
sensors

Article

The Use of Ensemble Models for Multiple Class and
Binary Class Classification for Improving Intrusion
Detection Systems

Celestine Iwendi 1 , Suleman Khan 2, Joseph Henry Anajemba 3,* , Mohit Mittal 4,* ,
Mamdouh Alenezi 5 and Mamoun Alazab 6

1 Department of Electronics, BCC of Central South University of Forestry and Tech, Changsha 410004, China;
celestine.iwendi@ieee.org

2 Department of Computer Science, Air University, Islamabad 44000, Pakistan;
130824sulemankhan@gmail.com

3 Department of Communication Engineering, Hohai University, Changzhou 211100, China
4 Department of Information Science and Engineering, Kyoto Sangyo University, Kyoto 603-8555, Japan
5 College of Computer and Information Sciences, Prince Sultan University, Riyadh 12435, Saudi Arabia;

malenezi@psu.edu.sa
6 College of Engineering, IT and Environment, Charles Darwin University, Casuarina NT 0800, Australia;

alazab.m@ieee.org
* Correspondence: herinopallazo@ieee.org (J.H.A.); mohitmittal@ieee.org (M.M.)

Received: 7 February 2020; Accepted: 27 April 2020; Published: 30 April 2020
����������
�������

Abstract: The pursuit to spot abnormal behaviors in and out of a network system is what led
to a system known as intrusion detection systems for soft computing besides many researchers
have applied machine learning around this area. Obviously, a single classifier alone in the
classifications seems impossible to control network intruders. This limitation is what led us to perform
dimensionality reduction by means of correlation-based feature selection approach (CFS approach)
in addition to a refined ensemble model. The paper aims to improve the Intrusion Detection System
(IDS) by proposing a CFS + Ensemble Classifiers (Bagging and Adaboost) which has high accuracy,
high packet detection rate, and low false alarm rate. Machine Learning Ensemble Models with base
classifiers (J48, Random Forest, and Reptree) were built. Binary classification, as well as Multiclass
classification for KDD99 and NSLKDD datasets, was done while all the attacks were named as an
anomaly and normal traffic. Class labels consisted of five major attacks, namely Denial of Service
(DoS), Probe, User-to-Root (U2R), Root to Local attacks (R2L), and Normal class attacks. Results from
the experiment showed that our proposed model produces 0 false alarm rate (FAR) and 99.90%
detection rate (DR) for the KDD99 dataset, and 0.5% FAR and 98.60% DR for NSLKDD dataset when
working with 6 and 13 selected features.

Keywords: intrusion detection system; ensemble methods; feature selection; machine learning; false
positive rate; artificial intelligence

1. Introduction

The increase in how people view and utilize the Internet has become a blessing and also a liability
to our everyday online activities. The quest for urgent data transmission on the internet and the need
for commensurable security, authentication, confidentiality of web applications, and cloud interface
computing have given rise to all kinds of advanced security attacks. The day to day internet usage is
becoming complicated due to the threat of the internet in data security, industrial attack, and sponsored
attacks to social and engineering facilities [1,2]. The complex natures of the attacks demand response

Sensors 2020, 20, 2559; doi:10.3390/s20092559 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4350-3911
https://orcid.org/0000-0002-1199-7446
https://orcid.org/0000-0003-0878-4615
https://orcid.org/0000-0001-6852-1206
https://orcid.org/0000-0002-1928-3704
http://dx.doi.org/10.3390/s20092559
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/9/2559?type=check_update&version=2

Sensors 2020, 20, 2559 2 of 37

with security systems that are efficient, automated, having faster responses, accuracy, and efficient
security preventing systems in place.

Network intrusion detection systems (NIDS) have been developed by researchers over time that
serve the purpose of detecting any suspicious action and intention that will lead to data theft or
identity cloning. The fact that there has been a rapid response to security attacks on many web-based
applications has not deterred the intruders from discovering loopholes to the networks and sending
more sophisticated attacks.

An ExtraTrees classifier that is used in selecting applicable features for different types of Intruders
with extreme learning machines (ELMs) was proposed by [1]. During attacks classification, multi-class
issues were divided into multiple binary classifications and the authors used subjective extreme
learning machines to solve the issue of imbalance. Lastly, they implemented in parallel the ELMs
ensemble by using GPUs in order to perform in real-time intrusion detection. Their results did
better than all the other methods earlier in use, achieving 98.24% and 99.76% precision on their
datasets for multi-class classification. Their proposer incurred a small overhead and lacks training
on how to distinguish between normal traffic and potential attacks. Meanwhile, a multi-model
biomatrix recognition system that is based on pattern recognition methods was used to make a
personal identification by [2]. A modification of the fingerprint was done by applying the Delaney
triangulation network. Although their system achieved a high precision with low error rate equals
0.9%, it is limited and cannot function as IDS because it is based on eyelash detection and not on the
internet or online system.

Another multiclass classification that uses a heterogeneous ensemble model and outlier detection
in a combination of numerous approaches and ensemble methods was developed by [3]. Their study
was based on Pre-processing involving a way to filter global outliers, using a synthetic minority
oversampling technique (SMOTE) algorithm to repeat the sampling process. They performed a
binarization on the dataset by using the OnevsOne decomposing technique. In addition, Adaboost,
random subspace algorithms, and random forest were used to design their model as the base classifier.
Their proposed model performed better in terms of outlier detection and classification prediction for
the multiclass problem, and also did better than other classical algorithms commonly in use. The study
failed to combine filtration and wrapper selection methods in order to investigate the effect of partial
removal of point-outliers from datasets prior to building up of classifiers. DOS, probe, U2R, and R2L
were the four types of attacks used by [4] to deal with the random forest model. They implemented
ten cross-validations that were functional for classification usage and a Feature selection that was
implemented on the dataset in order to reduce dimensionality, remover of redundancy and unrelated
features. On comparing their random forest modeling with a j48 classier, their experimentation proves
that accuracy and DR for four types of attacks are better, but they failed to use evolutionary calculation
as a feature selection measure that could further improve the accuracy of the classifier. The fact is
that denial of service (DoS) attacks have created massive disruptions to private and public sectors
web-based applications of which many are not in the news due to management fears of customers’
panic and loss of shares. It becomes a challenge to create a multiple class-based IDS that has the
capacity to withstand multiple attacks provide higher accuracy, higher detection rate (DR), and lower
false detection rate (FAR).

This paper’s intention is to develop an intelligent intrusion detection system that has high
accuracy, high packet detection rate, and low false alarm rate. The Objectives include 1. Developed
machine learning models for the intrusion detection system; 2. Implement and evaluate the proposed
solution on network security datasets; 3. Proposed a data-independent Model; 4. Achieved high
accuracy; 5. Achieved high detection system; and 6. Achieved a low false alarm rate.

Our motivation is to reduce False Positive Rate (FPR) by applying dimensional reduction method
on the Correlation Feature Selection (CFS) algorithm.

Our contribution includes:

Sensors 2020, 20, 2559 3 of 37

1. The research performs dimensionality reduction using the Correlation-based feature selection
(CFS) approach.

2. Machine Learning Ensemble Models with base classifiers (j48, Random forest and reptree) were
used to perform simulations.

3. Automatically proposed optimal subset features for the new dataset.
4. FAR and Detection rate has a great impact on the IDS system, so we propose a novel solution

based on machine learning ensemble models with the effect of the CFS algorithm.
5. Our Proposed CFS + Ensemble Classifiers has 0 false alarm rate and 99.90% detection rate for

kdd99 dataset and for nslkdd dataset 0.5% FAR and 98.60% detection rate.
6. Our proposed model was evaluated and compared with two different datasets and also these

research experimental results are also likened with other recent and important papers in this area.

The remainder of the paper is structured as stated: In Section 2, we describe the Literature review.
Section 3 presented the proposed methodology. Section 4 describes the experiments and results.
Section 5 concludes the research and the mindset of future work.

2. Literature Review

A hybrid smart system with an enhancement of the decision tree was used by the authors in [5]
to design a multiple classifier system. This was done by applying Adaboost and naïve Bayes with
decision trees (NBDT), non-nested generalized exemplar (NNge), and incremental pruning (JRip)
rule-based classifiers (NNJR). The system was able to detect network intrusions efficiently. The only
limitation to this research is that other data mining approaches were not explored in full. Hybrid
IDS based on integrating the predictions of a tree by probability in a diverse kind of classifier was
proposed by [6]. Their result illustrates a model that gives a much lower false alarm rate and a peak
detection rate. Moreover, their proposed model shows better precision than the recent IDS models
with a precision equivalent to 96.27% for KDD’99 and 89.75% for NSL-KDD—unlike authors in [7] that
use spectral clustering (SC) and deep neural network (DNN) in their proposer for intrusion detection.
Their results indicate that their classifier delivers a real tool of study and analysis of intrusion detection
in a large network and does better than back propagation neural network (BPNN), support vector
machine (SVM), random forest (RF), and Bayes tree models in spotting precision and the types of
irregular attacks in the network.

The hybrid model of [8] is a proposed system designed on the network transaction that estimates
the intrusion scope threshold degree at data’s peak features which are readily accessible for the physical
activities. Their results show that the hybrid approach is necessary in order to achieve accuracy of
99.81% and 98.56% for the binary class and multiclass NSL-KDD datasets, respectively. Nevertheless,
it was suggested for further studies to apply optimizing techniques with the intrusion detection model
because it is likely to have a better accuracy rate.

A Gini index based feature selection can give the ensemble technique a higher increase accuracy
of detection by 10% according to [9]. Other benefits include reduction of a false positive rate to 0.05
and improving the system performance in terms of the time it takes for executing a truer positive rate.
Nevertheless, reduced features that will require less processing time in a distributed situation need to
be applied to improve the detection rate.

An improved conditional variational Auto Encoder (ICVAE) with a deep neural network (DNN)
was combined to design an intrusion detection model known as ICVAE-DNN by [10]. They learn
and explore potential sparse representations between network data features and classes that show
better overall accuracy, detection rate, and false positive rate than the nine state-of-the-art intrusion
detection methods. Nonetheless, there is a need to improve the detection performance of minority
attacks and unknown attacks. The adversarial learning method can be used to explore the spatial
distribution of ICVAE latent variables to better reconstruct input samples. The machine learning-based
IDS developed by the authors in [11] are based on deep learning. According to the authors, in large
network datasets and unbalanced network traffic, the performance of the IDS may be affected, this can

Sensors 2020, 20, 2559 4 of 37

result in an anomaly network-based IDS. A Deep Belief Networks (DBNs) approach which projected
deep learning as a swift upsurge of machine learning (ML) was proposed in [12,13]. Following
this proposal, deep learning has realized greatly the extraction of high-level dormant features from
dataset models. However, notwithstanding these huge successes, several problems related to IDS still
exist—firstly, a high network data dimension. In many IDS models, the feature selection approach is
first considered as one of the steps of the preprocessing [14]—for instance, the advancement of the
Internet of Things (IoT) and the prevalent cloud-based services, in addition to the emergence of several
new attacks. In the training dataset, several unidentified attacks do not appear. For instance, in the
NSL-KDD dataset considered in [15,16], about 16.6% of the attack samples in the dataset tested did not
appear in the training dataset. This implies that mostly all conventional IDS typically achieve poor
performance. However, for an anomaly network-based IDS (A-NIDS), the authors in [17,18] proposed
a primal dependable hybrid approach that incorporates the Adaboost meta-algorithm and artificial
bee colony (ABC). This is intended to achieve optimal detection rate (DR) at a minimized false positive
rate (FPR) [19]. In the study by [20], the ABC algorithm is implemented for selection of features,
while the Adaboost meta-algorithm is used for feature classification and evaluation. The Adaboost
meta-algorithm was implemented to tackle the unbalanced data based on the actual plan, while
the ABC was used for the IDS problem optimization. Incorporating both the redesigned density
peak clustering algorithm (MDPCA) and the deep belief networks (DBNs) resulted in a novel fuzzy
aggregation approach which was proposed in [21]. The MDPCA section of the algorithm splits the
primal training dataset into numerous minor subsets based on the similarity of the training samples
feature. On the other hand, the results of the entire sub-DBNs classifiers are combined according
to the weights of the fuzzy membership. The objective of [22] was to design a system that has to
have the capacity for accurate traffic classification of classes into normal and attack, measure up
the huge datasets, and be able to acquire a lower false alarms rate. To achieve these, the authors
leveraged on the Extreme Learning Machine (ELM) algorithm, which is an advanced ML algorithm.
Although the ELM algorithm has proved to be more efficient in terms of performance against the
Support Vector Machine (SVM) algorithm, it operates, however, at high frequency while sustaining
adequate classification ability. The authors further attempted to enhance the performance ELM
algorithm by including a redesigned kind of Huang’s Kernel-based ELM and combined this with the
Multiple Kernel Boost (MKBoost) framework which was earlier introduced by [3]. " A novel approach
based on the combination of discretization, filtering, and classification methods using a KDD Cup 99
dataset is presented in [23]. The focus of the research was to drastically minimize the number of features
while classifier performance is absolutely maintained, or even improved. The approach makes use of
filters because of their high-speed characteristics and based on their high suitability for large datasets.
eep learning models were applied as classifiers. Bearing in mind the importance of the temporary
data classification of network attacks, the Long Short Term Memory (LSTM) network, a modification
of frequent networks, was used in classifying the KDD’s dataset attacks [24]. " Several works in the
literature of [25,26] motivated the development of our proposed approach. A scheme of nested binary
trees was used in [26]; the scheme realized a good performance when tested with minor UCI datasets,
but the computational difficulty of this scheme amplified swiftly with the increase at the number of
instances. The recent study of [25] integrated both the oversampling and binarization with boosting,
and indicated that the proposed approach realized improved performance than the multiclass learners
and one-versus-all (OVA) framework. Even though information about the runtime was voided in
the study, the use of oversampling enhances substantial computational difficulty; hence, this method
failed to scale proficiently for an application to IDS datasets, which encompasses a higher number of
samples. On the other hand, the authors in [26] implemented random undersampling (RUS) in their
method because it can realize similar performance when used for all the datasets while dealing with
class imbalance mitigation.

