. [CrossRef]
30. Cámara, J.; Troya, J.; Burgueño, L.; Vallecillo, A. On the assessment of generative AI in modeling tasks: An experience report with

ChatGPT and UML. Softw. Syst. Model. 2023, 22, 781–793. [CrossRef]
31. Borges, O.; Lima, M.; Couto, J.; Gadelha, B.; Conte, T.; Prikladnicki, R. ML@ SE: What do we know about how Machine

Learning impact Software Engineering practice? In Proceedings of the 2022 17th Iberian Conference on Information Systems and
Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–7.

32. Mezouar, H.; Afia, A.E. A systematic literature review of machine learning applications in software engineering. In Proceedings
of the International Conference on Big Data and Internet of Things, Chengdu, China, 2–4 December 2022; pp. 317–331.

33. Wang, S.; Huang, L.; Gao, A.; Ge, J.; Zhang, T.; Feng, H.; Satyarth, I.; Li, M.; Zhang, H.; Ng, V. Machine/deep learning for software
engineering: A systematic literature review. IEEE Trans. Softw. Eng. 2022, 49, 1188–1231. [CrossRef]

34. Aniche, M.; Maziero, E.; Durelli, R.; Durelli, V.H. The effectiveness of supervised machine learning algorithms in predicting
software refactoring. IEEE Trans. Softw. Eng. 2020, 48, 1432–1450. [CrossRef]

35. Durelli, V.H.; Durelli, R.S.; Borges, S.S.; Endo, A.T.; Eler, M.M.; Dias, D.R.; Guimarães, M.P. Machine learning applied to software
testing: A systematic mapping study. IEEE Trans. Reliab. 2019, 68, 1189–1212. [CrossRef]

36. Bird, C.; Ford, D.; Zimmermann, T.; Forsgren, N.; Kalliamvakou, E.; Lowdermilk, T.; Gazit, I. Taking flight with copilot. Commun.
ACM 2023, 66, 56–62. [CrossRef]

37. Lu, Q.; Zhu, L.; Whittle, J.; Michael, J.B. Software engineering for responsible AI. Computer 2023, 56, 13–16. [CrossRef]
38. Gonzalez, L.A.; Neyem, A.; Contreras-McKay, I.; Molina, D. Improving learning experiences in software engineering capstone

courses using artificial intelligence virtual assistants. Comput. Appl. Eng. Educ. 2022, 30, 1370–1389. [CrossRef]
39. Sofian, H.; Yunus, N.A.M.; Ahmad, R. Systematic mapping: Artificial intelligence techniques in software engineering. IEEE

Access 2022, 10, 51021–51040. [CrossRef]

http://dx.doi.org/10.1016/j.jprocont.2020.11.004
https://prism.ucalgary.ca/handle/1880/115792
http://dx.doi.org/10.3390/info15060354
http://dx.doi.org/10.1007/s43681-023-00331-3
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
http://dx.doi.org/10.18421/TEM131-76
http://dx.doi.org/10.1016/j.bushor.2024.05.009
http://dx.doi.org/10.1109/MS.2023.3300574
http://agilemanifesto.org/
http://dx.doi.org/10.1109/MS.2021.3133805
http://dx.doi.org/10.1007/s10270-023-01105-5
http://dx.doi.org/10.1109/TSE.2022.3173346
http://dx.doi.org/10.1109/TSE.2020.3021736
http://dx.doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.1145/3589996
http://dx.doi.org/10.1109/MC.2023.3242055
http://dx.doi.org/10.1002/cae.22526
http://dx.doi.org/10.1109/ACCESS.2022.3174115

Appl. Sci. 2025, 15, 1344 25 of 26

40. Meriçli, Ç.; Turhan, B. Special section on realizing artificial intelligence synergies in software engineering. Softw. Qual. J. 2017,
25, 231–233. [CrossRef]

