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Abstract: Test suite code coverage is often used as an indicator for test suite capability in detecting
faults. However, earlier studies that have explored the correlation between code coverage and test
suite effectiveness have not addressed this correlation evolutionally. Moreover, some of these works
have only addressed small sized systems, or systems from the same domain, which makes the result
generalization process unclear for other domain systems. Software refactoring promotes a positive
consequence in terms of software maintainability and understandability. It aims to enhance the
software quality by modifying the internal structure of systems without affecting their external
behavior. However, identifying the refactoring needs and which level should be executed is still a big
challenge to software developers. In this paper, the authors explore the effectiveness of employing a
support vector machine along with two optimization algorithms to predict software refactoring at
the class level. In particular, the SVM was trained in genetic and whale algorithms. A well-known
dataset belonging to open-source software systems (i.e., ANTLR4, JUnit, MapDB, and McMMO)
was used in this study. All experiments achieved a promising accuracy rate range of between
84% for the SVM–Junit system and 93% for McMMO − GA + Whale + SVM. It was clear that
added value was gained from merging the SVM with two optimization algorithms. All experiments
achieved a promising F-measure range between the SVM–Antlr4 system’s result of 86% and that of
the McMMO − GA + Whale + SVM system at 96%. Moreover, the results of the proposed approach
were compared with the results from four well known ML algorithms (NB-Naïve, IBK-Instance,
RT-Random Tree, and RF-Random Forest). The results from the proposed approach outperformed
the prediction performances of the studied MLs.

Keywords: software engineering; optimization algorithms; SVM; software refactoring

1. Introduction

In any business sector, the quality of a particular product or a service matters, and
this quality is often dependent on the process that is followed to build that product or
service [1]. Today’s world massively depends on software technology, and high quality
in these software systems has been greatly in demand for the past few decades. The main
expectancy of high-quality software is in its reliability and ecosystem. This is achieved by
reducing the bugs or failures in the software algorithms. These bugs tend to slow down the
software’s response and user experience, which can harm its performance. These system
errors cause faults, and subsequently, the faults cause system failures [1–5]. Altering a
software system in a way that does not affect its external response, but improves its internal
structure, is known as refactoring [6]. It also improves the external response by adding
qualities such as improved user experience and interfaces.

During a software application’s life cycle, the software is continuously changed to
adapt to new features or to modify existing ones to cope with new requirements. In order
to continue to satisfy stakeholders’ needs, their requirements oblige the developer to reflect
their intended needs into the software. It is known that software maintenance is the most
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expensive phase in the software development lifecycle [7]. These maintenance activities
usually happen incrementally, and can be carried out to add or modify functionality, or
to restructure the design for a better user experience. If the system does not go through
several design correction activities, its quality will degrade [8].

Once software developers receive new demands or requests, they modify the software
to accommodate these requirements (software refactoring) [9]. Software refactoring modi-
fies the internal structure of the software without altering its external functionality [8,9].
Moreover, software refactoring is employed to enhance the understandability, reduce the
complexity, and increase the maintainability of the targeted software [10,11].

Software Refactoring might change the software at three levels, from the lower to
higher levels of variables, functions, and classes. These changes introduce a big technical
challenge to the software developers, especially when they need to identify both the level
and all the code pieces that need refactoring. The primary aim of refactoring is to make
the code more maintainable without changing its semantics [12]. Software refactoring
is a highly challenging task, particularly in identifying which parts of the software have
to be refactored and which methods are to be used. These challenges arise due to the
significant functionality limitations that software repositories contain, and the type of
data used in them [1]. Hence, much research has raised the need to build refactoring
prediction/recommendation systems to assist in evolution tasks [6,11,13–16].

Although the refactoring task is generally dependent on the software developers’ skills
and insights, this process may still be supported by refactoring prediction/recommendation
systems. These prediction systems facilitate the process of detecting the classes or methods
that need refactoring.

Several techniques to predict refactoring have been studied, for example, code smells [17],
pattern mining [18], invariant mining [19], and search-based techniques [20]. Machine learning
algorithms reveal encouraging results when utilized in various fields of software engineering,
such as defect prediction [2,3,21–23].

