
Citation: Buttar, A.M.; Khalid, A.;

Alenezi, M.; Akbar, M.A.; Rafi, S.;

Gumaei, A.H.; Riaz, M.T.

Optimization of DevOps

Transformation for Cloud-Based

Applications. Electronics 2023, 12, 357.

https://doi.org/10.3390/

electronics12020357

Academic Editor: Antonio Brogi

Received: 29 October 2022

Revised: 22 December 2022

Accepted: 4 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Optimization of DevOps Transformation for
Cloud-Based Applications
Ahmed Mateen Buttar 1, Adeel Khalid 1, Mamdouh Alenezi 2 , Muhammad Azeem Akbar 3,* , Saima Rafi 4,
Abdu H. Gumaei 5 and Muhammad Tanveer Riaz 6,7

1 Department of Computer Science, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
2 Software Engineering and Disruptive Innovation (SEDI), College of Computer and Information Sciences,

Prince Sultan University, Riyadh 11586, Saudi Arabia
3 Software Engineering Department, LUT University, 15210 Lahti, Finland
4 Department of Informatics and Systems, University of Murcia, 30100 Murcia, Spain
5 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin

Abdulaziz University, Al-Kharj 11942, Saudi Arabia
6 Department of Mechanical, Mechatronics and Manufacturing Engineering, University of Engineering and

Technology Lahore Faisalabad Campus, Faisalabad 38000, Pakistan
7 Department of Electrical, Electronic, and Information Engineering, Università di Bologna, 40136 Bologna, Italy
* Correspondence: azeem.akbar@lut.fi or ahmedmatin@hotmail.com

Abstract: Rapid software development is critical for meeting company objectives and competing
more effectively in the competitive IoT infrastructure. DevOps is a growing technique that enables
enterprises to provide high-quality software capabilities through automation, to improve team
communication, and to increase efficiency across the software product lifecycle. Research problem:
Due to the increased demand for new products and technologies, a huge overwork shifted on the
organizations for introducing software with pace and to become stable to compete with others. Due to
this, the majority of organizations prefer an automated system for product development and require
cloud-based applications. The git version control system is used for version management and Docker
is used to package code and provide libraries. AWS services are leveraged to deploy an application as
a cloud. Jenkins is used as a CI/CD pipeline to manage various phases of development and to make
the development process continuous. The ELK stack is used to monitor and visualize the execution
of code. In light of the findings, DevOps is an efficient method for cloud application deployment
and resource selection based on the relative importance of each optimized objective in terms of value
parameters such as cost, memory, and CPU capacity, and that the method can be tailored to specific
application requirements. The findings of this analysis indicate that an application can be deployed
to the cloud using DevOps techniques. The proposed approach cost 60% less at full weight 1.0 and
11.3% less with no weight compared to the benchmark solution’s 15.078%

Keywords: DevOps; cloud pipelines; continuous integration; continuous development

1. Introduction

Modern technology contributes to our life by providing tools and it’s also helping us
to improve our working conditions. Due to the growing demand for new products and
technologies, businesses are distributing software at a faster speed and are more consistent
than others. As a result, many businesses opt for an automated product development
program and require cloud-based applications. As a solution, Cloud collaboration using
DevOps makes organizations very powerful, as they not only facilitate the development
of software products but also facilitate the implementation and control of the deployment
process. DevOps is a set of practices that combines software development (Dev) and IT
operations (Ops). Leited et al. [1] described that “DevOps is a collaborative and multidis-
ciplinary effort within an organization to automate continuous delivery of new software

Electronics 2023, 12, 357. https://doi.org/10.3390/electronics12020357 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020357
https://doi.org/10.3390/electronics12020357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6852-1206
https://orcid.org/0000-0002-4906-6495
https://orcid.org/0000-0002-4391-9821
https://doi.org/10.3390/electronics12020357
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020357?type=check_update&version=1

Electronics 2023, 12, 357 2 of 15

versions, while guaranteeing their correctness and reliability”. DevOps along with things
like the CI/CD pipeline is to avoid frequent code changes during development work and
to complete the project promptly.

DevOps can run hundreds of tests within one day and receive feedback from clients
after each delivery. This will help the organization to explore additional features that
can be implemented in the project and minimize configuration issues. According to
Jambunathan et al. [2] when it comes to cloud deploying applications, DevOps is crucial.
DevOps’ primary skills for handling cloud-based computing include automated application
deployment, Infrastructure as a Code, and delivering servers. DevOps is a vital part of
cloud computing that manages infrastructure, application deployment, and application
functionalities in a variety of contexts. From the perspective of infrastructure providers,
cloud computing has been viewed as an economy of scale, and in many instances, cloud
economics has been used as a deciding factor between private and public clouds [3]. In
environmental constraints, DevOps aid in making a high-quality product, continuous
delivery and helping end-user with quality software [4]. DevOps also enables quick
responses to changing client requirements. DevOps allows developers and operations to
work in a shared environment. DevOps opens the possibility of removing organizational
and cultural divides, as well as lowering the cost of fault detection in the early phases [5].

Besides from benefits of DevOps, shifting from local infrastructure to microservices,
combining different domains tools, using new tools, different tool kits between dev and
ops teams are challenges. According to Ellen et al. [6], the major difficulties for DevOps
acceptance in the software business include poor communication, ingrained organizational
culture, market limits, scalability, and diverse ecosystems. Hence, to resolve the issues that
DevOps teams may experience during continuous integration, deployment, and testing.
Our study uses Jenkins as a helping tool for solving the problem related to the deployment.
We have also used the Jenkins pipeline to manage various phases of deployment process.
Furthermore, we have selected a method for implementing DevOps using Continuous
Delivery, and we build a specific Continuous Delivery system design based on top of the
Amazon Web Services (AWS) cloud.

As a result, to address a challenge; how can IoT applications be developed, deployed,
and managed in a multi-cloud environment while remaining within the overall parameters
of the existing organization ecosystem? The motivation is to propose an algorithm to sup-
port cloud-based applications to employ DevOps techniques. The findings of this analysis
indicated that an application can be deployed to the cloud using DevOps techniques.

2. Background and Related Work
2.1. Background

Cois et al. [7] explored that an application is implemented in the production envi-
ronment once the development team has completed all of its development work and the
operations team has created and configured the application’s deployment environment
independently. Soni [8] described that Coding, designing, integrating, testing, debug-
ging, infrastructure configuring, access control, establishing runtime environment, and
deploying experience in different environments are all phases of application development.
Barna et al. [9] described a method for creating an AMS for data-intensive containerized
applications that are multi-tiered and multi-layer. They used an auto process model which
generates quality measures relying on the software’s architecture, and they design for
possible reactive system actions if the performance model detects any potential issues.