Several studies on the use of binary classifiers set to the detection of intrusion have been
established. A good number of these studies engaged the use of classifiers based on SVM. Authors

Sensors 2020, 20, 2559 5 of 37

presented a simple decision tree–based OVA model which populates a decision tree structure using a
set of class probabilities [27]. An OVA method in [28] was also incorporated into a least-squares SVM
technique and analyzed on the KDD dataset. The output showed that, for each of the five classes of
traffic, their attack detection rate was approximately 99%. Additionally, the authors observed in the
method, the best model realized an average FPR of 0.28%. SVMs in a binary classification method
was employed by [29]. Authors in [30] proposed a composite scheme architecture in which precise
classifiers were allocated the task of detecting precise classes. For example, an SVM was allocated
for the detection of DoS attacks, while an RBF-based neural network was allocated for the detection
of U2R-based attacks. The results of the hybrid classifier were transferred to a different ensemble
which was allocated for the detection of R2L and probe attacks. For this scenario, in advance, a definite
architecture was defined. A weighting element was included in a scheme of binary SVMs in [31].
The binarization methods that were tested included one-versus-one (OVO), OVA, directed acyclic
graphs, and ECOC. It was noticed that the OVA model distributes the best performance. It is observed
by the authors that the weight which measures a prediction level of certainty was targeted at the
unclassifiable areas in which the group of binary classifiers cannot approve on a single class prediction.
using a precise subset of the KDDTest+ dataset, the model was assessed, but then the outputs proved
that employing a weighting system with the model resulted in an improved general performance better
than the model that did not include weighting scheme. Individual class performance on binarization
approaches have been analyzed in all the above-mentioned works; however, the lowest FPR was
realized in the recent works [32–36] while many other algorithm and DoS were considered by [37–44].

3. Proposed Methodology

This research has five phases according to our proposed methodology shown in Figure 1; the 1st
phase is data collection. After data collection, the next phase is data pre-processing, which is phase 2.
In data pre-processing, duplicate values inside the dataset are removed. Inconsistent values are also
removed. Missing values were checked for its presence or not in the dataset. Data normalization
was also done to bring down the whole dataset into one standard scale. Non-numeric values were
converted to numeric by doing encoding. After data pre-processing, the 3rd phase is dimensionality
reduction, which was done by using the CFS method. After dimensionality reduction, the next
phase, which is the 4th phase, comes in the 4th phase machine learning ensemble classifiers Bagging,
and Adaboost was used. The 5th phase is an evaluation phase; in this phase, this research work is
compared with other state-of-the-art work that used the same approach.

3.1. Description

This research uses two datasets: the KDD99 dataset and the NSLKDD dataset.

3.1.1. KDD99 Dataset

KDD99 is one of the most famous and old data sets used in network security for intrusion detection
systems. KDD99 is a derived version of the 1998 DARPA. The kdd99 dataset was developed in an MIT
research lab, and it is used by IDS designers as a benchmark to evaluate various methodologies and
techniques [40]. The kdd99 has 4,900,000 rows and 41 attributes, and one is class label. Twenty-two
network attacks are listed in the KDD99 dataset [41]. In this research, we did binary classification as
well as multiclass classification for kdd99 and nslkdd datasets. We named all the attacks as an anomaly
and normal traffic and then performed experiments. Class labels consist of four major attacks like
DoS, Probe, U2R, R2L, and Normal class. We did further classification in DoS, Probe, U2R, and R2L,
in order to detect the categories of these attacks.

Table 1 represents the total number of normal and anomaly packets that contain the KDD99
dataset used in this research. 97,277 and 396,731 packets were used for anomaly and normal classes
to develop ensemble machine learning classifiers upon which training and testing can be performed.
In addition, 70% of the KDD99 dataset was used for training and validation purposes, and the rest of

Sensors 2020, 20, 2559 6 of 37

the 30% dataset was used for testing and validation, respectively. The samples for KDD99 Training
and Testing are present in Table 2.

Table 1. KDD99 dataset binary classifications total packets.

Packets Details Packets Count

Normal Packets 97,277
Anomaly Packets 396,731

Total Size 494,008

Table 2. Training and testing samples for KDD99.

Training and Testing Packets Training and Testing Packets Count

Training Data Size 345,806
Testing Data Size 148,202

Data Input

Dimensionality Reduction

Data Pre-Processing

Replacing Missing Value

Removing Duplicate Values

Data Normalization

Data Encoding

Calculate Feature Correlations
Feature Class:

F1

F2

F3 F6

F4

F5

F1 F2 F3 F4 F5 F6

CLASS

Feature - Feature

CFS

Search

Feature
Evaluation

Merit Feature
Set

Feature Set

Machine Learning Algorithms

Base Classifiers

Model Performance Evaluation

Bragging and Boosting

Cross Validation
KFold

Training Set

Testing Set

Cross Validation
KFold

Figure 1. Proposed methodology.

Table 3 represents the number of attacks used in this research for prediction and their number
of packets (size). DoS has five sub-attacks in it. The similarity Probe and R2L have four sub-attacks
in it, respectively.

"

Sensors 2020, 20, 2559 7 of 37

Table 3. Number of attacks used in this research for KDD99.

Attack Name Category Count

Smurf DoS 280,790
Neptune DoS 107,200
Normal Normal 97,277

Back DoS 2203
Satan Probe 1589

Ipsweep Probe 1247
Portsweep Probe 1040
Warezclient R2L 1020

Teardrop DoS 979
Pod DoS 264

Nmap Probe 231
Guess passwd R2L 53

Buffer overflow U2R 30
Land DoS 21

Warezmaster R2L 20
Imap R2L 12

Loadmodule U2R 9
Ftp_write R2L 8
Multihop R2L 7

Phf R2L 4
Perl U2R 3

3.1.2. NSLKDD Dataset

NSLKDD is a derived version of the KDD99 dataset. NSLKDD does not have any duplicate
values that were in the kdd99 dataset. NSLKDD also does not have inconsistent values. NSL-KDD
contains 148,517 instances for training and testing purposes overall. The NSLKDD set has 41 features
in total. Some features are binary, some are numeric, and nominal features are also listed in the
NSLKDD dataset. The NSLKDD dataset also consists of four major attacks like DoS, Probe, U2R, R2L,
and Normal class.

Table 4 represents the total number of normal and anomaly packets containing the NSLKDD
dataset used in this research. The total number of anomaly and normal packets used to train and
test machine learning ensemble models are 71,215 and 77,054, respectively. In addition, 70% of
the NSLKDD dataset was used for training and rest of the 30% dataset was used for testing and
validation, respectively.

Table 4. NSLKDD dataset binary classifications total packets.

Packets Details Packets Count

Normal Packets 77,054
Anomaly Packets 71,215

Total Size 148,269

Table 5 represents the total number of anomaly and normal packets used to train and test machine
learning ensemble models are 103,789 and 44,481, respectively. The number of attacks for NSLKDD
and Features of KDD99 and NSSLKDD datasets are presented in Tables 6 and 7, respectively.

Table 5. NSLKDD dataset binary classifications total packets.

Training and Testing Packets Training and Testing Packets Count

Training Data Size 103,789
Testing Data Size 44,481

Sensors 2020, 20, 2559 8 of 37

Table 6. Number of attacks used in this research for NSLKDD.

Attack Name Count

Normal 77,054
Neptune 45,871

Satan 4368
Ipsweep 3740

Smurf 3311
Portsweep 3088

Nmap 1566
Back 1315

Guess_passwd 1284
Mscan 996

Warezmaster 964
Teardrop 904

Warezclient 890
Apache2 737

Processtable 685
Snmpguess 331

Saint 319
Mailbomb 293

Pod 242
Snmpgetattack 178

Httptunnel 133

Table 7. Total number of features for KDD99 and NSLKDD datasets.

S.No. Feature Name Feature Type S.No. Feature Name Feature Type

1 Duration Number 2 Protocol Type Non-Numeric
3 Service Non-Numeric 4 Flag Non-Numeric
5 Source Bytes Number 6 Destination Bytes Number
7 Land Non-Numeric 8 Wrong Fragment Number
9 Urgent Number 10 Hot Number

11 Number of failed logins Number 12 logged in Non-Numeric
13 Number Access Files Number 14 Root Shell Number
15 Su_Attemped Number 16 Number Root Number
17 Number of File Creations Number 18 Number Shells Number
19 Number Access Files Number 20 number outbound Commands Number
21 Is Host Login Non-Numeric 22 Is Guest Login Non-Numeric
23 Count Number 24 Service Count Number
25 Serror Rate Number 26 Service Error Rate Number
27 Rerror Rate Number 28 Service RError Rate Number
29 Same Service Rate Number 30 Different Service Rate Number
31 Service Different Host Rate Number 32 Dst_host_count Number
33 Dst_host_srv_count Number 34 Dst_host_same_srv_rate Number
35 Dst_host_diff_srv_rate Number 36 Dst_host_same_src_port_rate Number
37 Dst_host_srv_diff_host_rate Number 38 Dst_host_serror_rate Number
39 Dst_host_srv_serror_rate Number 40 Dst_host_rerror_rate Number
41 Dst_host_srv_rerror_rate Number 42 Class Label Type Non-Numeric

"

3.2. Pre-Processing

3.2.1. Normalization

" After selection of the dataset, data cleaning operations are performed on datasets to remove
noise from the dataset and normalize the features. For normalization, different techniques are used,
but, in this research, the min-max normalization approach is used which is better in terms of scaling
and solving outliers’ issues with z-score normalization. Min-max scaling normalizes values in the
range of [0, 1]. The equation for min-max normalization is given below:

Sensors 2020, 20, 2559 9 of 37

Zi =
Yi −min(Y)

max(Y)−min(Y)
(1)

Y = (Y1, Y2, Y3, . . . , Yn) are the number of features, while Yi is the feature that we want to
normalize and Zi is the normalized feature. By doing this, now all features have the same weights and
all features are in one scope.

3.2.2. Data Encoding

In the process of data encoding, duplicate and inconsistent values were removed earlier from
the datasets before the commencement of this process. The next process was to convert the nominal
attributes to numeric values. The reason for this is that machine learning algorithms’ back-end
calculations are done using numeric values and not nominal values. This data encoding step is vital
before we proceed to passing data to the proposed model.

3.3. Feature Selection

Optimal features not only improve accuracy, but also improve computational cost in terms of time.
The main focus of feature optimization is not only to decrease the computational cost but also find
such feature subsets that can work with different classifiers to produce better results. In this research,
we used the correlation-based feature selection method (CFS) for feature selection.

Correlation-Based Feature Selection (CFS)

Figure 2 illustrates the workflow of the TCFS model. In the illustration, feature selection
algorithms not only reduce dimensionality, but also select optimal features that produce high results
in terms of accuracy, precision, recall, and F1-Scores. Dimensionality reduction also decreases the
computational cost of algorithms. Heuristic evaluation function is used inside the Correlation-based
feature selection (CFS) algorithm, which is dimensionality reeducation algorithm [45–47]. CFS ranks
features based on their similarity with the predication class. CFS examines every feature vector subset.
These subsets of feature vectors are highly correlated with the predication class but irrespective of each
other. The CFS algorithm considers that some features have a low correlation with the predication
class, so these features can be ignored because these features have no major role in prediction. On the
other side, it is important to evaluate excess features since they are generally strongly associated with
each other or with other features as well. The following equation can be used to find a subset of
features vectors correlated with each other:

Ms =
AMc f√

A + A (A− 1) M f f

(2)

If we have S number of features subset having A number of attributes, then Ms is evaluation of these
S subsets with A number of attributes, where Mc f represents the average correlation between class
label and attributes. M f f is average correlation values between attributes, or we can say how much
two features are associated with each other based on this M f f function [37]. If we have a classification
problem, CFS calculates symmatrix uncertainty shown in Equation (3):

SU =

E (X)− E
(

X
Y

)
E (X) + E

(
X
Y

)
 (3)

In Equation (3), E represents the entropy function that is calculated using below Equation (4). Entropy
is a function of the uncertainty of a random variable:

Sensors 2020, 20, 2559 10 of 37

E (X) = − ∑
y∈X

p (y) log2 p (y) (4)

E
(

X
Y

)
= − ∑

w∈Y
p (w) ∑

w∈X
p
(y

w

)
log2 p

(y
w

)
(5)

F1

F2

F3 F6

F4

F5

F1 F2 F3 F4 F5 F6

CLASS

Calculate Feature Correlations
Feature Class:

Feature - Feature

Search

Feature
Evaluation

Merit Feature
Set

Feature Set

CFS

Figure 2. CFS work flow.

For all values of X, P (y) represents the prior probabilities while, when Y given to X, P (y/w) is the
posterior probability.

Six features were selected using the KDD99 dataset for binary class and 11 features were selected
for 21 attacks for the KDD99 dataset. Similarly, for the nslkdd dataset, 13 features were selected for
both binary and multiple attacks as shown in Table 8. The correlation-based feature selection working
algorithm which describes the modalities of the CFS model is presented below as Algorithm 1.

Table 8. Number of optimal features selected using CFS.

Dataset Selected Features Using CFS

KDD99 (For 2 Attacks) 6, 12, 23, 31, 32
KDD99 (For 21 Attacks) 2, 3, 4, 5, 6, 7, 8, 14, 23, 30, 36
nslkdd (For 2 Attacks) 1, 3, 4, 5, 7, 8, 11, 12, 13, 30, 35, 36, 37
nslkdd (For 21 Attacks) 1, 3, 4, 5, 7, 8, 11, 12, 13, 30, 35, 36, 37

Sensors 2020, 20, 2559 11 of 37

Algorithm 1: Correlation-based feature selection (CFS) working algorithm.
Input of data: S (A1, A2, A3, A4, C) // Clean dataset
δ// Benchmark threshold value
Output: Sopt Optimal Features vector

1. Start
2. For I = 1 to N do start
3. Measure SUi,c for every attribute Ai;
4. If (SUi,c ≥ δ)
5. Then, Append Ai to list S

′
list;

6. end

3.4. Bagging Classifier

An ensemble method is a technique that combines the predictions from multiple machine learning
algorithms together to make predictions more reliable than any other (see Algorithm 2). Bootstrapping
or Bagging is a very effective and powerful ensemble approach. In ensembling, multiple classifiers
are combined to get more accurate results, compared to their individual performance. Working on
Bagging is given below in the form of a pseudo code.

Algorithm 2: Bagging classifier algorithm.
Input: KDD99 and NSLKDD datasets
Training:

1. Selection of the number of samples for Bagging which is n samples and also the
selection of base classifier C (j48, Random Forest, and reptree in our case).

2. Dividing dataset into two subsets (Training and Testing subsets). Produce further training
datasets using with replacement sampling and these datasets are D1D2D3.........Dn.

3. Then, train a base classifier on each dataset Di and build n number of classifiers
C1C2C3.........Cn.

Testing :

1. In the testing dataset, each data object X is passed to trained classifiers C1C2C3.........Cn.
2. The label is assigned to every new data object based on a majority vote.

For the classification problem, the majority vote is used to assign a new label to data
point X and, for the regression problem, the average value is used to be assigned to
a new data object Xi.