To the best of our knowledge, the work presented in this article introduces a new
research contribution. The research work in this paper presents a class-level refactoring
prediction from four open-source Java-based systems, i.e., ANTLR4, JUnit, MapDB, and
McMMO, using a support vector machine (SVM) and two optimization algorithms: genetic
algorithms (GA) and whale algorithms (WA). This paper uses the studied algorithms to
predict the refactoring needs at the class level when stand-alone and integrated algorithms
are applied. The main problem that software practitioners encounter is recognizing which
code segment has to be refactored. Therefore, this paper focuses on the use of SVM and
optimization methods in this regard. By repeating the experiments until we reach the
best iteration, we can develop an understanding of which technique’s response is better,
leading to optimized results in terms of software quality. Thus, by conducting these
experiments, suggestions and conclusions can be made regarding the aforementioned
refactoring methods and algorithms.

2. Related Work

In order to make predictions about the defects in particular software, researchers
and developers also apply a machine learning approach to a software system in real-
time. Some well-known examples of these machine learning approaches involve tele-
control/telepresence, robotics, and mission planning systems. Many studies have been
conducted in the field of software fault prediction, and the methods used by researchers
differ between optimization, machine learning, and classification techniques [3]. There are
several procedures employed to examine the defects present in software, but until now
there has been no report of a technique that can display highly accurate results.

As discussed, various refactoring implication types exist. The main process of refac-
toring involves the modification of classes, methods, and variables. Upon doing that,
developers must also address an important aspect—identifying all the code elements or
code segments in the large complex system of the software that require refactoring.
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In this respect, support vector machines (SVMs) have high popularity among software
developers and testers. An SVM classifies data into predefined classes by computing a
hyper-plane in a high-dimensional space [24–26]. In other words, it is a machine learning
technique that can be used for classification. The advantage of using this method for feature
selection is that it tends to reduce the computation time, and it also improves the prediction
performance. Since it improves prediction accuracy and helps to enable the observation of
different values and crucial factors for evaluating performance, many researchers use SVM
for feature selection in their work.

Refactoring has been studied extensively within the literature. Fowler initiated the
effort by coming up with the first catalog of 72 refactoring types, with an accompanying
guide [9]. Simon et al. [27] proposed an approach to generate visualizations that help
developers to identify bad smells.

Several different studies that examine the prediction of faults in software using object-
oriented metrics have been conducted. The results of these studies show that object-oriented
metrics are able to produce significantly enhanced outcomes compared to static code
metrics. This is because object-oriented metrics represent different structural characteristics,
such as coupling, cohesion, inheritance, encapsulation, complexity, and size [3,11,17,27].

An early survey [8] was conducted to shed light on refactoring which discussed
refactoring activities, techniques, and tools. The authors discussed their beliefs about how
refactoring can improve software quality in the long run. Most existing research studies are
based on rule-based, machine learning, or search-based approaches. A systematic literature
review (SLR) in [28] discusses how researchers are increasingly becoming interested in
automatic refactoring techniques. Their results suggest that source code approaches are far
more studied than model-based ones. The results also show that search-based approaches
are more popular, and that recently more machine learning approaches have been explored
by researchers to help experts to discover refactoring needs.

Mariani and Vergilio [29] conducted an SLR of search-based refactoring approaches.
They observed that evolutionary algorithms, specifically genetic algorithms, were the most
used algorithms. Mohan and Greer [30] investigated search-based refactoring in more
depth, covering tools, metrics, and evolution, since their focus was software maintenance.
They also found that the evolutionary algorithms were the most used.

Moreover, Shepperd and Kadoda [31] used simulation methods to differentiate be-
tween software predictions with the help of stepwise regression rule induction (RI), case-
based reasoning (CBR), and artificial neural networks (ANN). They compared these predic-
tion models to the results in actual software in terms of accuracy, explanatory value, and
configurability, and they found that CBR and RI gave them an advantage over ANN, while
CBR was favored by all.