According to Guerriero et al., [10] the aim of using DevOps for cloud applications is
to help the cloud applications in controlling their run time processes and in minimizing
the execution cost. However, an Autonomous Management System (AMS) is required to
facilitate DevOps activities. Various strategies were proposed in past by researchers for
scaling installations over several clouds in Multi and Hybrid Cloud Autonomous Structures.
For example, an auto-scaling approach [11] for Hybrid clouds aim of providing efficient
resource consumption. The -self-organized technique is designed to accommodate the

Electronics 2023, 12, 357 3 of 15

varying strains of application domains while still adhering to service level agreements such
as timeframes, price-based, and functionality-based requirements. The CI/CD pipeline
is a set of actions that were performed according to defined rules and are automatically
triggered by CI/CD exercises [12]. With CI/CD pipeline methods, you can avoid doing
time-consuming tasks manually. This will help the organization to explore additional fea-
tures that can be implemented in the project and minimize configuration issues. Elastically
Ruling the Cloud [13] is used for applying adaptive modifications in Federated clouds,
leveraging the Rule Interchange Format (RIF) to enable rules to be reused on multiple rule
engines. Adopting DevOps administration for business applications by merging variable
costs and existing network management technologies, we were able to improve the task in
cloud-based applications

DevOps provides more comprehensive support for cloud application deployment
using a variety of tools that offer automation and continuous integration (CI). For any
modern business, software is becoming more and more important. The management
of software change in DevOps environment has evolved into a critical skill for a digi-
tal organization due to the high volatility of software and its surroundings. In fact, the
constantly evolving technical features of cloud-based software may have an equal im-
pact on its economic aspects [14]. Tsilionis et al. [15], mentioned advantages of utilizing
cloud-enabled platforms/resources include, among other things, cost-effective access to
significant on-demand processing, storage, and network capacities while being able to
group a pool of qualified individuals via virtualized environments throughout the entire
development process [16].

Jaatun et al. [17] described that when it comes to moving applications to the cloud, se-
curity is a key concern for developers. To keep the market stable, they must make data very
secure. DevOps plays a crucial role in cloud security. While some unauthorized sources try
to gain access to data, DevOps responds quickly to the developer team. Almeida et al. [18]
discussed that managing cloud resources or prices is a multifaceted issue, improper re-
source allocation may have an impact on the software product’s performance as well as its
profitability and DevOps can play an important role continuously monitoring the utility
of the customer. According to Arulkumar and Lathamanju [19] DevOps is a tool that
relies on automation throughout the lifecycle. DevOps is a method for rapidly developing
applications while maintaining consistency and security. Due to their continuous delivery
of software, the technique continuously performs designing, testing, and rewriting code
and receives continuous feedback from customers. Many product deliveries are completed
in a single day. This aids in the development of high-quality software at a rapid speed.
Large-scale and distributed cloud applications [20] often face two major challenges: (i) a
lack of compatibility among cloud systems, and (ii) difficult maintenance and evolution
management. Interoperability issues across cloud solutions lead to vendor support and
limit the creation of multi-cloud applications. This makes it difficult for cloud application
providers to make use of the unique features of existing cloud solutions, such as improv-
ing performance, availability, and affordability. The second difficulty is maintaining and
evolving such complex cloud apps, particularly in a multi-cloud DevOps environment.

Wettinger et al. [21] worked on artifacts for DevOps and their transformation using
TOSCA as standardized metamodel. The artifacts described here allows DevOps to be
integrated with model and application deployment. It allows you to classify artifacts by
node and environment. They utilize open-source building components to handle all model
and framework integration. Shin and Williams [22] explained that one of the most serious
issues with software security is that it is difficult to anticipate all threats that the system will
face. Furthermore, even in firms that are particularly vulnerable to espionage, discovered
flaws typically go unresolved for years. Despite this much less vulnerability is reported
than conventional software flaws. These are the reasons why many people believe that
software security isn’t a huge deal and that associated vulnerabilities aren’t given the same
priority as other software flaws. Basiri et al. [23] highlighted that the goal of the DevOps
paradigm is to reduce the software delivery cycle. The goal is for every modification to be

Electronics 2023, 12, 357 4 of 15

easily integrated into the production system while maintaining excellent quality. Netflix is
already using chaos engineering techniques, which enable ideas like continuous integration
and continuous deployment in the scope of DevOps. Some other studies also worked
on DevOps adoption in software organization for example Akbar et al. [24] discussed
DevOps from perspective of identification of DevOps success factors and Rafi et al. [25]
proposed a DevOps business model for small startups and work from home environment.
Venkateswaran and Sarkar [26] proposed a model for deploying applications on hybrid
clouds as well as determining the optimum hosting match. They concentrated on the
algorithm for selecting the best cloud to conduct the operation regarding the data center’s
geographical position.

2.2. Available Tools and Related Work

CI/CD tools are used to automate the development of builds from code and their
subsequent deployment to the domain controller. Code integration is one of the most widely
used strategies in the software development industry because it reduces the problem of
integrating source code when software is built across multiple sites allowing developers to
quickly build, evaluate, analyze, and deploy software [27].

Docker is a platform that enables developers to assemble code, libraries, and other
configuration files into a single image which can be used to run an application as a container
as seen in Figure 1. Developers build their software, frameworks, and modules into Docker
containers, which they can then deploy to testers and operational experts [2].

Electronics 2023, 12, x FOR PEER REVIEW 4 of 16

reported than conventional software flaws. These are the reasons why many people be-
lieve that software security isn’t a huge deal and that associated vulnerabilities aren’t
given the same priority as other software flaws. Basiri et al. [23] highlighted that the goal
of the DevOps paradigm is to reduce the software delivery cycle. The goal is for every
modification to be easily integrated into the production system while maintaining excel-
lent quality. Netflix is already using chaos engineering techniques, which enable ideas
like continuous integration and continuous deployment in the scope of DevOps. Some
other studies also worked on DevOps adoption in software organization for example Ak-
bar et al. [24] discussed DevOps from perspective of identification of DevOps success fac-
tors and Rafi et al. [25] proposed a DevOps business model for small startups and work
from home environment. Venkateswaran and Sarkar [26] proposed a model for deploying
applications on hybrid clouds as well as determining the optimum hosting match. They
concentrated on the algorithm for selecting the best cloud to conduct the operation re-
garding the data center’s geographical position.

2.2. Available Tools and Related Work
CI/CD tools are used to automate the development of builds from code and their

subsequent deployment to the domain controller. Code integration is one of the most
widely used strategies in the software development industry because it reduces the prob-
lem of integrating source code when software is built across multiple sites allowing de-
velopers to quickly build, evaluate, analyze, and deploy software [27].

Docker is a platform that enables developers to assemble code, libraries, and other
configuration files into a single image which can be used to run an application as a con-
tainer as seen in Figure 1. Developers build their software, frameworks, and modules into
Docker containers, which they can then deploy to testers and operational experts [2].

Figure 1. Containerised Application with Docker [2].

The CICD pipeline [28] is made up of many phases like Designing, configuration
management, Production Support, Continuous integration, Iterative Development, and
Continuous Deployment. The initial stage of the pipeline is Continuous Integration, which
allows developers to often merge their work into the repository. Continuous Deployment
is a process of systematically delivering ready code, whereas Continuous Delivery seems
to be a method of planning and ready code for deploying.