41. Shehab, M.; Abualigah, L.; Jarrah, M.I.; Alomari, O.A.; Daoud, M.S. Artificial intelligence in software engineering and inverse.
Int. J. Comput. Integr. Manuf. 2020, 33, 1129–1144. [CrossRef]

42. Mashkoor, A.; Menzies, T.; Egyed, A.; Ramler, R. Artificial intelligence and software engineering: Are we ready? Computer 2022,
55, 24–28. [CrossRef]

43. Marar, H.W. Advancements in software engineering using AI. Comput. Softw. Media Appl. 2024, 6, 3906. [CrossRef]
44. Necula, S.C.; Dumitriu, F.; Greavu-S, erban, V. A Systematic Literature Review on Using Natural Language Processing in Software

Requirements Engineering. Electronics 2024, 13, 2055. [CrossRef]
45. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

46. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. In Proceedings of the Advances in Neural Information Processing Systems; Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 1877–1901.

47. Raharjana, I.K.; Siahaan, D.; Fatichah, C. User stories and natural language processing: A systematic literature review. IEEE
Access 2021, 9, 53811–53826. [CrossRef]

48. Dwivedi, A.K.; Tirkey, A.; Ray, R.B.; Rath, S.K. Software design pattern recognition using machine learning techniques. In
Proceedings of the 2016 IEEE Region 10 Conference (Tencon), Singapore, 22–25 November 2016; pp. 222–227.

49. André, P.; Tebib, M.E.A. Assistance in Model Driven Development: Toward an Automated Transformation Design Process.
Complex Syst. Informatics Model. Q. 2024, 38, 54–99. [CrossRef]

50. Barke, S.; James, M.B.; Polikarpova, N. Grounded copilot: How programmers interact with code-generating models. Proc. ACM
Program. Lang. 2023, 7, 85–111. [CrossRef]

51. Alenezi, M.; Akour, M. Empowering student entrepreneurship skills: A software engineering course for innovation and real-world
impact. J. Infrastruct. Policy Dev. 2024, 8, 9088. [CrossRef]

52. Magabaleh, A.A.; Ghraibeh, L.L.; Audeh, A.Y.; Albahri, A.; Deveci, M.; Antucheviciene, J. Systematic Review of Software
Engineering Uses of Multi-Criteria Decision-Making Methods: Trends, Bibliographic Analysis, Challenges, Recommendations,
and Future Directions. Appl. Soft Comput. 2024, 163, 111859. [CrossRef]

53. Zarour, M.; Akour, M.; Alenezi, M. Enhancing DevOps Engineering Education Through System-Based Learning Approach. Open
Educ. Stud. 2024, 6, 20240012. [CrossRef]

54. Bu, L.; Liang, Y.; Xie, Z.; Qian, H.; Hu, Y.Q.; Yu, Y.; Chen, X.; Li, X. Machine learning steered symbolic execution framework for
complex software code. Form. Asp. Comput. 2021, 33, 301–323. [CrossRef]

55. Wang, S.; Liu, T.; Nam, J.; Tan, L. Deep semantic feature learning for software defect prediction. IEEE Trans. Softw. Eng. 2018,
46, 1267–1293. [CrossRef]

56. Bowes, D.; Hall, T.; Petrić, J. Software defect prediction: Do different classifiers find the same defects? Softw. Qual. J. 2018,
26, 525–552. [CrossRef]

57. Almodovar, C.; Sabrina, F.; Karimi, S.; Azad, S. LogFiT: Log anomaly detection using fine-tuned language models. IEEE Trans.
Netw. Serv. Manag. 2024, 21, 1715–1723. [CrossRef]

58. Deniz, B.K.; Gnanasambandam, C.; Harrysson, M.; Hussin, A.; Srivastava, S. Unleashing Developer Productivity with Genera-
tive AI. McKinsey Digital. 2023. Available online: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/
unleashing-developer-productivity-with-generative-ai (accessed on 10 November 2024).