Azeem et al. [32] conducted a systematic literature review to summarize the research
on machine learning (ML) algorithms for code smelling predictions. Their review included
15 research studies that involved code smell and prediction models. According to the
results of their study, decision trees and SVM are the most widely used ML algorithms for
code smell detection, and furthermore, JRip and Random are the most effective algorithms
in terms of performance.

In addition to this, Liu et al. [33] describe a tool that uses conceptual relationship, im-
plementation similarity, structural correspondence, and inheritance hierarchies to identify
potential refactoring opportunities in the source code of open-source software systems.

Liu et al. [33] also showed that machine learning models that could predict a high level
of defect classes could be built using static measures and defect data, which was collected
at a high-class level.

Tsantalis and Chatzigeorgiou [34] reported a way to recognize refactoring suggestions
with the help of polymorphism. Their main focus was on the detection and elimination of
state-checking problems in programs that implement Java and deploy as eclipse add-ons
or plug-ins. In 2007, Ng and Levitin proposed correcting faults, in addition to making
predictions of faulty parts in software. In order to achieve this, they applied a genetic
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algorithm and a number of neural networks iteratively. The genetic algorithm in this project
was used to increase the performance of the prediction model.

Erturk and Sezer [5] analyzed the evolution of an object-oriented source code at a
class level. The refactoring events, which depended on a vector space model, were the
main focus here. A list of class refactoring operations was created by the application of this
proposed approach to an open-source domain.

Another study by Caldeira et al. [1] investigated the effects of aspects such as dataset
size, metrics sets, These aspects had not been researched prior to this study. Random
forest algorithms and artificial immune systems were used as machine learning methods,
and a dataset was collected from the PROMISE repository. The algorithm selected was
determined to be much more important than the metrics selected, as per this study [1].

3. Methodology

In this section, the authors present the technique developed for predicting software
refactoring using a support vector machine classifier and two optimization algorithms. The
developed approach is composed of four main phases. In the first phase, a pre-processing
procedure is conducted on collected datasets. In the second phase, the GA, WA, and SVM
classifiers are applied to the processed datasets to predict the refactoring opportunities. In
the third phase, the results are evaluated by the Wilcoxon signed-rank test [35]. In the last
phase, the results are compared, to determine the best overall approach.

Figure 1 depicts the main phases of the proposed technique.
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3.1. Datasets and Pre-Processing

In this work, a well-known dataset was used. The dataset includes empirical refac-
toring occurrences of four open-source software systems (JUnit, McMMO, MapDB, and
ANTLR4) [36]. The dataset is available at the PROMISE Repository, making the experiment
easily reproducible. The studied attributes of the datasets are shown in Table 1.
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Table 1. Datasets Attributes.

Dataset No. of
Attributes Instances No. of

Refactoring Percentage (%)

Antlr4 134 436 23 5.2

Junit 134 657 9 1.3

MapDB 134 439 4 0.9

McMMO 134 301 3 0.99

All unnecessary attributes, such as the Long-Name, Parent, path, and Component
were deleted during data pre-processing. Moreover, the class labels were replaced with 0
and 1, where false became 0 and true became 1.

3.2. Classifiers and Optimization Algorithms

An optimization algorithm is a process that is executed iteratively, by making compar-
isons of different solutions until an optimum result is found. A classifier is an algorithm
that prints the input data to a specific category. The feature of a classifier model is that it
can individually measure the properties of the software under inspection [37].

A well-known classifier and two optimization algorithms were used in this study.
Moreover, several experiments were performed to discover the best integration of these
algorithms in terms of refactoring prediction accuracy.

3.2.1. GA with SVM

Genetic algorithm is either a heuristic optimization algorithm, or it is one of the search-
based techniques. GA is commonly used in optimization, classification, and regression
problems [38]. It provides a method of solving both constrained and unconstrained op-
timization problems based on a natural selection process. Genetic algorithms are one of
the optimization algorithm types that are widely used in software fault prediction. In this
stage, integration of the genetic algorithm with an SVM classifier was applied to the four
datasets, and this iteration was repeated 51 times.