2.3. Version Control with Git
Version control system (VCS) adoption will help you to have complete access to your

code. All the access controls are set and access is given to limited number of people i.e.,
who works on it, when does he commit it, and what changes are made to the code?. It
improves code security and ensures that code is delivered quickly. VCS stores the code in

Figure 1. Containerised Application with Docker [2].

The CICD pipeline [28] is made up of many phases like Designing, configuration
management, Production Support, Continuous integration, Iterative Development, and
Continuous Deployment. The initial stage of the pipeline is Continuous Integration, which
allows developers to often merge their work into the repository. Continuous Deployment
is a process of systematically delivering ready code, whereas Continuous Delivery seems
to be a method of planning and ready code for deploying.

2.3. Version Control with Git

Version control system (VCS) adoption will help you to have complete access to your
code. All the access controls are set and access is given to limited number of people i.e.,
who works on it, when does he commit it, and what changes are made to the code?. It
improves code security and ensures that code is delivered quickly. VCS stores the code in a
designated location and is accountable for its availability. The most popular VCSs are AWS
CloudWatch [29], Git [30], Mercurial [31], and SVM [32]. It is more versatile and freer. Git
is the most popular among all. It also offers hosting services. Git is used by the majority of
new businesses and students. In our work, we also use git to maintain our source code.
The developer writes their code and git help them to track, commit and finally push the
code to a dedicated storage place called GitHub

2.4. Create Container Using Docker

Docker is an open-source tool for creating a container. It helps indirectly in develop-
ing, building, deploying, and executing software in isolation [33]. It does so by creating

Electronics 2023, 12, 357 5 of 15

containers that completely wrap a software. You can put an application in a container
with the help of Docker and then can be deployed easily. The isolation provided by the
container gives a layer of security to the containers. Docker Architecture consists of Docker
CLI, Docker host, and Docker Registry. You use Docker build command on Docker CLI
to build Docker images. The command gets API of code and gives it to Daemon. In next
step Daemon read the command and check which image needs to build and then build
the required image. Docker swarm [34] is an important feature of Docker that helps to
orchestrate the Docker container. Orchestration allows to manage and maintain multiple
containers. This is especially helpful in software development where we may be making
use of micro-services architecture as it breaks down the software into small chunks.

2.5. Use Jenkins for Continuous Integration

Jenkins is the most popular tool in the software development industry because it is
free for use. It is flexible and provides amazing supportability. Jenkins supports thousands
of plugins and no other continuous integration tool support such a huge number of plugins.
The Jenkins automatically detect from source code manager then clone it and then move it
to the other process like build, test and deploy

The Jenkins pipeline [35] is shown in Figure 2 where the Developer pushes their
written code to the source code manager and then automatically pulls through Jenkins with
the help of jobs. Jobs are processes or instructions that explain how to perform an action or
automate a process.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 16

a designated location and is accountable for its availability. The most popular VCSs are
AWS CloudWatch [29], Git [30], Mercurial [31], and SVM [32]. It is more versatile and
freer. Git is the most popular among all. It also offers hosting services. Git is used by the
majority of new businesses and students. In our work, we also use git to maintain our
source code. The developer writes their code and git help them to track, commit and fi-
nally push the code to a dedicated storage place called GitHub

2.4. Create Container Using Docker
Docker is an open-source tool for creating a container. It helps indirectly in develop-

ing, building, deploying, and executing software in isolation [33]. It does so by creating
containers that completely wrap a software. You can put an application in a container
with the help of Docker and then can be deployed easily. The isolation provided by the
container gives a layer of security to the containers. Docker Architecture consists of
Docker CLI, Docker host, and Docker Registry. You use Docker build command on
Docker CLI to build Docker images. The command gets API of code and gives it to Dae-
mon. In next step Daemon read the command and check which image needs to build and
then build the required image. Docker swarm [34] is an important feature of Docker that
helps to orchestrate the Docker container. Orchestration allows to manage and maintain
multiple containers. This is especially helpful in software development where we may be
making use of micro-services architecture as it breaks down the software into small
chunks.

2.5. Use Jenkins for Continuous Integration
Jenkins is the most popular tool in the software development industry because it is

free for use. It is flexible and provides amazing supportability. Jenkins supports thou-
sands of plugins and no other continuous integration tool support such a huge number of
plugins. The Jenkins automatically detect from source code manager then clone it and
then move it to the other process like build, test and deploy

The Jenkins pipeline [35] is shown in Figure 2 where the Developer pushes their writ-
ten code to the source code manager and then automatically pulls through Jenkins with
the help of jobs. Jobs are processes or instructions that explain how to perform an action
or automate a process

Figure 2. Jenkins pipeline (Li et al. [36]).

2.6. Create Cloud Using AWS
AWS is a cloud system that provide cloud for applications. We can run virtual ma-

chines on it. If the system has not dual booted or have no services of Ubuntu then we can
use AWS to run Ubuntu [37] virtual machine. After creating login on AWS console, we

Figure 2. Jenkins pipeline (Li et al. [36]).

2.6. Create Cloud Using AWS

AWS is a cloud system that provide cloud for applications. We can run virtual ma-
chines on it. If the system has not dual booted or have no services of Ubuntu then we can
use AWS to run Ubuntu [37] virtual machine. After creating login on AWS console, we
have to go to services and use EC2 to launch virtual machine that run on AWS server but
we can access it on our local system.

2.7. Continuous Monitoring

The monitoring is used according to the software requirement. For instance, you
can monitor either matrix or log. For monitoring matrix, in this research we have used
Prometheus and Grafana [38] for metrics as these are free and open-source tools. These
tools combine to create a dashboard that help to identify software performance through
different metrics. We have uesd ELK [39] stack for collecting logs in this research. The logs
are basically collected from source and converted into visualization that help to understand
the issues emerge in the using software.

However, there is a need robust and systematic way to of git version control system
that could be for management and Docker operation and provide libraries. AWS services
are leveraged to deploy an application as a cloud. Jenkins is used as a CI/CD pipeline to
manage various phases of development and to make the development process continuous.
The ELK stack is used to monitor and visualize the execution of code. In light of the
findings, DevOps is an efficient method for cloud application deployment and resource

Electronics 2023, 12, 357 6 of 15

selection based on the relative importance of each optimized objective in terms of value
parameters such as cost, memory, and CPU capacity, and that the method can be tailored to
specific application requirements.