3. We repeat these steps until we classify every object in the dataset.

3.5. Adaboost Classifier

The goal of the Adaboost classifier is converting weak classifiers into a strong classifier that
produces better results:

H (X) = sign

(
N

∑
n=1

θnhn (x)

)
(6)

hn represents the nth weak classifier and θn is the corresponding weight for that classifier.
The Adaboost Classifer is given in Algorithm 3.

Sensors 2020, 20, 2559 12 of 37

Algorithm 3: Adaboost classifier algorithm
Input: KDD99 and nslkdd datasets
Training:

1. Selection of base classifier C;
2. Set the threshold for initial weights Wi1 ∈ [0, 1], sumN

i=1 wi1 = 1 , Commonly Wi1 = 1
N ;

3. For n = 1→ k produce sample Dn for training from D using the distribution Wn
4. Training of base classifier C on Dn data subset to develop the Cn classifier.
5. en = ∑N

j=1 wniis the ensemble error calculated when classifier Cn misclassifies the ith data
point in D.

6. If en ∈ (0, 0.5) then calculate βn = en
1−en

and update the next weight.

7. wn+1,i =

{
wniXβ

wni

}
8. Distribution Wn+1,i needs to be normalized.
9. For further value of en, set threshold Wi1 = 1

N and continue the process;
10. Return the trained classifiers C1C2C3.........Cn and β1β2β3......βn.

Testing :

1. In the testing dataset, each data object X is passed to the testing dataset;
classify by classifiers C1C2C3.........Cn .

2. For each label y, assign to x by Cn , calculate my (x) = ∑ Cn (x) = yln
(

1
βk

)
.

The class that has maximum value my(x) is decided as the class label of x.
3. Repeat step2 for testing data and return the output.

3.6. Evaluation Matrixs

Various performance matrixs are used to evaluate the proposed solution, including
precision, recall, F1-Measure [48], False Alarm Rate (FAR), Detection Rate (DR), and Accuracy.
The above-mentioned performance matrixs are based on True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative (TN).

False Positive Rate is a combination of total instances that are normal but classified as attack class
and truly classify attack class.

FalsePositiveRate(FPR) =
Fp

Fp + Tn
(7)

Accuracy is used to measure how many instances are correctly classified as normal and attack
classes. Accuracy is achieved by summing correctly classify instances and dividing the total instances
as shown in Equation (8):

Accuracy =
Tp + Tn

Tp + Fp + Fn + Tn
(8)

Detection Rate (DR) provides information about the attacks detected correctly divided by the
total number of attacks in the dataset:

TruePositive =
Tp

Tp + Fn
(9)

Precision’s objective is to evaluate the True Positive (TP) entities in relation to False Positive
(FP) entities:

Precision =
Tp

Tp + Fp
(10)

Sensors 2020, 20, 2559 13 of 37

The purpose of recall is to evaluate True Positive (TP) entities in relation to (FN) False Negative
entities that are not at all categorized. The mathematical form of recall is mentioned in Equation (10):

Recall =
Tp

Tp + Fn
(11)

Sometimes, performance assessment may not be good with accuracy and recall. For instance,
if one mining algorithm has low recall but high precision, then another algorithm is needed. Then,
there is the question of which algorithm is better. This problem is solved by using an F1-Score that
gives an average recall and precision. F1-Score can be calculated as shown in Equation (11):

F1− Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(12)

4. Experiments

The simulation was performed using Weka 3.7 [49] on Intel® Core™ i3-4010 CPU@1.70 Ghz
(4 CPUs) with 8 GB RAM installed. Haier laptop was used with a 64-bit operating system on it. In this
research, for experiments, two datasets were used: KDD99 [50] and nslkdd [51]. The KDD99 dataset is
an advanced version of the DARPA 1998 dataset. The main feature that separates the KDD99 dataset
from DARPA 1998 is that test data are not from the same probability distribution as training data; it
has different attacks for testing that training data doesn’t have. Similarly, NSLKDD are an advanced
version of the KDD99 dataset. The NSLKDD dataset solves the problem of duplicate and inconsistent
values that the KDD99 dataset had.

4.1. Binary Class Experiment Results for KDD99

Table 9 depicts that false positive rate and true positive rate scores were 0.6% and 99.10%,
respectively, for a normal class. Similarly, for the anomaly class, false positive and true positive scores
were 0.9 and 99.40%, respectively. For normal class, the number of correctly detected packets was
28,934, and 271 packets were detected incorrectly as anomaly packets. In addition, for the anomaly
class, 118,238 packets were correctly detected while 759 packets were incorrectly detected as normal
packets. From Table 10, we can see that precision for normal was class 97.40%, Recall score for normal
class was 99.10%, and F1-Score was 98.30%, respectively. Likewise, for anomaly class, Precision and
Recall scores were 99.80% and 99.40%, respectively. F1-Score for anomaly class was 99.60%. The ROC
Area for both normal and anomaly class were 99.90%, respectively.

Table 9. Confusion matrix for Adaboost J48.

Normal Anomaly

Normal 28,934 271
Anomaly 759 118,238

Table 10. Classification report for Adaboost J48.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.10 0.60 97.40 99.10 98.30 99.90
Anomaly 99.40 0.90 99.80 99.40 99.60 99.90

Table 11 depicts that, for normal class, the number of correctly detected packets is 28,934, and 271
packets were detected incorrectly as anomaly packets. Similarly, for anomaly class, 118,238 packets
were correctly detected, while 759 packets were incorrectly detected as normal packets. From Table 12,
we can see that precision for normal was class 97.40%, Recall score for normal class is 99.10%,
and F1-Score was 98.30%, respectively. Similarly, for anomaly class, Precision and Recall scores

Sensors 2020, 20, 2559 14 of 37

were 99.80% and 99.40%, respectively. F1-Score for anomaly class was 99.60%. The ROC Area for both
normal and anomaly class was 99.90%, respectively.

Table 11. Confusion matrix for the Adaboost random forest.

Normal Anomaly

Normal 28,934 271
Anomaly 759 118,238

Table 12. Classification report for the Adaboost Random Forest.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.10 0.60 97.40 99.10 98.30 99.90
Anomaly 99.40 0.90 99.80 99.40 99.60 99.90

Table 13 indicate that, out of 148,202 instances, 147,314 instances were classified correctly with
the accuracy of 99.80%. False Positive Rate and True Positive Rate score were 0.6% and 99.20%,
respectively, for a normal class. Similarly, for anomaly class, False Positive and True Positive score
were 0.98 and 99.40%, respectively. For normal class, the number of correctly detected packets were
28,975, and 230 packets were detected incorrectly as anomaly packets. Likewise, for the anomaly class,
118,339 packets were correctly detected, while 658 packets were incorrectly detected as normal packets.
From Table 14, precision for normal class is 97.80%, recall score for normal class is 99.20%, and F1-Score
was 98.50%, respectively. In addition, for anomaly class precision and recall scores were 99.80% and
99.40%, respectively. F1-score for anomaly class was 99.60%. The ROC Area for both normal and
anomaly class was 99.80% and 100%, respectively.

Table 13. Confusion matrix for Adaboost Reptree.

Normal Anomaly

Normal 28,975 230
Anomaly 658 118,339

Table 14. Classification report for Ensemble Reptree.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.20 0.60 97.80 99.20 98.50 99.80
Anomaly 99.40 0.80 99.80 99.40 99.60 100.00

"
As shown in Table 15, correctly detected normal and anomaly packets were 28,838 and 118,225,

respectively. In addition, 367 packets were wrongly classified as anomaly, but, actually, it was normal
packets. Similarly, 772 packets were anomaly, but it was detected as normal packets.

Table 15. Confusion matrix for Bagging J48.

Normal Anomaly

Normal 28,838 367
Anomaly 772 118,225

According to Table 16, using the Bagging j48 classifier, the false positive rate and true positive
rate scores are 0.6% and 98.70%, respectively, for a normal class. Similarly, for the anomaly class, false
positive and true Positive scores were 1.30% and 99.40%, respectively, using a j48 classifier.

Sensors 2020, 20, 2559 15 of 37

Table 16. Classification report for Bagging J48.

TP Rate FP Rate Precision Recall F1 Score ROC Area

Normal 98.70 0.60 97.40 98.70 98.10 99.50
Anomaly 99.40 1.30 99.70 99.40 99.50 100.00

" Table 17 depicts a Bagging random forest classifier detects 28,994 packets correctly as normal
packets and 118,318 packets as anomaly packets. In addition, 211 packets are detected as anomaly
packets, but, actually, they are normal packets and 679 packets were detected as normal packets, but,
actually, they were anomaly packets.

Table 17. Confusion matrix for Bagging Random Forest.

Normal Anomaly

Normal 28,994 211
Anomaly 679 118,318

For Bagging random forest classifier precision, recall, and F1- score for the normal class are 97.70%,
99.30%, and 98.50%, respectively. Similarly, for Bagging random forest, anomaly class precision is
99.80%, the recall is 99.40%, and F1-score is 99.60%, respectively. using Bagging random forest normal
class, False Positive Rate was 0.60% and, for anomaly, False Positive Rate was 0.90%. True Positive
score for Bagging random forest normal class was 99.10% and, for anomaly, 99.40%, respectively,
as shown in Table 18

Table 18. Classification report for Bagging Random Forest.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.30 0.60 97.70 99.30 98.50 99.70
Anomaly 99.40 0.70 99.80 99.40 99.60 100.00

" As shown in Table 19, correctly detected normal and anomaly packets are 29,010 and 118,299,
respectively. In addition, 195 packets are wrongly classified as anomaly, but, actually, they are normal
packets. Similarly, 698 packets were an anomaly, but they are detected as normal packets. False Positive
and True positive scores for normal are 0.60% and 99.30%, respectively. Similarly, for anomaly class,
False Positive and True positive scores are 0.70% and 99.40%, respectively, as shown in Table 20.
For reptree Bagging normal class, precision score is 97.70%; recall and F1-Scores are 99.30% and 98.50%,
respectively. For Bagging reptree, anomaly class precision score is 99.80%, recall score is 99.40%,
and F1-Score was 99.60%, respectively, as shown in Table 20.

Table 19. Confusion matrix for Bagging Reptree.

Normal Anomaly

Normal 29,010 195
Anomaly 698 118,299

Table 20. Classification report for Bagging Reptree.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.30 0.60 97.70 99.30 98.50 99.99
Anomaly 99.40 0.70 99.80 99.40 99.60 100.00

Sensors 2020, 20, 2559 16 of 37

Table 21 and Figure 3 indicate that Perl, Neptune, Smurf, Guess_passwd, Pod, Teardrop, and Lad
attacks have 100% TP Rate. Only three attacks Loadmodule, Ftp_write, Phf have a very low TP
Rate. The weighted average TP Rate is 99.90 overall. The FP Rate for all attacks are very low.
Normal packets achieve 99.80% precision, Loadmodule, Neptune, Smurf, Teardrop, Portsweep, Imap,
and Warezmaster achieved 100% precision, respectively. Guess_passwd achieved 93.80% precision,
and Portsweep achieved 95.30% precision. Ipsweep and Land achieved 81.60% and 83.30% precision,
respectively. Perl and Multihop achieved 33.33% precision, respectively. Back, Satan, and Warezclient
achieved 99.80%, 99.10%, and 97.10% Precision, respectively. Perl, Neptune, Smurf, Guess_passwd,
and Pod achieved 100% recall. Teardrop and Land also achieved 100% recall, respectively. Normal,
Guess_passwd, Portsweep, Ipsweep, Back, Satan, and Warezclient achieved more than 90% F1-score
on average. Neptune, Smurf, Pod, and Teardrop achieved a 100% F1-score, respectively. Buffer
overflow, Loadmodule, Ipsweep, Nmap, and Warezclient achieved more than 99% average ROC.
Multihop and Warezclient achieved 81.70% and 71.70% ROC, respectively. All other attacks achieved
100% ROC, respectively. "

Table 21. Multiclass classification report for KDD99 using Adaboost j48.

"

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.70 0.00 99.80 99.70 99.80 100.00
2 Buffer-overflow 46.20 0.00 100.00 46.20 63.20 99.70
3 Loadmodule 0.00 0.00 0.00 0.00 0.00 99.10
4 Perl 100.00 0.00 33.33 100.00 50.00 100.00
5 Neptune 100.00 0.00 100.00 100.00 100.00 100.00
6 Smurf 100.00 0.00 100.00 100.00 100.00 100.00
7 Guess_passwd 100.00 0.00 93.80 100.00 96.80 100.00
8 Pod 100.00 0.00 100.00 100.00 100.00 100.00
9 Teardrop 100.00 0.00 100.00 100.00 100.00 100.00

10 Portsweep 99.30 0.00 95.30 99.30 97.30 100.00
11 Ipsweep 97.90 0.10 81.60 99.90 89.00 99.20
12 Land 100.00 0.00 83.30 100.00 90.90 100.00
13 Ftp_write 0.00 0.00 0.00 0.00 0.00 100.00
14 Back 99.70 0.00 99.80 99.70 99.80 100.00
15 Imap 50.00 0.00 100.00 50.00 66.70 100.00
16 Satan 98.50 0.00 99.10 98.50 98.80 100.00
17 Phf 0.00 0.00 0.00 0.00 0.00 100.00
18 Nmap 55.60 0.00 97.20 55.60 70.70 99.80
19 Multihop 50.00 0.00 33.33 50.00 40.00 81.70
20 Warezmaster 60.00 0.00 100.00 60.00 75.00 71.70
21 Warezclient 93.00 0.00 97.10 93.00 95.00 99.10
22 Weighted Avg 99.90 0.00 99.90 99.90 99.90 100.00

TP and FP Rate for normal class are 99.8% and 0%, respectively. Precision, recall, and F1-score for
a normal class was 99.90%. Similarly, Perl, Neptune, Smurf, Guess_passwd, Pod, Teardrop, Back, Imap,
and Phf achieved 100% precision, recall, F1-score, TP Rate, and ROC area, respectively. Buffer_overflow
achieved 61.50% TP Rate, 88.90% precision, 61.50% recall, 72.70% F1-Measure, and 96.10% ROC
area. Loadmodule attack achieved a 20% FP Rate and 20% recall. Precision and F1-Measure for
Loadmodule were 33.33% and 25.00%, respectively. Portsweep achieved a 96.90% FP Rate and
recall, respectively. Precision and F1-Measure for Portsweep were 99.30% and 98.10%, respectively.
Warezclient, Warezmaster, Multihop, Nmap, and Satan also performed very well in terms of precision,
recall, and F1-Measure—as shown in Table 22 and Figure 4.