59. Svyatkovskiy, A.; Zhao, Y.; Fu, S.; Sundaresan, N. Pythia: Ai-assisted code completion system. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 2727–2735.

60. DeepCode AI|AI Code Review|AI Security for SAST|Snyk AI|Snyk. Available online: https://snyk.io/platform/deepcode-ai/
(accessed on 11 November 2024).

61. Amershi, S.; Begel, A.; Bird, C.; DeLine, R.; Gall, H.; Kamar, E.; Nagappan, N.; Nushi, B.; Zimmermann, T. Software engineering
for machine learning: A case study. In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), Montreal, QC, Canada, 25–31 May 2019; pp. 291–300.

62. Davoudian, A.; Liu, M. Big data systems: A software engineering perspective. ACM Comput. Surv. (CSUR) 2020, 53, 1–39.
[CrossRef]

63. Novichkov, P.S.; Chandonia, J.M.; Arkin, A.P. CORAL: A framework for rigorous self-validated data modeling and integrative,
reproducible data analysis. GigaScience 2022, 11, giac089. [CrossRef]

64. Russo, D. Navigating the complexity of generative ai adoption in software engineering. ACM Trans. Softw. Eng. Methodol. 2024,
33, 1–50. [CrossRef]

http://dx.doi.org/10.1007/s11219-017-9356-8
http://dx.doi.org/10.1080/0951192X.2020.1780320
http://dx.doi.org/10.1109/MC.2022.3144805
http://dx.doi.org/10.24294/csma.v6i1.3906
http://dx.doi.org/10.3390/electronics13112055
http://dx.doi.org/10.1109/ACCESS.2021.3070606
http://dx.doi.org/10.7250/csimq.2024-38.03
http://dx.doi.org/10.1145/3586030
http://dx.doi.org/10.24294/jipd9088
http://dx.doi.org/10.1016/j.asoc.2024.111859
http://dx.doi.org/10.1515/edu-2024-0012
http://dx.doi.org/10.1007/s00165-021-00538-3
http://dx.doi.org/10.1109/TSE.2018.2877612
http://dx.doi.org/10.1007/s11219-016-9353-3
http://dx.doi.org/10.1109/TNSM.2024.3358730
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://snyk.io/platform/deepcode-ai/
http://dx.doi.org/10.1145/3408314
http://dx.doi.org/10.1093/gigascience/giac089
http://dx.doi.org/10.1145/3652154

Appl. Sci. 2025, 15, 1344 26 of 26

65. Belgaum, M.R.; Alansari, Z.; Musa, S.; Alam, M.M.; Mazliham, M. Role of artificial intelligence in cloud computing, IoT and SDN:
Reliability and scalability issues. Int. J. Electr. Comput. Eng. 2021, 11, 4458. [CrossRef]

66. Said, M.A.; Ezzati, A.; Mihi, S.; Belouaddane, L. Microservices adoption: An industrial inquiry into factors influencing decisions
and implementation strategies. Int. J. Comput. Digit. Syst. 2024, 15, 1417–1432. [CrossRef]

67. Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A survey on bias and fairness in machine learning. ACM Comput.
Surv. (CSUR) 2021, 54, 1–35. [CrossRef]

68. Holstein, K.; Wortman Vaughan, J.; Daumé III, H.; Dudik, M.; Wallach, H. Improving fairness in machine learning systems: What
do industry practitioners need? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow,
UK, 4–9 May 2019; pp. 1–16.