3. Materials and Methods

We perform experiments to analyze and illustrate the efficiency of the suggested
algorithm compared to the standard points by formulating a multi-objective optimal
solution for creating deployment initiatives using ANOVA approach to determine the
relationship between two groups. The results are presented in form of ANOVA table which
break down the components of variation in the data into variation between treatments and
error or residual variation [40]. To address the optimal solution, the Decision Maker takes
inputs from several other components. These parameters correspond to vendor services
(instances), information hubs, the applications, and the client footprints. The Resource
Trader receives datacenter id, instance type (specified by memory space, amount of CPUs,
and storage), accessible number of instances, cost per hour, and evaluation inputs relating
to vendor capabilities. Application node data (i.e., endpoint id, number of CPUs, memory
capacity, disk usage) and node interdependence are also retrieved from the Application
Repo. The Resource Trader also obtains information center-related parameters, such as
data centre id, geo position (elevation, longitudinal), administrator, and data centre time
stamp. The Information Analyzer provides information on the client footprint, such as
the geo-positioning (elevation, longitudinal) of the POI (points of interest) as well as the
expected volume of traffic in that area

The Algorithm 1 used for optimizing objectives is based on Genetic Algorithm (GA).
GA is a type of genetic computation that replicates the natural evolution process. The solu-
tion becomes closer to a more ideal (desired) answer with each generation (i.e., iteration).
This algorithm can also be used to solve a multi-objective optimization issue. The proposed
algorithm which creates an application deployment plan defining the mapping of virtual
machines to instances, is specified as follows:

Algorithm 1. Optimizing objectives

begin:
function setApplication(objectives)
set i = 1
set itr = 0
while(itr ≤ 500)

for(i = 1; i ≤ maximum)
function generatePlansRandom()

end
end #end while loop
for (i = 1; 500)

function determineFitness(value_cost, CPU_no, memory,
user_node_distance, inter_node_distance)

#determine fitness of each individual
function tournamentSelection(value_cost, CPU_no, memory,
user_node_distance, inter_node_distance)

#select individual based on tournament selection

function inheritenceMutationCrossover()
#perform inheritance, mutation and crossover on selected individuals

end #end for loop
function bestDeploymentProcedure()

#choose the fitness individual with best deployment procedure

function generatePlan(best_Individual)
#generate best deployment plan

end #end code

Electronics 2023, 12, 357 7 of 15

4. Results
Design Algorithm Solution Based on Individual

This research conduct on three different clouds with the help of ten samples (instance
types). The hierarchical representation in Figure 3 describes the solution individuals (variables)
and mapping the virtual machine to instances. Available instance with different specifications
provided at various locations. The variation in specification for application which is being
deployed on cloud using DevOps needed four nodes of virtual machine (VM).

Electronics 2023, 12, x FOR PEER REVIEW 8 of 16

Table 2. ANOVA Table for used space.

ANOVA Table for Used Space
 Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 397,492 198,746 5.13 × 10+01 2.17 × 10−09 ***
Time 12 1,123,159 93,597 2.41 × 10+01 1.72 × 10−10 ***

Residuals 24 93,041 3877
Residual standard error: 62.26 on 24 degrees of freedom. Multiple R-squared: 0.9423, Adjusted R-
squared: 0.9087. F-statistic: 28.02 on 14 and 24 DF, p-value: 1.805 × 10−11. Interpretation: p-value = 2.1
× 10−09 of cloud and 1.7 × 10−10 for time shows highly significant results for used space. Multiple R2 =
94% show that prediction accuracy of this model is best fit for used space.

Figure 3. Random selections of V.M machine using algorithm.

Figure 4. Total capacity and variant of clouds regarding time.

Figure 3. Random selections of V.M machine using algorithm.

We designed an automated system to overcome these challenges and demonstrated
a significant reduction in time and effort for deployment and CI of the application using
their proposed system. The total capacity provided to virtual machines on three different
clouds AWS, Azure and Google is shown in Figure 4 and Table 1. The Table 1 shows that
there is a significance between clouds regarding capacity, and variant regarding time. It
shows that p-value = 2 × 10−16 of cloud shows highly significant results for total capacity
while time is not significant

Electronics 2023, 12, x FOR PEER REVIEW 8 of 16

Table 2. ANOVA Table for used space.

ANOVA Table for Used Space
 Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 397,492 198,746 5.13 × 10+01 2.17 × 10−09 ***
Time 12 1,123,159 93,597 2.41 × 10+01 1.72 × 10−10 ***

Residuals 24 93,041 3877
Residual standard error: 62.26 on 24 degrees of freedom. Multiple R-squared: 0.9423, Adjusted R-
squared: 0.9087. F-statistic: 28.02 on 14 and 24 DF, p-value: 1.805 × 10−11. Interpretation: p-value = 2.1
× 10−09 of cloud and 1.7 × 10−10 for time shows highly significant results for used space. Multiple R2 =
94% show that prediction accuracy of this model is best fit for used space.

Figure 3. Random selections of V.M machine using algorithm.

Figure 4. Total capacity and variant of clouds regarding time. Figure 4. Total capacity and variant of clouds regarding time.

Electronics 2023, 12, 357 8 of 15

Table 1. ANOVA Table for Total Capacity.

ANOVA Table for Total Capacity

Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 1,040,000 520,000 3.90 ×
10+30 <2 × 10−16 ***

Time 12 0 0 1.00 ×
10+00 0.478

Residuals 24 0 0

Residual standard error: 3.651 × 10−13 on 24 degrees of freedom. Multiple R-squared: 1, Adjusted R-squared:
F-statistic: 5.572 × 10+29 on 14 and 24 DF, p-value: < 2.2 × 10−16. Interpretation: p-value = 2 × 10−16 of cloud
shows highly significant results for total. capacity while time is not significant.

The Figure 5 shows the used space of instance on AWS, Azure and Google clouds.
The Table 2 describe the ANOVA table results for cloud and time. It interprets that
p-value = 2.1 × 10−09 of cloud and 1.7 × 10−10 for time shows highly significant results for
used space.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 16

Figure 5. Used space of clouds.

The Figure 6 and Table 3 shows the instance utilization on clouds at an appropriate
time frame. It describes that p-value = 0.01 of cloud shows significant and 1.6 ×10−15 for
time shows highly significant results for instance utilize data entry. Therefore, on the basis
of results in Figure 6, it is concluded that AWS use less space for instance creation than
other clouds.

Table 3. ANOVA Table for instance utilized data on clouds.

ANOVA Table for Instance Utilized Data
 Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 6292 3146 5.46 × 10+00 0.0111 *
Time 12 470,574 39,215 6.80 × 10+01 1.6 × 10−15 ***

Residuals 24 13,841 577
Residual standard error: 24.01 on 24 degrees of freedom. Multiple R-squared: 0.9718, Adjusted R-
squared: 0.9553. F-statistic: 59.06 on 14 and 24 DF, p-value: 4.019 × 10−15. Interpretation: p-value =
0.01 of cloud shows significant and 1.6 × 10−15 for time shows highly significant results for Instance
Util. data Entry. Multiple R2 = 97% show that prediction accuracy of this model is best fit for instance
utilized data entry.

Figure 5. Used space of clouds.

Table 2. ANOVA Table for used space.

ANOVA Table for Used Space

Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 397,492 198,746 5.13 × 10+01 2.17 × 10−09 ***
Time 12 1,123,159 93,597 2.41 × 10+01 1.72 × 10−10 ***

Residuals 24 93,041 3877
Residual standard error: 62.26 on 24 degrees of freedom. Multiple R-squared: 0.9423, Adjusted R-squared: 0.9087.
F-statistic: 28.02 on 14 and 24 DF, p-value: 1.805 × 10−11. Interpretation: p-value = 2.1 × 10−09 of cloud and 1.7 ×
10−10 for time shows highly significant results for used space. Multiple R2 = 94% show that prediction accuracy
of this model is best fit for used space.