Sensors 2020, 20, 2559 17 of 37

0

10

20

30

40

50

60

70

80

90

100
A

c
c

u
ra

c
y

M
a

ilb
o

m
b

S
n

m
p

g
u

e
s
s

H
tt
p

tu
n

n
e

l

N
o

rm
a

l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e

ig
h

te
d

 A
v
g

W
a

re
z
c
lie

n
t

W
a

re
z
m

a
s
te

r

P
ro

c
e

s
s
ta

b
le

N
m

a
p

S
n

m
p

g
e

ta
tt
a

c
k

S
a

ta
n

M
s
c
a

n

B
a

c
k

S
a

in
t

A
p

a
c
h

e
2

Ip
s
w

e
e

p

P
o

rt
s
w

e
e

p

T
e

a
rd

ro
p

s

P
o

d

G
u

e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

Attacks

Figure 3. Classification report for the Adaboost J48 KDD99 dataset.

From Table 23 and Figure 5, we can conclude that Normal class achieved 99.80% precision, 99.70%
recall, and 99.80% F1-Measure, respectively. Loadmodule, Ftp_write, Phf, and Multihop achieved
very low results. Perl, Neptune, Smurf, Guess-passwd, Pod, teardrop, and Back achieved 100% TP
Rate, precision, recall, and F1-Measures, respectively. Buffer-overflow, Portsweep, Ipsweep, Land,
Imap, Satan, Nmap, Warezmaster, and Warezclient also performed well and achieved on average
90% precision, recall, and F1-Measure, respectively. From Table 24 and Figure 6, we can conclude
that Normal class achieved 99.80% precision, 99.70% recall, and 99.80% F1-Measure, respectively.
Loadmodule, Ftp_write, and Phf achieved very low results. Perl, Neptune, Smurf, Guess-passwd,
Pod, teardrop, and Land achieved 100% TP Rate, precision, recall, and F1-Measures, respectively.
Buffer-overflow, Portsweep, Ipsweep, Back, Imap, Satan, Nmap, Warezmaster, and Warezclient
also performed well and achieved on average 90% precision, recall, and F1-Measure, respectively.
From Table 25 and Figure 7, we can conclude that Normal class achieved 99.80% precision, recall,
and F1-Measure, respectively. Similarly, Buffer-overflow achieved 61.50% recall and TP Rate, 80%
recall, and 69.69% F1-Measure, respectively. Loadmodule, Perl, Phf, and Multihop achieved very low
results. Neptune, Smurf, Guess-passwd, Pod, teardrop, and Imap achieved 100% TP Rate, precision,
recall, and F1-Measures, respectively. Buffer-overflow, Portsweep, Ipsweep, Land, Imap, Satan, Nmap,
Warezmaster, and Warezclient also performed well and achieved on average 90% precision, recall and
F1-Measure, respectively.

Sensors 2020, 20, 2559 18 of 37

Table 22. Multiclass classification report for KDD99 using Adaboost Random Forest.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.80 0.00 99.90 99.80 99.80 100.00
2 Buffer-overflow 61.50 0.00 88.90 61.50 72.70 96.10
3 Loadmodule 20.00 0.00 33.33 20.00 25.00 89.70
4 Perl 100.00 0.00 100.00 100.00 100.00 100.00
5 Neptune 100.00 0.00 100.00 100.00 100.00 100.00
6 Smurf 100.00 0.00 100.00 100.00 100.00 100.00
7 Guess_passwd 100.00 0.00 100.00 100.00 100.00 100.00
8 Pod 100.00 0.00 100.00 100.00 100.00 100.00
9 Teardrop 100.00 0.00 100.00 100.00 100.00 100.00

10 Portsweep 96.90 0.00 99.30 96.90 98.10 100.00
11 Ipsweep 97.90 0.10 81.60 97.90 89.00 99.40
12 Land 80.00 0.00 80.00 80.00 80.00 99.90
13 Ftp_write 0.00 0.00 0.00 0.00 0.00 100.00
14 Back 100.00 0.00 100.00 100.00 100.00 100.00
15 Imap 100.00 0.00 100.00 100.00 100.00 100.00
16 Satan 98.70 0.00 99.40 98.70 99.00 99.90
17 Phf 100.00 0.00 100.00 100.00 100.00 100.00
18 Nmap 52.40 0.00 100.00 52.40 68.80 99.10
19 Multihop 50.00 0.00 100.00 50.00 66.70 100.00
20 Warezmaster 60.00 0.00 75.00 60.00 66.70 99.80
21 Warezclient 94.50 0.00 97.80 94.50 96.10 98.80
22 Weighted Avg 99.90 0.00 99.90 99.90 99.90 100.00

0

10

20

30

40

50

60

70

80

90

100

N
o

rm
a

l

A
c

c
u

ra
c

y

Attacks

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e

ig
h

te
d

 A
v
g

W
a

re
z
c
lie

n
t

W
a

re
z
m

a
s
te

r

M
u

lt
ih

o
p

N
m

a
p

P
h

f

S
a

ta
n

Im
a

p

B
a

c
k

F
tp

_
w

ri
te

L
a

n
d

Ip
s
w

e
e

p

P
o

rt
s
w

e
e

p

T
e

a
rd

ro
p

s

G
u

e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

P
e

rl

B
u

ff
e

r-
o

v
e

rf
lo

w

L
o

a
d

m
o

d
u

le

P
o

d

Figure 4. Classification report for Adaboost Random Forest KDD99 dataset.

Sensors 2020, 20, 2559 19 of 37

Table 23. Multiclass classification report for KDD99 using Adaboost Reptree.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.70 0.00 99.80 99.70 99.80 100.00
2 Buffer-overflow 53.80 0.00 77.80 53.80 63.60 99.90
3 Loadmodule 0.00 0.00 0.00 0.00 0.00 99.90
4 Perl 0.00 0.00 0.00 0.00 0.00 100.00
5 Neptune 100.00 0.00 99.90 100.00 100.00 100.00
6 Smurf 100.00 0.00 100.00 100.00 100.00 100.00
7 Guess_passwd 100.00 0.00 83.30 100.00 90.90 100.00
8 Pod 100.00 0.00 100.00 100.00 100.00 100.00
9 Teardrop 100.00 0.00 100.00 100.00 100.00 100.00

10 Portsweep 94.80 0.00 99.30 94.80 97.00 99.40
11 Ipsweep 97.10 0.10 81.30 97.10 88.50 99.90
12 Land 80.00 0.00 80.00 80.00 80.00 99.90
13 Ftp_write 0.00 0.00 0.00 0.00 0.00 100.00
14 Back 100.00 0.00 99.80 100.00 99.90 100.00
15 Imap 75.00 0.00 100.00 75.00 85.70 85.10
16 Satan 98.50 0.00 98.50 98.50 98.50 99.90
17 Phf 0.00 0.00 0.00 0.00 0.00 99.30
18 Nmap 52.40 0.00 100.00 52.40 68.80 99.90
19 Multihop 0.00 0.00 0.00 0.00 0.00 99.80
20 Warezmaster 60.00 0.00 100.00 60.00 75.00 88.00
21 Warezclient 93.30 0.00 97.50 93.30 95.30 100.00
22 Weighted Avg 99.90 0.00 99.90 99.90 99.90 100.00

0

10

20

30

40

50

60

70

80

90

100

A
c

c
u

ra
c

y

N
o

rm
a
l

Attacks

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e
ig

h
te

d
 A

v
g

W
a
re

z
c
lie

n
t

W
a
re

z
m

a
s
te

r

M
u
lt
ih

o
p

N
m

a
p

P
h
f

S
a
ta

n

Im
a
p

B
a
c
k

F
tp

_
w

ri
te

L
a

n
d

Ip
s
w

e
e

p

P
o
rt

s
w

e
e
p

T
e
a
rd

ro
p

s

G
u
e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

P
e
rl

B
u
ff
e
r-

o
v
e
rf

lo
w

L
o

a
d

m
o
d

u
le

P
o
d

Figure 5. Classification report for the Adaboost Reptree KDD99 dataset.

Sensors 2020, 20, 2559 20 of 37

Table 24. Multiclass classification report for KDD99 using Bagging J48.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.70 0.00 99.80 99.70 99.80 100.00
2 Buffer-overflow 69.20 0.00 81.80 69.20 75.00 92.30
3 Loadmodule 0.00 0.00 0.00 0.00 0.00 59.80
4 Perl 100.00 0.00 100.00 100.00 100.00 100.00
5 Neptune 100.00 0.00 100.00 100.00 100.00 100.00
6 Smurf 100.00 0.00 100.00 100.00 100.00 100.00
7 Guess_passwd 100.00 0.00 93.80 100.00 96.80 100.00
8 Pod 100.00 0.00 100.00 100.00 100.00 100.00
9 Teardrop 100.00 0.00 100.00 100.00 100.00 100.00

10 Portsweep 99.00 0.00 97.60 99.00 98.30 99.80
11 Ipsweep 97.60 0.10 81.40 97.60 88.80 99.30
12 Land 100.00 0.00 83.30 100.00 90.90 100.00
13 Ftp_write 0.00 0.00 0.00 0.00 0.00 99.90
14 Back 99.80 0.00 100.00 99.80 99.90 100.00
15 Imap 50.00 0.00 100.00 50.00 66.70 87.50
16 Satan 98.50 0.00 99.30 98.50 98.90 99.90
17 Phf 0.00 0.00 0.00 0.00 0.00 94.50
18 Nmap 55.60 0.00 97.20 55.60 70.70 99.10
19 Multihop 50.00 0.00 50.00 50.00 50.00 75.00
20 Warezmaster 60.00 0.00 100.00 60.00 75.00 80.00
21 Warezclient 93.60 0.00 97.20 93.60 95.40 99.80
22 Weighted Avg 99.90 0.00 99.90 99.90 99.90 100.00

0

10

20

30

40

50

60

70

80

90

100

A
c

c
u

ra
c

y

N
o

rm
a

l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e

ig
h

te
d

 A
v
g

W
a

re
z
c
lie

n
t

W
a

re
z
m

a
s
te

r

M
u

lt
ih

o
p

N
m

a
p

P
h

f

S
a

ta
n

Im
a

p

B
a

c
k

F
tp

_
w

ri
te

L
a

n
d

Ip
s
w

e
e

p

P
o

rt
s
w

e
e

p

T
e

a
rd

ro
p

s

P
o

d

G
u

e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

P
e

rl

B
u

ff
e

r-
o

v
e

rf
lo

w

L
o

a
d

m
o

d
u

le

Attacks

Figure 6. Classification report for the Bagging J48 KDD99 dataset.

Sensors 2020, 20, 2559 21 of 37

Table 25. Multiclass classification report for KDD99 using the Bagging Random Forest.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.80 0.00 99.80 99.80 99.80 100.00
2 Buffer-overflow 61.50 0.00 80.00 61.50 69.69 100.00
3 Loadmodule 0.00 0.00 0.00 0.00 0.00 90.00
4 Perl 0.00 0.00 0.00 0.00 0.00 100.00
5 Neptune 100.00 0.00 99.90 100.00 99.90 100.00
6 Smurf 100.00 0.00 100.00 100.00 100.00 100.00
7 Guess_passwd 100.00 0.00 88.20 100.00 93.80 100.00
8 Pod 100.00 0.00 100.00 100.00 100.00 100.00
9 Teardrop 100.00 0.00 100.00 100.00 100.00 100.00

10 Portsweep 93.80 0.00 100.00 93.80 96.80 97.80
11 Ipsweep 97.60 0.10 81.60 97.60 88.90 99.30
12 Land 80.00 0.00 80.00 80.00 80.00 90.00
13 Ftp_write 0.00 0.00 0.00 0.00 0.00 100.00
14 Back 100.00 0.00 99.80 100.00 99.90 100.00
15 Imap 75.00 0.00 100.00 75.00 85.70 100.00
16 Satan 97.80 0.00 99.80 97.80 98.80 99.70
17 Phf 0.00 0.00 0.00 0.00 0.00 100.00
18 Nmap 54.00 0.00 100.00 54.00 70.10 98.30
19 Multihop 0.00 0.00 0.00 0.00 0.00 75.00
20 Warezmaster 60.00 0.00 100.00 60.00 75.00 90.00
21 Warezclient 93.30 0.00 97.50 93.30 95.43 100.00
22 Weighted Avg 99.90 0.00 99.90 99.90 99.90 100.00

0

10

20

30

40

50

60

70

80

90

100

A
c

c
u

ra
c

y

N
o

rm
a
l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e
ig

h
te

d
 A

v
g

W
a
re

z
c
lie

n
t

W
a
re

z
m

a
s
te

r

M
u
lt
ih

o
p

N
m

a
p

P
h
f

S
a
ta

n

Im
a
p

B
a
c
k

F
tp

_
w

ri
te

L
a

n
d

Ip
s
w

e
e

p

P
o
rt

s
w

e
e
p

T
e
a
rd

ro
p

s

P
o
d

G
u
e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

P
e
rl

B
u
ff
e
r-

o
v
e
rf

lo
w

L
o

a
d

m
o
d

u
le

Attacks

Figure 7. Classification report for the Bagging Random Forest KDD99 dataset.

Table 26 and Figure 8 depict that Normal class achieved 99.80% precision, 99.70% recall,
and 99.80% F1-Measure, respectively. Loadmodule, Ftp_write and Phf achieved very low results.
Perl, Neptune, Smurf, Guess-passwd, Pod, teardrop, and Land achieved 100% TP Rate, precision,
recall, and F1-Measures, respectively. Buffer-overflow, Portsweep, Ipsweep, Back, Imap, Satan, Nmap,

Sensors 2020, 20, 2559 22 of 37

Warezmaster, and Warezclient also performed well and achieved on average 90% precision, recall,
and F1-Measure, respectively.