3.2.2. Whale Algorithm with SVM

Whale algorithm’s structure is based on the way of life of whales. It employs the
solution’s population to discover the optimal solution. The main idea behind this algorithm
is different from the others, as it employs two opposite solutions. These two solutions are
the best and the worst solutions, conceived in order to ascertain the optimal situation [39].
The whale algorithm is a new optimization algorithm, that is also used in our work. In this
stage, we integrated the whale algorithm with an SVM classifier and applied it to the four
datasets. This iteration was also repeated 51 times.

3.2.3. GA and Whale Algorithms with SVM

In this stage, the three algorithms were integrated: we first applied the GA to the
dataset with 17 iterations, then we applied the whale algorithm with 17 iterations, and
finally the SVM algorithm was applied for another 17 iterations; resulting in a total of
51 iterations.

4. Results and Discussion

The proposed approach was empirically assessed using the four studied systems.
The experiments were conducted using MATLAB. The genetics algorithm was merged
with the support vector machine classifier and applied to the four datasets, where the
iteration setting was fixed at 51. The same experiment was repeated for the other five
approaches. Tables 2–4 summarize the prediction performance results for the dataset in
terms of accuracy, STD, and F-measures, respectively. Comparisons of the four developed
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approaches were conducted. In this study, the effectiveness of merging the optimization
algorithms and machine learning (SVM) classifiers was evaluated in terms of refactoring
prediction performance. Three optimization algorithms and four prediction data sets
were studied in this work. To evaluate the developed approach, we used the Wilcoxon
signed-rank test to calculate the p-value and to check for any significant differences.

Table 2. Prediction Results—Accuracy.

Dataset
Accuracy

SVM GA + SVM Whale + SVM GA + Whale + SVM

Antlr4 0.881 0.904 0.902 0.905
Junit 0.845 0.851 0.845 0.846

MapDB 0.903 0.918 0.923 0.918
McMMO 0.900 0.937 0.934 0.937

Table 3. Prediction Results—STD.

Dataset
STD

GA + SVM Whale + SVM GA + Whale + SVM

Antlr4 5.236 6.039 6.668
Junit 1.785 1.814 1.990

MapDB 3.811 3.725 4.275
McMMO 2.846 1.465 1.275

Table 4. Prediction Results—F-measure.

Dataset
F-Measure

SVM GA + SVM Whale + SVM GA + Whale + SVM

Antlr4 0.861 0.949 0.948 0.949
Junit 0.916 0.919 0.915 0.916

MapDB 0.940 0.958 0.960 0.957
McMMO 0.964 0.967 0.966 0.967

In this work, the prediction effectiveness is mainly measured through its accuracy.
After conducting several experiments, there were differences between the addressed ap-
proaches. As shown in Table 2, The experiments achieved a high accuracy rate range of
between 0.845 for the SVM-Junit system and 0.937 for McMMO − GA + Whale + SVM. It is
clear that added value was gained by merging the SVM with two optimization algorithms.

Table 3 summarizes the comparison of the STD results obtained from all proposed
approaches. The lowest ST was achieved by the GA + Whale + SVM − McMMO system,
and was 1.2755. A low STD means that the data are close to the expected value, while the
highest STD means that the data are the most widely spread from the expected results.
The highest STD was achieved by the GA + Whale + SVM − Antlr4 system and was 6.668.
Despite this result, the integration of the SVM with the optimization algorithms improved
the performance of the refactoring prediction.

Table 4 shows the comparison of the experiments in terms of the F-measure. The
experiments achieved a high F-measure range of between 0.861 for the SVM-Antlr4 system
and 0.967 for McMMO − GA + Whale + SVM. It is clear that added value was gained from
merging the SVM with two optimization algorithms.

Although the empirical refactoring occurrences of the four open-source software
system (JUnit, McMMO, MapDB, and ANTLR4) data sets are widely used for prediction
purposes, the high rates of accuracy with only slightly tangible differences between the
studied algorithms leads the authors to believe that bigger datasets from different domains
should be used for generalizing the findings. Such good prediction rates provide promising
results, but further investigation using other datasets will be performed in the future.
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Four more experimental comparisons were conducted using four well-known and
widely used ML algorithms, i.e., NB-Naïve, IBK-Instance, Random Tree, and Random
Forest. Tables 5–7 show the prediction performance in terms of the accuracy, F-measure,
and STD of the studied classifiers.