The Figure 6 and Table 3 shows the instance utilization on clouds at an appropriate
time frame. It describes that p-value = 0.01 of cloud shows significant and 1.6 ×10−15 for
time shows highly significant results for instance utilize data entry. Therefore, on the basis
of results in Figure 6, it is concluded that AWS use less space for instance creation than
other clouds.

Electronics 2023, 12, 357 9 of 15Electronics 2023, 12, x FOR PEER REVIEW 10 of 16

Figure 6. Instance. Utilized data Entry on clouds.

In Figure 7 it is clearly seen that when instance create at 16:20 it utilizes resources on
different clouds. Compared to other clouds, the AWS cloud uses the minimum resources.
Similar behavior shown by clouds for instance Lang UUID (Universally unique identifier
of instance created by Lang library of Java) as shown in Figure 7 and Table 4. It interprets
that p-value = 0.00 of cloud and 2 × 10−16 for time shows highly significant results for in-
stance Lang UUID. The result shows AWS is suitable clouds for application deployment.

The optimization parameters are cost, CPU processing, memory allocation and user
node distance in multi-cloud application deployment.

Table 4. ANOVA Table for instance Lang. UUID.

ANOVA Table for Instance Lang. UUID
 Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 565 283 5.89 × 10+00 0.00828 **
Time 12 154,506 12,876 2.68 × 10+02 <2 × 10−16 ***

Residuals 24 1151 48
Residual standard error: 6.926 on 24 degrees of freedom. Multiple R-squared: 0.9926, Adjusted R-
squared: 0.9883. F-statistic: 230.9 on 14 and 24 DF, p-value: < 2.2 × 10−16. Interpretation: p-value =
0.00 of Cloud and 2 × 10−16 for Time shows highly significant results for Instance Lang. UUID. Mul-
tiple R2 = 99% show that prediction accuracy of this model is best fit for Instance Lang. UUID.

Figure 6. Instance. Utilized data Entry on clouds.

Table 3. ANOVA Table for instance utilized data on clouds.

ANOVA Table for Instance Utilized Data

Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 6292 3146 5.46 × 10+00 0.0111 *
Time 12 470,574 39,215 6.80 × 10+01 1.6 × 10−15 ***

Residuals 24 13,841 577
Residual standard error: 24.01 on 24 degrees of freedom. Multiple R-squared: 0.9718, Adjusted R-squared: 0.9553.
F-statistic: 59.06 on 14 and 24 DF, p-value: 4.019 × 10−15. Interpretation: p-value = 0.01 of cloud shows significant
and 1.6 × 10−15 for time shows highly significant results for Instance Util. data Entry. Multiple R2 = 97% show
that prediction accuracy of this model is best fit for instance utilized data entry.

In Figure 7 it is clearly seen that when instance create at 16:20 it utilizes resources on
different clouds. Compared to other clouds, the AWS cloud uses the minimum resources.
Similar behavior shown by clouds for instance Lang UUID (Universally unique identifier
of instance created by Lang library of Java) as shown in Figure 7 and Table 4. It interprets
that p-value = 0.00 of cloud and 2 × 10−16 for time shows highly significant results for
instance Lang UUID. The result shows AWS is suitable clouds for application deployment.

Table 4. ANOVA Table for instance Lang. UUID.

ANOVA Table for Instance Lang. UUID

Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 565 283 5.89 × 10+00 0.00828 **
Time 12 154,506 12,876 2.68 × 10+02 <2 × 10−16 ***

Residuals 24 1151 48
Residual standard error: 6.926 on 24 degrees of freedom. Multiple R-squared: 0.9926, Adjusted R-squared: 0.9883.
F-statistic: 230.9 on 14 and 24 DF, p-value: < 2.2 × 10−16. Interpretation: p-value = 0.00 of Cloud and 2 × 10−16 for
Time shows highly significant results for Instance Lang. UUID. Multiple R2 = 99% show that prediction accuracy
of this model is best fit for Instance Lang. UUID.

The optimization parameters are cost, CPU processing, memory allocation and user
node distance in multi-cloud application deployment.

Electronics 2023, 12, 357 10 of 15Electronics 2023, 12, x FOR PEER REVIEW 11 of 16

Figure 7. Instance Lang. UUID of clouds.

When cost has no weight, the proposed algorithmic solution has a cost value of
16.10, which is greater than the baseline solution. The cost has dropped to 13.347 in the
second instance of applying a weight of 0.2 to cost (equal weight scenarios) that is already
11.3% cheaper than the baseline solution’s 15.078%. Additionally, when the cost has the
full weight of 1.0, the cost value drops to 5.92%, resulting in a 60% cost reduction over the
baseline solution. In the same way, as the cost parameter is reducing, the user-node dis-
tance parameter is reduced by 9.26% in the equal weight condition and by 27.42% in the
full weight situation when compared to the baseline solution. In the Table 5 the cost and
clouds for different virtual machines are projected. Further in Table 6 the distance on
clouds for different virtual machines are presented. Similarly, the Table 7 explains the
Memory on clouds for different virtual machines.

Table 5. ANOVA Table for Cost on clouds for different virtual machines.

ANOVA Table for Cost
 Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 1128 564 83.186 4.22 × 10−05 ***
Virtual Machine 3 168.3 56.1 8.274 0.0149 *

Residuals 6 40.7 6.8
Residual standard error: 2.604 on 6 degrees of freedom. Multiple R-squared: 0.9696, Adjusted R-
squared: 0.9442. F-statistic: 38.24 on 5 and 6 DF, p-value: 0.0001786. Interpretation: p-value = 4.22 ×
10−13 of cloud and 0.01 for Virtual Machines (VM) shows highly significant results for cost. Multiple R2
= 96% show that prediction accuracy of this model is best fit for cost.

Table 6. ANOVA Table for Distance on clouds for different virtual machines.

ANOVA Table for Distance
 Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 779.4 389.7 1.16 × 10+02 4.57 × 10−13 ***
Time 12 145.4 12.1 3.61 × 10+00 0.0036 **

Residuals 24 80.6 3.4
Residual standard error: 1.832 on 24 degrees of freedom. Multiple R-squared: 0.9199, Adjusted R-
squared: 0.8731. F-statistic: 19.68 on 14 and 24 DF, p-value: 8.206 × 10−10. Interpretation: p-value = 4.57

Figure 7. Instance Lang. UUID of clouds.

When cost has no weight, the proposed algorithmic solution has a cost value of 16.10,
which is greater than the baseline solution. The cost has dropped to 13.347 in the second
instance of applying a weight of 0.2 to cost (equal weight scenarios) that is already 11.3%
cheaper than the baseline solution’s 15.078%. Additionally, when the cost has the full
weight of 1.0, the cost value drops to 5.92%, resulting in a 60% cost reduction over the
baseline solution. In the same way, as the cost parameter is reducing, the user-node distance
parameter is reduced by 9.26% in the equal weight condition and by 27.42% in the full
weight situation when compared to the baseline solution. In the Table 5 the cost and clouds
for different virtual machines are projected. Further in Table 6 the distance on clouds for
different virtual machines are presented. Similarly, the Table 7 explains the Memory on
clouds for different virtual machines.