Table 26. Multiclass classification report for KDD99 using Bagging Reptree.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.70 0.00 99.80 99.70 99.80 100.00
2 Buffer-overflow 69.20 0.00 81.80 69.20 75.00 92.30
3 Loadmodule 0.00 0.00 0.00 0.00 0.00 59.80
4 Perl 100.00 0.00 100.00 100.00 100.00 100.00
5 Neptune 100.00 0.00 100.00 100.00 100.00 100.00
6 Smurf 100.00 0.00 100.00 100.00 100.00 100.00
7 Guess_passwd 100.00 0.00 93.80 100.00 96.80 100.00
8 Pod 100.00 0.00 100.00 100.00 100.00 100.00
9 Teardrop 100.00 0.00 100.00 100.00 100.00 100.00

10 Portsweep 99.00 0.00 97.60 99.00 98.30 99.80
11 Ipsweep 97.60 0.10 81.40 97.60 88.80 99.30
12 Land 100.00 0.00 83.30 100.00 90.90 100.00
13 Ftp_write 0.00 0.00 0.00 0.00 0.00 99.90
14 Back 99.80 0.00 100.00 99.80 99.90 100.00
15 Imap 50.00 0.00 100.00 50.00 66.70 87.50
16 Satan 98.50 0.00 99.30 98.50 98.90 99.90
17 Phf 0.00 0.00 0.00 0.00 0.00 94.50
18 Nmap 55.60 0.00 97.20 55.60 70.70 99.10
19 Multihop 50.00 0.00 50.00 50.00 50.00 75.00
20 Warezmaster 60.00 0.00 100.00 60.00 75.00 80.00
21 Warezclient 93.60 0.00 97.20 93.60 95.40 99.80
22 Weighted Avg 99.90 0.00 99.90 99.90 99.90 100.00

0

10

20

30

40

50

60

70

80

90

100

A
c
c

u
ra

c
y

N
o

rm
a

l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e

ig
h

te
d

 A
v
g

W
a

re
z
c
lie

n
t

W
a

re
z
m

a
s
te

r

M
u

lt
ih

o
p

N
m

a
p

P
h

f

S
a

ta
n

Im
a

p

B
a

c
k

F
tp

_
w

ri
te

L
a

n
d

Ip
s
w

e
e

p

P
o

rt
s
w

e
e

p

T
e

a
rd

ro
p

s

P
o

d

G
u

e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

P
e

rl

B
u

ff
e

r-
o

v
e

rf
lo

w

L
o

a
d

m
o

d
u

le

Attacks

Figure 8. Classification report for the Bagging Reptree kdd99 dataset.

Sensors 2020, 20, 2559 23 of 37

4.2. Binary Class Experiment Results for NSLKDD

Table 27 indicates that 44,481 packets are used for testing and 44,026 packets are detected correctly
as normal and anomaly packets, and 455 packets were incorrectly detected; the accuracy of Adaboost
J48 was 98.97%.

Table 27. Confusion matrix for Adaboost J48.

Normal Anomaly

Normal 22,944 219
Anomaly 236 21,082

In Table 28, TP rate for both normal and anomaly was 99.10% and 98.90%, respectively, while FR
rate for normal packets was 1.10% and, for anomaly packets, it was 0.90%, respectively. Precision, recall,
and F1-Score for normal packets was 99.00%, 99.10%, and 99.00%, respectively. Similarly, for anomaly
packets, the precision score was 99.00%, recall score was 98.90%, and F1-Score was 98.90%, respectively.
The ROC area was 99.90%, respectively, for both normal and anomaly packets.

Table 28. Classification report for Adaboost J48.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.10 1.10 99.00 99.10 99.00 99.90
Anomaly 98.90 0.90 99.00 98.90 98.90 99.90

Table 29 indicates that 44,481 packets were used for testing and 44,072 packets were detected
correctly as normal and anomaly packets, and 409 packets were incorrectly detected; the accuracy of
Adaboost random forest was 99.08%. TP rate for both normal and anomaly was 99.00% and 99.20%,
respectively. FR rate for normal packets was 0.8% and, for anomaly packets, it was 1.00%. Precision,
recall, and F1-score for normal packets were 99.30%, 99.00%, and 99.10%, respectively. Likewise,
for anomaly packets, precision score was 98.90%, recall score was 99.20%, and F1-Score was 99.00%,
respectively. The ROC area was 99.80%, respectively, for both normal and anomaly packets as shown
in Table 30.

Table 29. Confusion matrix for Adaboost Random Forest.

Normal Anomaly

Normal 22,920 243
Anomaly 116 21,152

Table 30. Classification report for Adaboost Random Forest.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.00 0.80 99.30 99.00 99.10 99.80
Anomaly 99.20 1.00 98.90 99.20 99.00 99.80

Table 31 indicates that 44,481 packets were used for testing and 44,028 packets were detected
correctly as normal and anomaly packets, and 453 packets were incorrectly detected; the accuracy
of Adaboost reptree was 98.98%. The TP rate for both normal and anomaly was 98.70% and 99.30%
respectively. The FR rate for normal packets was 0.70% and, for anomaly packets, it was 1.30%.
Precision, recall, and F1-score for normal packets was 99.40%, 98.70%, and 99.00%, respectively. On the
other hand, for anomaly packets, precision score was 99.30%, recall score was 99.30%, and F1-Score was
98.90%, respectively. The ROC area was 99.90%, respectively, for both normal and anomaly packets,
as shown in Table 32.

Sensors 2020, 20, 2559 24 of 37

Table 31. Confusion matrix for Adaboost Reptree.

Normal Anomaly

Normal 22,854 309
Anomaly 144 21,174

Table 32. Classification report for Adaboost Random Forest.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 98.70 0.70 99.40 98.70 99.10 99.90
Anomaly 99.30 1.30 98.60 99.30 98.90 99.90

Table 33 indicates that 44,481 packets were used for testing and 44,039 packets were detected
correctly as normal and anomaly packets, and 442 packets were incorrectly detected; the accuracy of
Bagging j48 was 99.00%. TP rate for both normal and anomaly was 99.10% and 98.90%, respectively. FR
rate for normal packets was 1.10% and, for anomaly packets, it was 0.90%, respectively. Precision, recall,
and F1-score for normal packets was 99.00%, 99.10%, and 99.00%, respectively. Similarly, for anomaly
packets, precision score was 99.00%, recall score was 98.90%, and F1-Score was 99.00%, respectively.
The ROC area was 99.90%, respectively, for both normal and anomaly packets as shown in Table 34.

Table 33. Confusion matrix for Bagging J48.

Normal Anomaly

Normal 22,949 214
Anomaly 228 21,090

Table 34. Classification report for Bagging Random Forest.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.10 1.10 99.00 99.10 99.00 99.90
Anomaly 98.90 0.90 99.00 98.90 99.00 99.90

Table 35 indicates that 44,481 packets were used for testing and 44,072 packets were detected
correctly as normal and anomaly packets, and 409 packets were incorrectly detected; the accuracy of
Bagging random forest was 99.08%. TP rate for both normal and anomaly was 99.20% and 99.10%,
respectively. FR rate for normal packets was 0.90%, and, for anomaly packets, it was 0.80%, respectively.
Precision, recall, and F1-Score for normal packets was 99.10%, 99.10%, and 99.10%, respectively.
Similarly, for anomaly packets, precision score was 99.10%, recall score was 99.10%, and F1-Score was
99.10%, respectively. The ROC area was 99.90%, respectively, for both normal and anomaly packets,
as shown in Table 36.

Table 35. Confusion matrix for Bagging Random Forest.

Normal Anomaly

Normal 22,972 191
Anomaly 201 21,117

Table 36. Classification report for Bagging Random Forest.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.20 0.90 99.10 99.20 99.20 99.90
Anomaly 99.10 0.80 99.10 99.10 99.10 99.90

Sensors 2020, 20, 2559 25 of 37

Table 37 indicates that 44,481 packets were used for testing, and 44,072 packets were detected
correctly as normal and anomaly packets, and 409 packets were incorrectly detected; the accuracy of
Bagging random forest was 99.08%. TP rate for both normal and anomaly was 99.00% and 98.90%,
respectively. FR rate for normal packets was 1.10%, and, for anomaly packets, it was 1.00%, respectively.
Precision, recall, and F1-score for normal packets was 99.00%, 99.00%, and 99.00%, respectively.
Similarly, for anomaly packets, precision score was 98.90%, recall score was 98.90%, and F1-Score was
98.90%, respectively. The ROC area was 99.90%, respectively, for both normal and anomaly packets,
as shown in Table 38.

Table 37. Confusion matrix for Bagging Reptree.

Normal Anomaly

Normal 22,925 238
Anomaly 230 21,088

Table 38. Classification report for Bagging Reptree.

TP Rate FP Rate Precision Recall F1-Score ROC Area

Normal 99.00 1.10 99.00 99.00 99.00 99.90
Anomaly 98.90 1.00 98.90 98.90 98.90 99.90

From Table 39 and Figure 9, we can conclude that Normal class achieved 99.80% precision, recall,
and F1-Measure, respectively. Neptune class achieved 99.90% precision, 100% recall, and 99.90%
F1-Measure, respectively. Similarly, Warezclient achieved 95.60%, 90.20%, and 92.80% precision,
recall, and F1-Measure, respectively. On the other hand, Ipsweep achieved 99.50%, 90.50%,
and 94.80% precision, recall, and F1-Measure, respectively. Portsweep achieved above 97% precision,
recall, and F1-Measure, respectively. Teardrop achieved 96.30%, 100%, 98.10% precision, recall,
and F1-Measure, respectively. For Nmap precision, recall and F1-Measure scores were 78.20%,
96.20%, and 86.30%, respectively. Satan, Smurf, and Pod achieved on average 90% precision, recall,
and F1-Measure, respectively. Back attack achieved 100% recall while 99.80% and 99.90% precision
and F1-Measure, respectively. Guess_passwd achieved 96.50%, 96.80%, and 96.70% precision, recall,
and F1-Measure, respectively. Saint, Snmpgetattack, and Snmpguess attack didn’t perform well.
Warezmaster, Mscan, Apache 2, Processtable, Httptunnel, and Mailbomb also achieved promising
results for precision, recall, F1-Measure, and for TP Rate as well.

From Table 40 and Figure 10, we can conclude that Normal class achieved 99.00% precision,
99.20% recall, and 99.10% F1-Measure, respectively. Neptune class achieved 99.70% precision,
100% recall, and 99.80% F1-Measure, respectively. Similarly, Warezclient achieved 94.40%, 95.50%,
and 95% precision, recall, and F1-Measure, respectively. Likewise, Ipsweep achieved 99.60%, 90.60%,
and 94.90% precision, recall, and F1-Measure, respectively. Portsweep achieved above 97% precision,
recall, and F1-Measure, respectively. Teardrop achieved 95.20%, 100%, 97.60% precision, recall,
and F1-Measure, respectively. For Nmap precision, recall, and F1-Measure scores were 77.90%,
96.20%, and 86.10%, respectively. Satan, Smurf, and Pod achieved on average 90% precision, recall,
and F1-Measure, respectively. Back attack achieved 100% recall, precision, and F1-Measure, respectively.
Guess_passwd achieved 97%, 96.50%, and 96.80% precision, recall, and F1-Measure, respectively.
Saint, Snmpgetattack, and Snmpguess performed well. Warezmaster, Mscan, Apache2, Processtable,
Httptunnel, and Mailbomb also achieved promising results for precision, Recall, F1-Measure, and for
TP Rate as well.

Sensors 2020, 20, 2559 26 of 37

Table 39. Multiclass classification report for NSLKDD using Adaboost J48.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.00 1.20 98.90 99.00 99.00 99.99
2 Neptune 100.00 0.00 99.90 100.00 99.90 100.00
3 Warezclient 90.20 0.00 95.60 90.20 92.80 99.80
4 Ipsweep 90.50 0.00 99.50 90.50 94.80 99.90
5 Portsweep 97.90 0.10 97.10 97.90 97.50 99.90
6 Teardrop 100.00 0.00 96.30 100.00 98.10 100.00
7 Nmap 96.20 0.30 78.20 96.20 86.30 99.90
8 Satan 97.20 0.30 91.40 97.20 94.20 99.80
9 Smurf 99.50 0.20 93.30 99.50 94.40 100.00

10 Pod 98.40 0.00 95.30 98.40 96.80 100.00
11 Back 100.00 0.00 99.80 100.00 99.90 100.00
12 Guess_passwd 96.80 0.00 96.50 96.80 96.70 99.50
13 Warezmaster 92.40 0.00 98.10 92.40 95.10 99.20
14 Saint 0.00 0.00 0.00 0.00 0.00 95.40
15 Mscan 95.70 0.00 94.80 95.70 95.20 99.80
16 Apache2 99.10 0.00 100.00 99.10 99.50 99.80
17 Snmpgetattack 1.80 0.00 100.00 1.80 3.40 98.80
18 Processtable 99.50 0.00 99.50 99.50 99.50 100.00
19 Httptunnel 95.00 0.00 90.50 95.00 92.70 97.50
20 Snmpguess 40.00 0.10 55.90 46.60 47.20 99.30
21 Mailbomb 88.00 0.00 95.70 88.00 91.70 99.30
22 Weighted Avg 98.40 0.60 98.30 98.40 98.30 99.90

0

10

20

30

40

50

60

70

80

90

100

M
a

ilb
o

m
b

S
n

m
p

g
u

e
s
s

H
tt
p

tu
n

n
e

l

A
c

c
u

ra
c

y

N
o

rm
a

l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e

ig
h

te
d

 A
v
g

W
a

re
z
c
lie

n
t

W
a

re
z
m

a
s
te

r

P
ro

c
e

s
s
ta

b
le

N
m

a
p

S
n

m
p

g
e

ta
tt
a

c
k

S
a

ta
n

M
s
c
a

n

B
a

c
k

S
a

in
t

A
p

a
c
h

e
2

Ip
s
w

e
e

p

P
o

rt
s
w

e
e

p

T
e

a
rd

ro
p

s

P
o

d

G
u

e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

Attacks

Figure 9. Classification report using the Adaboost J48 NSLKDD dataset.