Table 5. ML Prediction Results—Accuracy.

Dataset
Accuracy

NB-Naive IBK-Instance RT-Random Tree RF-Random Forest

Antlr4 0.859 0.825 0.863 0.879
Junit 0.857 0.875 0.876 0.899

MapDB 0.863 0.867 0.875 0.882
McMMO 0.891 0.921 0.916 0.929

Table 6. ML Prediction Results—F-measure.

Dataset
F-Measure

NB-Naive IBK-Instance RT-Random Tree RF-Random Forest

Antlr4 0.774 0.793 0.794 0.803
Junit 0.875 0.869 0.860 0.859

MapDB 0.859 0.841 0.805 0.857
McMMO 0.853 0.862 0.869 0.876

Table 7. ML Prediction Results—STD.

Dataset
STD

NB-Naive IBK-Instance RT-Random Tree RF-Random Forest

Antlr4 6.777 3.378 3.191 5.179
Junit 4.189 3.645 3.863 3.499

MapDB 5.283 5.326 3.779 4.096
McMMO 2.875 2.979 4.746 2.089

As shown in Table 5, the lowest prediction accuracy achieved was 0.825 for the IBK-
Instance-Junit system, and the highest prediction accuracy was 0.929 for McMMO-RF. It is
clear that the lowest accuracy achieved by the proposed approach (0.845) was higher than
the lowest accuracy achieved by the studied ML. Moreoevr, the highest accuracy achieved
by the proposed approach (0.937) was higher than the highest accuracy achieved by the
studied ML

Table 6 shows that the random forest method achieved the best results in comparison
to the other classifiers for all the datasets in terms of the F-measure. Still, the proposed
approach achieved better results in terms of the F-measure. The lowest F-measure was
0.774, while the proposed approach’s lowest F-measure was 0.861. On the other hand, the
highest achieved F-measure was 0.876, while the proposed approach’s highest F-measure
was 0.967.

Table 7 shows that the random forest approach achieved the best results in comparison
to the other classifiers for all the datasets in terms of STD, while the highest STD was
achieved by NB-Naïve and was 6.777.

Threat to Validity

In this study, two optimization algorithms were ultilized by incorporating them into
the SVM to improve the proposed fault prediction approach. The summary of the threat
to validity is highlighted in regards to the studied software systems and their datasets.
In order to reduce the threat in this regard, the authors used a well-known dataset. The
dataset includes empirical refactoring occurrences of four open-source software systems
(JUnit, McMMO, MapDB, and ANTLR4) [36].



Processes 2022, 10, 1611 8 of 10

As external threat to validity, the authors have not addressed using the most complex
open software systems for evaluating the proposed approach. Moreover, the studied and
implemented algorithms are insufficient, but the experiment gives a promising result in
terms of refactoring predictions. Therefore, the authors intend to use other optimization
algorithms and to incorporate them with the SVM or other classification algorithms in
future work.

5. Conclusions and Future Work

In this paper, the authors address the refactoring prediction at the class level by
employing SVM with two optimization algorithms. Genetic and whale algorithms were
used in this work, and the performance was evaluated using four open-source software
product datasets. To the best of our knowledge, machine learning algorithms are most
effective in predicting software refactoring, and developers can make faster and more
educated decisions regarding what needs to be refactored. However, the optimization
algorithms employed in this study were used for the first time for refactoring predictions
at the class level. Several experiments were conducted, and promising performance results
were observed. All experiments achieved a promising accuracy rate range between 84% for
the SVM-Junit system and 93% for McMMO − GA + Whale + SVM. Merging the SVM with
the two optimization algorithms played an important role in enhancing the accuracy of the
F-measure. Moreover, four well-known ML algorithms were also used, and the prediction
results were compared; the proposed approach achieved better performance in terms of
accuracy and F-measure.

In future work, authors will attempt to predict the refactoring type at the class or
method level by using the studied algorithms on another dataset. This will give us further
information about the accuracy of these refactoring prediction systems, and may also clarify
which among these four systems responds the best.
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