Table 5. ANOVA Table for Cost on clouds for different virtual machines.

ANOVA Table for Cost

Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 1128 564 83.186 4.22 × 10−05 ***
Virtual

Machine 3 168.3 56.1 8.274 0.0149 *

Residuals 6 40.7 6.8
Residual standard error: 2.604 on 6 degrees of freedom. Multiple R-squared: 0.9696, Adjusted R-squared: 0.9442.
F-statistic: 38.24 on 5 and 6 DF, p-value: 0.0001786. Interpretation: p-value = 4.22 × 10−13 of cloud and 0.01 for
Virtual Machines (VM) shows highly significant results for cost. Multiple R2 = 96% show that prediction accuracy
of this model is best fit for cost.

Table 6. ANOVA Table for Distance on clouds for different virtual machines.

ANOVA Table for Distance

Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 779.4 389.7 1.16 × 10+02 4.57 × 10−13 ***
Time 12 145.4 12.1 3.61 × 10+00 0.0036 **

Residuals 24 80.6 3.4
Residual standard error: 1.832 on 24 degrees of freedom. Multiple R-squared: 0.9199, Adjusted R-squared: 0.8731.
F-statistic: 19.68 on 14 and 24 DF, p-value: 8.206 × 10−10. Interpretation: p-value = 4.57 × 10−13 of cloud and
0.00 for Virtual Machines shows highly significant results for distance. Multiple R2 = 92% show that prediction
accuracy of this model is best fit for distance.

Electronics 2023, 12, 357 11 of 15

Table 7. ANOVA Table for Memory on clouds for different virtual machines.

ANOVA Table for Memory

Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 2243.9 1121.9 227.3 2.21 × 10−06 ***
Virtual

Machine 3 290.3 96.8 19.6 0.00168 **

Residuals 6 29.6 4.9
Residual standard error: 2.222 on 6 degrees of freedom. Multiple R-squared: 0.9884, Adjusted R-squared: 0.9788.
F-statistic: 102.7 on 5 and 6 DF, p-value: 9.989 × 10−06. Interpretation: p-value = 2.21 × 10−06 of cloud and 0.00 for
Virtual. Machines shows highly significant results for memory. Multiple R2 = 98% show that prediction accuracy
of this model is best fit for memory.

The Table 8 represents the optimization parameters for a range of weight and their
comparative result shown in Figures 8–10 respectively for cost, memory and user node
distance parameters.

Table 8. Parameter values for various weights [41].

Optimization Parameters
Weights

Zero (0.0) Equal (0.2) Full (1.0)

Cost 16.10 13.34 5.92
CPU 8.43 10.75 11.99

Memory (GB) 30.20 39.20 47.84
User-node

distance(million) 96.75 87.11 69.68

Inter-node distance 14.85 18.41 0.00

Electronics 2023, 12, x FOR PEER REVIEW 12 of 16

× 10−13 of cloud and 0.00 for Virtual Machines shows highly significant results for distance. Multiple
R2 = 92% show that prediction accuracy of this model is best fit for distance.

Table 7. ANOVA Table for Memory on clouds for different virtual machines.

ANOVA Table for memory
 Df Sum Sq Mean Sq F Value Pr (>F)

Cloud 2 2243.9 1121.9 227.3 2.21 × 10−06 ***
Virtual Machine 3 290.3 96.8 19.6 0.00168 **

Residuals 6 29.6 4.9
Residual standard error: 2.222 on 6 degrees of freedom. Multiple R-squared: 0.9884, Adjusted R-
squared: 0.9788. F-statistic: 102.7 on 5 and 6 DF, p-value: 9.989 × 10−06. Interpretation: p-value = 2.21
× 10−06 of cloud and 0.00 for Virtual. Machines shows highly significant results for memory. Multiple
R2 = 98% show that prediction accuracy of this model is best fit for memory.

The Table 8 represents the optimization parameters for a range of weight and their
comparative result shown in Figures 8–10 respectively for cost, memory and user node
distance parameters.

Figure 8. Cost ($/hr) for VMs on clouds. Figure 8. Cost ($/hr) for VMs on clouds.

Electronics 2023, 12, 357 12 of 15Electronics 2023, 12, x FOR PEER REVIEW 13 of 16

Figure 9. Distance (K) for different VMs on clouds.

Figure 10. Memory (GB) for different VMs on clouds.

Figure 9. Distance (K) for different VMs on clouds.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 16

Figure 9. Distance (K) for different VMs on clouds.

Figure 10. Memory (GB) for different VMs on clouds. Figure 10. Memory (GB) for different VMs on clouds.

Electronics 2023, 12, 357 13 of 15

5. Summary, Conclusions and Future Work

The research established that DevOps is an efficient method for cloud application
deployment and resource selection based on the relative importance of each optimised
objective in terms of value parameters such as cost, memory, and CPU capacity, and that
the method can be tailored to specific application requirements. This helps the product
developing pace and more quality based software. The impact of DevOps implementation is
so helpful for a project in digital transformation and compete with other available products.
Shifting towards cloud makes the product fast to market and agile, this assists the DevOps
to perform operations effectively, as it provides the efficient deployment environment.

The optimization parameters are cost, CPU processing, memory allocation and user
node distance in multi-cloud application deployment. The Table 8 represents the optimiza-
tion parameters for a range of weight and their comparative result shown in Figure 9 and
10 respectively for cost, memory and user node distance parameters. It is observed that
it can by using appropriate weights, we can create various deployment plans with a cost
ranging from 5.96 to 16.10, a CPU number between 8.43 and 11.99, a memory size among
30.2 GB and 47.84 GB, a user-node distance (calculated by multiplying by consumers at
POIs) among 69,680,000 and 96,750,000, and lastly, an inter-node distance respectively
69,680,000 and 96,750,000. This indicates that by properly modifying the weights, it may
achieve the desired trade-off between different parameters of the optimization problem

When cost has no weight, the proposed algorithmic solution has a cost value of 16.10,
which is greater than the baseline solution. The cost has dropped to 13.347 in the second
instance of applying a weight of 0.2 to cost (equal weight scenarios) that is already 11.3%
cheaper than the baseline solution’s 15.078%. Additionally, when the cost has the full
weight of 1.0, the cost value drops to 5.92%, resulting in a 60% cost reduction over the
baseline solution. In the same way, as the cost parameter is reducing, the user-node distance
parameter is reduced by 9.26% in the equal weight condition and by 27.42% in the full
weight situation when compared to the baseline solution

This paper is a baseline for organizations to develop a software and deploy it on cloud
using DevOps techniques. The proposed algorithm will help companies in making decision
for selecting best cloud for their software and application deployment using DevOps. They
just use the algorithm and give parameter values and they will get the best suitable cloud
for their application deployment.