Sensors 2020, 20, 2559 27 of 37

Table 40. Multiclass classification report for NSLKDD using the Adaboost Random Forest.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.20 1.10 99.00 99.20 99.10 99.80
2 Neptune 100.00 0.10 99.70 100.00 99.80 100.00
3 Warezclient 95.50 0.00 94.40 95.50 95.00 99.80
4 Ipsweep 90.60 0.00 99.60 90.60 94.90 99.80
5 Portsweep 95.90 0.00 99.40 95.90 97.60 99.10
6 Teardrop 100.00 0.00 95.20 100.00 97.60 100.00
7 Nmap 96.20 0.30 77.90 96.20 86.10 99.90
8 Satan 94.90 0.30 92.20 94.90 93.20 99.30
9 Smurf 99.90 0.10 99.90 97.20 97.20 100.00

10 Pod 98.40 0.00 95.30 98.40 96.80 100.00
11 Back 100.00 0.00 100.00 100.00 100.00 100.00
12 Guess_passwd 96.50 0.00 97.00 96.50 96.80 99.90
13 Warezmaster 94.90 0.00 97.00 94.90 96.00 98.10
14 Saint 02.00 0.00 40.00 02.20 03.90 91.70
15 Mscan 98.70 0.00 97.40 98.70 98.80 99.80
16 Apache2 99.50 0.00 100.00 99.50 99.80 99.80
17 Snmpgetattack 0.70 0.00 33.30 07.00 11.60 97.10
18 Processtable 99.50 0.00 95.00 95.00 99.00 100.00
19 Httptunnel 95.00 0.00 95.00 95.00 95.00 97.50
20 Snmpguess 40.00 0.10 55.90 40.00 46.60 99.30
21 Mailbomb 98.70 0.00 98.70 98.70 98.70 99.30
22 Weighted Avg 98.50 0.60 98.30 98.50 98.40 99.80

0

10

20

30

40

50

60

70

80

90

100

A
c

c
u

ra
c

y

M
a
ilb

o
m

b

S
n
m

p
g
u

e
s
s

H
tt
p
tu

n
n
e

l

N
o

rm
a
l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e
ig

h
te

d
 A

v
g

W
a
re

z
c
lie

n
t

W
a
re

z
m

a
s
te

r

P
ro

c
e

s
s
ta

b
le

N
m

a
p

S
n
m

p
g
e

ta
tt
a
c
k

S
a
ta

n

M
s
c
a
n

B
a
c
k

S
a
in

t

A
p
a

c
h
e

2

Ip
s
w

e
e

p

P
o
rt

s
w

e
e
p

T
e
a
rd

ro
p

s

P
o
d

G
u
e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

Attacks

Figure 10. Classification report for the Adaboost Random Forest NSLKDD dataset.

From Table 41 and Figure 11, we can conclude that Normal class achieved 98.90% precision,
99.10% recall, and 99% F1-Measure, respectively. Neptune class achieved 99.40% precision, 99.90%
recall, and 99.60% F1-Measure, respectively. Similarly, Warezclient achieved 93%, 94.70%, and 93.90%
precision, recall, and F1-Measure, respectively. In addition, Ipsweep achieved 98.40%, 90%, and 94%

Sensors 2020, 20, 2559 28 of 37

precision, recall, and F1-Measure, respectively. Portsweep achieved above 96.90% precision, 92%
recall, and 94.40% F1-Measure, respectively. Teardrop achieved 95.20%, 100%, 97.60% precision,
recall, and F1-Measure, respectively. For Nmap precision, recall and F1-Measure scores were 74.40%,
92.70%, and 84.40%, respectively. Satan, Smurf, and Pod achieved on average 93% precision, recall,
and F1-Measure, respectively. Back attack achieved 100% recall while 99.30% and 99.60% precision,
and F1-Measure, respectively. Guess_passwd achieved 97%, 96.50% and 96.80% precision, recall,
and F1-Measure, respectively. Saint, Snmpgetattack, and Snmpguess performed well. Warezmaster,
Mscan, Apache2, Processtable, Httptunnel, and Mailbomb also achieved promising results for precision,
recall, and F1-Measure.

From Table 42 and Figure 12, we can conclude that Normal class achieved 99% Precision, 99.10%
Recall, and 99.10% F1-Measure, respectively. Neptune class achieved 99.90% Precision, 100% Recall,
and 99.90% F1-Measure, respectively. Similarly, Warezclient achieved 95%, 992%, and 93% Precision,
Recall, and F1-Measure, respectively. Meanwhile, Ipsweep achieved 99%, 90%, and 94% Precision,
Recall, and F1-Measure, respectively. Portsweep achieved above 98.10% precision, 98.40% Recall,
and 98.20% F1-Measure, respectively. Teardrop achieved 96.30%, 100%, 98.60% Precision, Recall,
and F1-Measure, respectively. For Nmap Precision, Recall, and F1-Measure scores are 78%, 96%,
and 86%, respectively. In addition, 91%, 97%, and 94% Precision, Recall, and F1-Measure are
achieved for Satan attack. Smurf and Pod achieved on average 96% Precision, Recall, and F1-Measure,
respectively. Back attack achieved 100% Recall while 99.30% and 99.60% Precision, and F1-Measure,
respectively. Guess_passwd achieved 97%, 96.50%, and 96.80% Precision, Recall, and F1-Measure,
respectively. Saint, Snmpgetattack, and Snmpguess attacks did not perform well. Warezmaster, Mscan,
Apache2, Processtable, Httptunnel, and Mailbomb also achieved promising results for precision, Recall,
and F1-Measure.

Table 41. Multiclass classification report for NSLKDD using Adaboost Reptree.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.10 1.20 98.90 99.10 99.00 99.90
2 Neptune 99.90 0.30 99.40 99.90 99.60 100.00
3 Warezclient 94.70 0.00 93.00 94.70 93.90 100.00
4 Ipsweep 90.00 0.00 98.40 90.00 94.00 99.90
5 Portsweep 92.00 0.10 96.90 92.00 94.40 99.10
6 Teardrop 100.00 0.00 95.20 100.00 97.60 100.00
7 Nmap 92.70 0.30 77.40 92.70 84.40 99.40
8 Satan 93.10 0.30 90.50 93.10 91.80 99.60
9 Smurf 99.90 0.10 94.70 99.90 97.20 100.00

10 Pod 98.40 0.00 95.30 98.40 96.80 100.00
11 Back 100.00 0.00 99.30 100.00 99.60 100.00
12 Guess_passwd 96.50 0.00 97.00 96.50 96.80 99.80
13 Warezmaster 93.50 0.00 98.50 93.50 99.70 98.10
14 Saint 0.00 0.00 0.00 0.00 0.00 98.50
15 Mscan 97.40 0.00 93.90 97.40 95.60 99.80
16 Apache2 99.10 0.00 100.00 99.10 99.50 99.90
17 Snmpgetattack 0.00 0.00 0.00 0.00 0.00 99.50
18 Processtable 99.50 0.00 100.00 95.50 99.80 100.00
19 Httptunnel 87.50 0.00 87.50 87.50 87.50 97.80
20 Snmpguess 40.00 0.10 55.90 40.00 46.60 99.80
21 Mailbomb 98.70 0.00 98.70 98.70 98.70 99.70
22 Weighted Avg 98.20 0.80 97.90 98.20 98.00 99.90

Sensors 2020, 20, 2559 29 of 37

0

10

20

30

40

50

60

70

80

90

100
A

c
c

u
ra

c
y

M
a

ilb
o

m
b

S
n

m
p

g
u

e
s
s

H
tt
p

tu
n

n
e

l

N
o

rm
a

l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e

ig
h

te
d

 A
v
g

W
a

re
z
c
lie

n
t

W
a

re
z
m

a
s
te

r

P
ro

c
e

s
s
ta

b
le

N
m

a
p

S
n

m
p

g
e

ta
tt
a

c
k

S
a

ta
n

M
s
c
a

n

B
a

c
k

S
a

in
t

A
p

a
c
h

e
2

Ip
s
w

e
e

p

P
o

rt
s
w

e
e

p

T
e

a
rd

ro
p

s

P
o

d

G
u

e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

Attacks

Figure 11. Classification report for the Adaboost Reptree NSLKDD dataset.

Table 42. Multiclass classification report for NSLKDD using Bagging J48.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.10 1.10 99.00 99.10 99.10 99.90
2 Neptune 100.00 0.00 99.90 100.00 99.90 100.00
3 Warezclient 92.90 0.00 95.00 92.90 93.90 99.70
4 Ipsweep 90.50 0.00 99.50 90.50 94.80 99.80
5 Portsweep 98.40 0.00 98.10 98.40 98.20 99.50
6 Teardrop 100.00 0.00 96.30 100.00 98.10 100.00
7 Nmap 96.00 0.30 78.20 96.00 86.20 99.90
8 Satan 97.20 0.30 91.90 97.20 94.40 99.90
9 Smurf 99.50 0.10 93.70 99.50 96.50 100.00

10 Pod 98.40 0.00 95.30 98.40 96.80 100.00
11 Back 99.80 0.00 99.80 99.80 99.80 100.00
12 Guess_passwd 95.70 0.00 95.70 96.70 96.70 99.70
13 Warezmaster 93.50 0.00 98.10 93.50 95.70 95.70
14 Saint 01.00 0.00 25.00 01.00 02.20 98.20
15 Mscan 96.00 0.00 97.00 96.00 96.50 96.50
16 Apache2 99.10 0.00 100.00 99.10 99.50 99.90
17 Snmpgetattack 03.50 0.00 66.70 03.50 06.70 99.70
18 Processtable 99.50 0.00 99.10 99.50 99.30 100.00
19 Httptunnel 95.00 0.00 90.50 92.70 92.70 97.50
20 Snmpguess 40.00 0.10 55.90 40.00 46.60 99.80
21 Mailbomb 96.00 0.00 94.70 96.00 95.40 99.30
22 Weighted Avg 98.50 0.60 98.40 98.50 98.30 99.90

Sensors 2020, 20, 2559 30 of 37

0

10

20

30

40

50

60

70

80

90

100
A

c
c

u
ra

c
y

M
a

ilb
o
m

b

S
n
m

p
g
u
e
s
s

H
tt

p
tu

n
n
e
l

N
o
rm

a
l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e

ig
h
te

d
 A

v
g

W
a

re
z
c
lie

n
t

W
a

re
z
m

a
s
te

r

P
ro

c
e
s
s
ta

b
le

N
m

a
p

S
n
m

p
g
e
ta

tt
a
c
k

S
a
ta

n

M
s
c
a

n

B
a
c
k

S
a
in

t

A
p
a
c
h
e
2

Ip
s
w

e
e
p

P
o
rt

s
w

e
e
p

T
e

a
rd

ro
p
s

P
o
d

G
u

e
s
s
_
p
a
s
s
w

d

S
m

u
rf

N
e
p
tu

n
e

Attacks

Figure 12. Classification report for the Bagging J48 NSLKDD dataset.

From Table 43 and Figure 13, we can conclude that Normal class achieved 99.10% Precision,
99.20% Recall, and 99.20% F1-Measure, respectively. Neptune class achieved 99.80% Precision,
100% Recall, and 99.90% F1-Measure, respectively. In addition, Warezclient achieved 93%, 98.90%,
and 96% Precision, Recall, and F1-Measure, respectively. Likewise, Ipsweep achieved 99.70%, 90.90%,
and 95.10% Precision, Recall, and F1-Measure, respectively. Portsweep achieved above 99% precision,
96% Recall, and 97% F1-Measure, respectively. Teardrop achieved 96.30%, 99.60%, 97.90% Precision,
Recall, and F1-Measure, respectively. For Nmap Precision, Recall, and F1-Measure scores are 78.60%,
95.30% and 86.20%, respectively. In addition, 91.90%, 96.70%, 94.20% Precision, Recall, and F1-Measure
are achieved for Satan attack. Smurf achieved 94%, 99%, and 97% Precision, Recall, and F1-Measure,
respectively. Pod achieved on average 96% Precision, Recall, and F1-Measure, respectively. Back attack
achieved 100% Precision, Recall, and F1-Measure, respectively. Guess_passwd achieved 97%, 96.50%,
and 96.80% Precision, Recall, and F1-Measure, respectively. Saint, Snmpgetattack, and Snmpguess
performed well. Warezmaster, Mscan, Apache2, Processtable, Httptunnel, and Mailbomb also achieved
promising results for precision, Recall, and F1-Measure. All the attacks achieved above 90% results for
all the evaluation matrixs.

From Table 44 and Figure 14, we depict that Normal class achieved 98% precision, 99.20%
recall, and 99.00% F1-Measure, respectively. Neptune class achieved 99.30% precision, 99.90% recall,
and 99.60% F1-Measure, respectively, while Warezclient achieved 98%, 92%, and 95% precision,
recall, and F1-Measure, respectively. Similarly, Ipsweep achieved 98%, 94%, and 94% precision,
recall, and F1-Measure, respectively. Portsweep achieved above 96% precision, 91% recall, and 93%
F1-Measure, respectively. Teardrop achieved 95.60%, 100%, 97.70% precision, recall, and F1-Measure,
respectively. For Nmap precision, recall, and F1-Measure scores are 77%, 92%, and 84%, respectively.
In addition, 91%, 93%, and 92% precision, recall, and F1-Measure were achieved for Satan attack. Smurf
achieved 94%, 99%, and 97% precision, recall, and F1-Measure, respectively. Pod achieved on average
97% precision, recall, and F1-Measure, respectively. Back attack achieved 99.80% precision, 100% recall,

Sensors 2020, 20, 2559 31 of 37

and 99.90% F1-Measure, respectively. Guess_passwd achieved 98%, 94%, and 96% precision, recall,
and F1-Measure, respectively. Saint, Snmpgetattack, and Snmpguess performed well. Warezmaster,
Mscan, Apache2, Processtable, Httptunnel, and Mailbomb also achieved promising results for precision,
recall, and F1-Measure. These attacks achieved above 95% results for all the evaluation matrixs.

Table 43. Multiclass classification report for NSLKDD using Bagging Random Forest.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.20 1.10 99.10 99.20 99.20 99.90
2 Neptune 100.00 0.00 99.80 100.00 99.90 100.00
3 Warezclient 98.90 0.00 93.30 98.90 96.00 100.00
4 Ipsweep 90.90 0.00 99.70 90.90 95.10 100.00
5 Portsweep 95.50 0.00 99.20 96.50 97.90 99.80
6 Teardrop 99.60 0.00 96.30 99.60 97.90 100.00
7 Nmap 95.30 0.30 78.60 95.30 86.20 99.90
8 Satan 96.70 0.30 91.90 96.70 94.20 99.90
9 Smurf 99.90 0.10 94.50 99.90 97.70 100.00

10 Pod 98.40 0.00 95.30 98.40 96.80 100.00
11 Back 100.00 0.00 100.00 100.00 100.00 100.00
12 Guess_passwd 96.80 0.00 97.30 96.80 97.00 99.60
13 Warezmaster 94.20 0.00 98.90 94.20 96.50 99.40
14 Saint 02.00 0.00 28.60 02.00 03.80 95.10
15 Mscan 99.30 0.00 95.90 99.30 97.60 100.00
16 Apache2 99.50 0.00 100.00 99.50 99.80 100.00
17 Snmpgetattack 07.00 0.00 50.00 07.00 12.30 98.80
18 Processtable 100.00 0.00 100.00 100.00 100.00 100.00
19 Httptunnel 92.50 0.00 92.50 92.50 92.50 97.50
20 Snmpguess 40.00 0.10 55.90 40.00 46.60 99.30
21 Mailbomb 98.70 0.00 97.40 98.70 98.00 99.30
22 Weighted Avg 98.60 0.50 98.40 98.60 98.40 99.90

0

10

20

30

40

50

60

70

80

90

100

A
c

c
u

ra
c

y

M
a
ilb

o
m

b

S
n
m

p
g
u

e
s
s

H
tt
p
tu

n
n
e

l

N
o

rm
a
l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e
ig

h
te

d
 A

v
g

W
a
re

z
c
lie

n
t

W
a
re

z
m

a
s
te

r

P
ro

c
e

s
s
ta

b
le

N
m

a
p

S
n
m

p
g
e

ta
tt
a
c
k

S
a
ta

n

M
s
c
a
n

B
a
c
k

S
a
in

t

A
p
a

c
h
e

2

Ip
s
w

e
e

p

P
o
rt

s
w

e
e
p

T
e
a
rd

ro
p

s

P
o
d

G
u
e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

Attacks

Figure 13. Classification report for the Bagging Random Forest NSLKDD dataset.