69. Orphanou, K.; Otterbacher, J.; Kleanthous, S.; Batsuren, K.; Giunchiglia, F.; Bogina, V.; Tal, A.S.; Hartman, A.; Kuflik, T. Mitigating
bias in algorithmic systems—A fish-eye view. ACM Comput. Surv. 2022, 55, 1–37. [CrossRef]

70. Degli Esposti, M.; Lagioia, F.; Sartor, G. The use of copyrighted works by AI systems: Art works in the data Mill. Eur. J. Risk
Regul. 2020, 11, 51–69. [CrossRef]

71. Chatterjee, S.; NS, S. Artificial intelligence and human rights: A comprehensive study from Indian legal and policy perspective.
Int. J. Law Manag. 2022, 64, 110–134. [CrossRef]

72. Li, P.; Huang, J.; Zhang, S.; Qi, C. SecureEI: Proactive intellectual property protection of AI models for edge intelligence. Comput.
Netw. 2024, 255, 110825. [CrossRef]

73. Karthikeyan, C.; Singh, S. Skill Development Challenges in the Era of Artificial Intelligence (AI). In Integrating Technology in
Problem-Solving Educational Practices; IGI Global: Hershey, PA, USA, 2025; pp. 189–218.

74. Wang, D.; Weisz, J.D.; Muller, M.; Ram, P.; Geyer, W.; Dugan, C.; Tausczik, Y.; Samulowitz, H.; Gray, A. Human-AI collaboration in
data science: Exploring data scientists’ perceptions of automated AI. Proc. ACM Hum.-Comput. Interact. 2019, 3, 1–24. [CrossRef]

75. Kelley, S. Employee perceptions of the effective adoption of AI principles. J. Bus. Ethics 2022, 178, 871–893. [CrossRef]
76. La Torre, D.; Colapinto, C.; Durosini, I.; Triberti, S. Team formation for human-artificial intelligence collaboration in the workplace:

A goal programming model to foster organizational change. IEEE Trans. Eng. Manag. 2021, 70, 1966–1976. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.11591/ijece.v11i5.pp4458-4470
http://dx.doi.org/10.12785/ijcds/1501100
http://dx.doi.org/10.1145/3457607
http://dx.doi.org/10.1145/3527152
http://dx.doi.org/10.1017/err.2019.56
http://dx.doi.org/10.1108/IJLMA-02-2021-0049
http://dx.doi.org/10.1016/j.comnet.2024.110825
http://dx.doi.org/10.1145/3359313
http://dx.doi.org/10.1007/s10551-022-05051-y
http://dx.doi.org/10.1109/TEM.2021.3077195

	Introduction
	Literature Review
	AI Applications in Software Engineering
	Requirements Analysis
	Natural Language Processing (NLP) for Requirements Gathering
	AI-Driven User Stories

	Design and Architecture
	Automated Design Pattern Recognition
	Intelligent System Modeling

	Coding and Implementation
	AI-Assisted Code Generation
	Smart Code Completion and Suggestions

	Testing and Quality Assurance
	Automated Test Case Generation
	AI in Defect Prediction and Management

	Deployment and Maintenance
	Predictive Maintenance Using AI
	Automated Monitoring and Alert Systems

	Case Studies
	McKinsey's Integration of Generative AI in Software Development
	GitHub Copilot's Impact on Developer Productivity and Code Quality
	IBM's AI-Powered Defect Prediction Tool Enhances Software Quality
	Microsoft IntelliCode's Enhancement of Developer Productivity and Code Quality
	Snyk Code's AI-Driven Enhancements to Code Quality and Developer Efficiency
	Google’s DeepMind AlphaCode Transforms Code Generation and Problem Solving
	Underexplored Areas and Novelty

	Artificial Intelligence on Software Engineering Practices: A Quantitative Analysis
	Challenges and Considerations
	Technical Challenges
	Data Quality and Availability
	Integration with Existing Systems

	Ethical and Legal Issues
	Bias in AI Algorithms
	Intellectual Property Concerns

	Workforce Implications
	Skill Gaps
	Resistance to Change

	Future Directions
	Conclusions
	Appendix A
	Appendix A.1
	Perceived Benefits of AI Tools
	Challenges in Using AI Tools
	Outcomes and Future Integration
	Demographics and Context

	References