In future, we will work on culture and environment effect on application deployment using
DevOps and also will work on DevOps as a cloud provider for application implementation.

Author Contributions: Methodology, M.A.; Investigation, S.R.; Resources, M.A.A. and A.H.G.; Data
curation, A.M.B.; Writing—original draft, A.K.; Writing—review & editing, M.T.R. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge the financial support from Prince Sultan University.

Institutional Review Board Statement: Novel Contribution.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Data will be available on demand.

Acknowledgments: The authors would like to thank the participants who helped us in this research
and shared their time and experience.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leite, L.; Rocha, C.; Kon, F.; Milojicic, D.; Meirelles, P. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv. 2019,

52, 1–35. [CrossRef]
2. Jambunathan, B.; Kalpana, Y. Design of devops solution for managing multi cloud distributed environment. Int. J. Eng. Technol.

2018, 7, 637–641. [CrossRef]

http://doi.org/10.1145/3359981
http://doi.org/10.14419/ijet.v7i2.33.14854

Electronics 2023, 12, 357 14 of 15

3. Rafi, S.; Yu, W.; Akbar, M.A. RMDevOps: A road map for improvement in DevOps activities in context of software organi-zations.
In Proceedings of the Evaluation and Assessment in Software Engineering, Trondheim, Norway, 15–17 April 2020; pp. 413–418.

4. Zarour, M.; Alhammad, N.; Alenezi, M.; Alsarayrah, K. Devops Process Model Adoption in Saudi Arabia: An Empirical Study.
Jordanian J. Comput. Inf. Technol. 2020, 6, 3. [CrossRef]

5. Akbar, M.A.; Rafi, S.; Alsanad, A.A.; Qadri, S.F.; Alsanad, A.; Alothaim, A. Toward Successful DevOps: A Decision-Making
Framework. IEEE Access 2022, 10, 51343–51362. [CrossRef]

6. Ellen, L.; Riungu-Kalliosaari, L.; Mäkinen, S.; Lwakatare, L.E.; Tiihonen, J.; Männistö, T. DevOps Adoption Benefits and Challenges in
Practice: A Case Study; Springer: Berlin/Heidelberg, Germany, 2016; pp. 590–597. [CrossRef]

7. Cois, C.A.; Yankel, J.; Connell, A. Modern DevOps: Optimizing software development through effective system interac-
tions. In Proceedings of the 2014 IEEE International Professional Communication conference (IPCC), Pittsburgh, PA, USA,
13–15 October 2014.

8. Soni, M. End to End Automation on Cloud with Build Pipeline: The Case for DevOps in Insurance Industry, Continuous
In-tegration, Continuous Testing, and Continuous Delivery. In Proceedings of the 2015 IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM), Bangalore, India, 25–27 November 2015; pp. 85–89. [CrossRef]

9. Barna, C.; Khazaei, H.; Fokaefs, M.; Litoiu, M. Delivering elastic containerized cloud applications to enable DevOps. In
Proceedings of the 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), Buenos Aires, Argentina, 22–23 May 2017; pp. 65–75. [CrossRef]

10. Guerriero, M.; Ciavotta, M.; Gibilisco, G.P.; Ardagna, D. SPACE4 Cloud: A DevOps Environment for Multi-cloud Applications.
Short-Pap. In Proceedings of the 1st International Workshop on Quality-Aware DevOps, Bergamo, Italy, 28 May 2015; pp. 29–30.

11. Kang, H.; Yoonhee, J.K.; Rahm, J. A SLA Driven VM Auto-Scaling Method in Hybrid Cloud Environment. In Proceedings of
the 2013 15th Asia-Pacific Network Operations and Management Symposium (APNOMS), Hiroshima, Japan, 25–27 September
2013; pp. 25–30.

12. Li, Y.; Xia, Y. Auto-scaling web applications in hybrid cloud based on docker. In Proceedings of the 2016 5th International
Conference on Computer Science and Network Technology (ICCSNT), Changchun, China, 10–11 December 2016; pp. 75–79.
[CrossRef]

13. Mor´n, D.; Vaquero, L.M.; Gal´n, F.; Moran, D.; Galán, F. Elastically Ruling the Cloud: Specifying Application’s Behavior in
Federated Clouds. In Proceedings of the IEEE 4th International Conference on Cloud Computing, Washington, DC, USA, 4–9 July
2011; pp. 89–96. [CrossRef]

14. Ghari, S. Devops for digital business: Optimizing the performance and economic efficiency of software products for digital
business. In Proceedings of the 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Pittsburgh,
PA, USA, 18–23 May 2022; pp. 53–57.

15. Tsilionis, K.; Sassenus, S.; Wautelet, Y. Determining the Benefits and Drawbacks of Agile (Scrum) and DevOps in Addressing
the Development Challenges of Cloud Applications. In Proceedings of the International Research & Innovation Forum, Athens,
Greece, 15–17 April 2021; pp. 109–123.

16. Akbar, M.A.; Smolander, K.; Mahmood, S.; Alsanad, A. Toward successful DevSecOps in software development organizations: A
decision-making framework. Inf. Softw. Technol. 2022, 147, 106894. [CrossRef]

17. Jaatun, M.G.; Cruzes, D.S.; Luna, J. DevOps for Better Software Security in the Cloud Invited Paper. In Proceedings of the 12th
International Conference on Availability, Reliability and Security, Reggio Calabria, Italy, 28 August–1 September 2017; p. 69.
[CrossRef]

18. Almeida, F.; Simões, J.; Lopes, S. Exploring the Benefits of Combining DevOps and Agile. Futur. Internet 2022, 14, 63. [CrossRef]
19. Arulkumar, V.; Lathamanju, R. Start to Finish Automation Achieve on Cloud with Build Channel: By DevOps Method. Procedia

Comput. Sci. 2019, 165, 399–405. [CrossRef]
20. Ferry, N.; Chauvel, F.; Song, H.; Rossini, A.; Lushpenko, M.; Solberg, A. CloudMF. ACM Trans. Internet Technol. 2018, 18, 1–24.

[CrossRef]
21. Wettinger, J.; Breitenbücher, U.; Kopp, O.; Leymann, F. Streamlining DevOps automation for Cloud applications using TOSCA as

standardized metamodel. Futur. Gener. Comput. Syst. 2016, 56, 317–332. [CrossRef]
22. Shin, Y.; Williams, L. Can traditional fault prediction models be used for vulnerability prediction? Empir. Softw. Eng. 2011,

18, 25–59. [CrossRef]
23. Blohowiak, A.; Basiri, A.; Hochstein, L.; Rosenthal, C. A Platform for Automating Chaos Experiments. In Proceedings of the

IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Ottawa, ON, Canada, 23–27 October
2016; pp. 5–8. [CrossRef]

24. Akbar, M.A.; Mahmood, S.; Shafiq, M.; Alsanad, A.; Alsanad, A.A.A.; Gumaei, A. Identification and prioritization of DevOps
success factors using fuzzy-AHP approach. Soft Comput. 2020. [CrossRef]

25. Rafi, S.; Akbar, M.A.; Manzoor, A. DevOps Business Model: Work from Home Environment. In Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering, Gothenburg, Sweden, 13 June 2022; pp. 408–412.