Sensors 2020, 20, 2559 32 of 37

Table 44. Multiclass classification report for NSLKDD using Bagging Reptree.

S.No. Class TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Normal 99.20 1.20 98.90 99.20 99.00 99.90
2 Neptune 99.90 0.30 99.30 99.90 99.60 100.00
3 Warezclient 92.50 0.00 98.00 92.50 95.20 100.00
4 Ipsweep 89.70 0.00 98.80 94.10 94.00 99.80
5 Portsweep 91.50 0.10 96.10 91.50 93.80 98.80
6 Teardrop 100.00 0.00 95.60 100.00 97.70 100.00
7 Nmap 92.90 0.30 77.20 92.90 84.50 97.90
8 Satan 93.90 0.30 91.10 93.90 92.50 99.30
9 Smurf 98.40 0.00 94.60 99.90 97.20 100.00

10 Pod 98.40 0.00 95.30 98.40 96.80 100.00
11 Back 100.00 0.00 99.80 100.00 99.90 100.00
12 Guess_passwd 94.40 0.00 98.30 94.40 96.30 99.70
13 Warezmaster 92.70 0.00 98.80 92.70 95.70 100.00
14 Saint 0.00 0.00 0.00 0.00 0.00 96.60
15 Mscan 98.70 0.00 95.20 98.70 96.90 100.00
16 Apache2 99.10 0.00 100.00 99.10 99.50 99.90
17 Snmpgetattack 01.80 0.00 50.00 01.80 03.40 99.70
18 Processtable 99.50 0.00 100.00 99.50 99.80 100.00
19 Httptunnel 87.50 0.00 87.50 87.50 87.50 97.50
20 Snmpguess 40.00 0.10 55.90 40.00 46.60 99.90
21 Mailbomb 98.70 0.00 91.40 98.70 94.90 99.30
22 Weighted Avg 98.20 0.70 98.00 98.20 98.10 99.90

0

10

20

30

40

50

60

70

80

90

100

A
c

c
u

ra
c

y

M
a

ilb
o

m
b

S
n

m
p

g
u

e
s
s

H
tt
p

tu
n

n
e

l

N
o

rm
a

l

 TP Rate FP Rate Precision Recall F1-Measure ROC Area

W
e

ig
h

te
d

 A
v
g

W
a

re
z
c
lie

n
t

W
a

re
z
m

a
s
te

r

P
ro

c
e

s
s
ta

b
le

N
m

a
p

S
n

m
p

g
e

ta
tt
a

c
k

S
a

ta
n

M
s
c
a

n

B
a

c
k

S
a

in
t

A
p

a
c
h

e
2

Ip
s
w

e
e

p

P
o

rt
s
w

e
e

p

T
e

a
rd

ro
p

s

P
o

d

G
u

e
s
s
_

p
a

s
s
w

d

S
m

u
rf

N
e

p
tu

n
e

Attacks

Figure 14. Classification report for the Reptree NSLKDD dataset.

5. Discussion

In this section, we will discuss our key outcomes as well as comparison with previous work.
Therefore, Tables 45–47 provide the detailed results of our whole work. Hence, we will discuss them
one by one in detail. "

Sensors 2020, 20, 2559 33 of 37

Table 45. Comparison of proposed models for multiclass classification.

KDD99 Experiment Average Results
S.No. Proposed Models TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Adaboost j48 99.90 0.00 99.90 99.90 99.90 100.00
2 Adaboost random forest 99.90 0.00 99.90 99.90 99.90 100.00
3 Adaboostreptree 99.90 0.00 99.90 99.90 99.90 100.00
4 Bagging j48 99.90 0.00 99.90 99.90 99.90 100.00
5 Bagging random forest 99.90 0.00 99.90 99.90 99.90 100.00
6 Bagging reptree 99.90 0.00 99.90 99.90 99.90 100.00

NSLKDD Experiment Average Results
S.No. Proposed Models TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Adaboost j48 98.40 0.60 98.30 98.40 98.30 99.90
2 Adaboost random forest 98.50 0.60 98.30 98.50 98.40 99.80
3 Adaboostreptree 98.20 0.80 97.90 98.20 98.00 99.90
4 Bagging j48 98.50 0.60 98.40 98.50 98.30 99.90
5 Bagging random forest 98.60 0.50 98.40 98.60 98.40 99.90
6 Bagging reptree 98.20 0.70 98.00 98.20 98.10 99.90

Table 46. Comparison of proposed models for binary class classification.

KDD99 Experiment Average Results
S.No. Proposed Models TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Adaboost j48 99.30 0.90 99.30 99.30 99.30 99.90
2 Adaboost random forest 99.10 0.90 99.10 99.10 99.10 99.80
3 Adaboostreptree 99.40 0.70 99.40 99.40 99.40 100.00
4 Bagging j48 99.20 01.10 99.20 99.20 99.20 99.90
5 Bagging random forest 99.40 0.70 99.40 99.40 99.40 99.90
6 Bagging reptree 99.40 0.70 99.40 99.40 99.40 100.00

NSLKDD Experiment Average Results
S.No. Proposed Models TP Rate FP Rate Precision Recall F1-Score ROC Area

1 Adaboost j48 99.00 1.00 99.00 99.00 99.00 99.90
2 Adaboost random forest 99.10 0.90 99.10 99.10 99.10 99.80
3 Adaboostreptree 99.00 1.00 99.00 99.00 99.00 99.90
4 Bagging j48 99.00 1.00 99.00 99.00 99.00 99.90
5 Bagging random forest 99.10 0.90 99.10 99.10 99.10 99.80
6 Bagging reptree 98.90 01.10 98.90 98.90 98.10 99.90

Table 47. Comparison analysis of our proposed model with other ensemble models.

Method Accuracy Detection Rate (%) FR Rate (%)

DAR Ensemble [52] 78.88 N/A
Naive Bayes-KNN-CF [53] 82.00 05.43

Feature Selection + SVM [54] 82.37 15.00
GAR Forest + Symmatrixal Uncertainity [55] 85.00 12.20

Bagging j48 [56] 84.25 02.79
PCA+PSO [57] 99.40 0.60

Propose Model Bagging Random Forest (KDD99 dataset) 99.90 0.00
Propose Model Bagging Random Forest (NSLKDD dataset) 98.60 0.50

From Table 45, we conclude that, with base machine learning classifier j48, random forest,
and Reptree, we used Adaboost and Bagging to make predictions more accurate on KDD99 and
NSLKDD datasets, for binary and multi classes. J48, Random Forest, and Reptree with Adaboost
achieved 99.90 true positive (TP) rate and 00.00% false positive (FP) rate, respectively. Meanwhile,
precision recall and F1-score were 99.90%, respectively, for all base classifiers with Adaboost and
Bagging, respectively, using the KDD99 dataset. On the NSLKDD dataset, true positive and
false positive scores were 98.40% and 00.60%, respectively, using Adaboost with a j48 classifier.
Adaboost with random forest achieved a 98.50% TP rate and 00.60% FR rate, respectively. Precision
was 98.30%, recall was 98.50%, and F1-score was 98.40%, respectively. ROC area for Adaboost J48
and random forest were 99.90% and 99.80%, respectively. TP and FR rate for Adaboost Reptree was

Sensors 2020, 20, 2559 34 of 37

98.20% and 00.80%, respectively. Precision was 97.90%, recall was 98.20%, and F1-score was 98.00%,
respectively. TR rate for Bagging j48 was 98.50%, for Bagging random forest was 98.60%, and for
Bagging reptree was 98.20%, respectively. Precision, recall, and F1-score for Bagging J48 was 98.40%,
98.50%, and 98.30%, respectively. FR rate for Bagging J48, random forest, and reptree was 00.60%,
00.50%, and 00.70%, respectively. For Bagging random forest, precision was 98.40%, and recall and
F1-score were 98.60% and 98.40%, respectively. Bagging reptree achieved 98% precision, and 98.20%
and 98.10% recall and F1-score, respectively.

Similarly, from Table 46, we can conclude that Adaboost and Bagging with base classifiers
j48, random forest, and reptree achieved high accuracy, TR rate, precision, recall, and F1-measure
and improved FP rate for both KDD99 and NSLKDD datasets. Adaboost with J48, random forest,
and reptree achieved 99.30%, 99.10%, and 99.40% TP rate and 00.90%, 00.90%, and 00.70% FP rate,
respectively, on the KDD99 dataset. Precision and recall scores for Adaboost J48 were both 99.30%,
respectively. F1-score was 98.30% for J48 with Adaboost for multiclass. Similarly, random forest with
Adaboost achieved 99.10% precision, recall, and F1-Scores, respectively. For Adaboost with reptree, we
achieved 99.40% precision, recall, and F1-Score, respectively. With Bagging j48, we achieved 99.20% TP
rate; likewise, for random forest and reptree, the FP rate was 99.40%, respectively. FP rate for J48 was
01.10% and 00.70%for Bagging random forest and Bagging reptree. Precision, recall, and F1-score for
Bagging J48 was 99.20%, respectively. In addition, 99.40% precision, recall, and F1-score was achieved
with Bagging random forest. In addition, for the nslkdd dataset using Adaboost with j48, we achieved
a 99.00% TP rate and 01.00% FP rate, respectively. Furthermore, 99.10% and 00.90% TP and FP rate
were achieved using Adaboost random forest. using Adaboost with reptree, we achieved 99.00% TP
rate and 01.00% FP rate, respectively. Precision, recall, and F1-Score using Adaboost j48 was 99.00%,
respectively. random forest with Adaboost achieved 99.10% precision, recall, and F1-Score, respectively.
reptree with Adaboost achieved 99.00% precision, recall, and F1-score, respectively. In addition, 99.00%,
99.10%, and 98.90% TP rate were achieved with Bagging j48, random forest, and reptree, respectively.
Furthermore, a 01.00% FP rate was achieved using j48 Bagging, 00.90% was achieved using random
forest, and 01.10% was achieved with reptree. j48 with Bagging achieved 99.00% precision, recall,
and F1-score, respectively. In addition, 99.10% precision, recall, and F1-score were achieved with
random forest. Thus, for reptree, precision and recall were both 98.90% respectively, and F1-score was
98.10%, respectively.

In Table 47, DAR Ensemble [52] achieved 78.88% accuracy. Naive Bayes with KNN [53] achieved
82.00% Accuracy and 05.43% FP rate. Feature selection with SVM [54] achieved 82.37% detection rate
and 15.00% FP rate. GAR forest with symmatrixal uncertainty [55] achieved 85.00% detection rate
and 12.20% FP rate, respectively. Bagging j48 [56] achieved 82.25% detection rate and 02.79% FP rate,
respectively. PCA + PSO [57] achieved 99.40% detection rate and 00.60% FP rate. Our proposed model
Bagging with random forest achieved 99.90% detection rate and 00.00% FP rate, respectively, using the
kdd99 dataset. Furthermore, 98.60% detection rate and 00.50% FP rate were achieved using the nslkdd
dataset, which is improved compared to other state-of-the-art research.

6. Conclusions and Future Work

In this paper, a machine learning based intrusion detection system has been proposed.
During experimentation, various ensemble machine learning algorithms have been implemented
on NSLKDD and KDD99 datasets. First, NSLKDD and KDD99 datasets were collected. Then,
we transformed collected data into binary classes: Attack class and Normal class. In addition, we
kept them as multiple attacks (21 Attacks for both KDD99 and nslkdd datasets). At the initial stage
of the experiment, various steps were included for the datasets to prepare for the experiment such
as pre-processing on the datasets, min-max normalization, feature optimization, and dimensionality
reduction. After best feature selection, we have applied different machine learning algorithms on both
of the datasets. Ensemble random forest has outperformed all other methods in terms of accuracy,
training, and false-positive rate. Experimental results prove that our method performs better in terms

Sensors 2020, 20, 2559 35 of 37

of detection rate, false alarm rate, and accuracy for both KDD99 and NSLKDD datasets. The FPR on
the KDD99 dataset that we achieved was 0.0%, and we achieved 0.5% FPR on the NSLKDD dataset,
respectively. Similarly, we achieved on average 99% testing accuracy for both KDD99 and NSLKDD
datasets, respectively. The limitation of this work is that some attacks have 0 classification accuracy.
The reason for this is that the data size of that attack is less than 20, while, for other attacks, data size
is large. In the future, we will solve this problem using some data balancing methods like SMOTE,
which balances the classes and improves the performance of lower classes as well.

Author Contributions: This research specifies below the individual contributions: Conceptualization, C.I. and
S.K.; Data curation, J.H.A.; Formal analysis, M.M.; Funding acquisition, M.A. (Mamdouh Alenezi); Investigation;
S.K.; Methodology, C.I.; Project administration, C.I.; Resources, M.A. (Mamdouh Alenezi); Software, J.H.A.
and M.M.; Supervision, C.I. and M.A. (Mamoun Alazab); Validation, J.H.A. and M.M.; Visualization, S.K.;
Writing—Review and editing, C.I., J.H.A., and S.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research obtained no funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sharma, J.; Giri, C.; Granmo, O.C.; Goodwin, M. Multi-layer intrusion detection system with ExtraTrees
feature selection, extreme learning machine ensemble, and softmax aggregation. Eur. J. Inf. Secur.
2019, 2019, 15. [CrossRef]

2. Omran, S.S.; Salih, M.A. Design and Implementation of Multi-model Biomatrix Identification System. Int. J.
Comput. Appl. 2014, 99, 14–21,

3. Kaimuru, D.; Mwangi, W.; Nderu, L. A Hybrid Ensemble Method for Multi class Classification and Outlier
Detection. Int. J. Sci. Basic Appl. Res. 2019, 45, 192–213.

4. Farnaaz, N.; Jabbar, M.A. random forest Modeling for Network Intrusion Detection System.
Procedia Comput. Sci. 2016, 89, 213–217 [CrossRef]

5. Panda, M.; Abraham, A.; Patra, M.R. Hybrid intelligent systems for detecting network intrusions.
Secur. Commun. Netw. 2015, 8, 2741–2749 [CrossRef]

6. Ahmim, A.; Derdour, M.; Ferrag, M.A. An intrusion detection system based on combining probability
predictions of a tree of classifiers. Int. J. Commun. Syst. 2018, 31, e3547. [CrossRef]

7. Ma, T.; Wang, F.; Cheng, J.; Yu Y.; Chen, X. A Hybrid Spectral Clustering and Deep Neural Network Ensemble
Algorithm for Intrusion Detection in Sensor Networks. Sensors 2016, 16, 1701 [CrossRef]

8. Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion detection system through feature
selection analysis and building hybrid efficient model. J. Comput. Sci. 2018, 25, 152–160. [CrossRef]

9. Khonde, S.R.; Ulagamuthalvi, V. Ensemble-based semi-supervised learning approach for a distributed
intrusion detection system. J. Cyber Secur. Technol. 2019. [CrossRef]

10. Yang, Y.; Zheng, K.; Wu, C.; Yang, Y. Improving the Classification Effectiveness of Intrusion Detection by
using Improved Conditional Variational AutoEncoder and Deep Neural Network. Sensors 2019, 19, 2528.
[CrossRef]

11. Thing, V.L.L. IEEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning Approach.
In Proceedings of the IEEE Wireless Communications and Networking Conference, San Francisco, CA, USA,
19–22 March 2017; pp. 1–6.

12. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput.
2006, 18, 1527–1554. [CrossRef] [PubMed]

13. Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947. [CrossRef]
14. Ambusaidi, M.A.; He, X.; Nanda, P.; Tan, Z. Building an intrusion detection system using a filter-based

feature selection algorithm. IEEE Trans. Comput. 2016, 65, 2986–2998. [CrossRef]
15. UNB. NSL-KDD Dataset. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on

10 December 2018).
16. Dhanabal, L.; Shantharajah, S. A study on NSL-KDD dataset for intrusion detection system based on

classification algorithms. Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, 446–452.

http://dx.doi.org/10.1186/s13635-019-0098-y
http://dx.doi.org/10.1016/j.procs.2016.06.047
http://dx.doi.org/10.1002/sec.592
http://dx.doi.org/10.1002/dac.3547
http://dx.doi.org/10.3390/s16101701
http://dx.doi.org/10.1016/j.jocs.2017.03.006
http://dx.doi.org/10.1080/23742917.2019.1623475
http://dx.doi.org/10.3390/s19112528
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://dx.doi.org/10.4249/scholarpedia.5947
http://dx.doi.org/10.1109/TC.2016.2519914
https://www.unb.ca/cic/datasets/nsl.html

Sensors 2020, 20, 2559 36 of 37

17. Iwendi, C.; Khan, S.; Anajemba, J.H.; Bashir, A.K.; Noor, F. Realizing an Efficient IoMT-Assisted Patient Diet
Recommendation System Through Machine Learning Model. IEEE Access 2020, 8, 28462–28474. [CrossRef]

18. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Conditional Variational Autoencoder for
Prediction and Feature Recovery Applied to Intrusion Detection in IoT. Sensors 2017, 17, 1967. [CrossRef]
[PubMed]

19. Anajemba, J.H.; Yue, T.; Iwendi, C.; Alenezi, M.; Mittal, M. Optimal Cooperative Offloading Scheme for
Energy Efficient Multi-Access Edge Computation. IEEE Access 2020, 8, 53931–53941. [CrossRef]

20. Mazini, M.; Shirazi, B.; Mahdavi, I. Anomaly network-based intrusion detection system using a reliable
hybrid artificial bee colony and Adaboost algorithms. J. King Saud Univ. Comput. Inf. Sci. 2019, 31, 541–553.
[CrossRef]

21. Ren, J.; Guo, J.; Wang, Q.; Huang, Y.; Hao, X.; Hu J. Building an Effective Intrusion Detection System by using
Hybrid Data Optimization Based on Machine Learning Algorithms. Secur. Commun. Netw. 2019. [CrossRef]

22. Fossaceca, J.M.; Mazzuchi, T.A.; Sarkani, S. MARK-ELM: Application of a novel Multiple Kernel Learning
framework for improving the robustness of Network Intrusion Detection. Expert Syst. Appl. 2015,
42, 4062–4080. [CrossRef]

23. Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. Feature selection and classification in multiple
class datasets: An application to KDD Cup 99 dataset. Expert Syst. Appl. 2011, 38, 5947–5957. [CrossRef]

24. Kim, J.; Thu, H.L.T.; Kim, H. Long Short Term Memory Recurrent Neural Network Classifier for
Intrusion Detection. In Proceedings of the International Conference on Platform Technology and Service
(PlatCon, 2016), Jeju, Korea, 15–17 February 2016; pp. 1–5.

25. Sen, A.; Islam, M.M.; Murase, K.; Yao, X. Binarization with boosting and oversampling for multiclass
classification. IEEE Trans. Cybern. 2016, 46, 1078–1091. [CrossRef] [PubMed]

26. Dong, L.; Frank, E.; Kramer, S. Ensembles of balanced nested dichotomies for multi-class problems.
In Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery,
Porto, Portugal, 3–7 October 2005; pp. 84–95.

27. Hashemi, S.; Yang, Y.; Mirzamomen, Z.; Kangavari, M. Adapted one-versus-all decision trees for data stream
classification. IEEE Trans. Knowl. Data Eng. 2009, 21, 624–637. [CrossRef]

28. Gaikwad, V.; Kulkarni, P.J. One versus all classification in network intrusion detection using decision tree.
Int. J. Sci. Res. Publ. 2012, 2, 1–5.

29. Govindarajan, M.; Chandrasekaran, R. Intrusion detection using an ensemble of classification methods.
In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA,
24–26 October 2012; Volume 1, pp. 459–464.

30. Horng, S.-J.; Su, M.-Y.; Chen, Y.-H.; Kao, T.-W.; Chen, R.-J.; Lai, J.-L.; Perkasa, C.D. A novel intrusion detection
system based on hierarchical clustering and support vector machines. Expert Syst. Appl. 2011, 38, 306–313.
[CrossRef]

31. Aburomman, A,A.; Reaz, M.B.I. A novel weighted support vector machines multiclass classifier based on
differential evolution for intrusion detection systems. Inf. Sci. 2017, 414, 225–246. [CrossRef]

32. Thaseen, I.S.; Kumar, C.A. Intrusion detection model using fusion of chi-square feature selection and multi
class SVM. J. King Saud Univ. Comput. Inf. Sci. 2017, 29, 462–472.

33. Iwendi, C.; Alastair, A.; Offor, K. Smart Security Implementation for Wireless Sensor Network Nodes.
J. Wirel. Sens. Netw. 2015, 1, 1–2.

34. Mittal, M.; Saraswat, L.K.; Iwendi, C.; Anajemba, J.H. A Neuro-Fuzzy Approach for Intrusion Detection in
Energy Efficient Sensor Routing. In Proceedings of the 4th International Conference on Internet of Things:
Smart Innovation and Usages (IoT-SIU), Ghaziabad, India, 18–19 April 2019; pp. 1–5.

35. Iwendi, C.O.; Allen, A.R. Enhanced security technique for wireless sensor network nodes, Wireless Sensor
Systems (WSS 2012). IET Conf. 2012, 2, 1–5.

36. Iwendi, C.; Uddin, M.; Ansere, J.A.; Nkurunziza, P.; Anajemba, J.H.; Bashir, A.K. On Detection of Sybil Attack
in Large-Scale VANETs using Spider-Monkey Technique. IEEE Access 2018, 6, 47258–47267. [CrossRef]

37. Iwendi, C.; Suresh, P.; Revathi, M.; Srinivasan, K.; Chang, C.-Y. An Efficient and Unique TF/IDF Algorithmic
Model-Based Data Analysis for Handling Applications with Big Data Streaming, published in Artificial
Intelligence- Applications and Methodologies of Artificial Intelligence in Big Data Analysis. Electronics
2019, 8, 1331. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2968537
http://dx.doi.org/10.3390/s17091967
http://www.ncbi.nlm.nih.gov/pubmed/28846608
http://dx.doi.org/10.1109/ACCESS.2020.2980196
http://dx.doi.org/10.1016/j.jksuci.2018.03.011
http://dx.doi.org/10.1155/2019/7130868
http://dx.doi.org/10.1016/j.eswa.2014.12.040
http://dx.doi.org/10.1016/j.eswa.2010.11.028
http://dx.doi.org/10.1109/TCYB.2015.2423295
http://www.ncbi.nlm.nih.gov/pubmed/25955858
http://dx.doi.org/10.1109/TKDE.2008.181
http://dx.doi.org/10.1016/j.eswa.2010.06.066
http://dx.doi.org/10.1016/j.ins.2017.06.007
http://dx.doi.org/10.1109/ACCESS.2018.2864111
http://dx.doi.org/10.3390/electronics8111331

Sensors 2020, 20, 2559 37 of 37

38. Bashir, A.K.; Arul, R.; Jayaram, R.; Arulappan, A.; Prathiba, S.B. An Optimal Multi-tier Resource Allocation
of Cloud RAN in 5G using Machine Learning. Trans. Emerg. Telecommun. Technol. Wiley 2019, 30, e3627.

39. Shafiq, M.; Yu, X.; Bashir, A.K.; Chuahdry, H.N.; Wang, D. A Machine Learning Approach for Feature
Selection Traffic Classification using Security Analysis. J. Supercomput. 2018, 76, 4867–4892. [CrossRef]

40. Kayacik, H.G.; Zincir-Heywood, A.N.; Heywood, M.I. Selecting features for intrusion detection: A feature
relevance analysis on KDD 99 benchmark. In Proceedings of the Third Annual Conference on Privacy,
Security and Trust, St. Andrews, NB, Canada, 12–14 October 2005.

41. Saxena, H.; Richaariya, V. Intrusion Detection in kdd99 Dataset using SVM-PSO and Feature Reduction with
Information Gain. Int. J. Comput. Appl. 2014, 98, 25–29. [CrossRef]

42. Mittal, M.; Kumar, K. Data Clustering in Wireless Sensor Network Implemented On Self Organization
Feature Map (SOFM) Neural Network. In Proceedings of the IEEE International Conference on Computing
Communication and Automation(ICCCA), Noida, India, 29–30 April 2016; pp. 202–207.

43. Mittal, M.; Kumar, K. Network Lifetime Enhancement of Homogeneous Sensor Network using ART1
Neural Network. In Proceedings of the Sixth International Conference on Computational Intelligence and
Communication Networks, Bhopal, India, 14–16 November 2014; pp. 472–475.

44. Mittal, M.; Kumar, K. Quality of Services Provisioning in Wireless Sensor Networks using Artificial Neural
Network: A Survey. Int. J. Comput. Appl. 2015, 117, 28–40. [CrossRef]

45. Hall, M.A. Correlation-Based Feature Selection for Machine Learning; University of Waikato: Hamilton,
New Zealand, 1999.

46. Wosiak, A.; Zakrzewska, D. Integrating correlation-based feature selection and clustering for improved
cardiovascular disease diagnosis. Complexity 2018. [CrossRef]

47. Sarumathiy, C.K.; Geetha, K.; Rajan, C. Improvement in Hadoop performance using integrated feature
extraction and machine learning algorithms. Soft Comput. 2020, 24, 627–636. [CrossRef]

48. Accuracy, Precision, Recall F1-Score: Interpretation of Performance Measures-Exsilio Blog. Available
online: https://blog.exsilio.com/all/accuracy-precision-recall-F1-score-interpretation-of-performance-
measures/ (accessed on 30 December 2019).

49. Weka 3-Data Mining with Open Source Machine Learning Software in Java. Available online: https:
//www.cs.waikato.ac.nz/ml/weka/ (accessed on 24 November 2019).

50. KDD Cup 1999 Data. Available online: http://kdd.ics.uci.edu/datasets/kddcup99/kddcup99.html
(accessed on 26 December 2019).

51. NSL-KDD|Datasets|Research|Canadian Institute for Cybersecurity|UNB. Available online: https://www.
unb.ca/cic/datasets/nsl.html (accessed on 26 December 2019).

52. Gaikwad, D.; Thool, R. DAREnsemble: Decision tree and rule learner based ensemble for network intrusion
detection system. Smart Innov. Syst. Technol. 2016, 50, 185–193.

53. Pajouh, H.H.; Dastghaibyfard, G.H.; Hashemi, S. Two-tier network anomaly detection model: A machine
learning approach. J. Intell. Inf. Syst. 2017, 48, 61–74. [CrossRef]

54. Pervez, M.S.; Farid, D.M. Feature Selection and Intrusion Classification in NSL-KDD cup 99 Dataset
employing SVMs. In Proceedings of the 8th International Conference on Software, Knowledge, Information
Management and Applications (SKIMA 2014), Dhaka, Bangladesh, 18–20 December 2014; pp. 1–6.

55. Kanakarajan, N.K.; Muniasamy, K. Improving the accuracy of intrusion detection using gar-forest with
feature selection. Adv. Intell. Syst. Comput. 2016, 404, 539–547.

56. Pham, N.T.; Foo, E.; Suriadi, S.; Jeffrey, H.; Lahza, H.F.M. Improving performance of intrusion detection
system using ensemble methods and feature selection. ACM 2018. [CrossRef]

57. Ahmad, I. Feature Selection using Particle Swarm Optimization in Intrusion Detection. Int. J. Distrib.
Sens. Netw. 2015, 11, 806954. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11227-018-2263-3
http://dx.doi.org/10.5120/17188-7369
http://dx.doi.org/10.5120/20553-2931
http://dx.doi.org/10.1155/2018/2520706
http://dx.doi.org/10.1007/s00500-019-04453-x
https://blog.exsilio.com/all/accuracy-precision-recall-F1-score-interpretation-of-performance-measures/
https://blog.exsilio.com/all/accuracy-precision-recall-F1-score-interpretation-of-performance-measures/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
http://kdd.ics.uci.edu/datasets/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
http://dx.doi.org/10.1007/s10844-015-0388-x
http://dx.doi.org/10.1145/3167918.3167951
http://dx.doi.org/10.1155/2015/806954
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Proposed Methodology
	Description
	KDD99 Dataset
	NSLKDD Dataset

	Pre-Processing
	Normalization
	Data Encoding

	Feature Selection
	Bagging Classifier
	Adaboost Classifier
	Evaluation Matrixs

	Experiments
	Binary Class Experiment Results for KDD99
	Binary Class Experiment Results for NSLKDD

	Discussion
	Conclusions and Future Work
	References