26. Venkateswaran, S.; Santonu, S. Architectural partitioning and deployment modeling on hybrid clouds. Softw. Pract. Exp. 2018,
48, 345–365. [CrossRef]

http://doi.org/10.5455/jjcit.71-1580581874
http://doi.org/10.1109/ACCESS.2022.3174094
http://doi.org/10.1007/978-3-319-49094-6_44
http://doi.org/10.1109/ccem.2015.29
http://doi.org/10.1109/seams.2017.12
http://doi.org/10.1109/iccsnt.2016.8070122
http://doi.org/10.1109/cloud.2011.53
http://doi.org/10.1016/j.infsof.2022.106894
http://doi.org/10.1145/3098954.3103172
http://doi.org/10.3390/fi14020063
http://doi.org/10.1016/j.procs.2020.01.032
http://doi.org/10.1145/3125621
http://doi.org/10.1016/j.future.2015.07.017
http://doi.org/10.1007/s10664-011-9190-8
http://doi.org/10.1109/issrew.2016.52
http://doi.org/10.1007/s00500-020-05150-w
http://doi.org/10.1002/spe.2496

Electronics 2023, 12, 357 15 of 15

27. Singh, V.; Peddoju, S.K. Container-based microservice architecture for cloud applications. In Proceedings of the 2017 Interna-
tional Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017; pp. 847–852.
[CrossRef]

28. Ghimire, R. Deploying Software in the Cloud with CI / CD Pipelines. 2020. Available online: https://www.theseus.fi/bitstream/
handle/10024/345618/Thesis_Ramesh_Ghimire_1.pdf?sequence=2 (accessed on 27 October 2022).

29. AWS- Amazon Web Services, Amazon CloudWatch Developer Guide API Version 2010-08-01 Amazon CloudWatch: Developer
Guide. 2010. Available online: https://s3.cn-north-1.amazonaws.com.cn/aws-dam-prod/china/pdf/acw-dg.pdf (accessed on
27 October 2022).

30. Knott, M. Version Control with Git; O’Reilly Media: Sebastopol, CA, USA, 2014.
31. Sullivan, B.O. Mercurial: The Definitive Guide Compiled from c3863298abc7. Available online: http://btn1x4.inf.uni-bayreuth.de/

publications/dotor_buchmann/SCM/Mercurial/O%27Sullivan2009%20-%20Mercurial%20The%20defintive%20guide.pdf (ac-
cessed on 27 October 2022).

32. Jakkula, V. Tutorial on Support Vector Machine (SVM). 2011. Available online: http://www.ccs.neu.edu/course/cs5100f11/
resources/jakkula.pdf (accessed on 27 October 2022).

33. Uphill, T.; Arundel, J.; Khare, N.; Saito, H.; Lee, H.C.C.; Hsu, K.J.C. DevOps: Puppet, Docker, and Kubernetes; Packt Publishing Ltd.:
Birmingham, UK, 2017.

34. Jaramillo, D.; Nguyen, D.V.; Smart, R. Leveraging microservices architecture by using Docker technology. In Proceedings of the
SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016. [CrossRef]

35. Bowes, J. Jenkins Continuous Build System Executive summary. 2012. Available online: https://docplayer.net/5686123-Jenkins-
continuous-build-system-jesse-bowes-csci-5828-spring-2012.html (accessed on 27 October 2022).

36. Li, Z.; Zhang, Y.; Liu, Y. Towards a Full-Stack DevOps Environment (Platform-as-a-Service) for Cloud-Hosted Applications.
Tsinghua Sci. Technol. 2017, 22, 1–9. [CrossRef]

37. Shiwani, S. Performance Analysis of IPv4 v / s IPv6 in Virtual Environment Using UBUNTU. In Proceedings of the Interna-tional
Conference on Computer Communication and Networks, Valencia, Spain, 9–13 May 2011; pp. 72–76.

38. Portnoy, J. Systems Monitoring with Prometheus and Grafana. Available online: https://flightaware.engineering/systems-
monitoring-with-prometheus-grafana/ (accessed on 27 October 2022).

39. Beaver, D.; Hutchison, S. Elasticsearch, Logstash, and Kibana (ELK). 2015. Available online: https://resources.sei.cmu.edu/asset_
files/presentation/2015_017_001_431205.pdf (accessed on 27 October 2022).

40. Padmanaban, S.; Khalili, M.; Nasab, M.A.; Zand, M.; Shamim, A.G.; Khan, B. Determination of Power Trans-formers Health Index
Using Parameters Affecting the Transformer’s Life. IETE J. Res. 2022. [CrossRef]

41. Aryal, R.G.; Altmann, J. Dynamic application deployment in federations of clouds and edge resources using a multiobjective
optimization AI algorithm. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing
(FMEC), Barcelona, Spain, 23–26 April 2018; pp. 147–154. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ccaa.2017.8229914
https://www.theseus.fi/bitstream/handle/10024/345618/Thesis_Ramesh_Ghimire_1.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/345618/Thesis_Ramesh_Ghimire_1.pdf?sequence=2
https://s3.cn-north-1.amazonaws.com.cn/aws-dam-prod/china/pdf/acw-dg.pdf
http://btn1x4.inf.uni-bayreuth.de/publications/dotor_buchmann/SCM/Mercurial/O%27Sullivan2009%20-%20Mercurial%20The%20defintive%20guide.pdf
http://btn1x4.inf.uni-bayreuth.de/publications/dotor_buchmann/SCM/Mercurial/O%27Sullivan2009%20-%20Mercurial%20The%20defintive%20guide.pdf
http://www.ccs.neu.edu/course/cs5100f11/resources/jakkula.pdf
http://www.ccs.neu.edu/course/cs5100f11/resources/jakkula.pdf
http://doi.org/10.1109/secon.2016.7506647
https://docplayer.net/5686123-Jenkins-continuous-build-system-jesse-bowes-csci-5828-spring-2012.html
https://docplayer.net/5686123-Jenkins-continuous-build-system-jesse-bowes-csci-5828-spring-2012.html
http://doi.org/10.1109/TST.2017.7830891
https://flightaware.engineering/systems-monitoring-with-prometheus-grafana/
https://flightaware.engineering/systems-monitoring-with-prometheus-grafana/
https://resources.sei.cmu.edu/asset_files/presentation/2015_017_001_431205.pdf
https://resources.sei.cmu.edu/asset_files/presentation/2015_017_001_431205.pdf
http://doi.org/10.1080/03772063.2022.2048714
http://doi.org/10.1109/fmec.2018.8364057

	Introduction
	Background and Related Work
	Background
	Available Tools and Related Work
	Version Control with Git
	Create Container Using Docker
	Use Jenkins for Continuous Integration
	Create Cloud Using AWS
	Continuous Monitoring

	Materials and Methods
	Results
	Summary, Conclusions and Future Work
	References

